Лучшие репетиторы для сдачи ЕГЭ
Задания по теме «Задачи на движение»
Открытый банк заданий по теме задачи на движение. Задания B11 из ЕГЭ по математике (профильный уровень)
Задание №1105
Тип задания: 11
Тема:
Задачи на движение
Условие
Два велосипедиста одновременно отправились из деревни A в деревню B, расстояние между которыми 21 км. Скорость первого велосипедиста была на 3 км/ч больше скорости второго велосипедиста. Найдите скорость второго велосипедиста, если он приехал в деревню B на 10 мин позже первого. Ответ дайте в км/ч.
Показать решение
Решение
Обозначим скорость второго велосипедиста через x км/ч. Тогда скорость первого (x+3) км/ч, а время первого велосипедиста на прохождение всего пути frac{21}{x+3}ч, время второго велосипедиста, затраченное на прохождение всего пути frac{21}{x}ч. Разница во времени равна 10 мин = frac16часа.
Составим и решим уравнение: frac{21}{x}-frac{21}{x+3}=frac16,
6(21(x+3)-21x)=x(x+3),
x^2+3x-378=0,
x_1=18, x_2=-21.
Отрицательная скорость не удовлетворяет условию задачи. Скорость второго велосипедиста равна 18 км/ч.
Ответ
18
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1101
Тип задания: 11
Тема:
Задачи на движение
Условие
Моторная лодка прошла против течения реки 160 км и вернулась в пункт отправления, затратив на обратный путь на 8 часов меньше времени. Известно, что в неподвижной воде лодка движется со скоростью 15 км/ч. Найдите скорость течения реки. Ответ дайте в км/ч.
Показать решение
Решение
Обозначим скорость течения реки через x км/ч. Тогда скорость лодки по течению реки (15 + x) км/ч, скорость лодки против течения реки (15 — x) км/ч. Время, затраченное лодкой на путь по течению реки frac{160}{15+x} ч, время, затраченное на путь против течения реки — frac{160}{15-x} ч.
Составим и решим уравнение:
frac{160}{15-x}-frac{160}{15+x}=8,
frac{20}{15-x}-frac{20}{15+x}=1,
20(15+x-15+x)= (15-x)(15+x),
20cdot2x=225-x^2,
40x=225-x^2,
x^2+40x-225=0,
x_1=5, x_2=-45.
Скорость течения положительна, она равна 5 км/ч.
Ответ
5
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1100
Тип задания: 11
Тема:
Задачи на движение
Условие
Два мотоциклиста выехали одновременно из города A в город B, расстояние между которыми 171 км. За один час первый мотоциклист проезжает расстояние на 40 км больше второго мотоциклиста. Найдите скорость второго мотоциклиста, если он приехал в пункт В на 2,5 часа позже первого. Ответ дайте в км/ч.
Показать решение
Решение
Обозначим скорость второго мотоциклиста через x км/ч, тогда по условию скорость первого мотоциклиста (x + 40) км/ч. Время, затраченное на прохождение всего пути первым мотоциклистом, равно frac{171}{x+40} ч. Время, затраченное на прохождение всего пути вторым мотоциклистом, равно frac{171}{x} ч.
Составим и решим уравнение:
frac{171}{x}-frac{171}{x+40}=2,5,
171(x + 40) — 171x = 2,5x(x + 40),
171x+171cdot40-171x = 2,5x^2 + 100x,
2,5x^2+100x-171cdot40 =0,
x^2+40x-171cdot16=0,
x_1 = 36, x_2 = -76.
Отрицательная скорость не удовлетворяет условию. Скорость второго мотоциклиста
36 км/ч.
Ответ
36
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1096
Тип задания: 11
Тема:
Задачи на движение
Условие
По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 80 км/ч и 50 км/ч. Товарный поезд имеет длину 1100 метров. Какова длина пассажирского поезда, если время, за которое он прошёл мимо товарного поезда, равно 3 минуты 6 секунд. Ответ дайте в метрах.
Показать решение
Решение
Скорость пассажирского поезда относительно товарного равна 80-50=30 (км/ч) = frac{30000}{60} (м/мин) =500 (м/мин). Обозначим длину пассажирского поезда через x метров, тогда пассажирский поезд пройдёт мимо товарного поезда расстояние, равное (1100 + x) метров, за 3 мин 6 сек (3 мин 6 сек = 3,1 мин).
Составим и решим уравнение:
frac{1100+x}{3,1}=500,
1100+x=500cdot3,1,
x=1550-1100,
x=450.
Длина пассажирского поезда 450 м.
Ответ
450
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1095
Тип задания: 11
Тема:
Задачи на движение
Условие
Поезд, двигаясь равномерно со скоростью 60 км/ч, проезжает мимо семафора за 45 секунд. Найдите длину поезда в метрах.
Показать решение
Решение
Обозначим длину поезда x км. Тогда время, за которое поезд проезжает мимо семафора, равно frac{x}{60}ч. По условию это 45 секунд, то есть frac{45}{3600}ч.
frac{x}{60}=frac{45}{3600},
x=frac{60cdot45}{3600},
x=0,75 (км).
Длина поезда равна 750 м.
Ответ
750
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1094
Тип задания: 11
Тема:
Задачи на движение
Условие
Поезд, двигаясь равномерно со скоростью 63 км/ч, проезжает мимо здания вокзала, длина которого равна 150 метров, за 1 минуту. Найдите длину поезда в метрах.
Показать решение
Решение
Обозначим длину поезда x км. Длина здания равна 150 метров, то есть 0,15 км. Путь, который поезд проехал мимо здания вокзала, равен (x+0,15) км. Время, за которое поезд проезжает мимо здания вокзала, равно frac{x+0,15}{63}ч. По условию это 1 минута (1 мин = frac{1}{60} часа).
оставим и решим уравнение: frac{x+0,15}{63}=frac{1}{60},
x=0,9 (км).
Длина поезда равна 900 м.
Ответ
900
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1093
Тип задания: 11
Тема:
Задачи на движение
Условие
Из двух посёлков, расстояние между которыми 88 км, навстречу друг другу одновременно выехали два велосипедиста. Через сколько часов велосипедисты встретятся, если их скорости равны 18 км/ч и 22 км/ч?
Показать решение
Решение
Обозначим время велосипедистов до встречи через x ч. Тогда первый велосипедист до встречи проедет 18x км, а второй велосипедист проедет до встречи 22x км.
Составим и решим уравнение:
8x + 22x = 88, 40x = 88, x = 2,2.
Велосипедисты встретятся через 2,2 часа.
Ответ
2,2
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №945
Тип задания: 11
Тема:
Задачи на движение
Условие
Теплоход проходит по течению реки до пункта назначения 221 км и после стоянки возвращается в пункт отправления. Скорость движения теплохода в воде без течения равна 15 км/ч. Стоянка длилась 7 часов. Найдите скорость течения реки, если в пункт отправления теплоход вернулся через 37 часов после отплытия из него. Ответ дайте в км/ч.
Показать решение
Решение
Обозначим скорость течения через x км/ч, тогда скорость теплохода по течению реки равна (15+x) км/ч, скорость теплохода против течения (15-x) км/ч. Время движения теплохода равно 37-7=30 ч.
Составим и решим уравнение:
frac{221}{15+x}+frac{221}{15-x}=30,
221(15-x+15+x)=30(15-x)(15+x),
221=225-x^2,
x^2=4,
x_1=2,,x_2=-2.
Скорость течения положительна, она равна 2 км/ч.
Ответ
2
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №944
Тип задания: 11
Тема:
Задачи на движение
Условие
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми 288 км. На следующий день он поехал обратно со скоростью на 6 км/ч больше прежней. По пути велосипедист останавливался и отдыхал 4 часа. В итоге на возвращение в город A у него ушло сколько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B. Ответ дайте в км/ч.
Показать решение
Решение
Обозначим скорость велосипедиста на пути от A до B через x км/ч, x>0. Тогда его скорость на обратном пути будет (x+6) км/ч. Время, затраченное велосипедистом на путь от A до B, равно frac{288}{x}ч, время движения на обратном пути frac{288}{x+6}ч.
Составим и решим уравнение:
frac{288}{x}-frac{288}{x+6}=4,
288(x+6-x)=4x(x+6),
72cdot6=x^2+6x,
x^2+6x-432=0,
x_1=18,,x_2=-24.
Отрицательная скорость не удовлетворяет условию задачи. Скорость велосипедиста равна 18 км/ч.
Ответ
18
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №943
Тип задания: 11
Тема:
Задачи на движение
Условие
Из пункта A в пункт B одновременно выехали две дорожные машины. Первая машина проехала с постоянной скоростью весь путь. Вторая проехала первую половину пути со скоростью 39 км/ч, а вторую половину пути — со скоростью на 26 км/ч большей скорости первой машины, в результате чего в пункт B обе машины прибыли одновременно. Найдите скорость первой машины. Ответ дайте в км/ч.
Показать решение
Решение
Обозначим скорость первой машины через x км/ч, путь от A до B s км, тогда путь от пункта A в пункт B она пройдёт за frac sxч. Половина пути пройдена второй машиной со скоростью 39 км/ч за frac{0,5s}{39}=frac{s}{78}ч. Скорость второй машины на второй половине пути равна (x+26) км/ч, таким образом, время, затраченное на вторую половину пути второй машиной, равно frac{0,5s}{x+26}ч.
Составим и решим уравнение:
frac sx=frac{s}{78}+frac{0,5s}{x+26},
frac 2x=frac{2}{78}+frac{1}{x+26},
frac 2x-frac{1}{39}-frac{1}{x+26}=0,
frac{2cdot39(x+26)-x(x+26)-39x}{39x(x+26)}=0,
78x+39cdot52-x^2-26x-39x=0,
x^2-13x-39cdot52=0,
x_1=52,,x_2=-39.
Отрицательная скорость не удовлетворяет условию. Скорость первой машины 52 км/ч.
Ответ
52
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Лучшие репетиторы для сдачи ЕГЭ
Сложно со сдачей ЕГЭ?
Звоните, и подберем для вас репетитора: 78007750928
На чтение 9 мин Просмотров 18.1к. Опубликовано 16 ноября, 2020
Задачи на движение начинают проходить в 5 классе и решают все оставшиеся учебные годы вплоть до 11 класса. В ЕГЭ по математике вы найдете задачи на движение в задании 11, в котором собраны все текстовые задачи. Рассмотрим как надо решать задачи на движение из ЕГЭ. Но сначала немного теории.
Содержание
- Как решать задачи на движение
- Примеры решения
- Виды задач на движение
- Движение навстречу друг другу, движение в противоположных направлениях
- Движение друг за другом (вдогонку)
- Задачи на движение по кругу
- Задачи на движение мимо объекта
- Задачи на движение по течению и против течения
- Задачи на движение из ЕГЭ по математике (профильный уровень)
- Задача 1.
- Задача 2.
- Задача 3
- Задача 4
- Задача 5
Как решать задачи на движение
Решение задач на движение подчиняется четкому алгоритму, который состоит из нескольких этапов:
- Анализ данных.
- Составление таблицы.
- Составление уравнения.
- Решение уравнения.
Остановимся подробно на каждом пункте:
1. Первое, с чего нужно начать — медленно и вдумчиво прочитать условие задачи, то есть проанализировать данные.
Чтобы наглядно представить задачу, необходимо сделать рисунок и отобразить на нем все известные по условию задачи величины.
2. Второй шаг — составить таблицу по условию задачи, внести в таблицу известные величины и ввести неизвестные.
Таблица состоит из трех столбцов S, v и t (путь, скорость и время) и нескольких строк. При заполнении каждой строки сначала выбираем и заполняем тот столбец, информация о котором дана в задаче. Еще один столбец записываем в роли неизвестного (чаще всего, это то, что требуется найти в задаче). В третью, оставшуюся колонку вписываем связь характеристик из двух уже заполненных столбцов по формуле:
S = v · t.
В таблице получается столько строчек, сколько каждый из объектов задачи действовал (то есть, перемещался) или мог бы действовать.
3. Следующий шаг — при помощи сделанного рисунка и заполненной таблицы составить уравнение или систему уравнений.
По окончании заполнения таблицы оказывается, что есть часть информации, которая не вошла в таблицу. Эта информация характеризует те значения величин в колонках, которые вычисляются в третью очередь, то есть по формуле. На основании этой информации и данных из третьей колонки составляем уравнение.
4. Решить полученное уравнение и прийти к ответу.
Когда уравнение составлено, последний шаг — это решить его, и, в конце концов, получить ответ.
Будьте внимательны, если за неизвестное вы приняли не то, что требуется найти в задаче. В этом случае следует выразить то, что нужно найти через полученное решение уравнения.
Если, решив уравнение, вы получили несколько ответов, то следует отобрать только имеющие смысл решения. Помните, что путь, скорость и время не могут быть отрицательными.
Примеры решения
Пример:
Два велосипедиста одновременно отправляются в 60-километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
Решение:
В задаче требуется найти скорость второго, более медленного, велосипедиста. Примем его скорость за x. Заполним таблицу:
v, км/ч | t, ч | S, км | |
Первый велосипедист | x + 10 | 60 | |
Второй велосипедист | x | 60 |
В условии задачи сказано, что первый велосипедист прибыл к финишу на 3 часа раньше второго. На основании этого составим уравнение:
3x2 + 90x = 600 + 60x;
x2 + 10x – 200 = 0.
Получаем два корня, x1 = 10 и x2 = –20. Второй корень не подходит, так как скорость не может быть отрицательной.
Ответ: 10 км/ч.
Виды задач на движение
Движение навстречу друг другу, движение в противоположных направлениях
Если два объекта движутся навстречу друг другу, то они сближаются:
При движении в противоположном направлении объекты удаляются:
В обоих случаях объекты как бы «помогают» друг другу преодолеть общее для них расстояние, «действуют сообща». Поэтому чтобы найти их совместную скорость (это и будет скорость сближения или удаления), нужно складывать скорости объектов:
v = v1 + v2.
Движение друг за другом (вдогонку)
При движении в одном направлении объекты также могут как сближаться, так и удаляться. В этом случае они как бы «соревнуются» в преодолении общего расстояния, «действуют друг против друга». Поэтому их совместная скорость будет равна разности скоростей.
Если скорость идущего впереди объекта меньше скорости объекта, следующего за ним, то они сближаются. Чтобы найти скорость сближения, надо из большей скорости вычесть меньшую:
Если объект, идущий впереди, движется с большей скоростью, чем идущий следом за ним, то они удаляются. Чтобы найти скорость удаления, надо из большей скорости вычесть меньшую:
Таким образом:
При движении навстречу друг другу и движении в противоположных направлениях скорости складываем.
При движении в одном направлении скорости вычитаем.
Задачи на движение по кругу
При движении по кругу объекты могут:
При этом пройденные расстояния измеряются длиной круговой трассы, равной S.
- Если два объекта начинают движение по кругу из одной и той же точки, то в момент первой встречи более быстрый объект пройдет расстояние на один круг больше.
- Если два объекта начинают движение по кругу из разных точек, расстояние между которыми равно S0, то в момент первой встречи догоняющий объект пройдет на S0 км большее расстояние, чем догоняемый.
- Если через определенное время t первый объект опережает второй на m кругов, то разница пройденных объектами расстояний будет равна m · S: S1 – S2 = m · S.
Задачи на движение мимо объекта
В задачах на движение мимо объекта обязательно присутствуют протяженные тела — поезда, туннели, корабли и т. п. Зачастую движущимся объектом является поезд.
Если поезд длиной L движется мимо точечного объекта (столба, светофора, человека), то он проходит расстояние, равное его длине L:
S = L = v0 · t.
При этом, если точечный объект (пешеход, велосипедист) тоже движется, то совместная скорость равна сумме скоростей, если поезд и объект двигаются в разных направлениях (как в пункте 1), и равна разности скоростей, если они двигаются в одном направлении (как в пункте 2).
Если поезд длиной L1 движется мимо протяженного объекта (туннеля, лесополосы) длиной L2, то он проходит расстояние, равное сумме длин самого поезда и протяженного объекта:
S = L1 + L2 = v0 · t.
При этом, если протяженный объект (например, другой поезд) тоже движется, то совместная скорость равна сумме скоростей, если оба объекта двигаются в разных направлениях, и равна разности скоростей (из большей вычитается меньшая), если они двигаются в одном направлении.
Задачи на движение по течению и против течения
В задачах на движение помимо собственной скорости плывущего тела нужно учитывать скорость течения.
При движении по течению скорость течения прибавляется к скорости плывущего тела: v = v0 + vтеч.
При движении против течения скорость течения отнимается от скорости плывущего тела: v = v0 – vтеч.
Задачи на движение из ЕГЭ по математике (профильный уровень)
Задача 1.
Из одной точки круговой трассы, длина которой равна 44 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 112 км/ч, и через 48 минут после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.
Решение: Пусть скорость второго автомобиля равна v км/ч. За 4/5 часа первый автомобиль прошел на 44 км больше, чем второй, отсюда имеем:
112 ∙ = v ∙ = v ∙ + 44 ⇔ 4 ∙ v = 112 ∙ 4 – 44 ∙ 5 ⇔ v = 57.
Следовательно, скорость второго автомобиля была равна 57 км/ч.
Ответ: 57 км/ч.
Задача 2.
Из пункта A круговой трассы выехал велосипедист, а через 10 минут следом за ним отправился мотоциклист. Через 2 минуты после отправления он догнал велосипедиста в первый раз, а еще через 3 минуты после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 5 км. Ответ дайте в км/ч.
Решение:
До первой встречи велосипедист провел на трассе 1/5 часа, а мотоциклист 1/30 часа. Пусть скорость мотоциклиста равна v км/ч, тогда скорость велосипедиста равна
Тогда если скорость велосипедиста – это 1 единица отношения, то скорость мотоциклиста – это 6 единиц отношения.
Так как они едут в одном направлении, их общая скорость 5 единиц отношения.
∙5 ед.отн. = 5
1 ед.отн. = 20
6 ед.отн. = 120
Таким образом, скорость мотоциклиста была равна 120 км/ч.
Ответ: 120 км/ч.
Задача 3
Часы со стрелками показывают 3 часа ровно. Через сколько минут минутная стрелка в девятый раз поравняется с часовой?
Решение: Скорость движения минутной стрелки 12 делений/час (под одним делением здесь подразумевается расстояние между соседними цифрами на циферблате часов), а часовой ― 1 деление/час. До девятой встречи минутной и часовой стрелок минутная должна сначала 8 раз «обогнать» часовую, то есть пройти 8 кругов по 12 делений. Пусть после этого до четвертой встречи часовая стрелка пройдет L делений. Тогда общий путь минутной стрелки складывается из найденных 96 делений, ещё 3 изначально разделяющих их делений (поскольку часы показывают 3 часа) и последних L делений. Приравняем время движения для часовой и минутной стрелок:
, отсюда , отсюда и .
Ответ: через 9 минут.
Задача 4
Из одной точки круговой трассы, длина которой равна 14 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 80 км/ч, и через 40 минут после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.
Решение:
Данную задачу можно интерпретировать (представить её, как задачу на линейное движение): Два автомобиля одновременно начинают движение в одном направлении. Скорость первого равна 80 км/ч. Через 40 минут он опережает второго на 14 км (т. к. сказано, что на один круг). Найти скорость второго. Очень важно в заданиях на движение представить сам процесс этого движения.
Сравнение так же производим по расстоянию.
За x принимаем искомую величину ― скорость второго. Время движения 40 минут (2/3 часа) для обоих. Заполним графу «расстояние»:
v | t | S | |
1 | 80 | 2/3 | |
2 | x | 2/3 |
Расстояние, пройденное первым, больше расстояния, который прошёл второй на 14 км.
80 ∙ больше, чем x ∙ больше, чем x ∙ на 14.
80 ∙ = x ∙ = x ∙ + 14;
– – = x ∙ ;
160 – 42 = х ∙ 2;
х = 59.
Скорость второго автомобиля 59 (км/ч).
Ответ: 59 км/ч.
Задача 5
Из пункта A в пункт B, расстояние между которыми 75 км, одновременно выехали автомобилист и велосипедист. Известно, что за час автомобилист проезжает на 40 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт B на 6 часов позже автомобилиста. Ответ дайте в км/ч.
Решение:
Пусть v км/ч – скорость велосипедиста, тогда скорость автомобилиста равна v + 40 км/ч. Велосипедист был в пути на 6 часов больше, отсюда имеем:
Таким образом, скорость велосипедиста была равна 10 км/ч.
Ответ: 10 км/ч.
В (9) задании ЕГЭ по математике предлагается решить текстовую задачу. За это задание можно получить (1) балл.
Пример:
группа туристов в 10 часов утра на катере по реке отправилась на экскурсию. До места экскурсии катер плыл (15) км. Экскурсия длилась 4 часа, после этого группа на этом же катере вернулась обратно в 18 часов того же дня. Определи скорость течения реки, если скорость катера в стоячей воде равна 8 км/ч.
Алгоритм выполнения задания
- Определим тип задачи.
- Определим, какую величину удобно обозначить переменной. Заполним таблицу по условию задачи.
- Выполним все необходимые вычисления, которые можно сделать по явно данным условиям.
- Составим уравнение и решим его. Если получили два корня, то необходимо отобрать нужный.
- Вернёмся к условию и вопросу задачи, чтобы понять: найдено нужное значение или нужны дополнительные вычисления.
- Запишем ответ без единиц измерения и точки в конце.
Как решить задание из примера?
1. Обозначим искомую скорость течения за (x) км/ч.
2. По условию скорость лодки по течению —
(8+x)
км/ч, против течения —
(8−x)
км/ч. Занесём данные в таблицу. Время в каждой строчке выразим по формуле
t=Sv
.
Скорость |
Время |
Расстояние |
|
По течению |
(8+x)
км/ч |
158+x
ч |
(15) км |
Против течения |
(8−x)
км/ч |
158−x
ч |
(15) км |
3. Время на движение туда и обратно, исходя из показаний часов, составляет 4 часа, т. к. группа отправилась в 10 часов, вернулась в 18 часов и при этом потратила 4 часа на экскурсию.
4. Составим уравнение. В левой его части окажется сумма времени на путь к месту экскурсии и времени на путь обратно. В правой части уравнения — общее время, полученное при вычислениях в п. (2). Направление течения неважно, так как (15) км пройдено по течению и (15) км — против течения.
158+x+158−x=4;15(8−x)+15(8+x)(8−x)(8+x)=4;15⋅1664−x2=4;15⋅464−x2=1;x2=4;x=±2.
Отрицательный корень не подходит к условию задачи. Его исключаем.
5. В задаче требуется найти скорость течения реки. Это и есть (x), значит, ответ уже найден.
6. Запишем ответ: (2).
Обрати внимание!
В заданиях «Как на ЕГЭ» ответы записывай в виде целого числа или десятичной дроби без пробелов и точки в конце.
Если получилась обыкновенная дробь и её нельзя перевести в конечную десятичную дробь — ищи ошибку в решении!
Задача 1. Два велосипедиста одновременно отправились в -километровый пробег. Первый ехал со скоростью, на км/ч большей, чем скорость второго, и прибыл к финишу на часа раньше второго. Найти скорость велосипедиста, пришедшего к финишу первым. Ответ дайте в км/ч.
Решение: + показать
Задача 2. Из пункта А в пункт В, расстояние между которыми км, одновременно выехали автомобилист и велосипедист. Известно, что в час автомобилист проезжает на км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт В на часов позже автомобилиста. Ответ дайте в км/ч.
Решение: + показать
Задача 3. Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно км. На следующий день он отправился обратно со скоростью на км/ч больше прежней. По дороге он сделал остановку на часа. В результате он затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. Ответ дайте в км/ч.
Решение: + показать
Задача 4. Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 10 км/ч, а вторую половину пути – со скоростью 60 км/ч, в результате чего прибыл в пункт В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 39 км/ч. Ответ дайте в км/ч.
Решение: + показать
Задача 5. Из двух городов, расстояние между которыми равно км, навстречу друг другу одновременно выехали два автомобиля. Через сколько часов автомобили встретятся, если их скорости равны км/ч и км/ч?
Решение: + показать
Задача 6. Из городов A и B, расстояние между которыми равно км, навстречу друг другу одновременно выехали два автомобиля и встретились через часа на расстоянии км от города B. Найдите скорость автомобиля, выехавшего из города A. Ответ дайте в км/ч.
Решение: + показать
Задача 7. Расстояние между городами A и B равно км. Из города A в город B выехал первый автомобиль, а через два часа после этого навстречу ему из города B выехал со скоростью км/ч второй автомобиль. Найдите скорость первого автомобиля, если автомобили встретились на расстоянии км от города A. Ответ дайте в км/ч.
Решение: + показать
Задача 8. Товарный поезд каждую минуту проезжает на метров меньше, чем скорый, и на путь в км тратит времени на часа больше, чем скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.
Решение: + показать
Задача 9. Расстояние между городами A и B равно км. Из города A в город B выехал автомобиль, а через часа следом за ним со скоростью км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Ответ дайте в километрах.
Решение: + показать
Задача 10. Два пешехода отправляются одновременно в одном направлении из одного и того же места на прогулку по аллее парка. Скорость первого на км/ч больше скорости второго. Через сколько минут расстояние между пешеходами станет равным метрам?
Решение: + показать
Задача 11. Первый велосипедист выехал из поселка по шоссе со скоростью км/ч. Через час после него со скоростью км/ч из того же поселка в том же направлении выехал второй велосипедист, а еще через час после этого — третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через часа минут после этого догнал первого. Ответ дайте в км/ч.
Решение: + показать
Задача 12. Поезд, двигаясь равномерно со скоростью км/ч, проезжает мимо придорожного столба за секунд. Найдите длину поезда в метрах.
Решение: + показать
Задача 13. Поезд, двигаясь равномерно со скоростью км/ч, проезжает мимо лесополосы, длина которой равна метров, за секунд. Найдите длину поезда в метрах. Видео*
Решение: + показать
Задача 14. По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно км/ч и км/ч. Длина товарного поезда равна метрам. Найдите длину пассажирского поезда, если время, за которое он прошел мимо товарного поезда, равно минутам. Ответ дайте в метрах.
Решение: + показать
Задача 15. По двум параллельным железнодорожным путям друг навстречу другу следуют скорый и пассажирский поезда, скорости которых равны соответственно км/ч и км/ч. Длина пассажирского поезда равна метрам. Найдите длину скорого поезда, если время, за которое он прошел мимо пассажирского поезда, равно секундам. Ответ дайте в метрах.
Решение: + показать
Вы можете пройти тест по задачам на движение по прямой.
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 24 км/ч, а вторую половину пути — со скоростью, на 16 км/ч большей скорости первого, в результате чего прибыл в пункт B одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч.
2
Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 13 км/ч, а вторую половину пути — со скоростью 78 км/ч, в результате чего прибыл в пункт В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 48 км/ч. Ответ дайте в км/ч.
3
Из пункта A в пункт B, расстояние между которыми 75 км, одновременно выехали автомобилист и велосипедист. Известно, что за час автомобилист проезжает на 40 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт B на 6 часов позже автомобилиста. Ответ дайте в км/ч.
4
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 70 км. На следующий день он отправился обратно в A со скоростью на 3 км/ч больше прежней. По дороге он сделал остановку на 3 часа. В результате велосипедист затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из B в A. Ответ дайте в км/ч.
5
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 98 км. На следующий день он отправился обратно со скоростью на 7 км/ч больше прежней. По дороге он сделал остановку на 7 часов. В результате он затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B. Ответ дайте в км/ч.
Пройти тестирование по этим заданиям
Элективный
курс 10 класс.
Задачи на
движение
Для
педагогов не секрет, что решение текстовых задач вызывало и вызывает
затруднение у большей части учащихся. Умение анализировать условие и составлять
математическую модель оказывается далеко не под силу каждому. Задачи на
движение, совместную работу, смеси и сплавы рассматриваются в школьном курсе
математики не один год. Но многие учащиеся из года в год при выполнении домашних
работ, контрольных и диагностических работ выбирают задания повышенного уровня
С, игнорируя текстовые задачи. Ограниченность во времени при контроле знаний,
напряжение и насыщенный объем работ не позволяет полностью свободно
поразмыслить над схемой решения задания. С другой стороны развитое логическое
мышление, приемы моделирования позволяет остальным учащимся успешно справиться
с задачами такого типа. Вашему вниманию предложены задания по теме, которые
можно использовать при различных формах организации работы по подготовке к ЕГЭ.
1.
По двум параллельным железнодорожным путям друг
навстречу другу следуют скорый и пассажирский поезда, скорости которых равны
соответственно 65 км/ч и 35 км/ч. Длина пассажирского поезда равна 700
метрам. Найдите длину скорого поезда, если время, за которое он прошел мимо
пассажирского поезда, равно 36 секундам. Ответ дайте в метрах.
Решение. Скорость
сближения поездов 65 + 35 = 100 (км/ч) = (м/с). Общий путь за 36 с составляет * 36 = 1000 (м). Тогда 1000 –
700 = 300 (м) — длина скорого поезда.
Ответ: 300
м
2.
Первые 190 км
автомобиль ехал со скоростью 50 км/ч,
следующие 180 км — со скоростью 90 км/ч,
а затем 170 км — со скоростью 100 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте
в км/ч.
Комментарий.
Не уставайте напоминать учащимся формулу:
Средняя скорость
= .
Ответ: 72
км/ч
3.
Поезд, двигаясь равномерно со скоростью 80
км/ч, проезжает мимо придорожного столба за 36 секунд. Найдите длину
поезда в метрах.
Решение. Важно объяснить,
что в отличие от задачи 1, придорожный столб зафиксирован. Поезд за 36 с
проезжает расстояние, равное собственной длине, со скоростью 80
км/ч = 80 * (м/с) = (м/с). Длина поезда * 36 = 800 (м).
Ответ: 800
м
Комментарий.
Учащиеся при переводе км/ч в м/с часто путают деление
с умножением величины на 3,6. Не пытайтесь заставить их выучить нужное
действие. Проще в соответствии с наименованием (км/ч) умножить величину на 1000
м и разделить на 3600с. Ошибок будет намного меньше.
4.
Дальнобойщик, погрузив
груз в фуру,
отправился
в путь со скоростью 60 км/ч. Через 1 ч он
сделал остановку на заправке на 30 мин, а затем
продолжил путь с
первоначальной
скоростью.
Через
1
ч
после отправки фуры диспетчер склада обнаружил, что он
забыл отдать дальнобойщику сопроводительные документы на груз и
выехал вдогонку на мотоцикле со скоростью 100 км/ч. Какое
расстояние (в
километрах)
проедет
мотоциклист до места встречи?
Решение. Задачи на
движение вдогонку встречаются часто. Собака догоняет шляпу, унесенную ветром,
ребенок проезжает на велосипеде путь, возвращаясь от конечной точки до
равномерно движущихся вслед за ним родителей и т. д.
В данной
задаче путь дальнобойщика равен пути мотоциклиста. Важно не забыть, что
дальнобойщик двигался (1+х–0,5) часа, где х ч – время движения мотоциклиста.
Решив уравнение 60(х + 0,5) = 100х, х = 0,75, найдем путь мотоциклиста,
который равен 75 км.
Ответ: 75
км
5.
По морю параллельными курсами в одном направлении
следуют два сухогруза: первый длиной 120
метров, второй — длиной 80 метров. Сначала второй сухогруз отстает от
первого, и в некоторый момент времени расстояние от кормы первого сухогруза до
носа второго составляет 400 метров. Через 12 минут после этого уже первый
сухогруз отстает от второго так, что расстояние от кормы второго сухогруза до
носа первого равно 600 метрам. На сколько километров в час скорость первого
сухогруза меньше скорости второго?
Решение. Пусть х км/ч
–скорость второго сухогруза, у км/ч -скорость первого сухогруза. Необходимо
найти величину (х–у) км/ч. За 12 мин = 0,2 ч второй сухогруз прошел 0,2х км,
что составляет (0,4 + 0,12 + 0,6 + 0,2у) км. (Необходимо помнить о длине
второго сухогруза, как в задачах о поездах).
Из уравнения 0,2х
= 0,4 + 0,12 + 0,6 + 0,2у находим х — у = 5,6.
Ответ: на 5,6
км/ч скорость первого сухогруза меньше скорости второго.
6.
Расстояние между пристанями A и B равно 120
км. Из A в B по течению реки отправился плот, а через час вслед за ним
отправилась яхта, которая, прибыв в пункт B, тотчас повернула обратно и
возвратилась в A. К этому времени плот прошел 24
км. Найдите скорость яхты в неподвижной воде, если скорость течения реки равна
2 км/ч. Ответ дайте в км/ч.
7.
Половину времени, затраченного на дорогу, автомобиль
ехал со скоростью 74 км/ч, а вторую половину времени — со скоростью 66
км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ
дайте в км/ч.
8.
Первый велосипедист выехал из поселка по шоссе со
скоростью 15 км/ч. Через час после него со скоростью 10
км/ч из того же поселка в том же направлении выехал второй велосипедист, а еще
через час после этого — третий. Найдите скорость третьего велосипедиста, если
сначала он догнал второго, а через 2 часа 20 минут после этого догнал первого.
Ответ дайте в км/ч.
9.
Из одной точки круговой трассы, длина которой равна 14
км, одновременно в одном направлении стартовали два автомобиля. Скорость
первого автомобиля равна 80 км/ч, и через 40 минут после старта он опережал
второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ
дайте в км/ч.
Решение. Трудность для
учащихся — в круговой трассе. Пусть х км/ч – скорость второго
автомобиля, его путь за 40 мин равен х км. Путь первого автомобиля составил 80* км, что на 1 круг больше.
Уравнение 80* — х = 14. Часть учащихся обратят
внимание на скорость удаления и составят более простое уравнение: (80 – х) = 14.
Ответ: скорость
второго автомобиля 59 км/ч.
10.
Теплоход, скорость которого в неподвижной воде равна 25
км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт.
Скорость течения равна 3 км/ч, стоянка длится 5 часов, а в исходный пункт
теплоход возвращается через 30 часов после отплытия из него. Сколько километров
прошел теплоход за весь рейс?
11.
Товарный поезд каждую минуту проезжает на 750 м
меньше, чем скорый, и на путь в 180 км тратит времени на 2 часа больше, чем
скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.
12.
Расстояние между городами A и B равно 150
км. Из города A в город B выехал автомобиль, а через 30 минут следом за ним со
скоростью 90 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул
обратно. Когда он вернулся в A, автомобиль прибыл в B. Найдите расстояние от A
до C. Ответ дайте в километрах.
13.
Из городов A и B, расстояние между которыми равно 330
км, навстречу друг другу одновременно выехали два автомобиля и встретились
через 3 часа на расстоянии 180 км от города B. Найдите скорость автомобиля,
выехавшего из города A. Ответ дайте в км/ч.
14.
Турист идет из одного города в другой, каждый день
проходя больше, чем в предыдущий день, на одно и то же расстояние. Известно,
что за первый день турист прошел 10
километров. Определите, сколько километров прошел турист за третий день, если
весь путь он прошел за 6 дней, а расстояние между городами составляет 120
километров.
15.
Пристани
A и B расположены на озере, расстояние между ними 390
км. Баржа отправилась с постоянной скоростью из A в B. На
следующий день после прибытия она отправилась обратно со скоростью на 3
км/ч больше прежней, сделав по пути остановку на 9 часов. В результате она затратила
на обратный путь столько же времени, сколько на путь из A в B.
Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.
16.
Баржа
в 10:00 вышла из пункта А в пункт В, расположенный в 15
км от А. Пробыв в пункте В 1 час 20 минут, баржа отправилась назад и вернулась
в пункт А в 16:00. Определите (в км/час) скорость течения реки, если известно,
что собственная скорость баржи равна 7
км/ч.
17.
Катер
проплывает 20 км против течения реки и еще 24
км по течению за то же время, за какое может проплыть по этой реке 9
км. Во сколько раз скорость катера больше скорости реки?
Решение. Как и в задаче
5, не нужно стремиться найти скорости катера и течения реки. Необходимо
вычислить отношение , где
х км/ч – собственная скорость катера, у км/ч – скорость течения реки. Уравнение
+ = после преобразований примет вид: 5у² + 44 ху –
9х² = 0. Разделив обе части уравнения на у² ≠ 0 и обозначив = m, имеем 9m² — 44m – 5 = 0. m1 = 5,
m2 = — – не соответствует условию задачи. В 5 раз
скорость катера больше скорости реки.
Ответ: в 5 раз
Продолжаем рассматривать задачи на движение. Есть
группа задач, которая отличается от обычных задач на движение – это задачи на
круговое движение (круговая трасса, движение стрелок часов). Принципы
решения те же самые, формула
используется та
же (формула закона прямолинейного движения). Но есть небольшие нюансы в
подходах к решению.
Рассмотрим задачи:
1) Два мотоциклиста стартуют одновременно в одном направлении из двух
диаметрально противоположных точек круговой трассы, длина которой равна 22 км.
Через сколько минут мотоциклисты поравняются в первый раз, если скорость одного
из них на 20 км/ч больше скорости другого?
На первый взгляд,
кому-то задачи на круговое движение могут показаться сложными и какими-то
запутанными в сравнении с обычными задачами на прямолинейное движение. Но это
только на первый взгляд. Данная задача легко превращается в задачу на
прямолинейное движение. Как?
Мысленно развернём
круговую трассу в прямую. На ней стоят два мотоциклиста. Один из них отстаёт от
другого на 11 км, так как сказано в условии, что длина трассы 22
километра.
Скорость отстающего на
20 километров в час больше (он догоняет того, кто впереди). Вот вам и задача на
прямолинейное движение.
Итак, искомую величину
(время, через которое они поравняются) примем за х часов. Скорость первого
(находящегося впереди) обозначим у км/ч, тогда скорость второго (догоняющего)
будет (у + 20)км/ч.
Занесем скорость
и время в таблицу.
Заполняем графу
«расстояние»:
Второй проезжает
расстояние (до встречи) на 11 км больше, значит
11/20 часа это то же,
что и 33/60 часа. То есть, до их встречи прошло 33 минуты.
Как видим, сама
скорость мотоциклистов в данном случае не имеет значения.
Ответ: 33
2)Два мотоциклиста
стартуют одновременно в одном направлении из двух диаметрально противоположных
точек круговой трассы, длина которой равна 14 км. Через сколько минут
мотоциклисты поравняются в первый раз, если скорость одного из них на 21 км/ч
больше скорости другого?
3)Из одной точки
круговой трассы, длина которой равна 25 км, одновременно в одном направлении
стартовали два автомобиля. Скорость первого автомобиля равна 112 км/ч, и через
25 минут после старта он опережал второй автомобиль на один круг. Найдите
скорость второго автомобиля. Ответ дайте в км/ч.
Два автомобиля
одновременно начинают движение в одном направлении. Скорость первого равна 112
км/ч. Через 25 минут он опережает второго на 25 км (т.к. сказано, что на один
круг). Найти скорость второго.
Решение:
Очень важно в задачах
на движение представить сам процесс этого движения.
Сравнение произведем по
расстоянию, так как нам известно, что один опередил другого на 25 км.
За x принимаем искомую
величину – скорость второго. Время движения 25 минут (25/60 часа) для обоих.
Заполним графу «расстояние»:
Расстояние, пройденное
первым, больше расстояния, который прошёл второй на 25 км. То есть:
Скорость второго
автомобиля 52 (км/ч).
Ответ: 52
3) Из одной точки
круговой трассы, длина которой равна 14 км, одновременно в одном направлении
стартовали два автомобиля. Скорость первого автомобиля равна 80 км/ч, и через
40 минут после старта он опережал второй автомобиль на один круг. Найдите
скорость второго автомобиля. Ответ дайте в км/ч.
4)
Из пункта A круговой трассы выехал велосипедист, а через
40 минут следом за ним отправился мотоциклист. Через 8 минут
после отправления он догнал велосипедиста в первый раз, а еще
через 36 минут после этого догнал его во второй раз. Найдите скорость
мотоциклиста, если длина трассы равна 30 км. Ответ дайте в км/ч.
Решение:
Данная задача
представляет относительную сложность. Что сразу стоит отметить? Это то, что
мотоциклист проходит с велосипедистом одинаковое расстояние,
догоняя его первый раз. Затем он снова догоняет его второй раз, причём разница
пройденных расстояний после первой встречи составляет 30 километров (длина
круга). Таким образом, можно будет составить два уравнения и решить их систему.
Нам не даны скорости участников движения, поэтому можно будет ввести две
переменные. Система из двух уравнений с двумя переменными решается.
Итак, переведем минуты
в часы, поскольку скорость надо найти в км/ч.
Сорок минут это 2/3
часа, 8 минут это 8/60 часа, 36 минут это 36/60 часа.
Скорости участников
обозначим за х км/ч (у велосипедиста) и у км/ч (у мотоциклиста).
В первый раз
мотоциклист обогнал велосипедиста через 8 минут, то есть через 8/60
часа после старта.
До этого момента
велосипедист был в пути уже 40+8=48 минут, то есть
48/60 часа.
Запишем эти данные в таблицу:
Оба проехали одинаковые
расстояния, то есть
Затем мотоциклист
второй раз догнал велосипедиста. Произошло это через 36 минут,
то есть через 36/60 часа после первого обгона.
Составим вторую
таблицу, заполним графу «расстояние»:
Так как сказано, что
через 36 минут мотоциклист снова догнал велосипедиста. Значит, он (мотоциклист)
проехал расстояние равное 30 километрам (один круг) плюс расстояние,
которое за это время проехал велосипедист. Это ключевой момент для составления
второго уравнения.
Один круг — это
длина трассы, она равна 30 км.
Получаем второе
уравнение:
Решаем систему их двух
уравнений:
Значит у = 6 ∙10
= 60.
То есть скорость
мотоциклиста равна 60 км/ч.
Ответ: 60
5)
Из пункта A круговой трассы выехал велосипедист, а через
30 минут следом за ним отправился мотоциклист. Через 10 минут
после отправления он догнал велосипедиста в первый раз, а еще
через 30 минут после этого догнал его во второй раз. Найдите скорость
мотоциклиста, если длина трассы равна 30 км. Ответ дайте в км/ч.
Следующий тип задач на
круговое движение вообще «уникален». Есть задачи, которые решаются устно. И
есть такие, которые без глубокого понимания и большой внимательности при
рассуждениях решить крайне сложно. Речь идёт о задачах про стрелки часов.
Вот пример простейшей
задачи:
1) Часы со стрелками показывают 11 часов 20 минут. Через сколько
минут минутная стрелка в первый раз поравняется с часовой?
Ответ очевиден, через
40 минут, когда будет ровно двенадцать. Даже если сразу не смогли понять, то нарисовав
циферблат (сделав эскиз) на листке, вы без труда определите
ответ.
Примеры других задач
(непростых):
2) Часы со стрелками показывают 6 часов 35 минут. Через сколько минут
минутная стрелка в пятый раз поравняется с часовой?
3) Часы со стрелками показывают 2 часа ровно. Через сколько минут
минутная стрелка в десятый раз поравняется с часовой?
4) Часы со стрелками показывают 4 часа 45 минут. Через сколько минут
минутная стрелка в седьмой раз поравняется с часовой?
5) Часы со стрелками показывают 8 часов 00 минут.
Через сколько минут минутная стрелка в четвертый раз поравняется
с часовой?
Вообще, можно дать
совет, так как на ЕГЭ с такой задачей можно легко запутаться, вычислить
неверно или просто потерять много времени на решение, можно взять с собой на
ЕГЭ механические часы со стрелками… Догадались?
Если вам попадёт такая
задач, то берёте часы, ставите исходное время оговоренное в условии
(например, 6:35) и прокручиваете заданное число раз. А затем смотрите: сколько
«отмотали» минут от исходного времени. Вот и всё.
Разберем подробнее некоторые особенности, возникающие при решении задач на движение.
Прочитай задачу несколько раз
Осознай ее настолько, чтобы тебе было понятно абсолютно все.
Например, часто возникают трудности с понятием “собственная скорость лодки/катера” и т.д.
Подумай, что это может значить? Правильно, скорость лодки в стоячей воде, например, в пруду, когда на нее НЕ влияет скорость течения.
Кстати, в задачах иногда пишут «найти скорость лодки в стоячей воде».
Теперь ты знаешь, что собственная скорость лодки и скорость лодки в стоячей воде – одно и тоже, так что не теряйся, если встретишь оба этих определения.
Сделай рисунок
Пойми точно кто куда едет, кто к кому приехал, и где они все встретились.
Сделай рисунок, попутно записывая на нем все известные величины (ну либо под ним, если не знаешь, как их отобразить схематически).
Рисунок должен четко отражать весь смысл задачи.
Его следует сделать таким образом, чтобы на нем была видна динамика движения – направления движения, встречи, развороты, повороты.
Качественный рисунок позволяет понять задачу, не заглядывая в ее текст. Он – твоя основная подсказка для дальнейшего составления уравнения.
Рассмотрим возможные виды движения двух тел.
Относительное движение
Если какие-то тела движутся друг относительно друга, часто бывает полезно посчитать их относительную скорость. Она равна:
- сумме скоростей, если тела движутся навстречу друг другу;
- разности скоростей, если тела движутся в одном направлении.
Пример №1
Допустим, из точки ( displaystyle A) и из точки ( displaystyle B) навстречу друг другу выехали две машины. Скорость одной машины – ( displaystyle 60) км/ч, а скорость ( displaystyle 2) машины – ( displaystyle 40) км/ч. Они встретились через ( displaystyle 1,2) часа.
Какое расстояние между пунктами ( displaystyle A) и ( displaystyle B)?
1 вариант решения
Можно рассуждать так: машины встретились, значит расстояние между городами – это сумма расстояния, которая прошла первая машина, и расстояния, которое прошла вторая.
( displaystyle 60cdot 1,2text{ }=text{ }72) (км) – путь, который проехала первая машина
( displaystyle 40cdot 1,2text{ }=text{ }48) (км) – путь, который проехала вторая машина
( displaystyle 72 + 48 = 120) (км) – расстояние, которое проехали обе машины, то есть, расстояние между пунктами ( displaystyle A) и ( displaystyle B).
2 вариант решения (более рациональный)
А можно просто воспользоваться очень логичной формулой о сложении скоростей.
Проверим, работает ли она:
( displaystyle 60 + 40 = 100) (км/ч) – скорость сближения машин
( displaystyle 100cdot 1,2text{ }=text{ }120) (км) – расстояние, которые проехали машины, то есть, расстояние между пунктами ( displaystyle A) и ( displaystyle B).
Оба решения являются верными. Второе просто более рациональное.
Пример №3
Итак, задача:
Из пункта ( displaystyle A) и пункта ( displaystyle B) машины движутся навстречу друг другу со скоростями ( displaystyle 50) км/ч и ( displaystyle 80) км/ч. Расстояние между пунктами – ( displaystyle 195) км.
Через сколько времени машины встретятся?
1 вариант решения
Пусть ( displaystyle x) – время, которое едут машины, тогда путь первой машины – ( displaystyle 50x), а путь второй машины – ( displaystyle 80x).
Их сумма и будет равна расстоянию между пунктами ( A) и ( B) – ( displaystyle 50x+80x=195).
Решим уравнение:
( displaystyle 50x+80x=195)
( displaystyle 130x=195)
( displaystyle x=1,5) (ч) – время, через которое встретились машины.
2 вариант решения (более рациональный)
( displaystyle 50 + 80 = 130) (км/ч) – скорость сближения машин;
( displaystyle 195:130 = 1,5) (ч) – время, которое машины были в пути.
Задача решена.
Пример №4
Из пунктов A и B одновременно навстречу друг другу выехали два автомобиля со скоростями ( displaystyle 60) км/ч и ( displaystyle 40) км/ч. Через сколько минут они встретятся. Если расстояние между пунктами ( displaystyle 100) км?
2 способа решения:
I способ
Относительная скорость автомобилей ( displaystyle 60+40=100) км/ч. Это значит, что если мы сидим в первом автомобиле, то он нам кажется неподвижным, но второй автомобиль приближается к нам со скоростью ( displaystyle 100) км/ч. Так как между автомобилями изначально расстояние ( displaystyle 100) км, время, через которое второй автомобиль проедет мимо первого:
( displaystyle t=frac{100}{100}=1 час=60 минут).
II способ
Время от начала движения до встречи у автомобилей, очевидно, одинаковое. Обозначим его ( displaystyle t). Тогда первый автомобиль проехал путь ( displaystyle 60t), а второй – ( displaystyle 40t).
В сумме они проехали все ( displaystyle 100) км. Значит,
( displaystyle 60t+40t=100Rightarrow t=1 час=60 минут).
Пример №5
А вот и задача: из Москвы в противоположные стороны выехало ( displaystyle 2) машины. Скорость одной машины – ( displaystyle 85) км/ч, скорость другой – ( displaystyle 60) км/ч.
На каком расстоянии друг от друга будут находиться машины через ( displaystyle 2) часа?
Решил?
Решая первым способом, у меня получилось, что путь, проделанный первой машиной, равен ( displaystyle 170) км, а второй – ( displaystyle 120) км.
Соответственно, расстояние между машинами – ( displaystyle 290) км.
Решая вторым способом, выходит, что скорость удаления равна (displaystyle 145 км/ч), а путь равен (displaystyle 145 км/ч)( displaystyle cdot 2 ч) = (displaystyle 290 км).
Теперь разберемся, как вычисляется время при подобном случае.
Время, проведенное телами в пути, при удалении друг от друга равно пройденному расстоянию (то есть, если между телами изначально было некое расстояние ( {{S}_{0}}), то его следует вычесть из общего расстояния), деленному на сумму скоростей тел:
( displaystyle {{text{t}}_{пути}}=frac{S}{{{nu }_{1}}+{{nu }_{2}}})
Как ты видишь, формула аналогична выведенной нами при движении тел навстречу друг другу.
Считаешь, что такого не может быть?
Проверь ее на практике!
Из пункта ( displaystyle A) в пункт ( displaystyle B), расстояние между которыми ( displaystyle 30) км, одновременно выехал велосипедист и мотоциклист. Известно, что в час мотоциклист проезжает на ( displaystyle 65) км больше, чем велосипедист.
Определите скорость велосипедиста, если известно, что он прибыл в пункт ( displaystyle B) на ( displaystyle 156) минут позже, чем мотоциклист.
Вот такая вот задача. Соберись, и прочитай ее несколько раз. Прочитал? Начинай рисовать – прямая, пункт ( displaystyle A), пункт ( displaystyle B), две стрелочки…
В общем рисуй, и сейчас сравним, что у тебя получилось.
Пустовато как-то, правда? Рисуем таблицу.
Как ты помнишь, все задачи на движения состоят из ( displaystyle 3) компонентов: скорость, время и путь. Именно из этих граф и будет состоять любая таблица в подобных задачах.
Правда, мы добавим еще один столбец – имя, про кого мы пишем информацию – мотоциклист и велосипедист.
Так же в шапке укажи размерность, в какой ты будешь вписывать туда величины. Ты же помнишь, как это важно, правда?
У тебя получилась вот такая таблица?
Скорость, км/ч |
Время t, часов |
Путь S, км |
|
велосипедист | |||
мотоциклист |
Теперь давай анализировать все, что у нас есть, и параллельно заносить данные в таблицу и на рисунок.
Первое, что мы имеем – это путь, который проделали велосипедист и мотоциклист. Он одинаков и равен ( displaystyle 30) км. Вносим!
Скорость, км/ч |
Время t, часов |
Путь S, км |
|
велосипедист | ( displaystyle 30) | ||
мотоциклист | ( displaystyle 30) |
Рассуждаем дальше. Мы знаем, что мотоциклист проезжает на ( displaystyle 65) км/ч больше, чем велосипедист, да и в задаче нужно найти скорость велосипедиста…
Возьмем скорость велосипедиста за ( displaystyle x), тогда скорость мотоциклиста будет ( displaystyle x+65)…
Если с такой переменной решение задачи не пойдет – ничего страшного, возьмем другую, пока не дойдем до победного. Такое бывает, главное не нервничать!
Скорость, км/ч |
Время t, часов |
Путь S, км |
|
велосипедист | ( displaystyle x) | ( displaystyle 30) | |
мотоциклист | ( displaystyle x+65) | ( displaystyle 30) |
Таблица преобразилась. У нас осталась не заполнена только одна графа – время. Как найти время, когда есть путь и скорость?
Правильно, разделить путь на скорость. Вноси это в таблицу.
Скорость, км/ч |
Время t, часов |
Путь S, км |
|
велосипедист | ( displaystyle x) | ( displaystyle frac{30}{x}) | ( displaystyle 30) |
мотоциклист | ( displaystyle x+65) | ( displaystyle frac{30}{65+x}) | ( displaystyle 30) |
Вот и заполнилась наша таблица, теперь можно внести данные на рисунок.
Что мы можем на нем отразить?
Молодец. Скорость передвижения мотоциклиста и велосипедиста.
Еще раз перечитаем задачу, посмотрим на рисунок и заполненную таблицу.
Какие данные не отражены ни в таблице, ни на рисунке?
Верно. Время, на которое мотоциклист приехал раньше, чем велосипедист. Мы знаем, что разница во времени – ( displaystyle 156) минут.
Что мы должны сделать следующим шагом? Правильно, перевести данное нам время из минут в часы, ведь скорость дана нам в км/ч.
( displaystyle 156) минут / ( displaystyle 60) минут = ( displaystyle 2,6) часа.
И что дальше, спросишь ты? А дальше числовая магия!
Взгляни на свою таблицу, на последнее условие, которое в нее не вошло и подумай, зависимость между чем и чем мы можем вынести в уравнение?
Правильно. Мы можем составить уравнение, основываясь на разнице во времени!
( displaystyle frac{30}{x}-frac{30}{65+x}=2,6)
Логично? Велосипедист ехал больше, если мы из его времени вычтем время движения мотоциклиста, мы как раз получим данную нам разницу.
Это уравнение – рациональное. Если не знаешь, что это такое, прочти тему «Рациональные уравнения».
Приводим слагаемые к общему знаменателю:
( displaystyle frac{30cdot left( 65+x right)}{xcdot left( 65+x right)}-frac{30x}{xcdot left( 65+x right)}=2,6)
Раскроем скобки и приведем подобные слагаемые: Уф! Усвоил? Попробуй свои силы на следующей задаче.
( displaystyle frac{1950}{xcdot left( 65+x right)}=2,6)
Из этого уравнения мы получаем следующее:
( displaystyle 2,6cdot xcdot left( 65+x right)=1950)
( displaystyle xcdot left( 65+x right)=frac{1950}{2,6})
( displaystyle xcdot left( 65+x right)=750)
Раскроем скобки и перенесем все в левую часть уравнения:
( displaystyle {{x}^{2}}+65{x}-750=0)
Вуаля! У нас простое квадратное уравнение. Решаем!
( displaystyle {{x}^{2}}+65{x}-750=0)
( displaystyle D={{b}^{2}}-4ac)
( displaystyle D={{65}^{2}}-4cdot 1cdot left( -750 right)=4225+3000=7225)
( displaystyle sqrt{D}=sqrt{7225}=85)
( displaystyle {{x}_{1,2}}=frac{-bpm sqrt{D}}{2a})
( displaystyle {{x}_{1}}=frac{-65+85}{2}=10)
( displaystyle {{x}_{2}}=frac{-65-85}{2}=-75)
Мы получили два варианта ответа. Смотрим, что мы взяли за ( displaystyle x)? Правильно, скорость велосипедиста.
Вспоминаем правило «3Р», конкретнее «разумность». Понимаешь, о чем я? Именно! Скорость не может быть отрицательной, следовательно, наш ответ – ( displaystyle 10) км/ч.
Пример №9
Два велосипедиста одновременно отправились в ( displaystyle 165)-километровый пробег. Первый ехал со скоростью, на ( displaystyle 5) км/ч большей, чем скорость второго, и прибыл к финишу на ( displaystyle 5,5) часов раньше второго.
Найти скорость велосипедиста, пришедшего к финишу вторым. Ответ дайте в км/ч.
Напоминаю:
- Прочитай задачу пару раз – усвой все-все детали. Усвоил?
- Начинай рисовать рисунок – в каком направлении они двигаются? какое расстояние они прошли? Нарисовал?
- Проверь, все ли величины у тебя одинаковой размерности, и начинай выписывать кратко условие задачи, составляя табличку (ты же помнишь, какие там графы?).
- Пока все это пишешь, думай, что взять за ( displaystyle x)? Выбрал? Записывай в таблицу!
- Ну а теперь просто: составляем уравнение и решаем. Да, и напоследок – помни о «3Р»!
Все сделал? Молодец! У меня получилось, что скорость велосипедиста – ( displaystyle 10) км/ч.
Отвечайте точно на поставленный вопрос
– Какого цвета твоя машина?
– Она красивая!
Продолжим наш разговор. Так какая там скорость у первого велосипедиста? ( displaystyle 10) км/ч? Очень надеюсь, что ты сейчас не киваешь утвердительно!
Внимательно прочти вопрос: «Какая скорость у первого велосипедиста?»
Понял, о чем я?
Именно! Полученный ( displaystyle x) – это не всегда ответ на поставленный вопрос!
Вдумчиво читай вопросы – возможно, после нахождения ( displaystyle x) тебе нужно будет произвести еще некоторые манипуляции, например, прибавить ( displaystyle 5) км/ч, как в нашей задаче.
Еще один момент: часто в задачах все указывается в часах, а ответ просят выразить в минутах, или же все данные даны в км, а ответ просят записать в метрах.
Смотри за размерностью не только в ходе самого решения, но и когда записываешь ответы.
Пример №10
Из пункта ( displaystyle A) круговой трассы выехал велосипедист. Через ( displaystyle 40) минут он еще не вернулся в пункт ( displaystyle A) и из пункта ( displaystyle A) следом за ним отправился мотоциклист.
Через ( displaystyle 20) минут после отправления он догнал велосипедиста в первый раз, а еще через ( displaystyle 40) минут после этого догнал его во второй раз.
Найдите скорость велосипедиста, если длина трассы равна ( displaystyle 50) км. Ответ дайте в км/ч.
Попробуй нарисовать рисунок к этой задаче и заполнить для нее таблицу. Вот что получилось у меня:
Пусть скорость велосипедиста будет ( displaystyle x), а мотоциклиста – ( displaystyle y). До момента первой встречи велосипедист был в пути ( displaystyle 60) минут, а мотоциклист – ( displaystyle 20).
При этом они проехали равные расстояния:
( displaystyle 60x=20y (1))
Между встречами велосипедист проехал расстояние ( displaystyle 40x), а мотоциклист – ( displaystyle 40y).
Но при этом мотоциклист проехал ровно на один круг больше, это видно из рисунка:
(Надеюсь, ты понимаешь, что по спирали они на самом деле не ездили – спираль просто схематически показывает, что они ездят по кругу, несколько раз проезжая одни и те же точки трассы.)
Значит,
( displaystyle 40x+50=40y (2))
Полученные уравнения решаем в системе:
( displaystyle left{ begin{array}{l}60x=20y\40x+50=40yend{array} right.Leftrightarrow left{ begin{array}{l}y=3x\4x+5=4yend{array} right.Rightarrow text{4}x+5=12xRightarrow )
( displaystyle Rightarrow x=frac{5}{8}=0,625frac{text{км}}{мин}=0,625cdot 60frac{text{км}}{text{ч}}=37,5frac{text{км}}{text{ч}})
Ответ: ( displaystyle 37,5).
Разобрался? Попробуй решить самостоятельно следующие задачи:
Пример №13
Из пункта A круговой трассы выехал велосипедист. Через ( displaystyle 40) минут он еще не вернулся в пункт А и из пункта А следом за ним отправился мотоциклист. Через ( displaystyle 20) минут после отправления он догнал велосипедиста в первый раз, а еще через ( displaystyle 40) минут после этого догнал его во второй раз.
Найдите скорость велосипедиста, если длина трассы равна ( displaystyle 50) км. Ответ дайте в км/ч.
Решение:
Здесь будем приравнивать расстояние.
Пусть скорость велосипедиста будет ( displaystyle x), а мотоциклиста – ( displaystyle y). До момента первой встречи велосипедист был в пути ( displaystyle 60) минут, а мотоциклист – ( displaystyle 20).
При этом они проехали равные расстояния:
( displaystyle 60x=20ytext{ }left( 1 right))
Между встречами велосипедист проехал расстояние ( displaystyle 40x), а мотоциклист – ( displaystyle 40y). Но при этом мотоциклист проехал ровно на один круг больше, это видно из рисунка:
Надеюсь, ты понимаешь, что по спирали они на самом деле не ездили– спираль просто схематически показывает, что они ездят по кругу, несколько раз проезжая одни и те же точки трассы.
Значит:
Представь, что у тебя есть плот, и ты спустил его в озеро. Что с ним происходит? Правильно. Он стоит, потому что озеро, пруд, лужа, в конце концов, – это стоячая вода.
Скорость течения в озере равна ( displaystyle 0).
Плот поедет, только если ты сам начнешь грести. Та скорость, которую он приобретет, будет собственной скоростью плота. Неважно куда ты поплывешь – налево, направо, плот будет двигаться с той скоростью, с которой ты будешь грести.
Это понятно? Логично же.
А сейчас представь, что ты спускаешь плот на реку, отворачиваешься, чтобы взять веревку…, поворачиваешься, а он … уплыл…
Это происходит потому что у реки есть скорость течения, которая относит твой плот по направлению течения.
Его скорость при этом равна нулю (ты же стоишь в шоке на берегу и не гребешь) – он движется со скоростью течения.
Разобрался? Тогда ответь вот на какой вопрос – «С какой скоростью будет плыть плот по реке, если ты сидишь и гребешь?» Задумался?
Здесь возможно два случая:
1 случай – ты плывешь по течению, и тогда ты плывешь с собственной скоростью + скорость течения. Течение как бы помогает тебе двигаться вперед.
2 случай – ты плывешь против течения. Тяжело? Правильно, потому что течение пытается «откинуть» тебя назад. Ты прилагаешь все больше усилий, чтобы проплыть хотя бы ( displaystyle 100) метров, соответственно скорость, с которой ты передвигаешься, равна собственная скорость – скорость течения.
Пример №15
Байдарка в ( displaystyle 8:00) вышла из пункта ( displaystyle A) в пункт ( displaystyle B), расположенный в ( displaystyle 26) км от ( displaystyle A).
Пробыв в пункте ( displaystyle B) ( displaystyle 1) час ( displaystyle 20) минут, байдарка отправилась назад и вернулась в пункт ( displaystyle A) в ( displaystyle 20:00).
Определите (в км/ч) собственную скорость байдарки, если известно, что скорость течения реки ( displaystyle 5) км/ч.
Итак, приступим. Прочитай задачу несколько раз и сделай рисунок. Думаю, ты без труда сможешь решить это самостоятельно.
Все величины у нас выражены в одном виде? Нет. Время отдыха у нас указано и в часах, и в минутах.
Переведем это в часы:
( displaystyle 1) час ( displaystyle 20) минут = ( displaystyle 1frac{20}{60}=1frac{1}{3}) ч.
Теперь все величины у нас выражены в одном виде. Приступим к заполнению таблицы и поиску того, что мы возьмем за ( displaystyle x).
Пусть ( displaystyle x) – собственная скорость байдарки. Тогда, скорость байдарки по течению равна ( displaystyle x+5), а против течения равна ( displaystyle x-5).
Запишем эти данные, а так же путь (он, как ты понимаешь, одинаков) и время, выраженное через путь и скорость, в таблицу: