Задачи ЕГЭ на сплавы, смеси, растворы.
Задачи на сплавы, смеси, растворы встречаются и в математике, и в химии. У химиков сложнее – там вещества еще и взаимодействуют, превращаясь во что-то новое. А в задачах по математике мы просто смешиваем растворы различной концентрации. Покажем правила решения на примере задач на растворы. Для сплавов и смесей – действуем аналогично.
. В сосуд, содержащий литров -процентного водного раствора некоторого вещества, добавили литров воды. Сколько процентов составляет концентрация получившегося раствора?
В решении подобных задач помогает картинка. Изобразим сосуд с раствором схематично — так, как будто вещество и вода в нем не перемешаны между собой, а отделены друг от друга, как в коктейле. И подпишем, сколько литров содержат сосуды и сколько в них процентов вещества. Концентрацию получившегося раствора обозначим .
Первый сосуд содержал литра вещества. Во втором сосуде была только вода. Значит, в третьем сосуде столько же литров вещества, сколько и в первом:
.
. Смешали некоторое количество -процентного раствора некоторого вещества с таким же количеством -процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?
Пусть масса первого раствора равна . Масса второго — тоже . В результате получили раствор массой . Рисуем картинку.
Получаем:
Ответ: .
. Виноград содержит влаги, а изюм — . Сколько килограммов винограда требуется для получения килограммов изюма?
Внимание! Если вам встретилась задача «о продуктах», то есть такая, где из винограда получается изюм, из абрикосов урюк, из хлеба сухари или из молока творог — знайте, что на самом деле это задача на растворы. Виноград мы тоже можем условно изобразить как раствор. В нем есть вода и «сухое вещество». У «сухого вещества» сложный химический состав, а по его вкусу, цвету и запаху мы могли бы понять, что это именно виноград, а не картошка. Изюм получается, когда из винограда испаряется вода. При этом количество «сухого вещества» остается постоянным. В винограде содержалось воды, значит, «сухого вещества» было . В изюме воды и «сухого вещества». Пусть из кг винограда получилось кг изюма. Тогда
от от
Составим уравнение:
и найдем .
Ответ: .
. Имеется два сплава. Первый сплав содержит никеля, второй — никеля. Из этих двух сплавов получили третий сплав массой кг, содержащий никеля. На сколько килограммов масса первого сплава меньше массы второго?
Пусть масса первого сплава равна x, а масса второго равна y. В результате получили сплав массой .
Запишем простую систему уравнений:
Первое уравнение — масса получившегося сплава, второе — масса никеля.
Решая, получим, что .
Ответ: .
. Смешав -процентный и -процентный растворы кислоты и добавив кг чистой воды, получили -процентный раствор кислоты. Если бы вместо кг воды добавили кг -процентного раствора той же кислоты, то получили бы -процентный раствор кислоты. Сколько килограммов -процентного раствора использовали для получения смеси?
Пусть масса первого раствора , масса второго равна . Масса получившегося раствора равна . Запишем два уравнения, для количества кислоты.
Решаем получившуюся систему. Сразу умножим обе части уравнений на , поскольку с целыми коэффициентами удобнее работать, чем с дробными. Раскроем скобки.
Ответ: .
Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Задачи ЕГЭ на сплавы, смеси, растворы.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
09.03.2023
Всего: 101 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
Имеется два сплава. Первый сплав содержит 10% меди, второй — 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Имеется два сплава. Первый сплав содержит 5% меди, второй — 12% меди. Масса второго сплава больше массы первого на 9 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Имеется два сплава. Первый сплав содержит 5% меди, второй — 13% меди. Масса второго сплава больше массы первого на 9 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Источник: Досрочная волна ЕГЭ по математике 29.03.2019. Вариант 1
Имеется два сплава. Первый сплав содержит 5% меди, второй — 14% меди. Масса второго сплава больше массы первого на 10 кг. Из этих двух сплавов получили третий сплав, содержащий 12% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Источник: ЕГЭ — 2016. Основная волна по математике 06.06.2016. Вариант 437. Юг
Имеется два сплава. Первый сплав содержит 5% меди, второй — 40% меди. Масса первого сплава больше массы второго на 50 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Источник: Досрочная волна ЕГЭ по математике 29.03.2019. Вариант 2
Имеется два сплава. Первый сплав содержит 40% меди, второй — 25% меди. Масса первого сплава больше массы второго на 10 кг. Из этих двух сплавов получили третий сплав, содержащий 35% меди. Найдите массу третьего
сплава. Ответ дайте в килограммах.
Источник: ЕГЭ по математике 27.03.2020. Досрочная волна. Вариант 1
Имеется два сплава. Первый сплав содержит 45% меди, второй — 20% меди. Масса первого сплава больше массы второго на 30 кг. Из этих двух сплавов получили третий сплав, содержащий 40% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Источник: ЕГЭ по математике 27.03.2020. Досрочная волна. Вариант 2
Имеется два сплава. Первый сплав содержит 35% меди, второй — 5% меди. Масса первого сплава больше массы второго на 80 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Источник: ЕГЭ по математике 28.03.2022. Досрочная волна. Москва. Вариант 1
Имеется два сплава. Первый сплав содержит 5% меди, второй — 12% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Имеется два сплава. Первый сплав содержит 5% меди, второй — 14% меди. Масса второго сплава больше массы первого на 7 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Имеется два сплава. Первый сплав содержит 5% меди, второй — 14% меди. Масса второго сплава больше массы первого на 5 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Имеется два сплава. Первый содержит 10% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 250 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Имеется два сплава. Первый содержит 10% никеля, второй − 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Источник: ЕГЭ по математике 05.06.2014. Основная волна. Восток. Вариант 1.
Имеется два сплава. Первый содержит 15% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 140 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Источник: Досрочная волна ЕГЭ по математике 29.03.2019. Вариант 4
Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Имеется два сплава. Первый содержит 5% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Смешав 11-процентный и 72-процентный растворы кислоты и добавив 10 кг чистой воды, получили 31-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 51-процентный раствор кислоты. Сколько килограммов 11-процентного раствора использовали для получения смеси?
Всего: 101 1–20 | 21–40 | 41–60 | 61–80 …
Как правило, ученики очень не любят задачи на сплавы и смеси. Для них они являются сложными и непонятными.
Поэтому многие даже время не тратят на попытки решения такой задачи в ЕГЭ, а просто пропускают ее. А зря!
Сейчас покажем, как можно решить такую задачу, выполнив всего три действия.
- Как решить задачу на смеси и сплавы: 3 действия
- Примеры решения задач на смеси: от простого к сложному
- Примеры решения задач на сплавы: от простого к сложному
Как решить задачу на смеси и сплавы: 3 действия
Итак, решение любой задачи на смеси и сплавы сводится к выполнению трех действий:
- Необходимо составить таблицу, в которой указываем общую массу каждого вещества и чистую массу каждого вещества. Эти данные содержатся в условии задачи. Если какие-то данные в условии отсутствуют, то обозначаем их как неизвестные — х, у.
- Составляем систему уравнений, основываясь на том, что при соединении двух смесей (или сплавов) их массы складываются. Т.е. мы складываем как общую массу двух изначальных смесей (или сплавов), так и чистую массу каждого вещества, содержащихся в них. Решаем полученную систему уравнений.
- После решения системы уравнений и нахождения всех неизвестных обязательно возвращаемся к условию задачи и смотрим, что требовалось найти. Многие ученики, решив правильно систему уравнений, неправильно записывают ответ. Ведь решение системы – это еще не ответ к задаче! Вернитесь к условиям задачи, прочитайте, что именно требовалось найти, и запишите ответ.
Примеры решения задач на смеси: от простого к сложному
А теперь разберем на примерах, как с помощью этих трех действий решать задачи на смеси и сплавы.
Задача 1
Смешали 3 литра раствора, содержащего 20% кислоты, и 5 литров раствора, содержащего 40% той же кислоты. Какова концентрация кислоты в полученном растворе.
Решение:
Для решения задачи выполняем три действия, о которых мы говорили выше:
1. Составляем таблицу, в которой указываем общую массу раствора и массу чистого вещества, то есть в нашем случае – кислоты.
Из условий задачи имеем три раствора:
Раствор 1: 3 литра с 20% кислотой, т.е. общая масса = 3 литра, масса чистого вещества = 3 * 20% = 3 * 0,2 = 0,6
Раствор 2: 5 литров с 40% кислотой, т.е. общая масса = 5 литров, масса чистого вещества = 5 * 40% = 5 * 0,4 = 2
Раствор 3: какое-то количество раствора (обозначим его общую массу за х) с какой-то концентрацией кислоты (обозначим ее чистую массу за у), заносим эти данные в таблицу:Первое действие выполнено, переходим ко второму.
2. Составляем уравнения. Вспоминаем, что общая масса раствора 3 является суммой общих масс раствора 1 и раствора 2. А масса чистого вещества в растворе 3 является суммой массы чистового вещества в растворе 1 и массы чистового вещества в растворе 2. Таким образом, получаем:
3 + 5 = х
0,6 + 2 = у
Решаем простейшее уравнение и получаем, что х = 8, а у = 2,6. Таким образом, раствор 3 получился 8 литров, из которых 2,6 литра – это кислота.
Но ответ к задаче записывать рано! Переходим к третьему действию решения нашей задачи.
3. Возвращаемся к условию задачи и вспоминаем, а что же требовалось найти. В нашей задаче требовалось определить концентрацию кислоты в растворе 3. Когда мы решили уравнения, мы нашли общую массу раствора 3 и массу чистого вещества (кислоты), содержащегося в нем.
Чтобы определить концентрацию вещества необходимо разделить массу чистого вещества на общую массу раствора.
Таким образом, концентрация кислоты в растворе 3 равна:
2,6 / 8 = 0,325
Переводим долю вещества в проценты. Для этого умножаем полученный результат на 100:
0,325 * 100 = 32,5%
Ответ: 32,5%
Задача 2
Газ в сосуде А содержал 21% кислорода, а газ в сосуде В содержал 5% кислорода. Масса газа в сосуде А была больше массы газа в сосуде В на 300 г. Когда перегородку между сосудами убрали, газы перемешались, и получился третий газ, который содержит 14,6% кислорода. Найти массу третьего газа.
Решение:
1. Составляем таблицу. Для этого обозначим массу газа в сосуде В – х. Остальные данные берем из условий задачи и формируем таблицу:2. Составляем уравнение. Известно, что третий газ имеет содержание кислорода 14,6%, соответственно мы можем приравнять массу чистого вещества газа 3 к 0,146 * (х + (х +300)). Получим уравнение:
(х +300) * 0,21 + х * 0,05 = 0,146 (х + (х +300))
0,21х + 63 + 0,05х = 0,292х + 43,8
0,26х + 63 = 0,292х + 43,8
0,032х = 19,2
х = 600
3. Возвращаемся к условиям задачи и вспоминаем, что нужно было найти. А найти нам нужно было массу третьего газа. Подставляем в уравнение общей массы газа 3 из таблицы и получаем:
600 + 600 + 300 = 1500 г
Ответ: масса третьего газа равна 1500 г.
Задача 3
Смешали 40%ый и 15%ый растворы кислоты, затем добавили 3 кг чистой воды, в результате чего получили 20%ый раствор кислоты. Если бы вместо 3 кг воды добавили 3 кг 80% раствора той же кислоты, то получили бы 50%ый раствор кислоты. Сколько килограммов 40%го и 15%го растворов кислоты было смешано?
Решение:
1. Составляем таблицу. По условиям задачи мы имеем пять растворов:
Раствор 1: 40%ая кислота. Обозначим ее массу за х, тогда масса чистого вещества = х * 40% = 0,4х
Раствор 2: 15%ая кислота. Обозначим ее массу за у, тогда масса чистого вещества = х * 15% = 0,15х
Вода: вода, масса которой равна 3 кг. Концентрация кислоты в воде равна 0. Таким образом, масса чистого вещества равна 3 * 0 = 0
Раствор 3: 80%ая кислота. Ее масса по условию задачи равна 3 кг, тогда масса чистого вещества равна 3 * 80% = 3 *0,8 = 2,4
Раствор 4: соединение раствора 1, раствора 2 и воды. Таким образом, общая масса полученного раствора равна х + у + 3. А масса чистого вещества в этом растворе равна 0,4х + 0,15у + 0
Раствор 5: соединение раствора 1, раствора 2 и раствора 3. Таким образом, общая масса полученного раствора равна х + у + 3. А масса чистого вещества в этом растворе равна 0,4х + 0,15у + 2,4.
Сводим полученные результаты в таблицу:2. Составляем уравнение.
По условиям задачи раствор 5 имеет концентрацию 50%. Таким образом, чтобы получить массу чистого вещества в растворе 5 нужно его общую массу умножить на концентрацию. Получаем (х + у + 3) * 0,5. Теперь берем массу чистого вещества раствора 5, которую мы выразили в таблице и приравниваем два этих уравнения:
(х + у + 3) * 0,5 = 0,4х + 0,15у + 2,4
Аналогично поступаем с раствором 4. По условиям задачи его концентрация равна 20%. Тогда получаем следующее уравнение:
(х + у + 3) * 0,2 = 0,4х + 0,15у
Объединяем полученные уравнения в систему:Решаем систему и получаем х = 3,4, у = 1,6
3. Возвращаемся к условиям задачи.
По условиям задачи необходимо было найти, какое количество килограммов 40%го и 15%го растворов кислоты было смешано. Общая масса 40%й кислоты мы обозначали х, а общую массу 15%й кислоты мы обозначили у. Следовательно, масса 40%й кислоты = 3,4 кг, а масса15%й кислоты = 1,6 кг.
Ответ: масса 40%й кислоты = 3,4 кг, а масса15%й кислоты = 1,6 кг.
Примеры решения задач на сплавы: от простого к сложному
Задача 1
Бронза является сплавом меди и олова (в разных пропорциях). Кусок бронзы, содержащий 1/12 часть олова, сплавляется с другим куском, содержащим 1/10 часть олова. Полученный сплав содержит 1/11 часть олова. Найдите вес второго куска, если вес первого равен 84 кг
Решение:
1. Составим таблицу. Обозначим массу второго куска – х.2. Составим уравнение. По условию задачи сплав 3 содержит 1/11 часть олова, тогда масса чистого вещества равна 1/11 * (84 + х). Таким образом, можно составить следующее уравнение:
1/12 * 84 + 1/10 * х = 1/11 * (84 + х)
7 + х/10 = 84/11 + х/11
х/10 – х/11 = 7/11
х/110 = 7/11
х/10 = 7
х = 70
3. Возвращаемся к условию задачи. Найти нужно было вес второго куска. Вес второго куска равен 70 кг.
Ответ: 70 кг.
Задача 2
Имеются два сплава меди со свинцом. Один сплав содержит 15% меди, а другой 65%. Сколько нужно взять каждого сплава, чтобы получилось 200г сплава, содержащего 30% меди?
Решение.
1. Составим таблицу. Пусть масса первого сплава – х, масса второго сплава – у. Остальные данные берем из решения и составляем таблицу:2. По условиям задачи масса третьего сплава равна 200 г, значит:
х + у = 200
Содержание меди в третьем сплаве по условиям задачи равно 30%, т.е. масса чистого вещества равна 0,3(х + у). Следовательно, берем массу чистого вещества из таблицы и приравниваем:
0,15х + 0,65у = 0,3(х + у)
Получившиеся уравнения сводим в систему и решаем ее:х = 200 – у
0,15(200 – у) + 0,65у = 0,3 * 200
30 – 0,15у + 0,65у = 60
0,5у = 30
у = 60
х = 140
3. Возвращаемся к условиям задачи. Необходимо было найти массу первого и второго сплава. Масса первого сплава — 140 г, масса второго сплава -60 г.
Ответ: 140 г и 60 г.
Задача 3
В первом сплаве содержание меди составляет 70%, а во втором – 40%. В каком отношении надо взять эти сплавы, чтобы получить из них новый сплав, который содержит 50% меди?
Решение:
1. Составим таблицу. Обозначим массу первого сплава – х, массу второго сплава – у. Тогда:2. По условиям задачи содержание меди в третьем сплаве равно 50%. Таким образом, масса чистого вещества равна 0,5 (х + у). Приравняем полученное уравнение к массе чистого вещества в составе третьего сплава из таблицы, получим:
0,7х + 0,4у = 0,5 (х + у)
0,7х + 0,4у = 0,5х + 0,5у
0,2х = 0,1у
х/у = ½
3. Возвращаемся к условию задачи. Необходимо было определить отношение первого и второго сплавов в третьем сплаве. Отношение сплавов равно ½.
Ответ: ½
Итак, решение задач на сплавы и смеси можно свести к трем действиям: составление таблицы, составление уравнения (или системы уравнений), возвращение к условиям задачи, чтобы дать ответ на поставленный вопрос. Задание 11 ЕГЭ по математике профильного уровня является одной из самых сложных задач, так как может содержать текстовую задачу любого типа. Это может быть как задача на сплавы и смеси, так и задача на движение, работу, проценты. Как решать все эти задачи вы можете узнать на нашем сайте или
Возможно, вам нужно заглянут сюда – “Простейшие задачи на проценты”
Задача 1. В сосуд, содержащий литров -процентного водного раствора некоторого вещества, добавили литров воды. Сколько процентов составляет концентрация получившегося раствора?
Решение: + показать
Задача 2. Смешали некоторое количество -процентного раствора некоторого вещества с таким же количеством -процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?
Решение: + показать
Задача 3. Имеется два сплава. Первый сплав содержит % никеля, второй — % никеля. Из этих двух сплавов получили третий сплав массой кг, содержащий % никеля. На сколько килограммов масса первого сплава меньше массы второго?
Решение: + показать
Задача 4. Смешав 54-процентный и 61-процентный растворы кислоты и добавив 10 кг чистой воды, получили 46-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 56-процентный раствор кислоты. Сколько килограммов 54-процентного раствора использовали для получения смеси?
Решение: + показать
Задача 5. Имеются два сосуда. Первый содержит кг, а второй — кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий % кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий % кислоты. Сколько килограммов кислоты содержится в первом сосуде?
Решение: + показать
Задача 6. Виноград содержит % влаги, а изюм — %. Сколько килограммов винограда требуется для получения килограммов изюма?
Решение: + показать
Задача 7. В 2008 году в городском квартале проживало человек. В 2009 году, в результате строительства новых домов, число жителей выросло на %, а в 2010 году — на % по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?
Решение: + показать
Задача 8. Цена холодильника в магазине ежегодно уменьшается на одно и то же число процентов от предыдущей цены. Определите, на сколько процентов каждый год уменьшалась цена холодильника, если, выставленный на продажу за рублей, через два года был продан за рублей.
Решение: + показать
Задача 9. В понедельник акции компании подорожали на некоторое количество процентов, а во вторник подешевели на то же самое количество процентов. В результате они стали стоить на % дешевле, чем при открытии торгов в понедельник. На сколько процентов подорожали акции компании в понедельник?
Решение: + показать
Задача 10. Шесть рубашек дешевле куртки на %. На сколько процентов девять рубашек дороже куртки? Видео*
Решение: + показать
Задача 11. Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на %. Если бы стипендия дочери уменьшилась вдвое, общий доход семьи сократился бы на %. Сколько процентов от общего дохода семьи составляет зарплата жены?
Решение: + показать
Задача 12. Дима, Андрей, Гриша и Коля учредили компанию с уставным капиталом рублей. Дима внес % уставного капитала, Андрей — рублей, Гриша — уставного капитала, а оставшуюся часть капитала внес Коля. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли рублей причитается Коле? Ответ дайте в рублях.
Решение: + показать
Задача 13. Клиент А. сделал вклад в банке в размере рублей. Проценты по вкладу начисляются раз в год и прибавляются к текущей сумме вклада. Ровно через год на тех же условиях такой же вклад в том же банке сделал Б. Ещё ровно через год клиенты А. и Б. закрыли вклады и забрали все накопившиеся деньги. При этом клиент А. получил на рубля больше клиента Б. Какой процент годовых начислял банк по этим вкладам?
Решение: + показать
Вы можете пройти Тест по задачам на проценты, сплавы, смеси
11. Сюжетные текстовые задачи
1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Задачи на растворы, смеси и сплавы
(blacktriangleright) Концентрация вещества в растворе (сплаве) – это процент содержания этого вещества в растворе (сплаве): [text{концентрация вещества}=dfrac{text{масса вещества}}{text{масса раствора}}cdot 100%]
(blacktriangleright) Заметим, что в задачах из данной подтемы зачастую удобно составлять уравнения относительно кислоты или активного вещества.
Задание
1
#846
Уровень задания: Равен ЕГЭ
Сергей смешал раствор, содержащий (20%) кислоты и раствор, содержащий (40%) той же кислоты. В итоге у него получился раствор, содержащий (32,5%) кислоты, причём объём полученного раствора (4) литра. Сколько литров раствора, содержащего (20%) кислоты, использовал Сергей при смешивании?
Пусть (x) литров раствора, содержащего (20%) кислоты использовал Сергей при смешивании, тогда
(4 — x) литров раствора, содержащего (40%) кислоты использовал Сергей при смешивании,
(dfrac{20}{100}x) – объём кислоты в растворе, содержащем (20%) кислоты, (dfrac{40}{100}(4 — x)) – объём кислоты в растворе, содержащем (40%) кислоты.
Так как в итоге кислоты оказалось (dfrac{32,5}{100} cdot 4 = 1,3) литра, то:
[dfrac{20}{100}x + dfrac{40}{100}(4 — x) = 1,3,] откуда находим (x = 1,5).
Ответ: 1,5
Задание
2
#844
Уровень задания: Равен ЕГЭ
Один газ в сосуде А содержал (21%) кислорода, второй газ в сосуде В содержал (5%) кислорода. Масса первого газа в сосуде А была больше массы второго газа в сосуде В на 300 г. Перегородку между сосудами убрали так, что газы перемешались и получившийся третий газ теперь содержит (14,6%) кислорода. Найдите массу третьего газа. Ответ дайте в граммах.
Пусть (x) грамм – масса второго газа, тогда
(x + 300) грамм – масса первого газа,
(dfrac{21}{100}(x + 300)) грамм – масса кислорода в первом газе,
(dfrac{5}{100}x) грамм – масса кислорода во втором газе,
тогда масса кислорода в третьем газе составляет (dfrac{14,6}{100}(2x + 300)) грамм.
Так как третий газ возник в результате смешивания первого и второго, то:
[dfrac{21}{100}(x + 300) + dfrac{5}{100}x = dfrac{14,6}{100}(2x + 300),] откуда находим (x = 600). Таким образом, масса третьего газа равна (600 + 600 + 300 = 1500) грамм.
Ответ: 1500
Задание
3
#843
Уровень задания: Равен ЕГЭ
Иван случайно смешал молоко жирностью (2,5%) и молоко жирностью (6%). В итоге у него получилось 5 литров молока жирностью (4,6%). Сколько литров молока жирностью (2,5%) было у Ивана до смешивания?
Пусть (x) литров молока жирностью (2,5%) было у Ивана, тогда
(5 — x) литров молока жирностью (6%) было у Ивана,
(dfrac{2,5}{100}x) – объём жира в молоке жирностью (2,5%), (dfrac{6}{100}(5 — x)) – объём жира в молоке жирностью (6%).
Так как в итоге жира оказалось (dfrac{4,6}{100} cdot 5 = 0,23) литра, то:
(dfrac{2,5}{100}x + dfrac{6}{100}(5 — x) = 0,23), откуда находим (x = 2).
Ответ: 2
Задание
4
#841
Уровень задания: Равен ЕГЭ
В сосуде А содержится 3 литра 17-процентного водного раствора вещества Х. Из сосуда В в сосуд А перелили 7 литров 19-процентного водного раствора вещества Х. Сколько процентов составляет концентрация полученного в сосуде А раствора?
Концентрация в процентах – это отношение объёма вещества к объёму смеси, умноженное на 100(%). До переливания в сосуде А было (3 cdot 0,17 = 0,51) литра вещества Х, в сосуде В было (7 cdot 0,19 = 1,33) литра вещества Х.
После переливания объём вещества Х в сосуде А стал (0,51 + 1,33 = 1,84) литра, а объём всего раствора (3 + 7 = 10) литров. Тогда концентрация в процентах составила [dfrac{1,84}{10} cdot 100% = 18,4%.]
Ответ: 18,4
Задание
5
#2133
Уровень задания: Равен ЕГЭ
Во сколько раз больше должен быть объём (5)-процентного раствора кислоты, чем объём (10)-процентного раствора той же кислоты, чтобы при смешивании получить (7)-процентный раствор?
Пусть объём (5)-процентного раствора кислоты равен (x) литров, а объём (10)-процентного раствора равен (y) литров, тогда требуется найти значение величины (dfrac{x}{y}) при условии [0,05x + 0,1y = 0,07(x + y)
qquadLeftrightarrowqquad
dfrac{x}{y} = dfrac{3}{2} = 1,5,,] таким образом, ответ: (1,5).
Ответ: 1,5
Задание
6
#2134
Уровень задания: Равен ЕГЭ
Во сколько раз больше должен быть объём (20)-процентного раствора кислоты, чем объём (14)-процентного раствора той же кислоты, чтобы при смешивании получить (18)-процентный раствор?
Пусть объём (20)-процентного раствора кислоты равен (x) литров, а объём (14)-процентного раствора равен (y) литров, тогда требуется найти значение величины (dfrac{x}{y}) при условии [0,2x + 0,14y = 0,18(x + y)
qquadLeftrightarrowqquad
dfrac{x}{y} = 2,,] таким образом, ответ: (2).
Ответ: 2
Задание
7
#2629
Уровень задания: Равен ЕГЭ
Смешав (25)-процентный и (95)-процентный растворы кислоты и добавив (20) кг чистой воды, получили (40)-процентный раствор кислоты. Если бы вместо (20) кг воды добавили (20) кг (30)-процентного раствора той же кислоты, то получили бы (50)-процентный раствор кислоты. Сколько килограммов (25)-процентного раствора использовали для получения смеси?
Заметим, что вода – это раствор, не содержащий кислоту, то есть содержащий (0%) кислоты.
Пусть (x) кг – масса раствора с (25)-процентным содержанием кислоты, (y) кг – масса раствора с (95)-процентным содержанием кислоты. Составим схему, описывающую получение (40)-процентного раствора:
Заметим, что количество кислоты во всех трех растворах равно количеству кислоты в получившемся растворе. Найдем количество кислоты в первом растворе.
Если раствор весит (x) кг, а в нем (25%) кислоты, то в килограммах в нем (dfrac{25}{100}cdot x) кислоты.
Таким же образом можно посчитать количество кислоты в остальных растворах. Получим первое уравнение:
[dfrac{25}{100}cdot x+dfrac{95}{100}cdot y+
dfrac{0}{100}cdot 20=dfrac{40}{100}cdot (x+y+20)]
Аналогично составим схему, описывающую получение (50)-процентного раствора:
Значит, уравнение, описывающее эту ситуацию, будет выглядеть так:
[dfrac{25}{100}cdot x+dfrac{95}{100}cdot y+
dfrac{30}{100}cdot 20=dfrac{50}{100}cdot (x+y+20)]
Таким образом, решив систему из полученных двух уравнений, найдем (x). Для этого можно умножить оба уравнения на (100), чтобы сделать их проще на вид:
[begin{cases}
25x+95y+0=40(x+y+20)\
25x+95y+30cdot 20=50(x+y+20)
end{cases}]
Вычтем из второго уравнения первое и получим новую систему:
[begin{aligned} &begin{cases}
25x+95y=40(x+y+20)\
30cdot 20=10(x+y+20)
end{cases} quad Rightarrow quad begin{cases}
5x+19y=8(x+y+20)\
y=40-x end{cases} quad Rightarrow \[2ex] Rightarrow quad
&begin{cases}
3x-11(40-x)+160=0\
y=40-x end{cases} quad Rightarrow quad begin{cases}
x=20\y=20end{cases} end{aligned}]
Таким образом, раствора с (25%) кислоты было (20) кг.
Ответ: 20
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом.
$а_1$ — первый член арифметической прогрессии
$d$ — разность между последующим и текущим членом прогрессии
$d=a_{n+1}-a_n$
$a_n$ — член арифметической прогрессии, стоящий на $n$-ом месте
$n$ — номер места для членов арифметической прогрессии
$S_n$ — сумма первых n членов арифметической прогрессии
Формула для нахождения $n$-ого члена прогрессии:
$a_n=a_1+d(n-1)$
Формула суммы первых n членов арифметической прогрессии:
$S_n={(a_1+a_n)·n}/{2}$
Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число.
$b_1$ — первый член геометрической прогрессии
$q$ — знаменатель геометрической прогрессии, показывает во сколько раз последующее число больше предыдущего.
$q={b_{n+1}}/{b_n}$
$b_n$ — $n$-ый член геометрической прогрессии
$S_n$ — сумма первых $n$ членов геометрической прогрессии
Формула, для нахождения $n$-ого члена прогрессии:
$b_n=b_1·q^{n-1}$
Формула суммы первых $n$ членов арифметической прогрессии:
$S_n={b_1·(q^n-1)}/{q-1},q≠1$
В задачах на прогрессии важно:
- Определить тип прогрессии
- Верно сопоставить приведенные величины с их обозначением в формулах, записать дано.
- Подставить известные данные в формулу и вывести неизвестную величину.
Пример:
Предприниматель Петров получил в $2000$ году прибыль в размере $5000$ рублей. Каждый следующий год его прибыль увеличивалась на $300%$ по сравнению с предыдущим годом. Сколько рублей заработал Петров за 2003 год?
Решение:
Для начала посчитаем увеличение прибыли: так как она увеличивалась на $300%$, то $100%+300%=400%$. $400%$ — это то же самое, что увеличение прибыли в $4$ раза.
Данная задача на геометрическую прогрессию, так как прибыль увеличивалась В четыре раза по сравнению с предыдущим годом.
Запишем дано: $b_1=5000$ — первая прибыль
$q=4$ — величина, показывающая, во сколько раз увеличивалась прибыль каждый год
$n=4$, так как с $2000$ по $2003$ прошло $4$ года (т.к. 2000 — 1й год, 2001 — 2й, 2002 — 3й, 2003 -4й)
$b_4-?$ — количество заработанных денег в четвертый год от начала прибыли
Запишем формулу для нахождения $n$-ого члена прогрессии:
$b_n=b_1·q^{n-1}$
Подставим известные величины из дано и найдем $b_4$:
$b_4=5000·4^3=320000$
Ответ: $320000$
Задачи на смеси и сплавы.
В задачах на растворы и сплавы для удобства решения можно делать схему, для каждого раствора в схеме необходимо записать две величины:
- Массу или объем, в зависимости от условия задачи;
- Процентное содержание чистого вещества в растворе.
Потом, если мы смешиваем составы, для смешанного вещества тоже записываем:
- Массу или объем полученной смеси – она равна сумме масс или объемов изначальных растворов.
- Процентное содержание чистого вещества в полученной смеси.
Далее составляем уравнение, для этого надо процентное содержание чистого вещества умножить на массу своего раствора, сложить получившиеся величины каждого раствора и все это приравнять к полученной величине смеси.
$m_{1 раствора}·%_{1 вещества}+m_{2 раствора}·%_{2 вещества}=m_{смеси}·%_{смеси}$
Пример:
Смешали $2$ кг $15%$-ного водного раствора некоторого вещества с $8$ кг $10%$-ного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?
Решение:
Пусть $х%$ — концентрация получившегося раствора.
Составим к задаче схему.
$1$ раствор
Масса — $2$кг Процентное содержание вещества — $15%$ |
$2$ раствор
Масса — $8$кг Процентное содержание вещества — $10%$ |
Смесь растворов
Масса – $2$кг$+8$кг$=10$кг Процентное содержание вещества — $х%$ |
Составим уравнение:
$15%·2+10%·8=х%·10$ Уберем в уравнении знак процента, чтобы он не мешал при расчетах
$15·2+10·8=10·х$
$30+80=10х$
$10х=110$
$х=11%$ — концентрация получившегося раствора.
Ответ: $11$
Опорный конспект
Определение.
Процентным содержанием ( концентрацией) вещества в смеси называется отношение
его массы к общей массе всей смеси.
Это
отношение может быть выражено либо в дробях, либо в процентах. Например, если
мы в 120 г воды добавим 30 г поваренной соли ( NaCl ), то общая масса раствора станет 150 г, а
концентрация соли в растворе 30:150=0,2 — дробью или 20%. Оба ответа приемлемы.
Это важно знать :
—1%−это
сотая часть рассматриваемой величины (52% от х кг − это 0,52х кг);
-В качестве неизвестных обычно выбирают
объемы или массы компонентов смеси (сплава);
—Складывать,
уравнивать, сравнивать можно только массовые доли одного и того же вещества,
или веществ в смеси (сплаве).
Алгоритм решения задачи.
1.
Изучить условия задачи.
Выбрать неизвестные величины (их обозначают буквами х, у и т.д.),
относительно которых составить пропорции, этим, мы создаем математическую
модель ситуации, описанной в условии задачи.
2.
Используя условия задачи,
определить все взаимосвязи между данными величинами.
3.
Составить математическую
модель задачи и решить ее.
4.
Изучить полученное решение,
провести критический анализ результата.
Задача 1.
Имеется два сплава меди и свинца. Один сплав содержит 15% меди, а другой 65%
меди. Сколько нужно взять каждого сплава, чтобы получилось 200г сплава,
содержащего 30% меди?
Решение.
Пусть х г –
масса первого сплава. Тогда, (200-х)г – масса второго сплава.
Дополним последнюю схему этими выражениями. Получим следующую схему:
Сумма масс меди в двух
первых сплавах (то есть слева от знака равенства) равна массе меди в полученном
третьем сплаве (справа от знака равенства):
Решив это уравнение,
получаем х=140. При этом значении х выражение 200-х=60. Это
означает, что первого сплава надо взять140г, а второго-60г.
Ответ:140г.
60г.
Задача
2. Сколько нужно добавить воды в сосуд,
содержащий 150 г 70% -го раствора уксусной кислоты, чтобы получить 6 % раствор
уксусной кислоты?
Решение. Количество
воды необходимое для доливания в сосуд обозначим через x.
процентное в |
Масса г |
Масса г |
|
Исходный |
70% |
150 |
0,7·150=105 |
Новый раствор |
6% |
150 |
0,06(150 |
Так
как масса уксусной кислоты осталась прежней, составляем и решаем
уравнение
0,06(150
+ x)
= 105,
9
+ 0,06x
= 105,
0,06x
= 96,
x
= 1600.
Ответ.
1,6 кг воды.
Ответ:
40 г, 100 г.
Квадрат Пирсона
Для решения подобных задач удобно пользоваться « квадратом Пирсона». Вот как
это делается. Рисуют квадрат и проводят две диагонали. ( рис. 1) В левом
верхнем углу проставляют больший показатель крепости исходных веществ (а),
а в нижнем углу-второй показатель(b)
а на пересечении диагоналей записывают требуемый показатель (с).
Затем производят вычитание по первой диагонали (а — с) и находят
количество второй части (у). Из центра производят вычитание по второй
диагонали (c — b)
и находят количество первой части смеси (x)
. Значения x и
y
записывают по одной линии с показателями. На x
частей первого вещества надо взять y
частей второго вещества, тогда получится смесь с показателем с.
a
x 36 12
b
y 6 18
Рис
.1 Рис.2
Пусть,
например, имеются две партии сливок: одна содержит 36% жира, а другая -18%.
Требуется определить, сколько надо взять и тех, и других сливок, чтобы
получить смесь с количеством жира 30%. Решаем по изложенному выше способу
(рис.2) и получаем
y=a
– c
= 36 – 30 = 6
x=c
– b =30 – 18 = 12
то
есть на 6 массовых частей второй партии надо взять 12 частей первой.
Способ
Магницкого.
Первый
сплав содержит 5% меди, а второй 12% меди. Масса второго сплава на 6 кг больше
первого. Из этих двух сплавовполучили третий , который содержит 10 % меди.
Найдите массу третьего сплава.
P1
p3 – p2 m1
P3
P2 p3
– p1 m2..
5 2
х
10
12 5 х + 6
2( х+ 6) = 5х
х = 4 (масса первого), масса второго 4 + 6 = 10, масса
третьего 4 + 10 = 14 кг.
Ответ: 14 кг.
Смешали 8 кг 18%
р-ра вещества с 12 кг 8% этого же вещества. Найдите концентрацию получившегося
р-ра.
18 х
– 8 8
х
8 18 – х 12
8(18 – х) = 12 (х –
144 – 8х = 12х – 96
144 + 96 = 12х + 8х
х = 12
Ответ: 12%
Задачи для самостоятельного решения
1. Бронза –
сплав меди и олова. В древности из бронзы отливали колокола, если в ней
содержалось 75% меди. К куску бронзы 500кг и содержащему 72% добавили некоторое
количество бронзы, содержащей 80% меди и получили бронзу, необходимую для
изготовления колокола. Определите сколько добавили 80% бронзы.
Ответ:300кг.
2. В
лаборатории изготовили 1кг 16% солевого раствора. Через неделю из этого
раствора испарилось 200г воды. Какова стала концентрация соли в растворе?
Ответ:20%.
3. При
выплавке стали из чугуна, выжигается углерод. Содержание углерода в чугуне 4%.
Сколько тонн углерода нужно выжечь из 245т чугуна, чтобы получилась сталь с
содержанием углерода 2%?
Ответ:5т.
4. Имеется
600г сплава золота и серебра содержащего золото и серебро в отношении 1:5
соответственно. Сколько грамм золота необходимо добавить к этому сплаву чтобы
получить новый сплав содержащий 50% серебра.
Ответ:400г.
5.
Слиток сплава меди и цинка массой 36
кг содержит 45% меди. Какую массу меди надо добавить к этому куску, чтобы
полученный сплав содержал 60% меди?
Ответ:13,5кг.
6. После
смешивания двух растворов, один из которых содержал 48
г, а другой — 20 г безводного йодистого калия, получилось 200
г нового раствора. Найдите концентрацию каждого из первоначальных растворов,
если концентрация первого на 15% больше концентрации второго.
Ответ:40% и 25%.
7. Имелось
два слитка меди. Процент содержания меди в первом слитке на 40% меньше, чем во
втором. После того как оба слитка сплавили, получился слиток, содержащий 36%
меди. Найдите процентное содержание меди в каждом слитке, если в первом было 6
кг меди, а во втором — 12 кг.
Ответ:20% и 60%
8. Сколько
чистого спирта нужно добавить к 735 г 16%-ного раствора йода и спирта, чтобы
получить 10%-ный раствор?
Ответ:441г.
9. Смешали
30%-ный раствор соляной кислоты с ее 10%-ным раствором и получили 600
г 15%-ного раствора. Сколько граммов 30 % -ного раствора было взято?
Ответ:150г.
10. В
сосуде находится 10%-ный раствор спирта. Из сосуда отлили 1/3 содержимого, а
оставшуюся часть долили водой так, что сосуд оказался заполненным на 5/6
первоначального объема. Какое процентное содержание спирта оказалось в сосуде?
Ответ:8%.