Как решать задание 15 егэ информатика отрезки

На уроке рассматривается разбор 15 задания ЕГЭ по информатике, дается подробное объяснение того, как решать подобные задачи

Содержание:

  • Объяснение задания 15 ЕГЭ по информатике
    • Элементы математической логики
    • Математическая логика и теория множеств
    • Задания с отрезками и ДЕЛ
    • Задания с поразрядной конъюнкцией
  • Решение заданий 15 ЕГЭ по информатике
    • Задания с множествами
    • Задания с отрезками на числовой прямой
    • Задания с ДЕЛ
    • Задания с поразрядной конъюнкцией
    • Задания на поиск наибольшего или наименьшего числа А

15-е задание: «Основные законы алгебры логики»

Уровень сложности

— повышенный,

Требуется использование специализированного программного обеспечения

— нет,

Максимальный балл

— 1,

Примерное время выполнения

— 5 минут.

  
Проверяемые элементы содержания: Знание основных понятий и законов математической логики

До ЕГЭ 2021 года — это было задание № 18 ЕГЭ

Типичные ошибки и рекомендации по их предотвращению:

«Важно понимать, что выражение должно быть тождественно истинно, т.е. истинно при любых допустимых значениях переменных x и у, а не только при некоторых наборах значений»

ФГБНУ «Федеральный институт педагогических измерений»

Элементы математической логики

    Для решения 15 задания, потребуется знание таблиц истинности.

    Для выполнения задания рекомендуется повторить следующие темы:

    Преобразование логических операций:

  • операцию импликация можно преобразовать в операции ИЛИ и НЕ:
  • A → B = ¬ A ∨ B
    или
    A → B = A + B

  • операцию эквивалентность можно преобразовать:
  • A ↔ B = A ⊕ B = A ∧ B ∨ AB
    или
    A ↔ B = A ⊕ B = A · B + A · B

  • операцию XOR (сложение по модулю 2) можно преобразовать так:
  • A ⊕ B = (¬A ∧ B) ∨ (A ∧ ¬B)
    или
    A ⊕ B = (A · B) + (A · B)

    Законы алгебры логики:

  • кроме того, могут пригодиться базовые аксиомы и формулы:
  • Закон двойного отрицания:

    ¬¬ A = A

    Закон исключения третьего:

    A ∧ ¬ A = 0 или A · A = 0
    A ∨ ¬ A = 1 или A + A = 1

    Закон повторения (идемпотентности):

    A ∧ A = A или A · A = A
    A ∨ A = A или A + A = A

    Законы исключения логических констант:

    A ∧ 0 = 0
    A ∧ 1 = A
    A ∨ 0 = A
    A ∨ 1 = 1

    Переместительный (коммутативный) закон:

    A ∧ B = B ∧ A
    A ∨ B = B ∨ A

    Сочетательный (ассоциативный) закон:

    (A ∧ B) ∧ C = A ∧ (B ∧ C)
    (A ∨ B) ∨ С = A ∨ (B ∨ С)

    Распределительный (дистрибутивный) закон:

    (A ∧ B) ∨ C = (A ∨ C) ∧ (B ∨ C)
    (A ∨ B) ∧ С = (A ∧ С) ∨ (B ∧ С)
    и наоборот:
    (A ∨ B) ∧ (A ∨ C) = A ∨ (B ∧ C)
    (A ∧ B) ∨ (A ∧ C) = A ∧ (B ∨ C)

    Закон общей инверсии (Законы де Моргана):

    ¬ (A ∧ B) = ¬ A ∨ ¬ B
    ¬ (A ∨ B) = ¬ A ∧ ¬ B

    Закон исключения (склеивания):

    (A ∧ B) ∨(¬A ∧ B) = B
    (A ∨ B) ∧(¬A ∨ B) = B

    Упрощать выражения можно с помощью формул:
    Закон поглощения:

    A ∨ A ∧ B = A
    A ∧ (A ∨ B) = A
    A ∨ ¬A ∧ B = A ∨ B
    ¬A ∨ A ∧ B = ¬A ∨ B
    A ∧ (¬A ∨ B) = A ∧ B
    ¬A ∧ (A ∨ B) = ¬A ∧ B

  • Порядок выполнения логических операций:
    1. выражения в скобках,
    2. операции «НЕ»,
    3. операции «И»,
    4. операции «ИЛИ»,
    5. операции «импликация»
    6. операции «эквиваленция»
  • последовательность из операций импликации выполняется слева направо (при этом соблюдается принцип «операции с одинаковым приоритетом выполняются слева направо»):
  • A → B → C → D = ((A → B) → C) → D

Математическая логика и теория множеств

  • пересечение множеств соответствует логическому умножению, а объединение – логическому сложению;
  • пересечением двух множеств называется новое множество, состоящее из элементов, принадлежащих одновременно обеим множествам:
  • пересечение множеств
    Пример:
    пример пересечения множеств

  • объединением двух множеств называется новое множество, состоящее из элементов, принадлежащих отдельно каждому из множеств (без повторений);
  • Пример:
    пример объединения множеств

  • пустое множество – это множество, в котором не содержится ни одного элемента; пустому множеству в теории множеств соответствует 0;
  • универсальное множество U (на кругах Эйлера обозначается в виде прямоугольника) – это множество, содержащее все возможные элементы определенного типа (например, все вещественные числа):
  • универсальное множество

  • универсальное множество соответствует логической единице: для любого множества целых чисел X справедливы равенства:
  • X ∨ U = U и X ∧ U = X

  • разностью двух множеств A и B называется новое множество, элементы которого принадлежат A, но не принадлежат B:
  • разность двух множеств
    Пример разности множеств:
    пример разности множеств

  • дополнение множества X – это разность между универсальным множеством U и множеством X (например, для целых чисел ¬ X – все целые числа, не входящие в X)
  • дополнение множества

  • пусть требуется выбрать множество A так, чтобы выполнялось равенство A ∨ X = I; в этом случае множество A должно включать дополнение ¬ X, то есть A ≥¬ X (или A ⊇¬ X), то есть Amin = ¬ X
  • пусть требуется выбрать множество A так, чтобы выполнялось равенство ¬ A ∨ X = I, в этом случае множество ¬ A должно включать дополнение ¬ X, то есть ¬ A ⊇ ¬ X; отсюда A ⊆ X, то есть Amax = X

Для большей определенности стоит рассмотреть тему круги Эйлера

Задания с отрезками и ДЕЛ

Для решения заданий необходимо знать рассмотренную тему о множествах.

Для упрощения решений можно пользоваться следующими законами.

  1. 1. Если в задании формула тождественно истинна (равна 1), и
    2. после упрощения A без отрицания
    то используется закон:

    Amin = ¬B

    где B — известная часть выражения.

    1. Если в задании формула тождественно истинна (равна 1), и
    2. после упрощения A с отрицанием
    то используется закон:

    Amax = B

    где B — известная часть выражения.

  2. 1. Если в задании формула тождественно ложна (равна 0), и
    2. после упрощения A без отрицания
    то используется закон:

    Amax = ¬B

    где B — известная часть выражения.

    1. Если в задании формула тождественно ложна (равна 0), и
    2. после упрощения A с отрицанием
    то используется закон:

    Amin = B

    где B — известная часть выражения.

Задания с поразрядной конъюнкцией

В задании 15 ЕГЭ встречаются задачи, связанные с поразрядной конъюнкцией.
Например:

5 & 26

означает поразрядную конъюнкцию (логическое «И») между двоичными значениями двух чисел — 5 и 26. Выполняется так:

5  =   1012 
26 = 110102
0  = 000002

Задания, связанные с поразрядной конъюнкцией, решаются несколькими способами. Рассмотрим один из них.

  • Обозначим:
  • (x & K = 0) как Zk  
    
  • Для решения методом, предложенным А.В. Здвижковой, пригодится использование следующих свойств:
  • Zk * Zm = Zk or m

  • Так, например, если в задании имеем:
  • (X & 5 = 0)  (X & 26 = 0)
    
  • то сначала введем замену:
  • Z5 ∧ Z26
    
  • а затем, используя свойство 1, вычислим поразрядную дизъюнкцию двоичного значения чисел 26 и 5:
  • Z5 ∧ Z26 = Z26 or 5
    помним, что дизъюнкция - это операция логическое "ИЛИ" (сложение)
    5  =   1012 
    26 = 110102
    31 = 111112
    
  • таким образом, получили:
  • Z5 ∧ Z26 = Z31
    

    Zk + Zm = Zk and m

  • Так, например, если в задании имеем:
  • (X & 28 = 0)  (X & 22 = 0)
    
  • то сначала введем замену:
  • Z28 ∨ Z22
    
  • а затем, используя свойство 2, вычислим поразрядную конъюнкцию двоичного значения чисел 28 и 22:
  • Z28 ∨ Z22 = Z28 and 22
    помним, что конъюнкция - это операция логическое "И" (умножение)
    28 = 111002 
    22 = 101102
         101002 = 2010
    
  • таким образом, получили:
  • Z28 ∨ Z22 = Z20
    

Условие Zk → Zm истинно для любых натуральных значений x тогда и только тогда, когда все единичные биты двоичной записи числа M входят во множество единичных битов двоичной записи числа K.

  • На деле, это означает, что если имеем:
  • X & 29 = 0  X & 5 = 0  Истинно или Ложно?
    
  • то сначала введем замену:
  • Z29 → Z5
    
  • а затем, используя свойство 3, определим истинность высказывания Z29 → Z5:
  • Z29 → Z5 = 1 (истине), тогда, когда:
    29 = 111012
    5  =   1012  
    единичные биты двоичного числа 5 входят в единичные биты двоичного числа 29 
    (совпадают с ними)
    
  • таким образом, получили:
  • Z29 → Z5 = 1 (истинно)
    

(x & 125 = 5) то же самое, что и
Z120 * ¬Z4 * ¬Z1 = 1 (истине)

  • Так, например, если в задании имеем:
  • X & 130 = 3 
    
  • то сначала введем замену и, используя свойство 4, получим:
  • X & 130 = 3 то же самое, что и
    Z127 * ¬Z2 * ¬Z1
    
    т.е. 3 = 2 + 1 :	
    
    2 = 10
    1 = 01
    3 = 11
    

Решение заданий 15 ЕГЭ по информатике

Плейлист видеоразборов задания на YouTube:

Задание демонстрационного варианта 2022 года ФИПИ


Задания с множествами

Множества:
 

15_16:

Элементами множества А являются натуральные числа. Известно, что выражение

((x ∈ {1, 3, 5, 7, 9, 11}) → ¬(x ∈ {3, 6, 9, 12})) ∨ (x ∈ A)

истинно (т. е. принимает значение 1) при любом значении переменной х.

Определите наименьшее возможное значение суммы элементов множества A.

✍ Решение:

  • Введем обозначения:
  • P ≡ (x ∈ {1, 3, 5, 7, 9, 11}) ; 
    Q ≡ (x ∈ {3, 6, 9, 12}) ; 
    A ≡ (x ∈ A).
    
  • Выполним преобразования:
  • (P → ¬Q) ∨ A = 1
    Избавимся от импликации:
    ¬P ∨ ¬Q ∨ A = 1
    
  • Разделим выражение на две части — известную часть и неизвестную. Чтобы неизвестная часть (А) была непременно истинной, необходимо, чтобы известная часть была ложна:
  • ¬P ∨ ¬QА = 1
        0      1
    
  • То есть получаем:
  • ¬P ∨ ¬Q = 0,
    или 
    ¬P = 0  отсюда P = 1
    ¬Q = 0 отсюда Q = 1
  • Таким образом имеем пересечение (умножение) двух множеств Q и P. То есть необходимо выбрать элементы, которые встречаются в обоих множествах одновременно:
  • A = {3,9}
    
  • Сумма элементов:
  • 3 + 9 = 12

Ответ: 12

Аналитическое решение:
📹 YouTube здесь

📹 Видеорешение на RuTube здесь


Множества:

15_17:

Элементами множества А являются натуральные числа. Известно, что выражение

(x ∈ {2, 4, 6, 8, 10, 12}) → (((x ∈ {3, 6, 9, 12, 15}) ∧ ¬(x ∈ A)) → 
→ ¬(x ∈ {2, 4, 6, 8, 10, 12}))

истинно (т. е. принимает значение 1) при любом значении переменной х.

Определите наименьшее возможное значение суммы элементов множества A.

Типовые задания для тренировки

✍ Решение:

  • Введем обозначения:
  • P≡(x ∈ {2, 4, 6, 8, 10, 12}) ; 
    Q ≡ (x ∈ {3, 6, 9, 12, 15}) ; 
    A ≡ (x ∈ A).
    
  • Выполним преобразования:
  • P → ((Q ∧ ¬A)  ¬P) = 
    P  (¬(Q ∧ ¬А)  ¬P) = 
    ¬P  (¬(Q ∧ ¬А) ∨ ¬P) = 
    ¬P  ¬Q ∨ А.
    
  • Разделим выражение на две части — известную часть и неизвестную. Чтобы неизвестная часть (А) была непременно истинной, необходимо, чтобы известная часть была ложна:
  • ¬P ∨ ¬QА = 1
        0      1
    
  • То есть получаем:
  • ¬P ∨ ¬Q = 0,
    или 
    ¬P = 0  отсюда P = 1
    ¬Q = 0 отсюда Q = 1
  • Таким образом имеем пересечение (умножение) двух множеств Q и P. То есть необходимо выбрать элементы, которые встречаются в обоих множествах одновременно:
  • A = {6,12}
    
  • Сумма элементов:
  • 6 + 12 = 18

Ответ: 18


Множества:

15_18: Закон распределения

Элементами множеств А, P, Q являются натуральные числа, причём P = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}, Q = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}. Известно, что выражение

( (x ∈ A) → (x ∈ P) ) ∧ ( (x ∈ Q) → ¬(x ∈ A) )

истинно (т. е. принимает значение 1) при любом значении переменной х.

Определите наибольшее возможное количество элементов в множестве A.

Типовые задания для тренировки

✍ Решение:

  • Введем обозначения:
  • P ≡ (x ∈ P); 
    Q ≡ (x ∈ Q); 
    A ≡ (x ∈ A).
    
  • Выполним преобразования:
  • Избавимся от импликации:
    (¬A ∨ P) ∧ (¬Q ∨ ¬A) = 1
    Применим распределительный закон (но можно вывести самостоятельно):
    ¬A ∨ (P ∧ ¬Q) = 1
    
  • Разделим выражение на две части — известную часть и неизвестную. Чтобы неизвестная часть (А) была непременно истинной, необходимо, чтобы известная часть была ложна:
  • ¬A(P ∧ ¬Q) = 1
     0      1
    
  • То есть получаем:
  • P ∧ ¬Q = 1,
    или 
    P = 1  и
    ¬Q = 1 отсюда Q = 0
  • Таким образом имеем разность двух множеств Q и P. То есть это новое множество, элементы которого принадлежат P, но не принадлежат Q:
  • A = {2, 4, 8, 10, 14, 16, 20}
    
  • Количество элементов = 7

Ответ: 7

Множества:

15_20:

Элементами множества А являются натуральные числа. Известно, что выражение

¬(x ∈ A) →¬(x ∈ {1, 3, 7}) ∨ (¬(x  ∈ {1, 2, 4, 5, 6}) ∧ (x ∈ {1, 3, 7})) 

истинно (т. е. принимает значение 1) при любом значении переменной х.

Определите наименьшее возможное количество элементов множества A.

✍ Решение:

  • Введем обозначения:
  • P ≡ (x ∈ {1, 3, 7}); 
    Q ≡ (x  ∈ {1, 2, 4, 5, 6}); 
    A ≡ (x ∈ A).
    
  • Выполним преобразования:
  • Избавимся от импликации:
    A ∨ ¬P ∨ (¬Q ∧ P) = 1
    Применим закон поглощения (но можно вывести самостоятельно):
    A ∨ ¬P ∨ ¬Q = 1
    
  • Разделим выражение на две части — известную часть и неизвестную. Чтобы неизвестная часть (А) была непременно истинной, необходимо, чтобы известная часть была ложна:
  • A¬P ∨ ¬Q = 1
     1      0
    
  • То есть получаем:
  • ¬P ∨ ¬Q = 0,
    или 
    P = 1 и Q = 1 
  • Таким образом имеем пересечение двух множеств Q и P:
  • A = {1}
    
  • Количество элементов = 1

Ответ: 1


Задания с отрезками на числовой прямой

Отрезки на числовой прямой:
  

15_3:

На числовой прямой даны два отрезка: P=[44,48] и Q=[23,35].

Укажите наибольшую возможную длину отрезка А, для которого формула

((x ϵ P) → (x ϵ Q)) ∧ (x ϵ A)

тождественно ложна, то есть принимает значение 0 при любом значении переменной x.

✍ Решение:

  • Упростим формулу, избавившись от ‘x ϵ‘:
  • (P → Q) ∧ A
    
  • Теперь преобразуем импликацию в скобках:
  • правило импликации: a → b = ¬a ∨ b

    (¬P ∨ Q) ∧ A
    
  • Указанные в задании отрезки отобразим на числовой прямой. Разделим отрезки на части по точкам, соответствующим их границам.
  • решение 15 задания егэ по информатике

  • Вернемся к преобразованному выражению. В нем есть известная часть (выделим ее) и неизвестная. По условию выражение должно быть ложно:
  • (¬P ∨ Q) ∧ A = 0
  • Внешняя операция выражения — конъюнкция — ложна в трех случаях и только в одном — истинна:
  • (¬P ∨ Q) ∧ A
        0      0 = 0
        0      1 = 0
        1      0 = 0
        1      1 = 1
    
  • Теперь рассмотрим это выражение относительно наших отрезков на числовой прямой: если известная часть выражения (¬P ∨ Q) на каком-либо отрезке прямой дает истину, то неизвестная часть (A) должна возвращать ложь (по условию формула должна быть тождественно ложна).
  • Рассмотрим все отрезки числовой прямой для известной части выражения:
  • 1. (¬P ∨ Q) = 1 ∨ 0 = 1  - на данном отрезке А должно равняться 0
    2. (¬P ∨ Q) = 1 ∨ 1 = 1  - на данном отрезке А должно равняться 0
    3. (¬P ∨ Q) = 1 ∨ 0 = 1  - на данном отрезке А должно равняться 0
    4. (¬P ∨ Q) = 0 ∨ 0 = 0  - на данном отрезке А может! равняться 1
    5. (¬P ∨ Q) = 1 ∨ 0 = 1  - на данном отрезке А должно равняться 0
    
  • Получаем, что на всех отрезках кроме 4-го выражение ¬P ∨ Q истинно, т.е. на отрезках 1, 2, 3 и 5 неизвестная часть A должна быть ложной (чтобы формула вернула ложь). Отсюда следует, что А может быть истинно только на отрезке 4.
  • Длина отрезка 4 составляет:
  • 48 - 44 = 4

Результат: 4
✎ Решение 2 (программирование):
Внимание! этот способ подходит НЕ для всех заданий с отрезками!
Python:

1
2
3
4
5
6
7
8
9
def f(a1,a2,x):
    return((44<=x<=48)<=(23<=x<=35))and(a1<=x<=a2)
maxim = 0
for a1 in range (1,200):
    for a2 in range (a1+1,200):
        if all(f(a1,a2,x)==0 for x in range (1,200)):# если все ложны
            if a2-a1>maxim:
                maxim=a2-a1
                print(a1,a2, a2-a1) # сами точки отрезка и длина

Вывод:

44 45 1
44 46 2
44 47 3
44 48 4

PascalABC.net:

Вывод:


С подробным аналитическим решением задания 15 ЕГЭ по информатике можно ознакомиться по видео:

📹 YouTube здесь
📹 Видеорешение на RuTube здесь

Отрезки на числовой прямой:
  

15_9:

На числовой прямой даны два отрезка: P = [10,20] и Q = [30,40].

  
Укажите наибольшую возможную длину отрезка A, для которого формула

((x ∈ P) → (x ∈ Q))  → ¬(x ∈ A)

тождественно истинна, то есть принимает значение 1 при любом значении переменной x.

Типовые задания для тренировки

✍ Решение:

  • Упростим выражение, введя обозначения:
  • A: x ∈ A
    P: x ∈ P
    Q: x ∈ Q
    
  • Запишем формулу с новыми обозначениями, учитывая, что по условию она должна быть тождественно истинной:
  • (P → Q) → ¬A = 1
    
  • Избавимся от импликации:
  • (P → Q) → ¬A = 1        =>
    ¬(P → Q) ∨ ¬A = 1       =>
    ¬(¬P ∨ Q) ∨ ¬A = 1   
    
  • Используем закон Де Моргана для последующего преобразования:
  • ¬(¬P ∨ Q) ∨ ¬A = 1    =>
    P ∧ ¬Q ∨ ¬A = 1
    
  • А — наше неизвестное, а выделенную часть формулы можно найти. Необходимо, чтобы А = 1. Значит, предположим, что ¬А = 0, тогда P ∧ ¬Q = 1 (если P ∧ ¬Q = 0, то ¬А может равняться и 0 и 1, так как имеет место операция логического сложения ∨)
  • Значит, имеем P ∧ ¬Q = 1. Кроме того, в данном случае имеет место операция конъюнкция, которую проще вычислить, если выражение равно 1 (так как для конъюнкции существует один единственный случай истинности: 1 & 1 = 1). Таким образом имеем утверждения:
  • А = 1
    P = 1
    ¬Q = 1 или Q = 0
    
  • Т.е. A истинно (=1) на промежутке пересечения отрезков P и ¬Q.
  • Отобразим отрезки на числовой прямой, чтобы найти искомое значение:
  • решение 15 задания ЕГЭ с числовой приямой

  • Очевидно, что А будет истинно, только в части 2 (на рис. желтым цветом), то есть соответствовать отрезку [10,20], имеющему длину 10.

Результат: 10

Отрезки на числовой прямой:

15_10:

На числовой прямой даны два отрезка: P = [3, 20] и Q = [6, 12].

  
Укажите наибольшую возможную длину отрезка A, для которого формула

((x ∈ P) ~ (x ∈ Q))  → ¬(x ∈ A)

тождественно истинна, то есть принимает значение 1 при любом значении переменной x.

✍ Решение:

  • Упростим выражение, введя обозначения:
  • A: x ∈ A
    P: x ∈ P
    Q: x ∈ Q
    
  • Запишем формулу с новыми обозначениями, учитывая, что по условию она должна быть тождественно истинной:
  • (P ~ Q) → ¬A = 1
    
  • Избавимся от импликации:
  • (P ~ Q) → ¬A = 1      =>
    ¬(P ~ Q) ∨ ¬A = 1
    

    Далее возможно 2 способа решения.

    ✎ 1 способ:

  • Избавимся от эквивалентности по правилу преобразования эквивалентности:
  • (a ~ b) = a * b + ¬a * ¬b

    ¬(P ~ Q) = ¬((P ∧ Q) ∨ (¬P ∧ ¬Q)) =
    = ¬(P ∧ Q) ∧ ¬(¬P ∧ ¬Q) 
    
  • Преобразуем часть данного выражения по закону Де Моргана:
  • ¬(P ∧ Q) ∧ ¬(¬P ∧ ¬Q) =
    = ¬(P ∧ Q) ∧ (P ∨ Q) 
    
  • В итоге получим:
  • ¬(P ∧ Q) ∧ (P ∨ Q) ∨ ¬A = 1
  • А — наше неизвестное, а выделенную часть выражения можно найти. Необходимо, чтобы А = 1. Значит, предположим, что ¬А = 0, тогда, чтобы общее выражение было истинным (по условию), нужно чтобы ¬(P ∧ Q) ∧ (P ∨ Q) = 1.
  • Имеем:
  • ¬(P ∧ Q) ∧ (P ∨ Q) = 1
    А = 1
    
  • Отобразим отрезки на числовой прямой, чтобы найти искомое значение:
  • 15 задание  ЕГЭ отрезки

  • Очевидно, что А будет истинно в двух отмеченных на рисунке частях: 2 и 4 (на рис. желтым цветом). Но по условию нам необходимо найти А наибольшей длины, соответственно, выбираем отрезок [12,20], имеющий длину 8.
  • ✎ 2 способ:
    После того, как мы избавились от импликации, имеем:

    ¬(P ~ Q) ∨ ¬A = 1
    
  • А — наше неизвестное, а выделенную часть выражения можно найти. Необходимо, чтобы А = 1. Значит, предположим, что ¬А = 0, тогда ¬(P ~ Q) = 1 (чтобы общее выражение было истинным, как указанно в условии).
  • Иными словами ¬(P ~ Q) истинно для всех значений x, при которых P не равно Q (т.е. либо P = 1 и Q = 0, либо P = 0 и Q = 1).
  • Это соответствует двум отрезкам (см. рисунок выше, желтым цветом): [3,6] и [12,20]. Но по условию нам необходимо найти А наибольшей длины, соответственно выбираем отрезок [12,20], имеющий длину 8.

Результат: 8

С решением задания 15 вы также можете ознакомиться, посмотрев видео (аналитическое решение):

📹 YouTube здесь
📹 Видеорешение на RuTube здесь

Отрезки на числовой прямой:

15_11:

На числовой прямой даны два отрезка: P = [11, 21] и Q = [15, 40].

  
Укажите наибольшую возможную длину отрезка A, для которого формула

(x ∈ A) → ¬((x ∈ P)  ~ (x ∈ Q))

тождественно истинна, то есть принимает значение 1 при любом значении переменной x.

Типовые задания для тренировки

✍ Решение:

  • Упростим выражение, введя обозначения:
  • A: x ∈ A
    P: x ∈ P
    Q: x ∈ Q
    
  • Запишем формулу с новыми обозначениями, учитывая, что по условию она должна быть тождественно истинной:
  • A → ¬(P ~ Q) = 1
    
  • Избавимся от импликации:
  • A → ¬(P ~ Q) = 1    =>
    ¬A ∨ ¬(P ~ Q) = 1
    
  • А — наше неизвестное, тогда как выделенную часть формулы можно найти. Введем предположение, что А = 1. Значит, ¬А = 0 (т.е. А = 1), тогда ¬(P ~ Q) = 1 (так как общая формула должна быть истинной по условию).
  • Иными словами ¬(P ~ Q) истинно для всех значений x, при которых P не равно Q (т.е. либо P = 1 и Q = 0, либо P = 0 и Q = 1).
  • Отобразим отрезки на числовой прямой, чтобы найти искомое значение:
  • 15 задание отрезки на числовой прямой

  • Получаем, что А соответствует двум отрезкам (см. рисунок, желтым цветом): [11,15] и [21,40]. Но по условию нам необходимо найти А наибольшей длины, соответственно выбираем отрезок [21,40], имеющий длину 19.

Результат: 19

Задания с ДЕЛ

Поиск наибольшего А, известная часть Дел ∨ Дел = 1

15_7:

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

  
Для какого наибольшего натурального числа А формула

  (ДЕЛ(x, 40) ∨ ДЕЛ(x, 64))  → ДЕЛ(x, A) 

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

Типовые задания для тренировки

✍ Решение:

✎ Решение 1 (теоретическое):

  • Введем обозначения:
  • A = ДЕЛ(x,A); 
    D40 = ДЕЛ(x, 40); 
    D64 = ДЕЛ(x, 64)
    
  • Перепишем исходную формулу, согласно введенным обозначениям. Укажем, что формула должна быть тождественно истинна (по условию):
  • (D40 ∨ D64)  → A = 1
    
  • Избавимся от импликации:
  • ¬(D40 ∨ D64) ∨ A = 1
    или
    (¬D40 ∧ ¬D64) ∨ A = 1
    
  • Разделим данную формулу на две части: в одной из них — искомое A, а в другой — часть формулы с x, которую можно найти:
  • (¬D40 ∧ ¬D64) ∨ A = 1
          1          2
    
  • В полученной формуле необходимо, чтобы искомая часть с A в конечном счете было истинно.

    Т.е. (¬D40 ∧ ¬D64) должно быть = 0. Это нам ничего не дает, т.к. конъюнкция ложна в трех случаях (1*0, 0*1 и 0*0), т.е. D40 и D64 могут быть равны как 0, так и 1 (исключение составляет лишь вариант, когда оба D истинны, тогда логическое умножение 1 * 1 ≠ 0).

  • Преобразуем выражение первой части формулы по закону Де Моргана (чтобы оно равнялось 1):
  • ¬D40 ∧ ¬D64 = 0
    или
    ¬(¬D40 ∧ ¬D64) = 1
    
    Преобразуем по закону Де Моргана и получим:
    D40 ∨ D64 = 1
    

      
    Далее можно решать задание либо с помощью кругов Эйлера, либо с помощью логических рассуждений.

    Решение с помощью логических рассуждений:

  • Найдем все такие x, которые делятся на А и при этом делятся на 40 ИЛИ делятся на 64:
  • x/A : x/40 ∨ x/64
    x = 40, 64, 80, 120, 128, 160, 192, 200, ...
  • Теперь найдем такие A, начиная с самого наименьшего (единицы), на которые делятся все x без исключения:
  • А = 1, 2, 4, 8
  • Наибольшее А равно 8.
  • Или то же самое можно найти поиском наибольшего общего делителя чисел 40 и 64 (используем формулу Евклида):
  • НОД (40,64) = 8 
    40,64  (64 - 40 = 24)
    40,24  (40 - 24 = 16)
    24,16  (24 - 16 = 8)
    16,8   (16 - 8 = 8)
    8,8
    

    Решение с помощью кругов Эйлера:

  • В этом случае логическое сложение тоже дает истину в трех случаях (1+1, 1+0, 0+1). Т.е. мы не сможем найти А с помощью функции ДЕЛ. Необходимо прибегнуть к решению с помощью кругов Эйлера.
  • В множество A должны входить все числа, которые попадают в объединение D40 + D64. Таким образом, нужно найти множество, в которое входят оба этих множества.
  • Найдем наибольший общий делитель чисел 40 и 64; это число 8:
  • 64 / 40 = 1 (24 остаток)
    40 / 24 = 1 (16 остаток)
    24 / 16 = 1 (8 остаток)
    16 / 8 = 2 (0 остаток) - НОД = 8
    +++
    40 / 8 = 5
    64 / 8 = 8
    
  • Т.е. можно сказать, что A = D40 + D64 = D8*D5 + D8*D8 = D8*(D5 + D8). D8 входит в каждое из множеств D40 и D64. Объединение D40 + D64 тоже входит в D8:
  • 2

  • 8 — наибольший общий делитель числе 40 и 64, значит, оно соответствует максимальному значению A.

Результат: 8

✎ Решение 2 (программирование):
Python:

1
2
3
4
5
6
for A in range(1,500):
    OK = 1
    for x in range(1,1000):
        OK *= ((x % 40 == 0) or (x % 64 == 0))<=(x % A== 0)
    if OK:
        print( A )

Вывод:

1
2
4
8

PascalABC.net:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
begin
  for var A := 1 to 500 do
  begin
    var ok := 1;
    for var x := 1 to 1000 do
    begin
      if (((x mod 40 = 0) or (x mod 64 = 0)) <= (x mod A = 0)) = false then
      begin
        ok := 0; 
        break;
      end;
    end;
    if (ok = 1) then print(A)
  end;
end.

Вывод:

1
2
4
8

Результат: 8

Поиск наименьшего А, известная часть Дел ∧ ¬Дел = 1

15_5:

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

 
Для какого наименьшего натурального числа А формула

ДЕЛ(x, A) → (¬ДЕЛ(x, 28) ∨ ДЕЛ(x, 42))

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

Типовые задания для тренировки

✍ Решение:

✎ Решение 1 (теоретическое):

    Имеем:

    ДЕЛ(x, A) → (¬ДЕЛ(x, 28) ∨ ДЕЛ(x, 42)) = 1 
  • Введем обозначения:
  • A = ДЕЛ(x,A); 
    D28 = ДЕЛ(x, 28); 
    D42 = ДЕЛ(x, 42)
    
  • Перепишем исходную формулу, согласно введенным обозначениям. Укажем, что формула должна быть тождественно истинна (по условию):
  • A → (¬D28 ∨ D42) = 1
    

    Избавимся от импликации:

    ¬A ∨ (¬D28 ∨ D42) = 1
    
  • Разделим данную формулу на две части: в одной из них — искомое A, а в другой — часть формулы с x, которую можно найти:
  • ¬A ∨ (¬D28 ∨ D42) = 1
     1        2
    
  • В части 2 полученной формулы находится операция дизъюнкция, которую проще найти, когда логическое выражение равно 0 (только один случай: 0 ∨ 0 = 0):
  • (¬D28 ∨ D42) = 0   один случай: когда ¬D28 = 0 и D42 = 0
  • Т.е. имеем:
  • x/¬A : x/28 ∧ x/¬42
  • Иными словами найдем все такие x, которые НЕ делятся на А и при этом делятся на 28 И НЕ делятся на 42:
  • x = 28, 56, 84, 112, 140, 168, 196, 224, ...
  • Теперь найдем такие A, начиная с самого наименьшего (единицы), на которые НЕ делятся все x без исключения:
  • А = 1, 2, 3
  • Наименьшее А равно 3.

✎ Решение 2 (программирование). Язык Python, Pascal:

    Из общего выражения:

    ДЕЛ(x, A) → (¬ДЕЛ(x, 28) ∨ ДЕЛ(x, 42)) = 1 
  • Можно сделать вывод, что для некоторого диапазона натуральных значений А, необходимо рассмотреть диапазон натуральных значений x. Если выражение будет истинным для диапазона всех рассматриваемых х, то такое А необходимо вывести на экран.
  • То есть следует рассмотреть вложенный цикл: для внешнего цикла, перебирающего значения А (ограничим их числом 50, т.к. необходимо найти наименьшее А), будем запускать внутренний цикл, перебирающий значения х (х ограничим числом 1000, будем рассматривать данный диапазон, как «любое натуральное значение переменной х»).
  • Во внутреннем цикле расположим формулу:
  • Python:

    for A in range(1,50):
        OK = 1
        for x in range(1,1000):
            OK *= (x % A == 0) <= ((x % 28 != 0) or (x % 42== 0))
        if OK:
            print( A )
            break

    PascalABC.net:

    begin
      for var A := 1 to 50 do
      begin
        var ok := 1;
        for var x := 1 to 1000 do
        begin
          if (x mod A = 0) <= ((x mod 28 <> 0)or (x mod 42 = 0)) = false then
          begin
            ok := 0; 
            break;
          end;
        end;
        if (ok = 1) then begin
          print(A);
          break;
          end
      end;
    end.

    OK — переменная-индикатор: если находится такое А при котором, диапазон всех значений x, подставленных в выражение, возвращает истинное значение выражения, то ОК остается равным 1, т.к. используется операция умножения (до цикла ОК необходимо присвоить единице).
    Следует иметь в виду, что в программировании вместо операции импликация (->) можно использовать нестрогое неравенство: <=. Т.к. таблица истинности для операции импликация соответствует операции <=:

    a b   F(a<=b)
    0 0      1
    0 1      1
    1 0      0
    1 1      1  
    
  • После запуска программы выдается наименьшее значение А, т.к. используется оператор break для выхода из цикла после первого найденного значения:
  • 3
    

Результат: 3

15_6:

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

  
Для какого наименьшего натурального числа А формула

 (¬ДЕЛ(x, 19) ∨ ¬ДЕЛ(x, 15)) → ¬ДЕЛ(x, A) 

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

✍ Решение:

✎ Решение 1 (Путём рассуждений):

  • Введем обозначения:
  • A = ДЕЛ(x,A); 
    D19 = ДЕЛ(x, 19); 
    D15 = ДЕЛ(x, 15)
    
  • Перепишем исходную формулу, согласно введенным обозначениям. Укажем, что формула должна быть тождественно истинна (по условию):
  • (¬D19 ∨ ¬D15) → ¬A = 1
    
  • Избавимся от импликации:
  • D19 ∧ D15 ∨ ¬A = 1
    
  • Разделим данную формулу на две части: в одной из них — искомое A, а в другой — часть формулы с x, которую можно найти:
  • ¬A ∨ D19 ∧ D15 = 1
     1       2
    
  • Начнем с известной части — части 2 формулы. В ней находится операция конъюнкция, которую проще найти, когда все ее операнды равны 1 (единственный случай для конъюнкции: 1 ∧ 1 = 1).
  • Вторая часть общей формулы может равняться только 1, когда ¬A = 0 (если ¬A = 1, то вторая часть может равнять 0, а нам нужно 1) :
  • ¬A ∨ D19 ∧ D15 = 1
     0       1      = 1
    
  • Т.е. получаем:
  • ¬A = 0 при D19 ∧ D15 = 1
    или
    A = 1 при D19 = 1 и D15 = 1
    
  • Таким образом, имеем:
  • A = 1
    D19 = 1
    D15 = 1
    
  • Очевидно, что наименьшим x можем взять число 285 (15 * 19 = 285): ДЕЛ(285, 19) и ДЕЛ(285, 15)
  • Поскольку мы ищем наименьшее A, такое что: ДЕЛ(x, A) и при этом ДЕЛ(x, 19) и ДЕЛ(x, 15), то нам необходимо найти наименьшее делимое чисел 19 и 15:
  • 19 * 2 = 38 (38 не делится на 15)
    19 * 3 = 57 (57 не делится на 15)
    19 * 4 = 76 (76 не делится на 15)
    19 * 5 = 95 (95 не делится на 15)
    ...
    19 * 10 = 190 (190 не делится на 15)
    19 * 15 = 285 (285 делится на 15)
    
  • A должно быть таким числом, при котором x принимает единственно возможное (наименьшее) значение 285.
  • Таким наименьшим A является само число 285.

✎ Решение 2 (программирование). Язык Python:

    Из общего выражения:

     (¬ДЕЛ(x, 19) ∨ ¬ДЕЛ(x, 15)) → ¬ДЕЛ(x, A)  = 1
  • Можно сделать вывод, что для некоторого диапазона натуральных значений А, необходимо рассмотреть диапазон натуральных значений x. Если выражение будет истинным для диапазона всех рассматриваемых х, то такое А необходимо вывести на экран.
  • То есть следует рассмотреть вложенный цикл: для внешнего цикла, перебирающего значения А (ограничим их числом 500, т.к. необходимо найти наименьшее А), будем запускать внутренний цикл, перебирающий значения х (х ограничим числом 1000, будем рассматривать данный диапазон, как «любое натуральное значение переменной х»).
  • Во внутреннем цикле расположим формулу:
  • for A in range(1,500):
        OK = 1
        for x in range(1,1000):
            OK *= ((x % 19 != 0) or (x % 15 != 0))<= (x % A!= 0)
        if OK:
                print( A )

    OK — переменная-индикатор: если находится такое А при котором, диапазон всех значений x, подставленных в выражение, возвращает истинное значение выражения, то ОК остается равным 1, т.к. используется операция умножения (до цикла ОК необходимо присвоить единице).
    Следует иметь в виду, что в программировании вместо операции импликация (->) можно использовать нестрогое неравенство: <=. Т.к. таблица истинности для операции импликация соответствует операции <=:

    a b   F(a<=b)
    0 0      1
    0 1      1
    1 0      0
    1 1      1  
    
  • После запуска программы выдается одно значение А:
  • 285
    

Результат: 285

Задания с поразрядной конъюнкцией

Поразрядная конъюнкция:
 

15_1:

Обозначим через m & n поразрядную конъюнкцию неотрицательных целых чисел m и n. Так, например, 12&6 = 11002&01102 = 01002 = 4

  
Для какого наименьшего неотрицательного целого числа A формула

(X & A = 0) ∧ ¬(X & 35 ≠ 0 → X & 52 ≠ 0)

тождественно ложна (то есть принимает значение 0 при любом неотрицательном значении переменной X)?

✍ Решение:

Стоит заметить, что для такого типа задач, нет универсального единственного решения. Поэтому на видео, расположенном ниже, представлено два варианта решения.
✎ Способ 1:

Рассмотрим один из вариантов решения:

  • Удалим из формулы X&, чтобы сократить ее запись:
  • (A = 0) ∧ ¬(35 ≠ 0 → 52 ≠ 0)
    
  • Обратим внимание, что внешней операцией является конъюнкция — логическое умножение:
  • (A = 0)  ¬(35 ≠ 0 → 52 ≠ 0)
    
  • Разделим общее выражение на две части относительно внешней операции. Первая часть — неизвестная, искомая, а вторая — известная, ее можно вычислить:
  • (A = 0) ∧ ¬(35 ≠ 0 → 52 ≠ 0)
       1               2
    
  • Выполним некоторые преобразования во второй части формулы:
  • Зная свойство импликации, преобразуем формулу (избавимся от импликации в скобках):
  • правило импликации: a → b = ¬a ∨ b

    (A = 0) ∧ ¬(35 = 0 ∨ 52 ≠ 0)
    т.к. в результате получается отрицание того, что 35 ≠ 0, 
    то убираем знак "не равно": было 35 ≠ 0, стало 35 = 0
    
  • Избавимся от отрицания перед скобками по закону Де Моргана:
  • закон де Моргана: ¬ (A ∨ B) = ¬ A ∧ ¬ B

    A = 0 ∧ 35 ≠ 0 ∧ 52 = 0 = 0
  • По условию формула должна быть ложной. Вспомним таблицу истинности для конъюнкции (внешняя операция в нашей общей формуле):
  • 0 ∧ 0 = 0
    0 ∧ 1 = 0
    1 ∧ 0 = 0
    1 ∧ 1 = 1
    
  • Вторая часть формулы — вычислима, поэтому начнем с нее. В ней находится операция конъюнкция, которая имеет один единственный вариант решения, когда ¬ A ∧ ¬ B = 1. То есть примем вторую часть за истину (=1). В таком случае, для того чтобы общее выражение стало ложным (так требуется по заданию), необходимо, чтобы утверждение, что A = 0 было ложным (т.к. в обратном случае получим: 1 ∧ 1 = 1):
  • (A = 0) ∧ 35 ≠ 0 ∧ 52 = 0 = 0
       0            1    = 0 
    
  • Вторая часть будет истинной только в том случае, если оба утверждения будут истинными:
  • 35 ≠ 0 ∧ 52 = 0 = истинно (=1)  если:
    35 ≠ 0 = истинно (=1)
    и
    52 = 0 = истинно (=1)
    
    так как стоит логическое умножение  - 
    смотрим выше таблицу истинности для конъюнкции
    
  • Из двух последних пунктов получаем три утверждения:
  • 35 ≠ 0  = 1  (истина)
    и
    52 = 0  = 1  (истина)
    и
    A = 0   = 0  (ложь)
    
  • Переведем числа в двоичную систему счисления:
  • 35: 100011  (≠ 0)
    52: 110100 (= 0)
    
  • Найдем такой X, который при поразрядной конъюнкции даст истинное значение для обеих частей.
  • Для начала рассмотрим ситуацию с числом 52 — это проще, т.к. для получения в результате нуля (52 = 0 => истина), достаточно во всех разрядах «перекрыть» единицы нулями:
  • 52 1 1 0 1 0 0
    X 0 0 ? 0 ? ?
  • Мы «перекрыли» все единицы нулями, чтобы в результате получить 0.
  • Теперь рассмотрим 35 ≠ 0 = истина (1):
  • 35 1 0 0 0 1 1
    X 1 ? ? ? 1 1
  • Объединим обе маски в одну:
  • 0 0 ? 0 ? ?  &
    1 ? ? ? 1 1
    0 0 ? 0 1 1
    
  • Так как выражение X & A = 0 должно быть ложным, то найдем такое наименьшее А, при котором X & A ≠ 0. Для этого в тех разрядах Х, в которых находится единица, необходимо сохранить эту единицу и в соответствующих разрядах А:
  • X 0 0 ? 0 1 1
    A 0 0 0 0 1 1
  • Переведем результат в десятичную систему счисления:
  • 0000112 = 310

Ответ: 3

✎ Способ 2*:

    Используем метод А.В. Здвижковой.

  • Выполним последовательно следующие пункты:
    1. Произвести замену (x & K = 0) на Zk
    2. Выполнить преобразования по свойству импликации и закону Де Моргана.
    3. Стремиться прийти к выражению с конъюнкциями без отрицаний типа: Zk * Zm.
    4. Все выражения типа Zk * Zm преобразовать по свойству
      Zk * Zm = Zk or m.
    5. Путем преобразований прийти к импликации: Zk → Zm.
  • Согласно первому пункту производим замену:
  • A ∧ ¬(¬Z35 → ¬Z52) = 0
    
  • Введем отрицание в выражение, чтобы оно было истинным:
  • ¬(A ∧ ¬(¬Z35 → ¬Z52)) = 1
    
  • По закону де Моргана:
  • ¬A ∨ (¬Z35 → ¬Z52) = 1
    
  • По свойству импликации:
  • ¬A ∨ (Z35 ∨ ¬Z52) = 1
    
  • Объединим слагаемые с отрицанием:
  • ¬A ∨ ¬Z52 ∨ Z35 = 1
    
  • Чтобы прийти к конъюнкции (пункт 3), используем закон де Моргана:
  • ¬(A ∧ Z52) ∨ Z35 = 1
    
  • Чтобы прийти к импликации (пункт 5), используем свойство импликации:
  • (A ∧ Z52) → Z35 = 1
    
  • Получаем:
  • ZA ∨ 52 → Z35 = 1
    
  • Вспомним свойство:
  • Условие Zk → Zm истинно для любых натуральных значений x тогда и только тогда, когда все единичные биты двоичной записи числа M входят во множество единичных битов двоичной записи числа K.

  • В нашем случае это говорит о том, что все единичные биты двоичной записи числа 35 должны входить в результат ZA or 52.
  • Рассмотрим подробно:
  • A       = ??0?11
    52      = 110100
    A or 52 = 110111
    35      = 100011
     
  • поскольку мы ищем наименьшее А, то:
  • Аmin = 112 = 310

Результат: 3

Детальный разбор данного задания 15 ЕГЭ по информатике предлагаем посмотреть на видео:

Вариант решения №1 (универсальный, теоретический):
📹 YouTube здесь
📹 Видеорешение на RuTube здесь

Вариант решения №2 (не универсальный, но простой):
📹 YouTube здесь

Поразрядная конъюнкция:
  

15_2:

Обозначим через m & n поразрядную конъюнкцию неотрицательных целых чисел m и n. Так, например, 12&6 = 11002&01102 = 01002 = 4

  
Для какого наибольшего неотрицательного целого числа A формула

X & A ≠ 0 → (X & 36 = 0 → X & 6 ≠ 0)

тождественно истинна (то есть принимает значение 1 при любом неотрицательном значении переменной X)?

✍ Решение:

    ✎ Способ 1:

  • Произведем замену:
  • z36 = (x&36 = 0), z6 = (x&6 = 0), A = (x&A = 0)
    
  • Перепишем выражение:
  • ¬A → (z36 → ¬ z6)
    
  • Избавимся от импликации (A → B = ¬ A ∨ B):
  • Сначала по правилу преобразования импликации:
  • ¬A → (z36 → ¬ z6) = A + ¬z36 + ¬z6 
    
  • По Закону де Моргана вынесем отрицание за скобки (¬ (A ∧ B) = ¬ A ∨ ¬ B):
  • A + ¬z36 + ¬z6 = A + ¬(z36 * z6)
    
  • Вернемся опять к импликации:
  • A + ¬(z36 * z6) = ¬(z36 * z6) + A = (z36 * z6) → A
    
  • Суть предыдущих действий в том, что нам необходимо прийти к импликации, но, избавившись от отрицания.
  • По следующему правилу ZK * ZM = ZK or M (К. Поляков) заменим конъюнкцию:
  • z36 * z6 = z36 or 6
  • Выполним поразрядную дизъюнкцию двоичных чисел 36 и 6:
  • 1001002 -> 36
    1102 -> 6
    
    100100
       110
    1001102 -> 36 or 6 = 3810
    
  • Получаем:
  • z38 → A
    
  • Необходимо обеспечить истинность данного выражения при всех x. Это возможно, когда единичные биты A входят в единичные биты числа 38. То есть:
  • A = 1001102 = 3810

      
    ✎ Способ 2:

  • Так как по заданию формула должна быть тождественно истинна, то перепишем ее так:
  • x&A ≠ 0 → (x&36 = 0 → x&6 ≠ 0) = 1
  • Введем обозначения:
  • A = (x&A = 0);
    P = (x&36 = 0);
    Q = (x&6 = 0);
    
  • Перепишем выражение согласно введенным обозначениям:
  • ¬A → (P → ¬Q) = 1
    
  • Избавимся от импликации:
  • A ∨ (¬P ∨ ¬Q) = 1
    
  • A — наше неизвестное; для части выражения ¬P ∨ ¬Q нам необходимо подобрать такой вариант (равный 0 или 1), при котором единственно возможным значением A была бы единица (1).
  • Возьмем (¬P ∨ ¬Q) = 0, тогда А должно быть только единицей (чтобы общее выражение было = 1):
  • A ∨ (¬P ∨ ¬Q) = 1; 
    или 
    1 ∨ (0) = 1
    
  • Иными словами, выражение истинно, если при ¬P ∨ ¬Q = 0, A равно единице (1).
  • Получаем:
  • ¬P ∨ ¬Q = 0
    Отсюда имеем: 
    ¬P = 0 и ¬Q = 0 
    
    (дизъюнкция равна 0 в единственном случае, когда все операнды равны 0)
    
  • Или запишем другим образом:
  • Q = 1 и P = 1
  • Построим побитовые маски:
  • 100100  : 36
    000110  : 6
    0**0**  : маска P (x&36 = 0)
    ***00*  : маска Q (x&6 = 0)
    
  • Сопоставим обе маски и маску x&A = 0:
  • 0**0**  : маска P (x&36 = 0)
    ***00*  : маска Q (x&6 = 0)
    0**00*  : общая маска x
    *00**0  : маска для A (x&A = 0)
    т.е. в тех битах А, где может получиться единица (звездочки в обеих масках),
    мы поставили нули.
  • Так как нам необходимо получить наибольшее A (по заданию), то вместо всех «звездочек» ставим единицы:
  • 100110 = 3810
    

Результат: 38

Подробное решение данного задания 15 ЕГЭ по информатике предлагаем посмотреть в видео уроке:
Способ 1:
📹 YouTube здесь
  📹 Видеорешение на RuTube здесь
Способ 2:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь

Поразрядная конъюнкция:
 

15_8:

Определите наименьшее натуральное число А из интервала [43, 55], такое, что выражение

((x & 17 ≠ 0) → ((x & A ≠ 0) → (x & 58 ≠ 0))) →
→ ((x & 8 = 0) ∧ (x & A ≠ 0) ∧ (x & 58 = 0))

тождественно ложно (то есть принимает значение 0 при любом натуральном значении переменной х)?

Типовые задания для тренировки

✍ Решение:

    Кратко изложенное решение *:

  • Введем обозначения:
  • (¬Z17 → (¬A → ¬Z58)) → (z8 ∧ ¬A ∧ Z58) = 0
    
  • Для того, чтобы выражение было истинным, поставим его с отрицанием:
  • ¬(((¬Z17 → (¬A → ¬Z58)) → (z8 ∧ ¬A ∧ Z58)) = 1
     
  • Упростим выделенную часть выражения (свойство 1, теория):
  • Z8 ∧ Z58 = Z8 or 58  :
    
    8  =   1000  or
    58 = 111010
         111010 = 58
    
  • Получили:
  • Z8 ∧ Z58 = Z58
     
  • Перепишем все выражение снова, избавившись от импликации:
  • ¬(¬(Z17 ∨ A ∨ ¬Z58) ∨ (¬A ∧ Z58)) = 1
     
  • По закону Де Моргана получим:
  • (Z17 ∨ A ∨ ¬Z58) ∧ ¬(¬A ∧ Z58)) = 1
     
  • Еще раз применим закон теперь ко второй скобке:
  • (Z17 ∨ A ∨ ¬Z58) ∧  (A ∨ ¬Z58) = 1
    
  • Используем закон поглощения:
  • A ∨ ¬Z58 = 1
    
  • Приведем к импликации, чтобы избавиться от отрицания:
  • ¬Z58 ∨ A => 
     Z58 → A = 1
    
  • Поскольку по заданию нас интересует диапазон [43;55], то проверять будет с числа 43.
  • По свойству 3 (теория), необходимо, чтобы единичные биты А входили в единичные биты двоичного представления числа 58:
  • 43 = 101011 - не подходит!
    58 = 111010
    
    44 = 101100 - не подходит!
    58 = 111010
    
    45 = 101101 - не подходит!
    58 = 111010
    
    46 = 101110 - не подходит!
    58 = 111010
    
    47 = 101111 - не подходит!
    58 = 111010
    
    48 = 110000 - подходит!
    58 = 111010
    

Результат: 48

Поразрядная конъюнкция:
 

15_15:

Определите набольшее натуральное число A, такое что выражение

((x & 26 = 0) ∨  (x & 13 = 0)) → ((x & 78 ≠ 0) → (x & A = 0))

тождественно истинно (то есть принимает значение 1 при любом натуральном значении переменной х)?

Типовые задания для тренировки:

✍ Решение:

  • Для упрощения восприятия введем обозначения:
  • z26 = (x & 26 = 0)
    z13 = (x & 13 = 0)
    z78 = (x & 78 = 0)
    A = (x & A = 0)
    
  • Таким образом, получим следующее выражение:
  • (z26 ∨ z13) → (¬z78 → A) = 1
    
  • Упростим выражение по свойству импликации для второй скобки:
  • (z26 ∨ z13) → (z78 ∨ A) = 1
    
  • Упростим левую часть, используя свойство 2 (Zk + Zm = Zk and m):
  • 26 : 11010   единичные биты: 4, 3, 1
    13 :  1101   единичные биты: 3, 2, 0
    ∧ =------------------------
         01000 = 810
    
  • То есть получили z26 ∨ z13 = z8
  • По правилу импликации: все единичные биты двоичной записи результата (z78 ∨ A) должны входить во множество единичных битов двоичной записи z8.
  • Рассмотрим:
  • z8 → (z78 ∨ A)
    z78: не влияет на решение, так как операция дизъюнкция истинна тогда, 
    когда хотя бы один операнд истинен
    z8 → A     : ????
    
  • Для А единичными битами должны быть общие единичные биты для z8 (10002). Т.е. в нашим случае — это один бит — 3-й:
  • Наибольшее А = 1000 = 810
    

Результат: 8

Задания на поиск наибольшего или наименьшего числа А

Поиск наибольшего или наименьшего числа А:
  

15_4: 15 задание. Демоверсия ЕГЭ 2018 информатика:

Для какого наибольшего целого числа А формула
демоверсия егэ 2018 решение 15 (18) задания
тождественно истинна, то есть принимает значение 1 при любых целых неотрицательных x и y?

✍ Решение:

✎ Способ 1 (программный):

Важно: Поскольку используется метод полного перебора, то возможна ситуация, когда транслятор будет работать слишком медленно. Но работоспособность представленного алгоритма проверена на онлайн компиляторах.

Pascalabc.net:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
begin
  for var A := 200 downto -100 do
  begin
    var OK := 1;
    for var x := 0 to 100 do
      for var y := 0 to 100 do
        if ((x <= 9) <= (x * x <= A)) and ((y * y <= A) <= (y <= 9)) = false then 
        begin
          OK := 0;
          break;
        end;
    if OK = 1 then 
    begin
      print(A);
      break
    end;
  end;
end.
Бейсик:

Python:

for A in range(200,-100,-1):
    OK = 1
    for x in range(0,100):
        for y in range(0,100):
            OK *= ((x<=9) <= (x*x<=A)) and((y*y<=A) <= (y<=9)) 
    if OK:
        print(A)
        break
С++:

✎ Способ 2 (теоретическое решение):

  • Условно разделим исходное выражение на части:
  • решение 15 (18) задания демоверсии егэ информатика

  • Главное действие (внешняя операция) в исходном выражении — это конъюнкция. Конъюнкция истинна, когда все операнды истинны. Т.е. в задаче обе части 1 и 2 должны быть истинными (т.к. по условию общая формула должна быть истинной).
    Рассмотрим часть 1:

  • если в 1.1 имеем x > 9, то часть 1 будет истинна независимо от А. Значит, значение числа А влияет на решение только при выполнении условия:
  • x<=9

    (импликация 0 → 0 = 1, 0 → 1 = 1)

  • теперь, для того чтобы в части 1, выражение было истинным, надо чтобы часть 1.2 была истинной:
  • x*x <= A

    (импликация 1 → 1 = 1)

  • таким образом, получаем:
  • x <= 9
    x2 <= A
    
    при любых x
    
  • так как нам необходимо найти наибольшее возможное А, то, значит, надо ограничить его значения сверху, а данная часть выражения ограничивает только снизу:
  • возьмем максимальное натуральное: x=9, тогда A>=81

    Рассмотрим часть 2:

  • если 2.2 истинно (т.е. y <= 9), то часть 2 будет истинна независимо от А. Значит, значение числа А влияет на решение только при выполнении условия:
  • y > 9

  • теперь, для того чтобы в части 2 выражение было истинным, надо чтобы часть 2.1 была ложной:
  • y * y > A

    (импликация 0 → 0 = 1)

  • таким образом, получаем:
  • y > 9
    y2 > A
    
    при любых y
    
  • данная часть выражения ограничивает значения А сверху:
  • возьмем наименьшее возможное по условию натуральное: y = 10, тогда A < 100
  • Получаем, что наибольшее А меньшее 100: А = 99

Результат: 99

Подробное решение 15 задания демоверсии ЕГЭ 2018 года смотрите на видео (аналитическое решение):

📹 YouTube здесь
📹 Видеорешение на RuTube здесь

Поиск наибольшего или наименьшего числа А:
  

✍ Решение:

✎ Способ 1 (программный):

Важно: Поскольку используется метод полного перебора, то возможна ситуация, когда транслятор будет работать слишком медленно. Но работоспособность представленного алгоритма проверена на онлайн компиляторах.

Pascalabc.net:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
begin
  for var A := -100 to 200 do
  begin
    var OK := 1;
    for var x := 1 to 100 do
      for var y := 1 to 100 do
        if ((y+3*x<A) or (x >20)or(y>40)) = false then 
        begin
          OK := 0;
          break;
        end;
    if OK = 1 then 
    begin
      print(A);
      break
    end;
  end;
end.
Бейсик:

Python:

for A in range(-100,200):
    OK = 1
    for x in range(1,100):
        for y in range(1,100):
            OK *= (y+3*x<A) or (x > 20) or (y > 40) 
    if OK:
        print(A)
        break
С++:

✎ Способ 2 (теоретическое решение):

  • Определим основные части выражения, выделив отдельно неизвестную часть — с А, и, так сказать, известную часть, то есть остальную.
  •     1                 2
    (y+3x < A) ∨ (x > 20) ∨ (y > 40)
    
  • Поскольку основными операциями являются операции дизъюнкции (логического сложения) и порядок их выполнения не важен, то последней, внешней, операцией будем выполнять дизъюнкцию слева, т.к. она объединяет неизвестную и известную часть.
  • Сначала важно рассмотреть вторую часть выражения, известную, так как от нее будет зависеть значение A. Если вторая часть истинна, то А может быть как = 1, так и = 0. Такой вариант нам не подходит:
  • (y+3x < A) ∨ (x > 20) ∨ (y > 40)
      1 или 0?                   1               = 1
    Не подходит!
    
  • Соответственно, рассмотрим вариант, когда вторая часть ложна, тогда часть выражения с неизвестным А будет обязательно истинной, т.е.:
  • 1. (y+3x < A) = 1
    2. (x > 20) ∨ (y > 40) = 0
    
  • Дизъюнкция ложна, когда оба операнда ложны, т.е. из второго пункта имеем:
  • x <= 20
    y <= 40
    
  • Для того, чтобы перекрыть все x и все y, возьмем наибольшие из возможных значений: x = 20, y = 40.
  • Выразим А:
  • А > 3x + y
    A > 3*20 + 40
    A > 100 
    
  • Поскольку требуется найти наименьшее значение А, то имеем А = 101.

Результат: 101

Подробное решение досрочного ЕГЭ 2018 года смотрите на видео (аналитическое решение):

📹 YouTube здесь
📹 Видеорешение на RuTube здесь

Поиск наибольшего или наименьшего числа А:
 

15_0:Разбор 15 задания. Демоверсия егэ по информатике 2019:

Для какого наибольшего целого неотрицательного числа А выражение

  
(48 ≠ y + 2x) ∨ (A < x) ∨ (A < y)

 
тождественно истинно, т.е. принимает значение 1 при любых целых неотрицательных x и y?

✍ Решение:
✎ Решение 1 (теоретическое):

  • Разделим общее выражение на две части. Выделим неизвестную часть красным:
  • (48 ≠ y + 2x) ∨ (A < x) ∨ (A < y)
    
  • Неизвестная часть должна быть истинной, она обязательно будет истинна, если известная часть — ложь:
  • (48 ≠ y + 2x) ∨ (A < x) ∨ (A < y) = 1
          0                  1
    
  • Т.е. 48 ≠ y + 2x = 0 или y + 2x = 48. На графике это уравнение представляет линию. Из условия имеем два ограничения:(x > 0) and (y > 0). Отобразим линию для 1-й четверти, соответствующей положительным x и y:
  • y + 2x = 48  :
    при x = 0, y = 48
    при y = 0, 2x = 48 => x = 24
    

    решение 15 (18) задания демоверсии егэ 2019

  • Возьмем некоторое значение A, например, A = 25, отметим его на графике белой областью так, чтобы выполнялось (A < x) ∨ (A < y). По условию имеем, что все точки данной части отрезка прямой y + 2x = 48 должны принадлежать отмеченной белой области. Заштрихуем область для всех точек прямой (голубым цветом):
  • То есть все точки голубого квадрата должны находиться под отрезком линии (включая вершину (A, A)), и данный квадрат, соответствует максимальному значению A.
  • Наибольшее значение голубая область приобретает в точке пересечения прямой y + 2x = 48 с прямой y = x:
  • линия на графике для решения 15 задания егэ

  • Далее решаем полученное линейное уравнение (для x = y):
  • x + 2x = 48 =>
    3x = 48
    x = 16
    
  • Так как значение A должно быть меньше x, то наибольшее А = 15.

✎ Решение 2 (программное):
Python:

1
2
3
4
5
6
7
8
for A in range(200,0,-1):
    OK = 1
    for x in range(0,100):
        for y in range(0,100):
            OK *= (48!=y+2*x) or(A<x)or (A<y) 
    if OK:
        print(A)
        break

Результат: 15

Видео решения 15 задания демоверсии ЕГЭ 2019 (аналитическое решение):
📹 YouTube здесь
📹 Видеорешение на RuTube здесь

Поиск наибольшего или наименьшего числа А:
 

15_19:

Для какого наименьшего целого числа А формула

  
(y + 5x <= 34) → ((y — x > 4) ∨ (y <= A))

 
тождественно истинна, т.е. принимает значение 1 при любых целых неотрицательных x и y?

✍ Решение:

  • Общая идея такова:
    необходимо упростить формулу так, чтобы последняя операция (внешняя) выполнялась со скобкой, в которой находится искомое A. После чего разделить формулу на две части, в одной из которых находится искомое.
  • Избавимся от импликации, это даст нам возможность опустить общие скобки во второй части формулы:
  • ¬(y + 5x <= 34) ∨ (y - x > 4) ∨ (y <= A)
    
  • Разделим формулу на две части таким образом, чтобы внешняя операции отделяла часть, в которой находится искомое A:
  • ¬(y + 5x <= 34) ∨ (y - x > 4)(y <= A) = 1
            1 часть                  2 часть
    
  • Формула по условию должна быть истинной (=1). Внешняя операция — дизъюнкция — истинна аж в трех случаях: a=1 b=0, a=0 b=1, a=1 b=1.
  • Если мы допустим, что первая часть истинна, то вторая, искомая часть, может быть как истинной, так и ложной. Поэтому такой вариант не подходит.
  • Допустим, что первая часть ложна, тогда вторая, искомая часть, должна быть только истинной:
  • ¬(y + 5x <= 34) ∨ (y - x > 4)(y <= A) = 1
            1 часть = 0               2 часть = 1
    
  • С учетом, что в первой части формулу находится операция дизъюнкция, которая ложна только в одном случае (a=0 b=0), то выпишем утверждения, получившиеся из первой части:
  • y + 5x > 34 = 0, значит:
    1. y + 5x <= 34
    y - x > 4 = 0, значит:
    2. y - x <= 4
    
  • Кроме того, имеем еще одно утверждение второй части:
  • y <= A
    или
    A >= y
    
  • Отобразим получившиеся уравнения прямых на плоскости:
  • решение

  • Раз A >= y, значит, искомая область лежит выше обеих прямых. Наименьшее значение А будет достигнуто в указанной точке пересечения двух прямых.
  • В точке пересечения прямых уравнения равны, т.е. имеем:
  • 34 - 5x = 4 + x
    30 = 6x
    x = 5
    Найдем y: 
    y = 4 + 5 = 9
    
  • Поскольку имеем утверждение, что A >= y и в задании требуется найти наименьшее A, то получаем:
  • y = 9:
    A >= 9 => наименьшее A = 9
    

✎ Решение 2 (программное):
Python:

1
2
3
4
5
6
7
8
for A in range(-100,100):
    OK = 1
    for x in range(0,100):
        for y in range(0,100):
            OK *= (y+5*x<=34)<=((y-x >4)or(y<=A)) 
    if OK:
        print( A )
        break

PascalABC.NET:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 
begin
  for var A := -100 to 100 do
  begin
    var OK := true;
    for var x := 0 to 100 do
    begin
      for var y := 0 to 100 do
      begin
        OK := (y + 5 * x <= 34) <= ((y - x > 4) or (y <= A));
        if OK = false then break;
      end;
      if OK = false then break;
    end;
    if OK then 
    begin
      print(A);
      break;
    end;
  end;
end.

Результат: 9

Поиск наибольшего или наименьшего числа А:
 

15_13:

Укажите наименьшее целое значение А при котором выражение

  
(2y + 5x < A) ∨ (2x + 4y > 100) ∨ (3x – 2y > 70)

истинно для любых целых положительных значений x и y.

Типовые задания для тренировки

✍ Решение:

    ✎ Решение (программное):
    Python:

    1
    2
    3
    4
    5
    6
    7
    8
    
    for A in range(-200,200):
        OK = 1
        for x in range(1,100):
            for y in range(1,100):
                OK *= (2*y + 5*x < A) or (2*x + 4*y > 100) or (3*x - 2*y > 70) 
        if OK:
            print( A )
            break

    PascalABC.NET:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    
    begin
      for var A := -200 to 200 do
      begin
        var OK := true;
        for var x := 1 to 100 do
        begin
          for var y := 1 to 100 do
          begin
            OK := (2*y + 5*x < A) or (2*x + 4*y > 100) or (3*x - 2*y > 70);
            if OK = false then break;
          end;
          if OK = false then break;
        end;
        if OK then 
        begin
          print(A);
          break;
        end;
      end;
    end.

Результат: 171

Видео разбора задания смотрите на видео (аналитическое решение):

📹 YouTube здесь
📹 Видеорешение на RuTube здесь

Поиск наибольшего или наименьшего числа А:
 

15_14:

Укажите наибольшее целое значение А при котором выражение

  
(3y – x > A) ∨ (2x + 3y < 30) ∨ (2y – x < –31)

истинно для любых целых положительных значений x и y.

Типовые задания для тренировки

✍ Решение:

    ✎ Решение 1 (теоретическое):

  • Разделим выражение на две части: часть с неизвестным = 1, часть известная = 0:
  • (3y – x > A)(2x + 3y < 30) ∨ (2y – x < –31) = 1
  • Выпишем отдельно обе скобки известной части:
  • (1) 
    (2x + 3y) >= 30,
    y >= (30 - 2x) / 3
    x = (30 - 3y) /2
    (2) 
    (2y – x >=–31)
    y >= (x - 31) / 2
    x = 2y + 31
    
  • Подберем значения координат для x и y обеих частей, и отобразим линии на графике функций:
  • (1)
    x | y
    0 | 10
    15| 0
    (2)
    x | y
    0 | -15 ( целые)
    30|0
  • Для первого уравнения:
  • Для второго уравнения:
  • Сопоставим обе области:
  • Добавим на график прямую A<3y-x:
  • Раз A < 3y – x, то будем перемещать А снизу вверх. Наибольшее значение А будет достигнуто в указанной точке пересечения с прямой (2).
  • Т.е. для уравнения (2) имеем:
  • если y = 1, то x = 2*1 + 31 = 33
  • Подставим в выражение для поиска А:
  • А < 3y - x
    A < 3-33, A < -30, A=-31

    ✎ Решение (программное):
    Python:

    1
    2
    3
    4
    5
    6
    7
    8
    
    for A in range(200,-200,-1):
        OK = 1
        for x in range(1,100):
            for y in range(1,100):
                OK *= (3*y-x>A) or (2*x+3*y<30) or (2*y-x<-31) 
        if OK:
            print(A)
            break

Результат: -31

* В некоторых задачах использован метод, предложенный А.В. Здвижковой

Привет! Сегодня посмотрим задачи на отрезки из 15 задания ЕГЭ по информатике.

Решим с помощью шаблона на Python и помощью рассуждений. Повторите основные логические операции в этой статье.

Покажу Вам уникальный и понятный способ для борьбы с задачами на отрезки из 15 задания ЕГЭ по информатике.

Приступим к тренировочным задачам на отрезки.

Задача (Fight)

На числовой прямой даны два отрезка B=[10; 15] и С=[20; 27]. Укажите наименьшую возможную длину такого отрезка A, для которого логическое выражение

¬(((x ∈ B) ∨ (x ∈ C)) ⟶ (x ∈ A))

ложно (т.е. принимает значение 0) при любом значении переменной x.

Решение:

Решение с помощью шаблона на языке Python.

Приведу собственную разработку, как можно решить задачи на отрезки из 15 задания ЕГЭ по информатике с помощью шаблона на языке Python (Питон).

def F(a, b, x):
    if a <= x <= b:
        return True
    else:
        return False

mn=10**9

for a in range(0, 100):
    for b in range(a, 100):
        k=0
        for i in range(1, 200):
            x = i/2
            if not( (F(10, 15, x) or F(20, 27, x)) ) or F(a, b, x):
                k=k+1

        if k==199:
            mn=min(mn, b-a)
print(mn)

Здесь заводим функцию F(a, b, x). Она принимает три параметра: начало отрезка a, конец отрезка b и точку x. Если точка x лежит в отрезке [a;b], то функция вернёт True, иначе False.

Затем делаем два вложенных цикла. Это поиск отрезка A. Переменная a — это начало отрезка A. Переменная b — это конец отрезка A. Для каждой точки a пробуем различные точки b, которые находится правее, чем точка a. Мы начинаем проходить переменной b со значения a, потому что в некоторых задачах длина искомого отрезка A может быть равна нулю.

Для каждого отрезка-кандидата заводим счётчик k. Прокручиваем переменную i в диапазоне от 1 до 199 включительно. А x будет крутится от 0.5 до 99.5 с шагом 0.5, тем самым имитируя фразу при любых значениях x.

Внутри «цикла i» проверяем логическое выражение. Если выражение удовлетворяет условию задачи, то прибавляем к счётчику k единицу для данного отрезка A=[a; b].

При составлении логического выражения может помочь табличка.

Логическая операция Представление в Питоне
Отрицание ¬ not()
Логическое умножение ∧ and
Логическое сложение ∨ or
Следование A ⟶ B not(A) or B
Равносильность ≡ ==

После окончания «цикла i» проверяем счёт k. Если логическое выражение сработало при всех значениях x, то в счётчике будет число 199. Это количество итераций в «цикле i». Если такое выполняется, то нам подходит этот отрезок A.

Среди всех отрезков A, которые удовлетворяют условию задачи, выбираем с наименьшей длиной с помощью функции min.

Примечание: У нас всегда получается отрезок A c квадратными скобками на концах A=[a, b]. Даже, если в задачке должен быть отрезок с выколотыми точками, то на длину это никак не влияет, если мы ищем минимальный отрезок, поэтому всё равно будет получатся правильный ответ. Если же мы ищем наибольшую длину, нужно получать всегда отрезок A=(a,b) c выколотыми точками. Об этот речь пойдёт ниже.

Получается 17.

Решение с помощью рассуждений.

Видим, что ко всему выражению применяется логическое отрицание. Мы можем убрать это отрицание, но тогда нужно будет сделать, чтобы выражение было истинным, а не ложным.

В подобных задачах идём от обратного. Нам нужно найти, когда выражение будет истинным, но мы исследуем случай, когда выражение будет стремится ко лжи.

ЕГЭ по информатике - Задание 15 отрезки (Задача 1)

Найдём, при каких значениях x левое выражение будет выдавать 1.

ЕГЭ по информатике - Задание 15 отрезки (Задача 1) опасные x

Здесь заштрихованы те иксы, которые приводят к тому, что левое выражение выдаёт 1. Это опасные x. Они «приближают» всё выражение к нулю.

Наша задача этого не допустить. У нас есть только один инструмент: подобрать такой отрезок A, чтобы правое выражение при опасных иксах выдавало 1. Тогда мы получим желаемый результат.

Т.е. при опасных иксах правое выражение должно выдавать 1. Чтобы покрыть все иксы приходится брать отрезок A=[10, 27].

ЕГЭ по информатике - Задание 15 отрезки (Задача 1) отрезок A

В ответе напишем длину отрезка A: 27 — 10 = 17. Здесь достаточно из наибольшей точки отнять наименьшую.

Ответ: 17

Задача (Раунд 2)

На числовой прямой даны два отрезка: B = [14; 20] и С = [15; 27]. Укажите наименьшую возможную длину такого отрезка A, для которого логическое выражение

¬(x ∈ A) ⟶ ((x ∈ B) ≡ (x ∈ C))

истинно (т.е. принимает значение 1) при любом значении переменной x.

Решение:

Решение с помощью шаблона на языке Python.

def F(a, b, x):
    if a <= x <= b:
        return True
    else:
        return False

mn=10**9

for a in range(0, 100):
    for b in range(a, 100):
        k=0
        for i in range(1, 200):
            x=i/2
            if F(a, b, x) or (F(14, 20, x) == F(15, 27, x)):
                k=k+1

        if k==199:
            mn=min(mn, b-a)
print(mn)

Получается ответ 13.

Решение с помощью рассуждений.

«Главной скрипкой» логического выражение является следование. Именно эта операция соединяет большие блоки логического выражения.

Нас будет интересовать тот случай, когда логическое выражение, наоборот, будет стремится к 0. Тогда правое логическое подвыражение должно равняться 0, а с помощью левого подвыражения, где находится отрезок A, мы будем исправлять ситуацию.

ЕГЭ по информатике - Задание 15 отрезки (Задача 2) Главная Скрипка

Заштрихуем те значения x, при которых правое подвыражение даёт ноль. Равносильность даёт ноль, когда два выражения имеют разные значения. Т.е. если x находится в одном отрезке, то в другом отрезке его не должно быть.

ЕГЭ по информатике - Задание 15 отрезки (Задача 2) опасные значения

В подобных задачах можно не обращать внимание на закрашенные и выколотые точки на концах отрезков, потому что в дальнейшем нужно найти длину отрезка A, а длина от этого не зависит. Поэтому пишем и рисуем отрезки с некоторым приближением до одной точки.

Получаются два отрезка [14; 15) и (20; 27]. Это и есть «опасные» значения x. При этих значениях выражение уже «наполовину» ложно. Но с помощью A мы не дадим превратится ему в 0 при любых иксах.

Если левое подвыражение будет равно 1 при опасных значениях икс, то как раз получится то, что нам не нужно. Поэтому при опасных значениях иск, в левом выражении должен быть ноль.

Т.к. там стоит отрицание, убрав его, можно сказать, что в левом подвыражении должна стоять 1 при опасных значениях икс.

ЕГЭ по информатике - Задание 15 отрезки (Задача 2) отрезок A

Чтобы покрыть все два отрезка опасных значений, выбираем A=[14; 27]. Нас просили найти минимальный отрезок A. Меньше не можем взять, т.к. тогда не все заштрихованные иксы будут закрыты.

Длина получается 27 — 14 = 13.

Ответ: 13

Задача (Отрезок максимальной длины)

На числовой прямой даны два отрезка: P = [43; 49] и Q = [44; 53]. Укажите наибольшую возможную длину такого отрезка A, что формула

((x ∈ A) → (x ∈ P)) ∨ (x ∈ Q)

тождественно истинна, то есть принимает значение 1 при любых x.

Решение:

Решение с помощью шаблона на языке Python.

def F(a, b, x):
    if a <= x <= b:
        return True
    else:
        return False

def F2(a, b, x):
    if a < x < b:
        return True
    else:
        return False

mx=0

for a in range(0, 100):
    for b in range(a, 100):
        k=0
        for i in range(1, 200):
            x=i/2
            if (not(F2(a, b, x)) or F(43, 49, x)) or F(44, 53, x):
                k=k+1

        if k==199:
            mx=max(mx, b-a)
print(mx)

Ответ получается 10. Здесь ищем максимальный отрезок A. При поиске отрезка максимальной длины, нужно создать функцию F2, и её применять к отрезку A, чтобы получался всегда отрезок с выколотыми точками A=(a, b).

Решение с помощью рассуждений.

Главная скрипка — это логическое или. Эта логическая операция соединяет два больших выражения.

Идём от обратного. Исследуем, когда выражение будет стремится к 0.

ЕГЭ по информатике - Задание 15 отрезки (Задача 3) Главная Скрипка

Логическое или выдаёт ноль, когда оба выражения равны нулю.

В начале лучше разобраться с тем выражением, где нет отрезка A. Это правое подвыражение. Там должен получаться ноль. Заштрихуем те иксы, которые выдают в правом подвыражении ноль.

ЕГЭ по информатике - Задание 15 отрезки (Задача 3) обрабатываем правое выражение

В левом выражение стоит следование. Эта операция равна нулю, когда из 1 следует 0. С помощью отрезка A мы будем спасать ситуацию. Заштрихуем, когда икс НЕ принадлежит P. Добавим это действие к предыдущей штриховке.

ЕГЭ по информатике - Задание 15 отрезки (Задача 3) обрабатываем левое выражение

Таким образом, мы получили опасные иксы. Это все иксы, кроме отрезка [43; 53].

Именно при этих иксах выражение (x ∈ A) не должно выдавать 1. Выбираем отрезок A=[43; 53].

Мы могли бы взять отрезок и меньше, например [44; 49], но нас просили взять наибольший отрезок.

Длина равна 53 — 43 = 10.

Ответ: 10

Задача (Крепкий орешек)

На числовой прямой даны три интервала: P=[10,15], Q=[5,20] и R=(15,25]. Определите наименьшую возможную длину отрезка A, при выборе которого выражение

((x ∉ A) → (x ∈ P)) ≡ ((x ∈ Q) → (x ∈ R))

будет ложно при любых x.

Решение:

Решение с помощью шаблона на языке Python.

def F(a, b, x):
    if a <= x <= b:
        return True
    else:
        return False

def F2(a, b, x):
    if a < x <= b:
        return True
    else:
        return False

mn=10**9

for a in range(0, 100):
    for b in range(a, 100):
        k=0
        for i in range(1, 200):
            x = i / 2
            if not( (F(a, b, x) or F(10, 15, x)) == (not(F(5, 20, x)) or F2(15, 25, x)) ):
                k=k+1

        if k==199:
            mn=min(mn, b-a)

print(mn)

Здесь заводим ещё одну функцию F2 для отрезка R с выколотой левой точкой. Ответ получается 5.

Решение с помощью рассуждений.

Нужна ложь, но мы рассмотрим, когда равносильность выдаёт 1.

1) Рассмотрим первый случай 1 ≡ 1.

ЕГЭ по информатике - Задание 15 отрезки (Задача 4) Равносильность

Рассмотрим левое выражение. Узнаём, когда оно выдаёт ноль, а потом сделаем инверсию, чтобы не рассматривать 3 случая.

ЕГЭ по информатике - Задание 15 отрезки (Задача 4) Рассмотрим случай

Получается, что в отрезке Q иксы должны находится, а в R нет.

ЕГЭ по информатике - Задание 15 отрезки (Задача 4) иксы

Сделаем инверсию.

ЕГЭ по информатике - Задание 15 отрезки (Задача 4) инверсия иксов

Получается интервал x ∈ (-∞ 5) U (15; ∞). Это те иксы, при которых в правом выражении будет 1.

Рассмотрим, когда левое выражение выдаёт 1.

a) 0 → 0

ЕГЭ по информатике - Задание 15 отрезки (Задача 4) 0 → 0

Учитывая вышеописанный интервал, понимаем, что иксы и так не лежат в отрезке P. Чтобы спаси ситуацию, нужно, чтобы выражение (x ∉ A) выдавало 1, при x ∈ (-∞ 5) U (15; ∞). Тогда левое выражение будет выдавать 0, а правое 1.

Следовательно, можем выбрать любой отрезок A в интервале [5; 15].

б) 0 → 1

ЕГЭ по информатике - Задание 15 отрезки (Задача 4) 0 → 1

При x ∈ (-∞ 5) U (15; ∞) выражение (x ∈ P) никогда не выдаст 1. Значит, в этом варианте 1 ≡ 1 никогда не будет.

в) 1 → 1

ЕГЭ по информатике - Задание 15 отрезки (Задача 4) 1 → 1

Аналогично невозможна и эта ситуация.

Перейдём ко второму случаю.

2) Рассмотрим случай 0 ≡ 0.

ЕГЭ по информатике - Задание 15 отрезки (Задача 4) Равносильность 0 и 0

Когда правое выражение выдаёт ноль, мы уже смотрели. Это отрезок [5; 15].

Изучим те значения x, при которых левое выражение тоже будет выдавать 0 на отрезке [5; 15].

ЕГЭ по информатике - Задание 15 отрезки (Задача 4) 1 → 0

Тогда опасные иксы будут выглядеть следующим образом:

ЕГЭ по информатике - Задание 15 отрезки (Задача 4) Опасные иксы

Т.е. это интервал [5; 15], но без отрезка P. Именно при x ∈ [5; 10) мы должны получать 0 в выражении (x ∉ A), чтобы спасти ситуацию. Получается A=[5;10). Меньше взять отрезок не можем, иначе не все опасные иксы будут покрыты.

Этот отрезок хорошо соотносится с первым вариантом 1) 1 ≡ 1.

Ответ получается 10 — 5 = 5.

Ответ: 5

Задача (Вперёд к победе!)

На числовой прямой даны два отрезка: D = [17; 58] и C = [29; 80]. Укажите
наименьшую возможную длину такого отрезка A, для которого логическое
выражение.

(x ∈ D) → ((¬(x ∈ C) ∧ ¬(x ∈ A)) → ¬(x ∈ D))

истинно (т.е. принимает значение 1) при любом значении переменной х.

Решение:

Решение с помощью шаблона на языке Python.

def F(a, b, x):
    if a <= x <= b:
        return True
    else:
        return False

mn=10**9

for a in range(0, 100):
    for b in range(a, 100):
        k=0
        for i in range(1, 200):
            x = i / 2
            if not(F(17, 58, x)) or (not((not(F(29, 80, x)) and not(F(a, b, x)))) or not(F(17, 58, x))):
                k=k+1

        if k==199:
            mn=min(mn, b-a)

print(mn)

Решение с помощью рассуждений.

«Главной скрипкой» данного логического выражения является следование, потому что эта операция соединяет различные логические блоки.

ЕГЭ по информатике демоверсия 2022 - задание 15 решение

Нам нельзя допустить, чтобы первое выражение принимало 1, а второе 0, одновременно.

Рассмотрим при каких значениях x реализуется этот страшный вариант.

ЕГЭ по информатике демоверсия 2022 - задание 15 решение 3

Видно, что, если левое выражение (x ∈ D) равно 1, то ¬(x ∈ D) в правой части автоматически выдаёт 0.

Чтобы умножение в правой части давало 1, необходимо, чтобы выражение ¬(x ∈ C) было истинным.

Тогда опасные значения — это отрезок D без отрезка C. Т.е., чтобы иксы были в отрезке D, но не были в отрезке С одновременно.

ЕГЭ по информатике демоверсия 2022 - задание 15 решение 2

Опасные значения получаются [17; 29]. Чтобы опасный сценарий нейтрализовать, выражение ¬(x ∈ A) должно принимать значение 0. Тогда (x ∈ A) должно выдавать 1. Чтобы это происходило всегда при опасных значениях, принимаем A=[17, 29]. Длина получается 12.

Ответ: 12

Теория и практика решения задания 15 ЕГЭ по информатике

Теория и практика решения задания 15 ЕГЭ по информатике

Мнемоническое правило Соционика – это информационная психология Один из ее главных принципов – дополнение до целого ( дополнение противоположностью )

Мнемоническое правило

Соционика – это информационная психология

Один из ее главных принципов – дополнение до целого ( дополнение противоположностью )

Решающая формула В алгебре логики есть формула дополнения до целого: А   ¬А = 1 В некоторых задачах мы будем использовать вместо этой формулы умножение противоположностей: А   ¬А = 0

Решающая формула

В алгебре логики есть формула дополнения до целого:

А ¬А = 1

В некоторых задачах мы будем использовать вместо этой формулы умножение противоположностей:

А ¬А = 0

Типы задания 15 Задания на отрезки Задания на множества Задания на поразрядную конъюнкцию Задания на условие делимости Задания на функции

Типы задания 15

  • Задания на отрезки
  • Задания на множества
  • Задания на поразрядную конъюнкцию
  • Задания на условие делимости
  • Задания на функции

Задания на отрезки ( № 376 ) На числовой прямой даны два отрезка: P=[4,15] и Q=[12,20]. Укажите наименьшую возможную длину такого отрезка A, что формула  ((x ∈ P) ∧ (x ∈ Q)) → (x ∈ A) тождественно истинна, то есть принимает значение 1 при любом значении переменной х. Источник - сайт Полякова К.Ю.

Задания на отрезки

( № 376 ) На числовой прямой даны два отрезка: P=[4,15] и Q=[12,20]. Укажите наименьшую возможную длину такого отрезка A, что формула ((x ∈ P) ∧ (x ∈ Q)) → (x ∈ A)

тождественно истинна, то есть принимает значение 1 при любом значении переменной х.

Источник — сайт Полякова К.Ю.

Решающая формула Для выбора решающей формулы важно внимательно прочитать требование задачи. В нашей задаче в требовании сказано: принимает значение 1 при любом значении переменной х. Выбор решающей формулы очевиден: А   ¬А = 1

Решающая формула

Для выбора решающей формулы важно внимательно прочитать требование задачи.

В нашей задаче в требовании сказано:

принимает значение 1 при любом значении переменной х.

Выбор решающей формулы очевиден:

А ¬А = 1

Решение задачи на отрезки Разделим решение задачи на этапы: Легенда Формализация условия Решение логического уравнения Интерпретация полученного результата

Решение задачи на отрезки

Разделим решение задачи на этапы:

  • Легенда
  • Формализация условия
  • Решение логического уравнения
  • Интерпретация полученного результата

Решение задачи на отрезки Легенда – это удобные нам условные обозначения, которые мы будем использовать при решении. Введем следующие обозначения: P = x  P Q = x  Q A = x  A

Решение задачи на отрезки

  • Легенда – это удобные нам условные обозначения, которые мы будем использовать при решении.

Введем следующие обозначения:

P = x P

Q = x Q

A = x A

Решение задачи на отрезки 2)  Формализация условия – перепишем формулу из условия задачи в соответствие с легендой. Было: ((x ∈ P) ∧ (x ∈ Q)) → (x ∈ A) = 1 Стало: (P ∧ Q) → A = 1

Решение задачи на отрезки

2) Формализация условия – перепишем формулу из условия задачи в соответствие с легендой.

Было:

((x ∈ P) ∧ (x ∈ Q)) → (x ∈ A) = 1

Стало:

(P ∧ Q) → A = 1

Решение задачи на отрезки 3) Решение логического уравнения – вначале это, возможно, самый сложный этап в решении задачи. Но позже, при накоплении опыта, он уже не будет казаться таким уж сложным  Рассмотрим решение логического уравнения по шагам.

Решение задачи на отрезки

3) Решение логического уравнения – вначале это, возможно, самый сложный этап в решении задачи. Но позже, при накоплении опыта, он уже не будет казаться таким уж сложным 

Рассмотрим решение логического уравнения по шагам.

Решение задачи на отрезки 3.1. Представим логическое следование в базовых логических операциях по формуле: А  → В = ¬А   В : (P ∧ Q) → A = 1  ¬ (P ∧ Q)  A = 1

Решение задачи на отрезки

3.1. Представим логическое следование в базовых логических операциях по формуле: А → В = ¬А В :

(P ∧ Q) → A = 1

¬ (P ∧ Q) A = 1

Решение задачи на отрезки 3.2. Сведем получившееся выражение к решающей формуле: А   ¬А = 1 (в алгебре логики справедлив закон коммутативности, т.е. А   ¬А = ¬А  А)  : ¬(P ∧ Q)  A = 1, отсюда ¬А = ¬(P ∧ Q) Ответом в логическом уравнении будет: А = P ∧ Q.

Решение задачи на отрезки

3.2. Сведем получившееся выражение к решающей формуле: А ¬А = 1 (в алгебре логики справедлив закон коммутативности, т.е. А ¬А = ¬А А) :

¬(P ∧ Q) A = 1, отсюда

¬А = ¬(P ∧ Q)

Ответом в логическом уравнении будет:

А = P ∧ Q.

Решение задачи на отрезки 4) Интерпретация полученного результата . Наш ответ: А  =  P ∧ Q . В алгебре логики это выражение означает пересечение объемов двух логических объектов. По условию нашей задачи – это пересечение отрезков P и Q .

Решение задачи на отрезки

4) Интерпретация полученного результата .

Наш ответ: А = P ∧ Q .

В алгебре логики это выражение означает пересечение объемов двух логических объектов. По условию нашей задачи – это пересечение отрезков P и Q .

Решение задачи на отрезки Пересечение отрезков P и Q можно визуализировать: P=[4,15] и Q=[12,20]. 15 12 20 4 По условию нашей задачи, нам нужна минимальная длина отрезка А . Находим ее: 15 – 12 = 3 . Ответ: 3 . Ответ на сайте Полякова К.Ю.: 3

Решение задачи на отрезки

Пересечение отрезков P и Q можно визуализировать: P=[4,15] и Q=[12,20].

15

12

20

4

По условию нашей задачи, нам нужна минимальная длина отрезка А . Находим ее: 15 – 12 = 3 .

Ответ: 3 .

Ответ на сайте Полякова К.Ю.: 3

Задания на отрезки (№ 360) На числовой прямой даны три отрезка: P=[10,25], Q=[15,30] и R=[25,40]. Какова максимальная длина отрезка A, при котором формула  ((x ∈ Q) → (x ∉ R) ) ∧ (x ∈ A) ∧ (x ∉ P) тождественно ложна, то есть принимает значение 0 при любом значении переменной х? Источник - сайт Полякова К.Ю.

Задания на отрезки

(№ 360) На числовой прямой даны три отрезка: P=[10,25], Q=[15,30] и R=[25,40]. Какова максимальная длина отрезка A, при котором формула ((x ∈ Q) → (x ∉ R) ) ∧ (x ∈ A) ∧ (x ∉ P)

тождественно ложна, то есть принимает значение 0 при любом значении переменной х?

Источник — сайт Полякова К.Ю.

Решающая формула Для выбора решающей формулы важно внимательно прочитать требование задачи. В нашей задаче в требовании сказано: принимает значение 0 при любом значении переменной х. Выбор решающей формулы очевиден: А   ¬А = 0

Решающая формула

Для выбора решающей формулы важно внимательно прочитать требование задачи.

В нашей задаче в требовании сказано:

принимает значение 0 при любом значении переменной х.

Выбор решающей формулы очевиден:

А ¬А = 0

Решение задачи на отрезки Легенда Формализация условия Решение логического уравнения Интерпретация полученного результата

Решение задачи на отрезки

  • Легенда
  • Формализация условия
  • Решение логического уравнения
  • Интерпретация полученного результата

Решение задачи на отрезки Легенда R = x  R Q = x  Q A = x  A P = x  P

Решение задачи на отрезки

  • Легенда

R = x R

Q = x Q

A = x A

P = x P

Решение задачи на отрезки 2) Формализация условия Было: ((x ∈ Q) → (x ∉ R) ) ∧ (x ∈ A) ∧ (x ∉ P) = 0 Стало: ( Q → ¬R ) ∧ A ∧ ¬ P = 0

Решение задачи на отрезки

2) Формализация условия

Было:

((x ∈ Q) → (x ∉ R) ) ∧ (x ∈ A) ∧ (x ∉ P) = 0

Стало:

( Q → ¬R ) ∧ A ∧ ¬ P = 0

Решение задачи на отрезки 3) Решение логического уравнения ( Q → ¬R ) ∧ A ∧ ¬ P = 0 3.1. Представим логическое следование в базовых логических операциях по формуле: А  → В = ¬А   В ,  и переставим множители согласно закону коммутативности умножения: A ∧ (¬ Q  ¬R ) ∧ ¬ P = 0

Решение задачи на отрезки

3) Решение логического уравнения

( Q → ¬R ) ∧ A ∧ ¬ P = 0

3.1. Представим логическое следование в базовых логических операциях по формуле: А → В = ¬А В , и переставим множители согласно закону коммутативности умножения:

A ∧ (¬ Q ¬R ) ∧ ¬ P = 0

Решение задачи на отрезки 3) Решение логического уравнения A ∧ ( ¬ Q  ¬R ) ∧ ¬ P = 0 3.2. Сведем получившееся выражение к решающей формуле: А   ¬А = 0 и  найдем, чему равно ¬А  : ¬А = (¬ Q  ¬R ) ∧ ¬ P

Решение задачи на отрезки

3) Решение логического уравнения

A ∧ ( ¬ Q ¬R ) ∧ ¬ P = 0

3.2. Сведем получившееся выражение к решающей формуле: А ¬А = 0 и найдем, чему равно ¬А :

¬А = (¬ Q ¬R ) ∧ ¬ P

Решение задачи на отрезки 3) Решение логического уравнения ¬А = (¬ Q  ¬R ) ∧ ¬ P 3.3. Упростим выражение для  ¬А  по закону де Моргана ¬А  ¬В=¬(А  В) : ¬А = ¬ (Q  R ) ∧ ¬ P, и по другому закону де Моргана ¬А  ¬В =¬(А  В ) : ¬А = ¬ (Q  R  P)

Решение задачи на отрезки

3) Решение логического уравнения

¬А = (¬ Q ¬R ) ∧ ¬ P

3.3. Упростим выражение для ¬А по закону де Моргана ¬А ¬В=¬(А В) :

¬А = ¬ (Q R ) ∧ ¬ P,

и по другому закону де Моргана ¬А ¬В =¬(А В ) :

¬А = ¬ (Q R P)

Решение задачи на отрезки 3) Решение логического уравнения ¬А = ¬ (Q  R  P) 3.4. Очевидно, что А = Q  R  P

Решение задачи на отрезки

3) Решение логического уравнения

¬А = ¬ (Q R P)

3.4. Очевидно, что

А = Q R P

Решение задачи на отрезки 4) Интерпретация полученного результата А = Q  R  P Отрезок А – это пересечение отрезков Q и R и его объединение с отрезком Р .

Решение задачи на отрезки

4) Интерпретация полученного результата

А = Q R P

Отрезок А – это пересечение отрезков Q и R и его объединение с отрезком Р .

Решение задачи на отрезки Пересечение отрезков R и Q можно визуализировать: Q=[15,30] и R=[25,40]. 30 25 40 15 Отрезок P=[10,25] нанесем на наш чертеж и объединим с пересечением: 25 30 15 40 10

Решение задачи на отрезки

Пересечение отрезков R и Q можно визуализировать: Q=[15,30] и R=[25,40].

30

25

40

15

Отрезок P=[10,25] нанесем на наш чертеж и объединим с пересечением:

25

30

15

40

10

Решение задачи на отрезки А = Q  R  P 40 25 30 10 15 По условию нашей задачи, нам нужна максимальная длина отрезка А . Находим ее: 30 – 10 = 20 . Ответ: 20 . Ответ на сайте Полякова К.Ю.: 20 27

Решение задачи на отрезки

А = Q R P

40

25

30

10

15

По условию нашей задачи, нам нужна максимальная длина отрезка А . Находим ее: 30 – 10 = 20 .

Ответ: 20 .

Ответ на сайте Полякова К.Ю.: 20

27

2. Задания на множества (№ 386) Элементами множеств А, P, Q являются натуральные числа, причём P={1,2,3,4,5,6}, Q={3,5,15}. Известно, что выражение  (x ∉ A) → ((x ∉ P) ∧ (x ∈ Q)) ∨ (x ∉ Q) истинно (т.е. принимает значение 1 при любом значении переменной х. Определите наименьшее возможное количество элементов в множестве A. Источник - сайт Полякова К.Ю.

2. Задания на множества

(№ 386) Элементами множеств А, P, Q являются натуральные числа, причём P={1,2,3,4,5,6}, Q={3,5,15}. Известно, что выражение (x ∉ A) → ((x ∉ P) ∧ (x ∈ Q)) ∨ (x ∉ Q)

истинно (т.е. принимает значение 1 при любом значении переменной х. Определите наименьшее возможное количество элементов в множестве A.

Источник — сайт Полякова К.Ю.

Решение задачи на множества Легенда Формализация условия Решение логического уравнения Интерпретация полученного результата

Решение задачи на множества

  • Легенда
  • Формализация условия
  • Решение логического уравнения
  • Интерпретация полученного результата

Решение задачи на множества Легенда A = x ∈ A P = x ∈ P Q = x ∈ Q

Решение задачи на множества

  • Легенда

A = x ∈ A

P = x ∈ P

Q = x ∈ Q

Решение задачи на множества 2) Формализация условия Было: (x ∉ A) → ((x ∉ P) ∧ (x ∈ Q)) ∨ (x ∉ Q) = 1 Стало: ¬ A → (¬P ∧ Q)  ¬ Q = 1

Решение задачи на множества

2) Формализация условия

Было:

(x ∉ A) → ((x ∉ P) ∧ (x ∈ Q)) ∨ (x ∉ Q) = 1

Стало:

¬ A → (¬P ∧ Q) ¬ Q = 1

Решение задачи на множества 3) Решение логического уравнения ¬ A → (¬P ∧ Q)  ¬ Q = 1 3.1. Представим логическое следование в базовых логических операциях и сгруппируем: A  ((¬P ∧ Q)  ¬ Q) = 1

Решение задачи на множества

3) Решение логического уравнения

¬ A → (¬P ∧ Q) ¬ Q = 1

3.1. Представим логическое следование в базовых логических операциях и сгруппируем:

A ((¬P ∧ Q) ¬ Q) = 1

Решение задачи на множества A  (( ¬P ∧ Q)  ¬Q) = 1 3.2. Сведем получившееся выражение к решающей формуле: А   ¬А = 1 и  найдем, чему равно ¬А  : ¬А = (¬P ∧ Q)  ¬Q

Решение задачи на множества

A (( ¬P ∧ Q) ¬Q) = 1

3.2. Сведем получившееся выражение к решающей формуле:

А ¬А = 1

и найдем, чему равно ¬А :

¬А = (¬P ∧ Q) ¬Q

Решение задачи на множества ¬А = (¬P ∧ Q)  ¬Q 3.3. Упростим выражение для  ¬А,  раскрыв скобки по закону дистрибутивности сложения: ¬А = ( ¬P  ¬Q)   (Q  ¬Q)  Q  ¬Q = 1 ¬А = ( ¬P  ¬Q)

Решение задачи на множества

¬А = (¬P ∧ Q) ¬Q

3.3. Упростим выражение для ¬А, раскрыв скобки по закону дистрибутивности сложения:

¬А = ( ¬P ¬Q) (Q ¬Q)

Q ¬Q = 1

¬А = ( ¬P ¬Q)

Решение задачи на множества ¬А = ( ¬P  ¬Q) По закону де Моргана: ¬А = ¬(P  Q) 3.4. Очевидно, что А = P  Q

Решение задачи на множества

¬А = ( ¬P ¬Q)

По закону де Моргана:

¬А = ¬(P Q)

3.4. Очевидно, что

А = P Q

Решение задачи на множества А = P  Q 4) Интерпретация полученного результата Искомое множество А представляет собой пересечение множеств P и Q.

Решение задачи на множества

А = P Q

4) Интерпретация полученного результата

Искомое множество А представляет собой пересечение множеств P и Q.

Решение задачи на множества Искомое множество А есть пересечение множеств P =  1, 2, 3 , 4, 5 , 6   и Q = { 3 , 5 ,15}, таким образом A = { 3 , 5 } и содержит только 2 элемента. Ответ: 2 Ответ на сайте Полякова: 2

Решение задачи на множества

Искомое множество А есть пересечение множеств

P = 1, 2, 3 , 4, 5 , 6 и Q = { 3 , 5 ,15}, таким образом A = { 3 , 5 }

и содержит только 2 элемента.

Ответ: 2

Ответ на сайте Полякова: 2

2. Задания на множества (№ 368) Элементами множеств А, P, Q являются натуральные числа, причём P={2,4,6,8,10,12} и Q={4,8,12,116}. Известно, что выражение  (x ∈ P) → (((x ∈ Q) ∧ (x ∉ A)) → (x ∉ P)) истинно (т. е. принимает значение 1 ) при любом значении переменной х. Определите наименьшее возможное значение суммы элементов множества A.  Источник - сайт Полякова К.Ю.

2. Задания на множества

(№ 368) Элементами множеств А, P, Q являются натуральные числа, причём P={2,4,6,8,10,12} и Q={4,8,12,116}. Известно, что выражение (x ∈ P) → (((x ∈ Q) ∧ (x ∉ A)) → (x ∉ P))

истинно (т. е. принимает значение 1 ) при любом значении переменной х. Определите наименьшее возможное значение суммы элементов множества A.

Источник — сайт Полякова К.Ю.

Решение задачи на множества Легенда Формализация условия Решение логического уравнения Интерпретация полученного результата

Решение задачи на множества

  • Легенда
  • Формализация условия
  • Решение логического уравнения
  • Интерпретация полученного результата

Решение задачи на множества Легенда A = x ∈ A P = x ∈ P Q = x ∈ Q

Решение задачи на множества

  • Легенда

A = x ∈ A

P = x ∈ P

Q = x ∈ Q

Решение задачи на множества 2) Формализация условия Было: (x ∈ P)→(((x ∈ Q) ∧ (x ∉ A))→(x ∉ P)) = 1 Стало: P → ((Q ∧ ¬ A) → ¬ P) = 1

Решение задачи на множества

2) Формализация условия

Было:

(x ∈ P)→(((x ∈ Q) ∧ (x ∉ A))→(x ∉ P)) = 1

Стало:

P → ((Q ∧ ¬ A) → ¬ P) = 1

Решение задачи на множества 3) Решение логического уравнения P → ((Q ∧ ¬ A) → ¬ P) = 1 3.1. Представим первое логическое следование (в скобках) в базовых логических операциях : P → ( ¬ (Q ∧ ¬ A)   ¬ P) = 1

Решение задачи на множества

3) Решение логического уравнения

P → ((Q ∧ ¬ A) → ¬ P) = 1

3.1. Представим первое логическое следование (в скобках) в базовых логических операциях :

P → ( ¬ (Q ∧ ¬ A) ¬ P) = 1

Решение задачи на множества P → ( ¬ (Q ∧ ¬ A)   ¬ P) = 1 Представим второе логическое следование в базовых логических операциях, применим закон де Моргана и перегруппируем: ¬ P  ( ¬ (Q ∧ ¬ A)   ¬ P) = 1 ¬ P  ¬ Q  A   ¬ P = 1

Решение задачи на множества

P → ( ¬ (Q ∧ ¬ A) ¬ P) = 1

Представим второе логическое следование в базовых логических операциях, применим закон де Моргана и перегруппируем:

¬ P ( ¬ (Q ∧ ¬ A) ¬ P) = 1

¬ P ¬ Q A ¬ P = 1

Решение задачи на множества A  ( ¬ P  ¬ Q   ¬ P) = 1 3.2. Сведем получившееся выражение к решающей формуле: А   ¬А = 1 и  найдем, чему равно ¬А : ¬А = ( ¬ P  ¬ Q   ¬ P)

Решение задачи на множества

A ( ¬ P ¬ Q ¬ P) = 1

3.2. Сведем получившееся выражение к решающей формуле:

А ¬А = 1

и найдем, чему равно ¬А :

¬А = ( ¬ P ¬ Q ¬ P)

Решение задачи на множества ¬А = ¬ P  ¬ Q   ¬ P  3.3. Упростим выражение для  ¬А по формуле А  А = А : ¬А = ¬ P  ¬ Q Далее, по закону де Моргана получаем: ¬А = ¬( P  Q)

Решение задачи на множества

¬А = ¬ P ¬ Q ¬ P

3.3. Упростим выражение для ¬А по формуле А А = А :

¬А = ¬ P ¬ Q

Далее, по закону де Моргана получаем:

¬А = ¬( P Q)

Решение задачи на множества ¬А = ¬(P  Q) 3.4. Очевидно, что А = P  Q 4) Интерпретация полученного результата Искомое множество А представляет собой пересечение множеств P и Q.

Решение задачи на множества

¬А = ¬(P Q)

3.4. Очевидно, что

А = P Q

4) Интерпретация полученного результата

Искомое множество А представляет собой пересечение множеств P и Q.

Решение задачи на множества Искомое множество А есть пересечение множеств P =  2, 4 , 6, 8 , 10, 12   и Q = { 4 , 8 , 12 , 16}, таким образом A = { 4 , 8 , 12 } и содержит только 3 элемента, сумма которых 4+8+12=24 . Ответ: 24 Ответ на сайте Полякова: 24

Решение задачи на множества

Искомое множество А есть пересечение множеств

P = 2, 4 , 6, 8 , 10, 12 и

Q = { 4 , 8 , 12 , 16}, таким образом

A = { 4 , 8 , 12 }

и содержит только 3 элемента, сумма которых 4+8+12=24 .

Ответ: 24

Ответ на сайте Полякова: 24

3. Задания на поразрядную конъюнкцию (№ 379) Обозначим через m & n пораз-рядную конъюнкцию неотрицательных целых чисел m и n . Так, например, 14 & 5 = 1110 2  & 0101 2  = 0100 2  = 4. Для какого наименьшего неотрицательного целого числа А формула  (x & 29 ≠ 0) → ((x & 12 = 0) → (x & А ≠ 0)) тождественно истинна (т.е. принимает значение 1 при любом неотрицательном целом значении переменной х)?

3. Задания на поразрядную конъюнкцию

(№ 379) Обозначим через m & n пораз-рядную конъюнкцию неотрицательных целых чисел m и n . Так, например, 14 & 5 = 1110 2  & 0101 2  = 0100 2  = 4. Для какого наименьшего неотрицательного целого числа А формула (x & 29 ≠ 0) → ((x & 12 = 0) → (x & А ≠ 0))

тождественно истинна (т.е. принимает значение 1 при любом неотрицательном целом значении переменной х)?

Решение задачи на поразрядную конъюнкцию Легенда Формализация условия Решение логического уравнения Интерпретация полученного результата

Решение задачи на поразрядную конъюнкцию

  • Легенда
  • Формализация условия
  • Решение логического уравнения
  • Интерпретация полученного результата

Решение задачи на поразрядную конъюнкцию Легенда Легенда для задач на поразрядную конъюнкцию отличается от всех остальных случаев: B = (x & 29 ≠ 0)  C = (x & 12  ≠  0) A = (x & А ≠ 0)

Решение задачи на поразрядную конъюнкцию

  • Легенда

Легенда для задач на поразрядную конъюнкцию отличается от всех остальных случаев:

B = (x & 29 ≠ 0) 

C = (x & 12  ≠  0)

A = (x & А ≠ 0)

Решение задачи на поразрядную конъюнкцию Мы принимаем за истинное высказывание поразрядную конъюнкцию, отличную от нуля, иначе поразрядная конъюнкция теряет свой логический смысл, т.к. всегда можно представить Х всеми нулями.

Решение задачи на поразрядную конъюнкцию

Мы принимаем за истинное высказывание поразрядную конъюнкцию, отличную от нуля, иначе поразрядная конъюнкция теряет свой логический смысл, т.к. всегда можно представить Х всеми нулями.

Решение задачи на поразрядную конъюнкцию 2) Формализация условия Было: (x & 29 ≠ 0)→((x & 12 = 0)→(x & А ≠ 0))=1 Стало: В → ( ¬С → А) = 1

Решение задачи на поразрядную конъюнкцию

2) Формализация условия

Было:

(x & 29 ≠ 0)→((x & 12 = 0)→(x & А ≠ 0))=1

Стало:

В → ( ¬С → А) = 1

Решение задачи на поразрядную конъюнкцию 3) Решение логического уравнения В → ( ¬С → А) = 1 В → (С  А) = 1 (¬В  С)  А  = 1 ¬А = ¬В  С ¬А = ¬(В  ¬ С) Очевидно, что А = В  ¬ С

Решение задачи на поразрядную конъюнкцию

3) Решение логического уравнения

В → ( ¬С → А) = 1

В → (С А) = 1

(¬В С) А = 1

¬А = ¬В С

¬А = ¬(В ¬ С)

Очевидно, что

А = В ¬ С

Решение задачи на поразрядную конъюнкцию 4) Интерпретация полученного результата Искомое двоичное значение поразрядной конъюнкции А – это двоичное значение поразрядной конъюнкции значения В и инверсии двоичного значения С .

Решение задачи на поразрядную конъюнкцию

4) Интерпретация полученного результата

Искомое двоичное значение поразрядной конъюнкции А – это двоичное значение поразрядной конъюнкции значения В и инверсии двоичного значения С .

Решение задачи на поразрядную конъюнкцию B = (x & 29 ≠ 0) В или 29 = 11101 2   C = (x & 12  ≠  0) 12 = 1100 2 ¬С или инверсия 12 = 0011 2

Решение задачи на поразрядную конъюнкцию

B = (x & 29 ≠ 0)

В или 29 = 11101 2  

C = (x & 12  ≠  0)

12 = 1100 2

¬С или инверсия 12 = 0011 2

Решение задачи на поразрядную конъюнкцию В или 29 = 11101 2   ¬С или инверсия 12 = 0011 2 А = В  ¬ С х 11101 2  0011 2  10001 2 А = 1 0001 2 = 17  Ответ на сайте Полякова: 17 27

Решение задачи на поразрядную конъюнкцию

В или 29 = 11101 2  

¬С или инверсия 12 = 0011 2

А = В ¬ С

х 11101 2

0011 2

10001 2

А = 1 0001 2 = 17

Ответ на сайте Полякова: 17

27

3. Задания на поразрядную конъюнкцию (№ 375) Введём выражение M & K, обозначающее поразрядную конъюнкцию M и K (логическое «И» между соответ-ствующими битами двоичной записи). Определите наименьшее натуральное число A, такое что выражение  (X & 49 ≠ 0) → ((X & 33 = 0) → (X & A ≠ 0)) тождественно истинно (то есть принимает значение 1 при любом натуральном значении переменной X)?

3. Задания на поразрядную конъюнкцию

(№ 375) Введём выражение M & K, обозначающее поразрядную конъюнкцию M и K (логическое «И» между соответ-ствующими битами двоичной записи). Определите наименьшее натуральное число A, такое что выражение (X & 49 ≠ 0) → ((X & 33 = 0) → (X & A ≠ 0))

тождественно истинно (то есть принимает значение 1 при любом натуральном значении переменной X)?

Решение задачи на поразрядную конъюнкцию Легенда Формализация условия Решение логического уравнения Интерпретация полученного результата

Решение задачи на поразрядную конъюнкцию

  • Легенда
  • Формализация условия
  • Решение логического уравнения
  • Интерпретация полученного результата

Решение задачи на поразрядную конъюнкцию Легенда Легенда для задач на поразрядную конъюнкцию отличается от всех остальных случаев: B = (x & 49 ≠ 0)  C = (x & 33 ≠  0) A = (x & А ≠ 0)

Решение задачи на поразрядную конъюнкцию

  • Легенда

Легенда для задач на поразрядную конъюнкцию отличается от всех остальных случаев:

B = (x & 49 ≠ 0) 

C = (x & 33 ≠  0)

A = (x & А ≠ 0)

Решение задачи на поразрядную конъюнкцию 2) Формализация условия Было: (X & 49 ≠ 0) → ((X & 33 = 0) → (X & A ≠ 0))=1 Стало: В → ( ¬С → А) = 1

Решение задачи на поразрядную конъюнкцию

2) Формализация условия

Было:

(X & 49 ≠ 0) → ((X & 33 = 0) → (X & A ≠ 0))=1

Стало:

В → ( ¬С → А) = 1

Решение задачи на поразрядную конъюнкцию 3) Решение логического уравнения В → ( ¬С → А) = 1 В → (С  А) = 1 (¬В  С)  А = 1 ¬А = (¬В  С) Очевидно: А = В  ¬С

Решение задачи на поразрядную конъюнкцию

3) Решение логического уравнения

В → ( ¬С → А) = 1

В → (С А) = 1

(¬В С) А = 1

¬А = (¬В С)

Очевидно:

А = В ¬С

Решение задачи на поразрядную конъюнкцию 4) Интерпретация полученного результата Искомое двоичное значение поразрядной конъюнкции А – это двоичное значение поразрядной конъюнкции значения В и инверсии двоичного значения С .

Решение задачи на поразрядную конъюнкцию

4) Интерпретация полученного результата

Искомое двоичное значение поразрядной конъюнкции А – это двоичное значение поразрядной конъюнкции значения В и инверсии двоичного значения С .

Решение задачи на поразрядную конъюнкцию B = (x & 49 ≠ 0) В или 49 = 110001 2   C = (x & 33  ≠  0) 33 = 100001 2 ¬С или инверсия 33 = 011110 2

Решение задачи на поразрядную конъюнкцию

B = (x & 49 ≠ 0)

В или 49 = 110001 2  

C = (x & 33  ≠  0)

33 = 100001 2

¬С или инверсия 33 = 011110 2

Решение задачи на поразрядную конъюнкцию В или 49 = 110001 2 ¬С или инверсия 33 = 011110 2 А = В  ¬ С х 110001 2  011110 2  010000 2 А = 1 0000 2 = 16  Ответ на сайте Полякова: 16 27

Решение задачи на поразрядную конъюнкцию

В или 49 = 110001 2

¬С или инверсия 33 = 011110 2

А = В ¬ С

х 110001 2

011110 2

010000 2

А = 1 0000 2 = 16

Ответ на сайте Полякова: 16

27

4. Задания на условие делимости (№ 372) Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа А формула  ¬ДЕЛ(x,А) → (¬ДЕЛ(x,21) ∧ ¬ДЕЛ(x,35)) тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)? Источник - сайт Полякова К.Ю.

4. Задания на условие делимости

(№ 372) Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа А формула ¬ДЕЛ(x,А) → (¬ДЕЛ(x,21) ∧ ¬ДЕЛ(x,35))

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

Источник — сайт Полякова К.Ю.

Решение задачи на условие делимости Легенда Формализация условия Решение логического уравнения Интерпретация полученного результата

Решение задачи

на условие делимости

  • Легенда
  • Формализация условия
  • Решение логического уравнения
  • Интерпретация полученного результата

Решение задачи на условие делимости Легенда Легенда простая:   А = ДЕЛ(x,А)  21 = ДЕЛ(х,21)  35 = ДЕЛ(x,35)

Решение задачи

на условие делимости

  • Легенда

Легенда простая: А = ДЕЛ(x,А)

21 = ДЕЛ(х,21)

35 = ДЕЛ(x,35)

Решение задачи на условие делимости 2) Формализация условия Было:  ¬ДЕЛ(x,А) → (¬ДЕЛ(x,21) ∧ ¬ДЕЛ(x,35)) тождественно истинна (то есть принимает значение 1) Стало: ¬А → (¬21 ∧ ¬35) = 1

Решение задачи

на условие делимости

2) Формализация условия

Было:

¬ДЕЛ(x,А) → (¬ДЕЛ(x,21) ∧ ¬ДЕЛ(x,35))

тождественно истинна (то есть принимает значение 1)

Стало:

¬А → (¬21 ∧ ¬35) = 1

Решение задачи на условие делимости 3) Решение логического уравнения ¬А → (¬21 ∧ ¬35) = 1 А   (¬21 ∧ ¬35) = 1 ¬А = ¬21 ∧ ¬35 Очевидно, что А = 21  35

Решение задачи

на условие делимости

3) Решение логического уравнения

¬А → (¬21 ∧ ¬35) = 1

А (¬21 ∧ ¬35) = 1

¬А = ¬21 ∧ ¬35

Очевидно, что

А = 21 35

Решение задачи на условие делимости 4) Интерпретация полученного результата А = 21  35 В данной задаче это самый сложный этап решения. Нужно понять, что же представляет из себя число А – НОК или НОД или …

Решение задачи

на условие делимости

4) Интерпретация полученного результата

А = 21 35

В данной задаче это самый сложный этап решения. Нужно понять, что же представляет из себя число А – НОК или НОД или …

Решение задачи на условие делимости 4) Интерпретация полученного результата А = 21  35 Итак, наше число А таково, что Х делится на него без остатка, тогда и только тогда, когда Х делится без остатка на 21 или на 35. В этом случае ищем А = НОД (21, 35) = 7 Ответ на сайте Полякова: 7

Решение задачи

на условие делимости

4) Интерпретация полученного результата

А = 21 35

Итак, наше число А таково, что Х делится на него без остатка, тогда и только тогда, когда Х делится без остатка на 21 или на 35. В этом случае ищем

А = НОД (21, 35) = 7

Ответ на сайте Полякова: 7

4. Задания на условие делимости (№ 370) Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа А формула  ¬ДЕЛ(x,А) → ((ДЕЛ(x,6) → ¬ДЕЛ(x,4)) тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)? Источник - сайт Полякова К.Ю.

4. Задания на условие делимости

(№ 370) Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа А формула ¬ДЕЛ(x,А) → ((ДЕЛ(x,6) → ¬ДЕЛ(x,4))

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

Источник — сайт Полякова К.Ю.

Решение задачи на условие делимости Легенда Формализация условия Решение логического уравнения Интерпретация полученного результата

Решение задачи

на условие делимости

  • Легенда
  • Формализация условия
  • Решение логического уравнения
  • Интерпретация полученного результата

Решение задачи на условие делимости Легенда   А = ДЕЛ(x,А)  6 =  ДЕЛ(x,6)  4 = ДЕЛ(x,4)

Решение задачи

на условие делимости

  • Легенда

А = ДЕЛ(x,А)

6 = ДЕЛ(x,6)

4 = ДЕЛ(x,4)

Решение задачи на условие делимости 2) Формализация условия Было:  ¬ДЕЛ(x,А) → ((ДЕЛ(x,6) → ¬ДЕЛ(x,4)) тождественно истинна (то есть принимает значение 1  Стало:  ¬А → (6 → ¬4) = 1

Решение задачи

на условие делимости

2) Формализация условия

Было:

¬ДЕЛ(x,А) → ((ДЕЛ(x,6) → ¬ДЕЛ(x,4))

тождественно истинна (то есть принимает значение 1

Стало:

¬А → (6 → ¬4) = 1

Решение задачи на условие делимости 3) Решение логического уравнения ¬А → (6 → ¬4) = 1 ¬А → (¬ 6  ¬4) = 1 А   (¬ 6  ¬4) = 1 ¬А = ¬ 6  ¬4 Очевидно: А = 6  4

Решение задачи

на условие делимости

3) Решение логического уравнения

¬А → (6 → ¬4) = 1

¬А → (¬ 6 ¬4) = 1

А (¬ 6 ¬4) = 1

¬А = ¬ 6 ¬4

Очевидно:

А = 6 4

Решение задачи на условие делимости 4) Интерпретация полученного результата А = 6  4 Итак, А таково, что Х делится на него без остатка тогда и только тогда, когда Х делится без остатка и на 6, и на 4. Т.е. А = НОК(6, 4) = 12 Ответ на сайте Полякова: 12

Решение задачи

на условие делимости

4) Интерпретация полученного результата

А = 6 4

Итак, А таково, что Х делится на него без остатка тогда и только тогда, когда Х делится без остатка и на 6, и на 4. Т.е. А = НОК(6, 4) = 12

Ответ на сайте Полякова: 12

A ) ∨ ( x A ) истинно для любых целых положительных значений x и y . » width=»640″

5. Задания на функции

Укажите наибольшее целое значение А, при котором выражение

( y + 2 x  99) ∨ ( y A ) ∨ ( x A )

истинно для любых целых положительных значений x и y .

A ) or ( x A ) выполнялось при всех x и y , для которых ложно ( y + 2 x  99) , то есть истинно ( y + 2 x = 99) или y  = –2 x + 99 » width=»640″

Решение задачи

на функции

1) первое выражение не зависит от выбора A :

( y + 2 x 99)

2) таким образом, нам нужно выбрать значение A так, чтобы условие ( y A ) or ( x A ) выполнялось при всех x и y , для которых ложно ( y + 2 x 99) , то есть истинно ( y + 2 x = 99) или = –2 x + 99

A ) or ( x A ) для некоторого значения A , например, для A = 50 (конечно, нужно учесть, что x и y положительны и добавить ещё два ограничения: ( x 0) and ( y 0) ): » width=»640″

Решение задачи

на функции

3) нарисуем линию = –2 x + 99 , а также заштрихуем область ( y A ) or ( x A ) для некоторого значения A , например, для A = 50 (конечно, нужно учесть, что x и y положительны и добавить ещё два ограничения: ( x 0) and ( y 0) ):

Решение задачи на функции 4) по условию задачи нужно, чтобы все точки отрезка прямой y  = –2 x + 99 в первой четверти плоскости оказались в заштрихованной зоне 5) поэтому все точки образовавшегося белого квадрата, в том числе и его вершина ( A, A ) , должны находиться строго под этим отрезком; такой квадрат, соответствующий максимальному значению A , выделен на рисунке зелёной штриховкой

Решение задачи

на функции

4) по условию задачи нужно, чтобы все точки отрезка прямой = –2 x + 99 в первой четверти плоскости оказались в заштрихованной зоне

5) поэтому все точки образовавшегося белого квадрата, в том числе и его вершина ( A, A ) , должны находиться строго под этим отрезком; такой квадрат, соответствующий максимальному значению A , выделен на рисунке зелёной штриховкой

Решение задачи на функции 6) находим координаты вершины зелёного квадрата: находим точку пересечения прямых y  = –2 x + 99 и y  = x ; эта задача сводится к линейному уравнению x  = –2 x + 99 решение которого – x  = 33 7) значение A должно быть меньше этого x , поэтому максимальное значение A  = 32 Ответ: 32

Решение задачи

на функции

6) находим координаты вершины зелёного квадрата: находим точку пересечения прямых = –2 x + 99 и = x ; эта задача сводится к линейному уравнению = –2 x + 99 решение которого – = 33

7) значение A должно быть меньше этого x , поэтому максимальное значение = 32

Ответ: 32

50) ∨ (4 y – x истинно для любых целых положительных значений x и y . » width=»640″

5. Задания на функции

Укажите наименьшее целое значение А, при котором выражение

( y + 3 x A ) ∨ (2 y +x 50) ∨ (4 yx

истинно для любых целых положительных значений x и y .

50) or (4 y – x 2) таким образом, нам нужно выбрать значение A так, чтобы условие ( y + 3 x A ) выполнялось при всех x и y , для которых ложно (2 y +x 50) or (4 y – x y +x  50) and (4 y – x  40) 3) последние два условия можно переписать в виде ( y  – x /2 + 25) and ( y  x /4 + 10) » width=»640″

Решение задачи

на функции

1) второе и третье выражения не зависят от выбора A : (2 y +x 50) or (4 yx

2) таким образом, нам нужно выбрать значение A так, чтобы условие ( y + 3 x A ) выполнялось при всех x и y , для которых ложно (2 y +x 50) or (4 yx y +x  50) and (4 yx  40)

3) последние два условия можно переписать в виде

( y  – x /2 + 25) and ( yx /4 + 10)

0) and ( y 0) 5) изобразим схематично на плоскости x – y эту область (она заштрихована): » width=»640″

Решение задачи

на функции

4) поскольку по условию x и y должны быть положительны, добавляем ещё два условия: ( y  – x /2 + 25) and ( yx /4 + 10) and ( x 0) and ( y 0)

5) изобразим схематично на плоскости xy эту область (она заштрихована):

Решение задачи на функции 6) для всех точек этой области должно выполняться условие y + 3 x A , равносильное условию y x +A 7) это значит, что вся область должна лежать ниже линии y = – 3 x +A ; одна такая подходящая линия показана на рисунке сверху

Решение задачи

на функции

6) для всех точек этой области должно выполняться условие y + 3 x A , равносильное условию y x +A

7) это значит, что вся область должна лежать ниже линии y = – 3 x +A ; одна такая подходящая линия показана на рисунке сверху

75 откуда следует, что A min = 76. Ответ: 76 » width=»640″

Решение задачи

на функции

8) из рисунка видно, что при параллельном переносе вниз, соответствующем изменению A , она коснётся заштрихованной области в правой вершине заштрихованного треугольника

9) найдём эту точку пересечения:

y =x /2 + 25 = x /4 + 10  x = 20, y = 15

10) поэтому допустимые значение A определяются условием: 15 +A  A 75 откуда следует, что A min = 76.

Ответ: 76


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

На числовой прямой даны два отрезка: P = [2, 10] и Q = [6, 14]. Выберите такой отрезок A, что формула

( (x ∈ А) → (x ∈ P) ) ∨ (x ∈ Q)

тождественно истинна, то есть принимает значение 1 при любом значении переменной х.

1)  [0, 3]

2)  [3, 11]

3)  [11, 15]

4)  [15, 17]


2

На числовой прямой даны три отрезка: P = [10, 40], Q = [5, 15] и R = [35, 50]. Выберите такой отрезок A, что формула

( (x ∈ А) → (x ∈ P) ) ∨ ((x ∈ Q)→ (x ∈ R))

тождественно истинна, то есть принимает значение 1 при любом значении переменной х.

1)  [9, 20)

2)  [3, 12]

3)  [3, 7]

4)  [120, 130]


3

На числовой прямой даны два отрезка: P = [5, 15] и Q = [10,20]. Выберите такой отрезок A, что формула

(x ∈ P) ∧ (x ∉ Q) ∧ (x ∈ A)

тождественно ложна, то есть принимает значение 0 при любом значении переменной х.

1)  [0, 7]

2)  [8, 15]

3)  [15, 20]

4)  [7, 20]


4

На числовой прямой даны три отрезка: P = [10,15], Q = [10,20] и R=[5,15]. Выберите такой интервал A, что формулы

(x ∈ A) → (x ∈ P) и (x ∈ Q) → (x ∈ R)

тождественно равны, то есть принимают равные значения при любом значении переменной х (за исключением, возможно, конечного числа точек).

1)  [5, 12]

2)  [10, 17]

3)  [12, 20]

4)  [15, 25]


5

На числовой прямой даны два отрезка: Р = [30, 45] и Q = [40, 55]. Выберите такой отрезок А, что обе приведённые ниже формулы истинны при любом значении переменной х:

( ¬(x ∈ A) → (¬(x ∈ P)) )

((x ∈ Q)→ (x ∈ A))

1)  [25, 50]

2)  [25, 65]

3)  [35, 50]

4)  [35, 85]

Пройти тестирование по этим заданиям

Характеристика задания

1. Тип ответа: числовой ответ.

2. Структура содержания задания: дано логическое выражение.

3. Уровень сложности задания: повышенный.

4. Примерное время выполнения: (3) минуты.

5. Количество баллов: (1).

6. Требуется специальное программное обеспечение: необязательно.

7. Задание проверяет знание основных понятий и законов математической логики.

Пример задания (демоверсия (2022))

пример.png

Рис. (1). Пример задания

Вспомнить основные логические операции можно тут.

Вспомнить законы алгебры логики можно тут.

Для решения введём обозначения:

A−x∈A,D−x∈D,C−x∈C,

 для упрощения выражения воспользуемся формулой

A→B=¬A∨B

:

D→((¬C∧¬A)→¬D)=¬D∨¬(¬C∧¬A)∨¬D

.

Воспользуемся законом общей инверсии, повторения и двойного отрицания:

¬D∨¬(¬C∧¬A)∨¬D=¬D∨C∨A¬D=¬D∨C∨A

.

По условию задачи выражение

¬D∨C∨A

должно быть истинно при любом (x). Представим полученное решение на числовой прямой:

реш_демо.PNG

Рис. (2). Графическое решение

Из рисунка видно, что отрезок (A) должен перекрыть незакрашенную область на числовой оси, которая не входит в область

¬D∨C

.

Наименьший возможный отрезок в этом случае — [(17), (29)], его длина — (12).

Ответ: (12).

Источники:

Рис. 1. Пример задания. © ЯКласс.

Рис. 2. Графическое решение. © ЯКласс.

СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Была в сети 24.11.2022 11:28



Подлесных Елена Викторовна

учитель информатики и физики

37 лет

рейтинг1 447
место27 953

30.03.2022 20:49

Нажмите, чтобы узнать подробности

Решение задач с отрезками с помощью программирования на языке Python

Просмотр содержимого документа

«Решение задач c отрезками на Python»

Решение задач ЕГЭ №15 (отрезки) способом программирования на Python (Для составления решений использовались задачи с сайта К.Полякова https://kpolyakov.spb.ru/school/ege.htm)

4876

4972

4973

4974

4962

4545

4874

4563

Рекомендуем курсы ПК и ППК для учителей

Похожие файлы



Скачать материал

Выберите документ из архива для просмотра:


задания для мастер-класса ЕГЭ15.docx


Решение задания ЕГЭ 15.pptx

Выбранный для просмотра документ задания для мастер-класса ЕГЭ15.docx



Скачать материал

  • Сейчас обучается 84 человека из 29 регионов

  • Сейчас обучается 33 человека из 18 регионов

  • Сейчас обучается 118 человек из 41 региона

Выбранный для просмотра документ Решение задания ЕГЭ 15.pptx

Решение задания ЕГЭ 15 «руками» и программойУчитель МАОУ гимназия №40 
им. Ю...



Скачать материал

Описание презентации по отдельным слайдам:

  • Решение задания ЕГЭ 15 «руками» и программойУчитель МАОУ гимназия №40 
им. Ю...

    1 слайд

    Решение задания ЕГЭ 15
    «руками» и программой
    Учитель МАОУ гимназия №40
    им. Ю.А. Гагарина
    Медведькова Н.А.
    Калининград, 2022г.

  • Таблица истинности логических операций– таблица НЕ;						– таблица И;		– табл...

    2 слайд

    Таблица истинности логических операций
    – таблица НЕ;– таблица И;– таблица ИЛИ;
    – импликационная таблица; – таблица эквиваленции.

  • Порядок выполнения логических операций
– в первую очередь выполняется отрицан...

    3 слайд

    Порядок выполнения логических операций

    – в первую очередь выполняется отрицание   ;

    – во вторую очередь – конъюнкция  ;

    – затем – дизъюнкция   ;

    – потом импликация   ;
    – и, наконец, низший приоритет имеет эквиваленция  
    .

  • Основные формулы преобразования

    5 слайд

    Основные формулы преобразования

  • Упростить выраженияЗадание 1
Упростить логическую формулу : 		((A  B)  (B...

    6 слайд

    Упростить выражения
    Задание 1
    Упростить логическую формулу : ((A  B)  (B  C))ОТВЕТ

    Задание 2
    Упростить логическую формулу: (x   y)  (x y)  xОТВЕТ

    Задание 3
    Выразить эквиваленцию p  q через отрицание, конъюнкцию, дизъюнкцию и раскрыть скобкиОТВЕТ

  • ЕГЭ 15 сегодняВ ЕГЭ15 на сегодняшний день всего 5 типов задач: задачи с отре...

    7 слайд

    ЕГЭ 15 сегодня
    В ЕГЭ15 на сегодняшний день всего 5 типов задач:
    задачи с отрезками, задачи с множествами, задачи на делимость, на конъюнкцию и задачи на графики

    «Руками» очень удобно решаются задачи с отрезками, задачи с множествами, решаются задачи на делимость, на конъюнкцию.

    Программой удобно решать задачи на графики

  • Алгоритм решения ЕГЭ15 «руками» Обозначить логические высказывания.
Упростить...

    8 слайд

    Алгоритм решения ЕГЭ15 «руками»
    Обозначить логические высказывания.
    Упростить логическое выражение до импликации (A  B) и «читаемого» вида.
    «Прочитать» логическое выражение.
    Найти ответ на задание.

  • Задачи ЕГЭ 15Элементами множества А являются натуральные числа. Известно, что...

    9 слайд

    Задачи ЕГЭ 15
    Элементами множества А являются натуральные числа. Известно, что выражение
    ¬(x  {2, 4, 8, 12, 16})  ¬(x {3, 6, 7, 15})  ¬(x  {3, 6, 7, 15})  (x  A)
    истинно (т. е. принимает значение 1) при любом значении переменной х.

    Определите наименьшее возможное количество элементов множества A.
    Ответ: 4

  • Задачи ЕГЭ 15Элементами множеств А, P, Q являются натуральные числа, причём...

    10 слайд

    Задачи ЕГЭ 15
    Элементами множеств А, P, Q являются натуральные числа,
    причём P = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20},
    Q = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}.
    Известно, что выражение
    ( (x  P) → (x  A) )  (¬(x  A) → ¬(x  Q) )
    истинно (т. е. принимает значение 1) при любом значении переменной х.

    Определите наименьшее возможное количество элементов в множестве A.
    Ответ: 3

  • Задачи ЕГЭ 15На числовой прямой даны два отрезка:  P = [12, 24]     и 	Q = [1...

    11 слайд

    Задачи ЕГЭ 15
    На числовой прямой даны два отрезка: P = [12, 24] и Q = [18 ,30].
    Отрезок A таков, что формула (x  A) → ((x  P) → (x  Q))
    истинна при любом значении переменной x.

    Какое наименьшее количество точек, соответствующих нечётным целым числам, может содержать отрезок A?
    Ответ: 3

  • Алгоритм решения ЕГЭ15 «руками» Обозначить логические высказывания.
Упростить...

    12 слайд

    Алгоритм решения ЕГЭ15 «руками»
    Обозначить логические высказывания.
    Упростить логическое выражение до импликации (A  B) и «читаемого» вида.
    «Прочитать» логическое выражение.
    Найти ответ на задание.

  • «Читаем» логические выражения

    13 слайд

    «Читаем» логические выражения

  • Задачи  ЕГЭ15Введём выражение mn, обозначающее поразрядную конъюнкцию m и n...

    14 слайд

    Задачи ЕГЭ15
    Введём выражение mn, обозначающее поразрядную конъюнкцию m и n (логическое «И» между соответствующими битами двоичной записи). Определите наименьшее натуральное число A, такое что выражение
    (X  107 = 0) → ((X  55 ≠ 0) → (X  A ≠ 0))
    тождественно истинно (то есть принимает значение 1 при любом натуральном значении переменной X)?

  • Программа#(X &amp; 107 = 0) → ((X &amp; 55 ≠ 0) → (X &amp; A ≠ 0))

def f(x,a):
    	retu...

    15 слайд

    Программа
    #(X & 107 = 0) → ((X & 55 ≠ 0) → (X & A ≠ 0))

    def f(x,a):
    return (x&107==0) <= ((x&55!=0) <= (x&a!=0))
    for a in range(1,1000):
    if all(f(x,a)==1 for x in range(1,10000)):
    print(a); break
    #Ответ: 20

  • Задачи ЕГЭ 15Введём выражение m  n, обозначающее поразрядную конъюнкцию m и...

    16 слайд

    Задачи ЕГЭ 15
    Введём выражение m  n, обозначающее поразрядную конъюнкцию m и n (логическое «И» между соответствующими битами двоичной записи). Определите наибольшее натуральное число A, такое что выражение
    (( (X  13 ≠ 0) ∨ (X  A ≠ 0)) → (X  13 ≠0)) ∨ ((X  A ≠ 0) ∧ (X  39 = 0))
    тождественно истинно (то есть принимает значение 1 при любом натуральном значении переменной X)?
    Ответ: 8

  • Программа# (( (X  13 ≠ 0) ∨ (X  A ≠ 0)) → (X  13 ≠0)) ∨ ((X  A ≠ 0) ∧ (X...

    17 слайд

    Программа
    # (( (X  13 ≠ 0) ∨ (X  A ≠ 0)) → (X  13 ≠0)) ∨ ((X  A ≠ 0) ∧ (X  39 = 0))

    def f(x,a):
    return (((x  13!=0) or (x  a!=0)) <= (x  13!=0)) or ((x  a!=0) and (x  39==0))
    for a in range(1000):
    if all(f(x,a)==1 for x in range(10000)):
    print(a)
    #Ответ: 13

  • Задачи ЕГЭ 15Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делит...

    18 слайд

    Задачи ЕГЭ 15
    Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на m». Для какого наименьшего натурального числа А формула
    (ДЕЛ(x, 15) ∧ ¬ДЕЛ(x, 21)) → (¬ДЕЛ(x, A) ∨ ¬ДЕЛ(x, 15))
    тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

  • Программа#(ДЕЛ(x, 15) ∧ ¬ДЕЛ(x, 21)) → (¬ДЕЛ(x, A) ∨ ¬ДЕЛ(x, 15))

def f(x,a)...

    19 слайд

    Программа
    #(ДЕЛ(x, 15) ∧ ¬ДЕЛ(x, 21)) → (¬ДЕЛ(x, A) ∨ ¬ДЕЛ(x, 15))

    def f(x,a):
    return ((x%15==0) and (x%21!=0)) <= ((x%a!=0) or (x%15!=0))
    for a in range(1,100):
    if all(f(x,a)==1 for x in range(1,1000)):
    print(a);break
    #Ответ: 7

  • Задачи ЕГЭ 15Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делит...

    20 слайд

    Задачи ЕГЭ 15
    Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A формула
    ДЕЛ(A, 7) ∧ (ДЕЛ(240, x) → (¬ДЕЛ(A, x) → ¬ДЕЛ(780, x)))
    тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

  • Программа#ДЕЛ(A, 7) ∧ (ДЕЛ(240, x) → (¬ДЕЛ(A, x) → ¬ДЕЛ(780, x)))

def f(x,a)...

    21 слайд

    Программа
    #ДЕЛ(A, 7) ∧ (ДЕЛ(240, x) → (¬ДЕЛ(A, x) → ¬ДЕЛ(780, x)))

    def f(x,a):
    return (a%7==0) and ((240%x==0) <= ((a%x!=0)<=(780%x!=0)))
    for a in range(1,1000):
    if all(f(x,a)==1 for x in range(1,10000)):
    print(a);break
    #Ответ: 420

  • Задачи ЕГЭ 15Найдите максимальное значение параметра А, при котором выражение...

    22 слайд

    Задачи ЕГЭ 15
    Найдите максимальное значение параметра А, при котором выражение
    (2х + у ≠ 70) ∨ (x < y) ∨ (A < x)
    истинно (т.е. принимает значение 1) при любых неотрицательных значениях x и у.

  • Программа#(2х + у ≠ 70) ∨ (x &lt; y) ∨ (A &lt; x)
for a in range(1,200):
    fl=Tru...

    23 слайд

    Программа
    #(2х + у ≠ 70) ∨ (x < y) ∨ (A < x)
    for a in range(1,200):
    fl=True
    for x in range(0,100):
    for y in range(0,100):
    if ((2*x+y!=70) or (x<y) or (a<x))==0:
    fl=False
    break
    if fl:
    print(a)
    #Ответ: 23

  • Задачи ЕГЭ 15

  • Программа#(x &gt; 39) ∨ (y &gt; 26) ∨ (2x + 4y 39) or (y&gt;26) or (2*x+4*y

    25 слайд

    Программа
    #(x > 39) ∨ (y > 26) ∨ (2x + 4y < A) 

    for a in range(1,500):
    fl=True
    for x in range(0,100):
    for y in range(0,100):
    if ((x>39) or (y>26) or (2*x+4*y<a))==0:
    fl=False
    break
    if fl: print(a)

    #Ответ: 183

  • Какие у Вас есть вопросы?

Рада нашей встрече!

Благодарю  за внимание!

    26 слайд

    Какие у Вас есть вопросы?

    Рада нашей встрече!

    Благодарю за внимание!

  • Ответ: B  A  C
((A  B)  (B  C)) == (A + B)  (B + C) == (A + B)  (B *...

    27 слайд

    Ответ: B  A  C

    ((A  B)  (B  C)) == (A + B)  (B + C) == (A + B)  (B * C) ==

    == (A + B) + (B * C) == (A * B) + (B * C) == (A * B) * (B * C) ==

    == (A + B) * (B + C) == (A +B) * (B + C) == A * B + B + A * C + B * C ==

    == B * (A + 1 + C) + A *C == B * 1 + A *C == B + A * C == B  A  C
    НАЗАД

  • Ответ: ( p  q)  (p   q) p  q == 
== ( p  q)  (p   q) ==
== (p  q)...

    28 слайд

    Ответ: ( p  q)  (p   q)
    p  q ==
    == ( p  q) (p   q) ==
    == (p  q)  (q  p) ==
    == (( p  q)   q)  (( p  q)  p) ==
    == ( q   p)  0  0  (p  q) ==
    == ( q   p)  (p  q) ==
    == p  q   q   p
    НАЗАД

  • Ответ: x  y( x   y)  (x   y)  x == 
== (  x    y) ( x  y)  x...

    29 слайд

    Ответ: x  y
    ( x   y)  (x  y)  x ==
    == (  x    y) ( x  y)  x ==
    == (x  y)  x ( x  y)==
    == (x  y)  (x   x)  (x  y)==
    == (x  y)  0 (x y) ==
    == x  y x  y ==
    == x  y  y  x == x  y
    НАЗАД

Краткое описание документа:

В архиве находится презентация к уроку, задания (документ Word) для закрепления изученного материала, программы на PYTHON’e. Время проведения 2 академических часа

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 153 824 материала в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Материал подходит для УМК

  • «Информатика. Углубленный уровень (в 2-ух частях) », Поляков К.Ю., Еремин Е.А.

Другие материалы

«Информатика», Босова Л.Л., Босова А.Ю.

«Информатика», Босова Л.Л., Босова А.Ю.

«Информатика», Босова Л.Л., Босова А.Ю.

«Информатика», Босова Л.Л., Босова А.Ю.

«Информатика», Босова Л.Л., Босова А.Ю.

«Информатика», Семакин И.Г., Залогова Л.А., Русаков С.В., Шестакова Л.В.

  • 30.12.2022
  • 23
  • 1
  • 30.12.2022
  • 26
  • 2

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Информационные технологии в деятельности учителя физики»

  • Курс повышения квалификации «Организация работы по формированию медиаграмотности и повышению уровня информационных компетенций всех участников образовательного процесса»

  • Курс повышения квалификации «Сетевые и дистанционные (электронные) формы обучения в условиях реализации ФГОС по ТОП-50»

  • Курс профессиональной переподготовки «Информационные технологии в профессиональной деятельности: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»

  • Курс повышения квалификации «Применение MS Word, Excel в финансовых расчетах»

  • Курс повышения квалификации «Введение в программирование на языке С (СИ)»

  • Курс профессиональной переподготовки «Управление в сфере информационных технологий в образовательной организации»

  • Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»

  • Курс повышения квалификации «Специфика преподавания дисциплины «Информационные технологии» в условиях реализации ФГОС СПО по ТОП-50»

Понравилась статья? Поделить с друзьями:
  • Как решать егэ по химии разбор заданий
  • Как решать егэ по физике если ничего не знаешь
  • Как решать егэ по истории объяснение
  • Как решать егэ по информатике через программирование
  • Как решать егэ по английскому все задания с пояснениями