Говорят, что задание 18 Профильного ЕГЭ по математике (на числа и их свойства) решить невозможно. Но это не так. Можно научиться! Можно сделать первый шаг – прочитать эту статью и узнать о секретах решения задачи 18.
Еще говорят, что это задача «на смекалку». Но и это не так. Дело не в загадочной «смекалке», а в знании определенных приемов, ключиков, хитрых инструментов. Некоторые из них вы сейчас увидите. Пусть это будет первое знакомство с нестандартными, ни на что не похожими задачами на числа и их свойства.
4. Маша и Наташа делают фотографии. Каждый день каждая девочка делает на одну фотографию больше, чем в предыдущий день. В конце Наташа сделала на 935 фотографий больше, чем Маша.
а) Могло ли это произойти за 5 дней?
б) Могло ли это произойти за 9 дней?
в) Какое максимальное количество фотографий могла сделать Наташа, если Маша в последний день сделала меньше 50 фотографий?
Пусть в первый день Маша делает х фотографий, а Наташа у фотографий.
На второй день: Маша , а Наташа фотографию.
В n-ный день Маша сделает , а Наташа фотографию.
По условию, число фотографий, которые ежедневно делает Маша, образует арифметическую прогрессию с разностью 1. Число Наташиных фотографий также образует арифметическую прогрессию. Вспомним формулу суммы арифметической прогрессии:
За n дней Маша сделает , а Наташа фотографий. Разность этих величин
Мы получили, что .
а) Случай n = 5 возможен. Это значит, что то . Каждый день Наташа делала на 187 фотографий больше, чем Маша.
б) Случай n = 9 невозможен. Уравнение не имеет целых решений, поскольку 935 не делится на 9.
Это один из приемов решения нестандартных задач. Часто мы получаем уравнение с двумя (тремя, четырьмя…) переменными. Помогает то, что эти переменные – натуральные. Мы внимательно смотрим на полученное уравнение. Если его левая часть положительна, то и правая должна быть положительна. Если левая четна, то и правая должна быть четна. Если левая часть кратна 9, то и правая часть должна быть кратна 9.
в) В последний день Маша сделала меньше 50 фотографий.
Еще один лайфхак. В задачах на числа и их свойства строгие неравенства лучше заменять нестрогими:
.
Найдем, какое максимальное количество фотографий могла при этом сделать Наташа.
У нас есть единственное уравнение:
. Поскольку – целое, n должно быть делителем числа 935. Разложим 935 на множители: 935 = 5∙11∙17.
Числа 1, 5, 11, 17, 55, 85, 187, 935 – делители числа 935.
При этом невозможно, поскольку по условию .
Составим таблицу для значений n, равных 1, 5, 11 и 17.
Количество фотографий,сделанных Наташей за дней: |
||||
---|---|---|---|---|
1 | 935 | |||
5 | 187 | |||
11 | 85 | |||
17 | 55 |
Количество фотографий, которые могла сделать Наташа, не превышает 1632. Если , то .
Ответ: 1632.
Посмотрите, как мы действовали. Сначала сделали «заготовку» для всех трех пунктов. Да, такой прием тоже часто применяется в нестандартных задачах.
Получили уравнение . Из одного этого уравнения (как в сказке про суп из топора) мы получаем всё, что нам нужно. В пункте (в) есть перебор вариантов, но не хаотичный, а умный. Иначе перебирать варианты можно бесконечно.
Вот еще одна задача на числа и их свойства:
2. Группу школьников нужно перевезти из летнего лагеря одним из двух способов: либо двумя автобусами типа A за несколько рейсов, либо тремя автобусами типа В за несколько рейсов, причём в этом случае число рейсов каждого автобуса типа B будет на один меньше, чем рейсов каждого автобуса типа А. В каждом из случаев автобусы заполняются полностью. Какое максимальное количество школьников можно перевезти при указанных условиях, если в автобус типа B входит на 7 человек
меньше, чем в автобус типа A?
Помните, как мы решали текстовые задачи? Мы записывали данные задачи в таблицу. Сделаем так же.
Тип автобуса | Сколько автобусов | Сколько рейсов | Сколько человек в автобусе |
---|---|---|---|
По условию, количество школьников, которое надо перевезти, одно и то же.
Оно равно . Отсюда .
Выразим одну из переменных через другую:
Мы видим, что переменная n и в числителе, и в знаменателе дроби. Оценить m трудно, правда? Чтобы проще было это сделать, выделим в дроби целую часть.
Еще один прием решения нестандартных задач – выделение целой части. Это помогает сделать оценку какой-либо величины.
.
Поскольку m – натуральное число (количество школьников в автобусе типа В), выражение в правой части также должно быть целым положительным. Значит, 42 делится на без остатка.
Выпишем делители числа 42. Это 1; 2; 3; 6: 7; 14; 21; 42.
Заполним таблицу. Значения m вычисляем по формуле , а общее количество школьников – как .
Общее количество школьников | |||
---|---|---|---|
1 | 4 | 56 | 504 |
2 | 5 | 35 | 420 |
3 | 6 | 28 | 420 |
6 | 9 | 21 | 504 |
7 | 10 | 20 | 540 |
14 | 17 | 17 | 816 |
21 | 24 | 16 | 1104 |
42 | 45 | 15 | 1980 |
Наибольшее количество школьников, которое можно перевезти в условиях задачи, равно 1980.
Конечно, мы выбирали довольно простые задачи. И конечно, есть и другие приемы их решения.
Например, метод «Оценка плюс пример». Мы разбираем множество нестандартных задач на наших интенсивах в ЕГЭ-Студии, а также на Онлайн-курсе.
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Профильный ЕГЭ по математике, задание 18. Секреты решения» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
08.03.2023
Мы знаем, что в ЕГЭ по математике вторая часть кажется значительно сложнее первой. Но особенно много вопросов вызывает задание №18. Многие думают, что решить его под силам только олимпиадникам.
Но так ли это?
Давай попробуем разобраться, почему эта задача кажется такой необычной и сложной. А еще разберемся, как ее решать!
Формат задачи
По формату задача абсолютно стандартная. Она состоит из нескольких пунктов, за каждый из которых можно получить баллы. Давай посмотрим подробнее:
Пункт А
В этой части задачи в большинстве случаев надо дать ответ на вопрос о возможности или невозможности какой-то ситуации. Если ты отвечаешь, что ситуация возможна, значит, ты можешь подтвердить ее каким-то примером.
Кстати, чаще всего эта часть решается довольно легко. Найти пример не составит труда.
Главное — не торопиться и внимательно прочитать условие задачи!
Пункт Б
Этот пункт очень схож с пунктом А. Но очень часто решение пункта Б сводится к тому, что ситуация невозможна. И тебе остается только это доказать. Но не забудь, что невозможность ситуации доказывается в общем виде, а не на конкретном примере.
А как доказать? Обычно такое доказывается с помощью рассмотрения оценок, делимостей, ограничений и т.д.
Но это только звучит сложно и страшно. Если немного потренироваться, ты научишься очень быстро решать такие задачи.
Пункт В
Последний пункт чуть-чуть посложнее, но и получить за него можно 2 балла! С наибольшей вероятностью в пункте В нужно будет найти наименьшее или наибольшее значение величины, связанной с условием задачи.
Тебе нужно будет сделать оценку на искомую величину и привести пример, когда эта оценка выполняется. За каждый правильно выполненный шаг ты получишь по 1 баллу.
Алгоритм решения задачи
К сожалению, эту задачу не получится решить, подобрав типовой алгоритм. Тут придется поразмышлять. Но от этого интереснее!
Мы подготовили для тебя подборку тем, которые пригодятся тебе для решения №18.
Разбирая задание №18, ты потренируешь свой мозг и научишься решать нестандартные задачи.
Если ты переживаешь, оставь эту задачку напоследок. Решишь ее, когда останется время.
Ну а раз ты здесь, значит, ты хочешь получить высокие баллы и максимально в этом заинтересован!
И мы знаем, что у тебя все получится!
2022-03-21 17:59
ЕГЭ
Математика
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Каждый из группы учащихся сходил в кино или в театр, при этом возможно, что кто-то из них мог сходить и в кино, и в театр. Известно, что в театре мальчиков было не более от общего числа учащихся группы, посетивших театр, а в кино мальчиков было не более от общего числа учащихся группы, посетивших кино.
а) Могло ли быть в группе 10 мальчиков, если дополнительно известно, что всего в группе было 20 учащихся?
б) Какое наибольшее количество мальчиков могло быть в группе, если дополнительно известно, что всего в группе было 20 учащихся?
в) Какую наименьшую долю могли составлять девочки от общего числа учащихся в группе без дополнительного условия пунктов а) и б)?
Источник: ЕГЭ по математике 07.06.2012 года, основная волна.
2
Два игрока ходят по очереди. Перед началом игры у них есть поровну горошин. Ход состоит в передаче сопернику любого числа горошин. Не разрешается передавать такое количество горошин, которое до этого уже кто‐то в этой партии передавал. Ноль горошин тоже передавать нельзя. Тот, кто не может сделать очередной ход по правилам, — считается проигравшим. Начинающий или его соперник победит в этой игре, как бы ни играл партнёр?
Рассмотрите случаи:
а) у каждого по две горошины;
б) у каждого по три горошины;
в) у каждого по N горошин.
Источник: А. Ларин: Тренировочный вариант № 41.
3
Трое друзей играли в шашки. Один из них сыграл 25 игр, а другой — 17 игр. Мог ли третий участник сыграть
а) 34;
б) 35;
в) 56 игр?
Источник: А. Ларин: Тренировочный вариант № 42.
4
Леша задумал двузначное число (от 10 до 99). Гриша пытается его отгадать, называя двузначные числа. Если Гриша правильно называет число, или же одну цифру называет правильно, а в другой ошибается не более чем на единицу, то Леша отвечает «тепло»; в остальных случаях Леша отвечает «холодно». (Например, если задумано число 65, то назвав 65, 64, 66, 55 или 75, Гриша услышит в ответ «тепло», а в остальных случаях услышит «холодно».)
а) Покажите, что нет способа, при котором Гриша гарантированно узнает число, истратив 18 попыток.
б) Придумайте способ, при котором Гриша гарантированно узнает число, истратив 24 попытки (какое бы число ни задумал Леша).
в) А за 22 попытки получится?
Источник: А. Ларин: Тренировочный вариант № 45.
5
У Лены три набора, в каждом из которых одинаковое количество ручек (больше 1). У Юли несколько (больше 1) наборов ручек, по 5 штук в каждом.
а) При каком количестве наборов у Юли, количество всех ручек у Лены нечетно, если всего у девочек 105 ручек?
б) Можно ли разложить все ручки Юли и Лены в 12 наборов по 12 ручек в каждом?
в) Можно ли разложить все ручки Юли и Лены в k наборов по k ручек в каждом (k > 3)?
Источник: А. Ларин: Тренировочный вариант № 4.
Пройти тестирование по этим заданиям
Задание № 18 варианта КИМ ЕГЭ по математике профильного уровня
Задача с параметром – для обычного школьника одна из самых сложных задач варианта КИМ ЕГЭ: в программах по математике для общеобразовательных школ (за исключением профильных и специализированных классов, школ и лицеев) таким задачам либо не уделяется должного внимания, либо они не рассматриваются вовсе. Несмотря на это, знание набора методов и подходов к решению таких задач и определенная практика их решения позволяют продвинуться в решении задачи с параметром достаточно далеко и если уж не решить ее полностью, то хотя бы получить за нее некоторое количество баллов на экзамене.
Ранее, до появления единого государственного экзамена, задачи с параметрами входили в варианты вступительных экзаменов по математике в ведущие вузы, а сегодня входят в вариант КИМ ЕГЭ профильного уровня. Дело в том, что эти задачи обладают высокой диагностической ценностью: они позволяют не только определить, насколько хорошо выпускник знает основные разделы школьного курса математики, но и проверить, насколько высок уровень его математического и логического мышления, насколько сильны первоначальные навыки математической исследовательской деятельности, а главное – насколько успешно он сможет овладеть курсом математики в вузе.
«Научите меня решать задачи с параметром», – такую просьбу я часто слышу от своих учеников. Что ж, эта задача потребует от выпускника немало интеллектуальных усилий. С чего начать изучение? С освоения методов решения задач с параметром. Собственно, если вы внимательно читали наши рекомендации, как подготовиться к решению сложных задач варианта КИМ ЕГЭ, то заметили, что это универсальный совет. Именно так построен наш курс «1С:Репетитор»: изучаем как можно более широкий спектр методов и приемов решения задач и тренируемся в применении этих методов на практике.
Чему нужно научиться, решая задачи с параметром
В первую очередь – правильно применять равносильные преобразования уравнений, неравенств и их систем. То есть понять, при каких ограничениях, накладываемых на параметр, можно выполнять то или иное преобразование. Лучше всего начать с заданий вида: «Для каждого значения параметра решить…» и рассмотреть по возможности все основные элементарные функции, встречающиеся в школьном курсе математики.
Если с несложными задачами такого вида школьник справляется неплохо, то можно переходить к изучению аналитических методов решения задач, содержательно усложняя и классифицируя задачи с точки зрения применения к ним этих методов исследования. Имеется в виду знакомство с подходами к решению задач, содержащих формулировки типа: «При каких значениях параметра уравнение (неравенство, система) имеет одно (два, три, бесконечно много и т.д.) решений», «При каких значениях параметра решением уравнения (неравенства, системы) является некоторое подмножество множества действительных чисел» и т.д.
Следующий шаг, который мы рекомендуем, – тщательно изучить схему исследования квадратичной функции. Поскольку квадратичная функция является одной из самых хорошо изученных в школьном курсе математики, на ее основе можно предложить большое количество исследовательских задач, разнообразных по форме и содержанию, чем и пользуются составители вариантов КИМ ЕГЭ.
Мы рекомендуем подойти к рассмотрению данных задач по следующей схеме:
Следующая тема курса – графические методы решения задач с параметром
Существует два принципиально различных подхода – построение графиков функций или уравнений в плоскости (x; y) или в плоскости (x; a). Кроме того, для графического метода решения задач с параметром в плоскости (x; y) необходимо рассмотреть различные виды преобразования графиков – обычно это параллельный перенос, поворот прямой и гомотетия. Есть класс задач, решение которых основано на аналитических свойствах функций (области определения, области значений, четности, периодичности и т.д.), эти свойства и приемы их использования тоже нужно знать.
На этом перечень методов решения задач с параметрами, разумеется, не заканчивается, но анализ вариантов КИМ ЕГЭ профильного уровня и практика показывают, что в настоящее время этого достаточно для успешного решения задачи № 18 на экзамене.
В заключение отметим, что выстроить подобный курс самостоятельно, без преподавателя, обычный школьник не сможет, даже имея под рукой хорошие учебные пособия по методам решения задач с параметром. Здесь необходима помощь опытного наставника, который сможет подобрать нужные задачи и выстроить траекторию движения школьника по ним.
Заметим, кстати, что весьма эффективным инструментом для изучения именно методов решения задач с параметром являются интерактивные тренажеры с пошаговым разбором решения.
Работая с таким тренажером, школьник одновременно учится выстраивать логику решения задачи с параметром и контролирует правильность выполнения каждого шага решения. Это очень важное умение, так как одна из основных сложностей в решении задачи с параметром состоит в том, что необходимо на каждом шаге решения понимать, что означают уже полученные результаты и что (в зависимости от этих результатов) еще остается сделать, чтобы довести решение до конца.
Регулярно тренируйтесь в решении задач
Чтобы начать заниматься на портале «1С:Репетитор», достаточно Зарегистрироваться.
Вы можете:
- Начать заниматься бесплатно.
Купить доступ к этой задаче в составе
экспресс-курса «Алгебра» и научиться решать задачи №13, №15, №17, №18 и №19 на максимальный балл.
Все курсы состоят из методически правильной последовательности теории и практики, необходимой для успешного решения задач. Включают теорию в форме текстов, слайдов и видео, задачи с решениями, интерактивные тренажеры, модели, и тесты.
Остались вопросы? Позвоните нам по телефону 8 800 551-50-78 или напишите в онлайн-чат.
Здесь ключевые фразы, чтобы поисковые роботы лучше находили наши советы:
Разбор задач с параметрами из ЕГЭ по математике, по теме задачи с параметром ЕГЭ, как решать задание 18 в экзамене ЕГЭ, задачи с параметром ЕГЭ, задания с параметром ЕГЭ, задача 18 ЕГЭ, модуль и окружности, решение параметров ЕГЭ, решение задачи 18, система уравнений с параметром, научиться решать задачи с параметрами, сложных задач варианта КИМ ЕГЭ, начертить графики функций, ЕГЭ по математике профильного уровня, методы решения уравнений и неравенств, выпускникам 11 класса в 2018 году, поступающим в технический вуз.
Параметрические уравнения
Уравнение, которое кроме неизвестной величины содержит также другую дополнительную величину, которая может принимать различные значения из некоторой области, называется параметрическим. Эта дополнительная величина в уравнении называется параметр. На самом деле с каждым параметрическим уравнением может быть написано множество уравнений.
Способ решения параметрических уравнений
- Находим область определения уравнения.
- Выражаем a как функцию от $х$.
- В системе координат $хОа$ строим график функции, $а=f(х)$ для тех значений $х$, которые входят в область определения данного уравнения.
- Находим точки пересечения прямой, $а=с$, где $с∈(-∞;+∞)$ с графиком функции $а=f(х)$. Если прямая, а=с пересекает график, $а=f(х)$, то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение вида, $а=f(х)$ относительно $х$.
- Записываем ответ.
Общий вид уравнения с одним параметром таков:
$F(x, a) = 0$
При различных значениях, а уравнение $F(x, a) = 0$ может иметь различные множества корней, задача состоит в том, чтобы изучить все случаи, выяснить, что будет при любом значении параметра. При решении уравнений с параметром обычно приходится рассматривать много различных вариантов. Своевременное обнаружение хотя бы части невозможных вариантов имеет большое значение, так как освобождает от лишней работы.
Поэтому при решении уравнения $F(x, a) = 0$ целесообразно под ОДЗ понимать область допустимых значений неизвестного и параметра, то есть множество всех пар чисел ($х, а$), при которых определена (имеет смысл) функция двух переменных $F(x, а)$. Отсюда естественная геометрическая иллюстрация ОДЗ в виде некоторой области плоскости $хОа$.
ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):
1. Выражение, стоящее в знаменателе, не должно равняться нулю.
${f(x)}/{g(x)}; g(x)≠0$
2. Подкоренное выражение должно быть неотрицательным.
$√{g(x)}; g(x)≥0$.
3. Подкоренное выражение, стоящее в знаменателе, должно быть положительным.
${f(x)}/{√{g(x)}}; g(x) > 0$
4. У логарифма: подлогарифмическое выражение должно быть положительным; основание должно быть положительным; основание не может равняться единице.
$log_{f(x)}g(x) {tableg(x) > 0; f(x) > 0; f(x)≠1;$
Алгебраический способ решения квадратных уравнений с параметром $ax^2+bx+c=0$
Квадратное уравнение $ax^2+bx+c=0, а≠0$ не имеет решений, если $D < 0$;
Квадратное уравнение имеет два различных корня, когда $D > 0$;
Квадратное уравнение имеет один корень, если $D=0$
Тригонометрические тождества
1. $tgα={sinα}/{cosα}$
2. $ctgα={cosα}/{sinα}$
3. $sin^{2}α+cos^{2}α=1$ (Основное тригонометрическое тождество)
Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса
$sinα=±√{1-cos^{2}α}$
$cosα=±√{1-sin^{2}α$
4. $tgα·ctgα=1$
5. $1+tg^{2}α={1}/{cos^{2}α}$
6. $1+ctg^{2}α={1}/{sin^{2}α}$
Формулы двойного угла
1. $sin2α=2sinα·cosα$
2. $cos2α=cos^{2}α-sin^{2}α=2cos^{2}α-1=1-2sin^{2}α$
3. $tg2α={2tgα}/{1-tg^{2}α}$
Формулы суммы и разности
$cosα+cosβ=2cos{α+β}/{2}·cos{α-β}/{2}$
$cosα-cosβ=2sin{α+β}/{2}·sin{β-α}/{2}$
$sinα+sinβ=2sin{α+β}/{2}·cos{α-β}/{2}$
$sinα-sinβ=2sin{α-β}/{2}·cos{α+β}/{2}$
Формулы произведения
$cosα·cosβ={cos{α-β}+cos{α+β}}/{2}$
$sinα·sinβ={cos{α-β}-cos{α+β}}/{2}$
$sinα·cosβ={sin{α+β}+sin{α-β}}/{2}$
Формулы сложения
$cos(α+β)=cosα·cosβ-sinα·sinβ$
$cos(α-β)=cosα·cosβ+sinα·sinβ$
$sin(α+β)=sinα·cosβ+cosα·sinβ$
$sin(α-β)=sinα·cosβ-cosα·sinβ$
Решение тригонометрического уравнения с параметром рассмотрим на примере.
Пример:
Найдите все значения параметра с, при каждом из которых уравнение $3cos2x-2sin2x=c$ имеет решение.
Решение:
Преобразуем данное уравнение к виду
$√{3^2+(-2)^2}(cos2xcosφ-sin2xsinφ)=c$
Воспользуемся тригонометрической формулой и свернем второй множитель как косинус суммы
$√{13}cos(2x+φ)=c$, где $φ=arccos{3}/{√{13}}$
Уравнение $√{13}cos(2x+φ)=c$ имеет решения тогда и только тогда, когда $-1≤ {c}/{√{13}} ≤ 1$, домножим полученное неравенство на $√{13}$ и получим
$-√{13} ≤ c ≤ √{13}$
Ответ: $-√{13} ≤ c ≤ √{13}$
Неравенства с параметром
Если имеется неравенство вида $F(a,x) ≤ G(a,x)$ то оно будет иметь одно решение, если $F'(a, x)=G'(a, x)$.
Системы уравнений:
Выделяют четыре основных метода решения систем уравнений:
- Метод подстановки: из какого-либо уравнения системы выражаем одно неизвестное через другое и подставляем во второе уравнение системы.
- Метод алгебраического сложения: путем сложения двух уравнений получить уравнение с одной переменной.
- Метод введения новых переменных: ищем в системе некоторые повторяющиеся выражения, которые обозначим новыми переменными, тем самым упрощая вид системы.
- Графический метод решения: из каждого уравнения выражается $«у»$, получаются функции, графики которых необходимо построить и посмотреть координаты точек пересечения.
Логарифмические уравнения и системы уравнений
Основное логарифмическое тождество:
$a^{log_{a}b}=b$
Это равенство справедливо при $b> 0, a> 0, a≠1$
Свойства логарифмов:
Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.
1. Для любых действительных чисел $m$ и $n$ справедливы равенства:
$log_{а}b^m=mlog_{a}b$;
$log_{a^m}b={1}/{m}log_{a}b$.
$log_{a^n}b^m={m}/{n}log_{a}b$
2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.
$log_a(bc)=log_{a}b+log_{a}c$
3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию
$log_a{b}/{c}=log_{a}b-log_{a}c$
4. При умножении двух логарифмов можно поменять местами их основания
$log_{a}b·log_{c}d=log_{c}b·log_{a}d$, если $a, b, c, d >0, a≠1, b≠1$.
5. $c^{log_{a}b}=b^{log_{a}b}$, где $а, b, c > 0, a≠1$
6. Формула перехода к новому основанию
$log_{a}b={log_{c}b}/{log_{c}a}$
7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение
$log_{a}b={1}/{log_{b}a}$
При решении систем, содержащих логарифмические уравнения, часто удается, избавившись от логарифма, заменить одно или оба уравнения системы рациональными уравнениями. После этого надо выразить одну переменную через другую и после постановки получить уравнение с одной переменной. Кроме того, часто встречаются задачи на замену переменной в пределах одного или обоих уравнений системы и системы, требующие отбора решений.
Логарифмические неравенства:
1. Определить ОДЗ неравенства.
2. По свойствам логарифма преобразовать неравенство к простому виду, желательно получить с двух сторон логарифмы по одинаковому основанию.
3. Перейти к подлогарифмическим выражениям, при этом надо помнить, что:
а) если основание больше единицы, то при переходе к подлогарифмическим выражениям знак неравенства остается прежним;
b) если основание меньше единицы, то при переходе к подлогарифмическим выражениям знак неравенства меняется на противоположный;
с) если в основании находится переменная, надо рассмотреть оба варианта.
4. Решить неравенство.
5. Выбрать решения с учетом ОДЗ из п.1
При решении логарифмических неравенств с переменной в основании легче всего воспользоваться тождественными преобразованиями:
$log_{a}f > b ↔ {table (f-a^b)(a-1) > 0; f > 0; a > 0;$
$log_{a}f+log_{a}g > 0 ↔ {table(fg-1)(a-1)> 0; f > 0,g > 0; a > 0;$
$log_{a}f+b > 0 ↔ {table(fa^b-1)(a-1) > 0; f > 0; a > 0;$
Системы, содержащие показательные уравнения
Свойства степеней
1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.
$a^n·a^m=a^{n+m}$
2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются
$a^n:a^m=a^{n-m}$
3. При возведении степени в степень основание остается прежним, а показатели перемножаются
$(a^n)^m=a^{n·m}$
4. При возведении в степень произведения в эту степень возводится каждый множитель
$(a·b)^n=a^n·b^n$
5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель
$({a}/{b})^n={a^n}/{b^n}$
6. При возведении любого основания в нулевой показатель степени результат равен единице
$a^0=1$
Основные методы решения систем, содержащих показательные уравнения, ничем принципиально не отличаются от методов решения других систем: это метод алгебраического сложения, замена переменной в пределах одного уравнения или всей системы, подстановка. Единственная особенность – положительность выражения $a^{f(x)}$, которую полезно учитывать, вводя соответствующее ограничение при замене переменной.
Показательные неравенства, сводящиеся к виду $a^{f(x)} ≥ a^{g(x)}$:
1. Преобразовать показательное уравнение к виду $a^{f(x)} ≥ a^{g(x)}$
2. Перейти показателям степеней, при этом если основание степени меньше единицы, то знак неравенства меняется на противоположный, если основание больше единицы – знак неравенства остается прежним.
3. Решить полученное неравенство.
4. Записать результат.
Показательные неравенства, которые можно разложить на множители или сделать замену переменной.
1. Для данного метода во всем неравенстве по свойству степеней надо преобразовать степени к одному виду $a^{f(x)}$.
2. Сделать замену переменной $a^{f(x)}=t, t>0$.
3. Получаем рациональное неравенство, которое можно решить методом интервалов путем разложения на множители выражения.
4. Делаем обратную замену с учетом того, что $t>0$. Получаем простейшее показательное неравенство $a^{f(x)}=t$, решаем его и результат записываем в ответ.
Уравнения с многочленами
Многочлен может обозначаться записью $Р(х)$ — это означает, что многочлен зависит от «х», если записать $Р(х+1)$ — это означает, что в многочлене вместо «х» надо сделать замену на скобку $(х+1)$
Пример:
Найдите значение выражения: $4(p(2x)−2p(x+3))$, если $p(x)=x−6$
Решение:
В данном условии задан многочлен, зависящий от «х», как $p(x)=x−6$.
Чтобы было понятнее, назовем исходный многочлен основной формулой, тогда, чтобы записать $p(2x)$, в основной формуле заменим «х» на «2х».
$p(2x)=2х-6$
Аналогично $p(x+3)=(х+3)-6=х+3-6=х-3$
Соберем все выражение: $4(p(2x)−2p(x+3))=4((2х-6)-2(х-3))$
Далее осталось раскрыть скобки и привести подобные слагаемые
$4((2х-6)-2(х-3))=4(2х-6-2х+6)=4·0=0$
Ответ: $0$
Системы иррациональных уравнений
Основные методы решения систем, содержащих иррациональные уравнения, ничем принципиально не отличаются от методов решения других систем: это метод алгебраического сложения, замена переменной в пределах одного уравнения или всей системы, подстановка. Единственная особенность – надо расписать ОДЗ каждого уравнения, а в конце решения выбрать решение системы с учетом ОДЗ.
Чтобы решить иррациональное уравнение, необходимо:
1. Преобразовать заданное иррациональное уравнение к виду
$√{f(x)}=g(x)$ или $√{f(x)}=√{g(x)}$
2. Обе части уравнение возвести в квадрат
$√{f(x)}^2={g(x)}^2$ или $√{f(x)}^2=√{g(x)}^2$
3. Решить полученное рациональное уравнение.
4. Сделать проверку корней, так как возведение в четную степень может привести к появлению посторонних корней. (Проверку можно сделать при помощи подстановки найденных корней в исходное уравнение.)
Блок 1. Введение
1.1 | Решите уравнения с параметром а: а) ax = − 5; б) (a−1)x = −3; в) (a−2)x = 2−a г) (a−2)x = (a−2)(a+3) |
Смотреть видеоразбор |
1.2 | Определите при каких значениях параметра а: а) уравнение |x| = a−3 имеет один корень; б) уравнение |x| = a2−5 не имеет корней. |
Смотреть видеоразбор |
1.3 | Функция задана формулой y=x^2+ax+b. Найдите a и b, если: а) график функции проходит через точки (0;3) и (-1;8); б) наименьшее значение, равное −4, функция принимает при x = 1 |
Смотреть видеоразбор |
Блок 2. Координатно-параметрический метод
2.1 | Найдите все значения параметра а, при каждом из которых уравнение frac{|3x|-2x-2-a}{x^2-2x-a}=0 имеет ровно два различных корня | Смотреть видеоразбор |
2.2 | Найдите все значения а, при каждом из которых система уравнений begin{cases} frac{xy^2-3xy-3y+9}{sqrt{x+3}}=0 \ y=ax end{cases} имеет ровно два различных решения | Смотреть видеоразбор |
2.3 | Найдите все значения параметра а, при каждом из которых уравнение frac{x^2-4x+a}{5x^2-6ax+a^2} = 0 имеет ровно два различных корня | Смотреть видеоразбор |
2.4 | Найти все значения а, при каждом из которых уравнение sqrt{3x-2} cdot ln(x-a) = sqrt{3x-2} cdot ln(2x+a) имеет ровно один корень на отрезке [0; 1] | Смотреть видеоразбор |
2.5 | Найти все значения а, при каждом из которых уравнение (4^x-3 cdot 2^x + 3a — a^2)cdotsqrt{2-x} = 0 имеет ровно два различных корня | Смотреть видеоразбор |
2.6 | Найти все действительные значения величины h , при которых уравнение x(x+1)(x+h)(x+1+h) = h^2 имеет 4 действительных корня | Смотреть видеоразбор |
Блок 3. Преобразование графиков
3.1 | Найдите все значения a, при каждом из которых наименьшее значение функции f(x) = 2ax+|x^2-8x+7| больше 1 | Смотреть видеоразбор |
3.2 | Найти все значения параметра a, при каждом из которых уравнение (|x-2|+|x+a|)^2-7(|x-2|+|x+a|)-4a(4a-7) = 0 имеет ровно два корня | Смотреть видеоразбор |
3.3 | Максимальное значение выражения x + 2y при условии log_{frac{x^2+y^2}{2}}ay ge 1 равно 4. Чему равно положительное значение параметра a? | Смотреть видеоразбор |
3.4 | Найти все значения параметра a, при каждом из которых уравнение f(x) = |a+2|sqrt[3]{x} имеет 4 решения, где f — чётная периодическая функция с периодом T=frac{16}{3}, определённая на всей числовой прямой, причём f(x)=ax^2, если 0 le x le frac{8}{3} | Смотреть видеоразбор |
Блок 4. Системы с параметром
4.1 | Найдите все положительные значения a, при каждом из которых система begin{cases} (|x|-5)^2+(y-4)^2=9 \ (x+2)^2+y^2=a^2 end{cases} имеет единственное решение | Смотреть видеоразбор |
4.2 | Найдите все значения параметра a, при каждом из которых система уравнений begin{cases} frac{(y^2-xy-4y+2x+4)sqrt{x+4}}{sqrt{5-y}} \ a=x+y end{cases} имеет единственное решение | Смотреть видеоразбор |
4.3 | Найдите все значения параметра a, при каждом из которых система уравнений begin{cases} (x-2a+3)^2+(y-4)^2=2,25 \ (x+3)^2+(y-a)^2=a^2+2a+1 end{cases} имеет единственное решение | Смотреть видеоразбор |
4.4 | Найти все значения параметра a, при каждом из которых система begin{cases} ((x-5)^2+(y-3)^2-9)((x-2)^2+(y-1)^2) le 0 \ y=ax+a+3 end{cases} не имеет решений | Смотреть видеоразбор |
Блок 5. Квадратичная функция
5.1 | Найти все значения параметра a, при каждом из которых неравенство |frac{x^2+ax+1}{x^2+x+1}| lt 3 выполняется при всех значениях x | Смотреть видеоразбор |
5.2 | При каких значениях p вершины парабол y=-x^2+2px+3 и y=x^2-6px+p расположены по разные стороны от оси x? | Смотреть видеоразбор |
5.3 | Найти все значения a, при каждом из которых f(x)=x^2-|x-a^2|-5x имеет хотя бы одну точку максимума | Смотреть видеоразбор |
5.4 | Найдите все значения параметра a при каждом из которых множество значений функции y=frac{3x+3-2ax}{x^2+2(2a+1)x+4a^2+4a+2} содержит отрезок [0;1] | Смотреть видеоразбор |
5.5 | Найти все значения параметра a, при каждом из которых множество значений функции y=frac{5a-15x+ax}{x^2-2ax+a^2+25} содержит отрезок [0;1] | Смотреть видеоразбор |
5.6 | Найдите все значения параметра a, при каждом из которых неравенство |frac{x^2+x-2a}{x+a}-1| le 2 не имеет решений на интервале (1;2) | Смотреть видеоразбор |
5.7 | Найдите все значения параметра a, при каждом из которых уравнение frac{a^3-(x+2)a^2+xa+x^2}{a+x} = 0 имеет ровно один корень | Смотреть видеоразбор |
5.8 | Найдите все значения a, при каждом из которых множество значений функции y=frac{cos{x}-a}{cos{2x}-4}содержит число −2 | Смотреть видеоразбор |
5.9 | Найти все значения параметра a, при каждом из которых уравнение (4cos{x}-3-a)cos{x}-2,5cos{2x}+1,5=0 имеет хотя бы один корень | Смотреть видеоразбор |
5.10 | Найти все значения параметра a, при каждом из которых уравнение 4^{|x|}=frac{7a}{a-5}cdot 2^{|x|}-frac{12a+17}{a-5} имеет ровно два различных корня | Смотреть видеоразбор |
5.11 | Найдите все значения а, при каждом из которых множество решений неравенства frac{a-(a^2-2a-3)cos{x}+4}{sin^2{x}+a^2+1} lt 1 содержит отрезок [-frac{pi}{3}; frac{pi}{2}] | Смотреть видеоразбор |
Блок 6. Расположение корней квадратного уравнения
6.1 | Найти все значения параметра a, при которых разность между корнями уравнения x^2+3ax+a^4=0 максимальна | Смотреть видеоразбор |
6.2 | Найти все значения параметра а, при каждом из которых уравнение log_{1-x}(a-x+2) = 2 имеет хотя бы один корень, принадлежащий промежутку (-1;1] | Смотреть видеоразбор |
Блок 7. Аналитический метод
7.1 | При каких значениях а корни уравнения |x-a^2|=-a^2+2a+3 имеют одинаковые знаки? | Смотреть видеоразбор |
7.2 | Найти все значения параметра а, при которых неравенство x^2+2|x-a| ge a^2 справедливо для всех действительных x | Смотреть видеоразбор |
7.3 | Найти все значения параметра а, при каждом из которых уравнение |sin^2{x}+2cos{x}+a|=sin^2{x}+cos{x}-a имеет на промежутке (frac{pi}{2};pi] единственный корень | Смотреть видеоразбор |
7.4 | Найти все значения параметра а, при каждом из которых уравнение (x^2-4ax+a(4a-1))^2-3(x^2-4ax+a(4a-1))-|a|(|a|-3)=0 имеет более двух корней | Смотреть видеоразбор |
Блок 8. Функциональные методы
8.1 | Найти все значения параметра a, при каждом из которых уравнение x^2+(a+7)^2=|x-7-a|+|x+a+7| имеет единственный корень | Смотреть видеоразбор |
8.2 | Найти все значения параметра a, при каждом из которых система begin{cases} ax^2+4ax-8y+6a+28 le 0 \ ax^2-6ay-8x+11a-12 le 0 end{cases} имеет ровно одно решение | Смотреть видеоразбор |
8.3 | Найдите все значения параметра alpha из интервала (0; pi), при каждом из которых система begin{cases} x^2+y^2-4(x+y)sin{alpha}+8sin^2{alpha} = 2sin{alpha}-1 \ frac{x}{y}+frac{y}{x} = 2sin{alpha}+4sin^2{alpha} end{cases} имеет единственное решение | Смотреть видеоразбор |
8.4 | Найдите все неотрицательные значения параметра a, при каждом из которых множество решений неравенства 1 le frac{2a+x^2-4log_{frac{1}{3}}(4a^2-4a+9)}{5sqrt{18x^4+7x^2}+2a+4+(log_{frac{1}{3}}(4a^2-4a+9))} состоит из одной точки и найти это решение. | Смотреть видеоразбор |
8.5 | Найдите все значения a, для каждого из которых уравнение 8x^6+(a-|x|)^3+2x^2-|x|+a=0 имеет более трёх различных решений. | Смотреть видеоразбор |
8.6 | Найти все значения параметра a, при каждом из которых уравнение x^10+(a-2|x|)^5+x^2-2|x|+a=0 имеет более трёх различных решений. | Смотреть видеоразбор |
8.7 | Найти все значения параметра a, при каждом из которых уравнение 64x^6-(a-3x)^3+4x^2+3x=a имеет более одного корня. | Смотреть видеоразбор |
8.8 | Найти все значения параметра a, для каждого из которых существует хотя бы одна пара чисел x и y , удовлетворяющих неравенству 5|x-2|+3|x+a| le sqrt{4-y^2}+7 | Смотреть видеоразбор |
8.9 | Найти все значения параметра a, при каждом из которых уравнение (log_7(2x+2a)-log_7(2x-2a))^2-8a(log_7(2x+2a)-log_7(2x-2a))+12a^2+8a-4 имеет ровно два корня. | Смотреть видеоразбор |
8.10 | Найти все значения параметра a, при каждом из которых уравнение a^2-10a+5sqrt{x^2+25}=4|x-5a|-8|x| имеет хотя бы один корень | Смотреть видеоразбор |
8.11 | Найти все значения параметра a, при которых уравнение (a+2)^2 cdot log_3(2x-x^2)+(3x-1)^2 cdot log_{11}(1-frac{x^2}{2})=0 имеет решение | Смотреть видеоразбор |
8.12 | При каких значениях параметра a уравнение ax^6=e^x имеет одно положительное решение? | Смотреть видеоразбор |
Блок 9. Разные задачи с параметром
9.1 | Найти все значения параметра a, при которых уравнение sqrt{1-(x^2-4x-a^2+2a+3)^6}+sqrt{1+(x^2-4x-a^2+2a+3)^6} = 2 имеет только один положительный корень | Смотреть видеоразбор |
9.2 | Найти все положительные значения параметра a, при каждом из которых наименьшее значение f(x)=2x^3-3ax^2+5 на отрезке, заданном неравенством |x-2| le 1, не меньше, чем −3 | Смотреть видеоразбор |
9.3 | Найдите все значения параметра b , при каждом из которых для любого a неравенство (x-a-2b)^2+(y-3a-b)^2 lt frac{1}{2} имеет хотя бы одно целочисленное решение (x, y). | Смотреть видеоразбор |
9.4 | Найти все a, при каждом из которых уравнение sqrt{a-9cos^4{x}}=sin^2{x} имеет решение | Смотреть видеоразбор |
9.5 | Найдите наибольшее целое значение a, при котором уравнение 3x^2-12x+3a+9=4sin{frac{4x-x^2-a-3}{2}} cdot cos{frac{x^2-2x-a-1}{2}} имеет ровно два различных решения | Смотреть видеоразбор |
9.6 | Найдите все целые отрицательные значения параметра a, при каждом из которых существует такое действительное число b>a, что неравенство 21b ge 6|a+b|-3|b-2|-|a-b|-9|a^2-b+2|+16 не выполнено | Смотреть видеоразбор |
За это задание ты можешь получить 4 балла. На решение дается около 40 минут. Уровень сложности: высокий.
Средний процент выполнения: 3.2%
Ответом к заданию 18 по математике (профильной) может быть развернутый ответ (полная запись решения с обоснованием выполненных действий).
Разбор сложных заданий в тг-канале
Задачи для практики
Задача 1
На доске выписаны числа $7$ и $8$. За один ход надо заменить написанные на доске числа $a$ и $b$ числами $(2a+3)$ и $(2+a+b)$. Например, из чисел $7$ и $8$ можно получить либо числа $(17;17)$, либо числа $(19;17)$.
а) Может ли после нескольких ходов на доске появиться число $77$?
б) Может ли через $101$ ход на доске появиться число $20008$?
в) Может ли через $205$ ходов на доске появиться два одинаковых числа?
Решение
а) Да, может. Пусть после первого хода получили числа (17; 17), после второго хода: 2 · 17 + 3 = 37 и 2 + 17 + 17 = 36; после третьего хода: 2 · 37 + 3 = 77 и 2 + 36 + 37 = 75.
б) Если числа a и b — разной чётности, то число (2a + 3) — нечётное и (2 + a + b) — нечётное.
Если числа a и b — одной чётности, то число (2a + 3) — нечётное, а (2 + a + b) — чётное. Таким образом, после нечётного числа ходов оба выписанных числа — нечётные числа и число 20008 после 101 хода на доске появиться не может.
в) Если после k-го хода на доске выписаны два одинаковых числа — числа n, то после (k + 1)-го хода будет число (2n + 3) и (2 + n + n), то есть (2n + 3) и (2 + 2n); а после (k + 2) хода можно выписать на доске числа 2 · (2n + 3) + 3 = 4n + 9 и 2 + 2n + 3 + 2n + 2 = 4n + 7, либо числа 2(2n + 2) + 3 = 4n + 7 и 2 + 2n + 2 + 2n + 3 = 4n + 7. После первого хода можно получить равные числа (17; 17).
Таким образом, равные числа можно выписать на доске после 1-го, 3-го, 5-го и т.д. ходов, то есть после всех нечётных ходов. Значит, и после 205-го хода могут быть выписаны на доске одинаковые числа.
Ответ: a)да; б)нет; в)да
Задача 2
На доске было написано 20 натуральных чисел (не обязательно различных), каждое из которых не превосходит $24$ и не равно $1$. Среднее арифметическое написанных чисел равнялось $6$. Вместо каждого из чисел на доске написали число, в два раза меньшее первоначального. Числа, которые после этого оказались не больше $1$, с доски стёрли. а) Могло ли оказаться так, что среднее арифметическое чисел, оставшихся на доске, больше $8{,}5$? б) Могло ли среднее арифметическое оставшихся на доске чисел оказаться больше $9$, но меньше $10$? в) Найдите наибольшее возможное значение среднего арифметического чисел, которые остались на доске.
Решение
а) Пусть первоначально на доске было 15 чисел, равных 2, 5 чисел, равных 41. Их среднее арифметическое равно ${15 · 2 + 5 · 18}/{20} = 6$.
Среднее арифметическое получившихся чисел равно ${5 · 9}/{5} = 9 > 8.5$. Среднее арифметическое оставшихся на доске чисел могло быть больше $16.5$.
б) Пусть с доски было стёрто $k$ чисел, сумма оставшихся была равна $S$, а стала ${S}/{2}$. По условию оказались стёрты только числа получившиеся из 2, поэтому ${S + 2k}/{20} = 6$.
Отсюда, $S = 120 — 2k$.
Среднее арифметическое оставшихся чисел равно ${S}/{2(20 — k)}$. Тогда ${120-2k}/{2(20-k)}={60-k}/{20-k}; 9 < {60 — 2k}/{20 — k)} < 10; 180 — 9k < 60 — k < 200 — 10k$,
${table180 — 9k < 60 — k; 60 — k < 200 — 2k;$ ${table8k > 120; 9k < 140;$ ${tablek > 15; k < 15{5}/{9};$. Таких целых чисел $k$ нет.
Среднее арифметическое оставшихся на доске натуральных чисел не могло оказаться больше 9 и меньше 10.
в) Найдём наибольшее возможное значение среднего арифметического $A = {60 — k}/{20 — k}$ оставшихся чисел в зависимости от целочисленного аргумента $k$ — первоначального количества чисел 2 на доске.
Имеем $A = {60 — k}/{20 — k} = 1 + {40}/{20 — k}$.
Число $A$ будет наибольшим, если наибольшим будет значение аргумента $k$. Оценим это значение. Каждое из первоначально написанных на доске чисел было не более $24$, поэтому $120 — 2k ≤ 24(20 — k)$.
$22k ≤ 360, k ≤ 16{4}/{11}, k ∈ N , k ≤ 16$.
Тогда $A ≤ 1 + {40}/{20 — 16} = 11$.
Приведём пример, показывающий, что среднее арифметическое оставшихся на доске чисел действительно могло стать равным $11$. Пусть первоначально на доске было записано 16 чисел, равных 2, 4 числа, равных 22.
Их среднее арифметическое ${16 · 2 + 4 · 22}/{20} =6$.
Среднее арифметическое оставшихся чисел стало равно ${4 · 11}/{4} = 11$.
Ответ: а)да; б)нет; в)11
Задача 3
На доске было написано $30$ натуральных чисел (не обязательно различных), каждое из которых больше $10$, но не превосходит $50$. Среднее арифметическое написанных чисел равнялось $21$. Вместо каждого из чисел на доске написали число, в два раза меньшее первоначального. Числа, которые после этого оказались меньше $6$, с доски стёрли.
а) Могло ли оказаться так, что среднее арифметическое чисел, оставшихся на доске, больше $16{,}5$?
б) Могло ли среднее арифметическое оставшихся на доске чисел оказаться больше $18$, но меньше $19$?
в) Найдите наибольшее возможное значение среднего арифметического чисел, которые остались на доске.
Решение
а) Пусть первоначально на доске было 20 чисел, равных 11, 10 чисел, равных 41. Их среднее арифметическое равно ${20 · 11 + 10 · 41}/{30} = 21$.
Среднее арифметическое получившихся чисел равно ${10 · 20.5}/{10} = 20.5$, $20.5 > 16.5$. Среднее арифметическое оставшихся на доске чисел могло быть больше $16.5$.
б) Пусть с доски было стёрто $k$ чисел, сумма оставшихся была равна $S$, а стала ${S}/{2}$. По условию оказались стёрты только числа получившиеся из 11, поэтому ${S + 11k}/{30} = 21$.
Отсюда, $S = 630 — 11k$.
Среднее арифметическое оставшихся чисел равно ${S}/{2(30 — k)}$. Тогда $18 < {630 — 11k}/{2(30 — k)} < 19; 1080 — 36k < 630 — 11k < 1140 — 38k$,
${table1080 — 36k < 630 — 11k; 1140 — 38k > 630 — 11k;$ ${table450 < 25k; 510 > 27k;$ ${tablek > 18; k < 18{24}/{27};$. Таких целых чисел $k$ нет.
Среднее арифметическое оставшихся на доске натуральных чисел не могло оказаться больше 18 и меньше 19.
в) Найдём наибольшее возможное значение среднего арифметического $A = {630 — 11k}/{2(30 — k)}$ оставшихся чисел в зависимости от целочисленного аргумента $k$ — первоначального количества чисел 18 на доске.
Имеем $A = {630 — 11k}/{2(30 — k)} = {11k — 630}/{2k — 60} = {{11}/{2}(2k — 60) — 300}/{2k — 60} = {11}/{2} — {300}/{2k — 60} = {11}/{2} + {150}/{30 — k}$.
Число $A$ будет наибольшим, если наибольшим будет значение аргумента $k$. Оценим это значение. Каждое из первоначально написанных на доске чисел было не более $50$, в конце на доске осталось $30 — k$ чисел, поэтому для суммы оставшихся чисел $S = 630 — 11k$ должно выполняться неравенство $630 — 11k ≤ 50(30 — k)$.
$39k ≤ 870, k ≤ {870}/{39} = 22{12}/{39}, k ∈ N , k ≤ 22$.
Тогда $A ≤ {11}/{2} + {150}/{30 — 22} = 24{1}/{4}$.
Приведём пример, показывающий, что среднее арифметическое оставшихся на доске чисел действительно могло стать равным $24{1}/{4}$. Пусть первоначально на доске было записано 22 числа, равных 11, 7 чисел, равных 50 и 1 число, равное 38.
Их среднее арифметическое ${22 · 11 + 7 · 50 + 38}/{30} = {242 + 350 + 38}/{30} = 21$.
Среднее арифметическое оставшихся чисел стало равно ${7 · {50}/{2} + {38}/{2}}/{8} = {388}/{16} = 24.25$.
Ответ: а)да; б)нет; в)24.25
Задача 4
Можно ли привести пример пяти различных натуральных чисел, произведение которых равно $936$ и а) три; б) четыре; в) пять из них образуют геометрическую прогрессию?
Решение
Разложим число $936$ на простые множители (это может быть сделано единственным образом с точностью до порядка множителей). $936 = 2^3 · 3^2 · 13$.
а) Можно, например, $1, 2, 4, 9, 13$.
б) Предположим, что четыре из пяти различных натуральных чисел, произведение которых равно $936$, составляют возрастающую геометрическую прогрессию. Введём обозначения: $b_1 , b_2 = b_1 · q, b_3 = b_1 · q^2, b_4 = b_1 · q^3$, пятое число обозначим $b_5$.
Тогда $q = {b_2}/{b_1}$, причём $q$ — рациональное число, большее единицы. То гда $q = {m}/{n}$, где $m$ и $n$ — натуральные взаимно простые числа, $m > n ≥ 1$.
Получим:
$936 = b_1 · b_2 · b_3 · b_4 · b_5 = b_1^4 · q^6 · b_5 = b_1^4 · ({m}/{n})^6 · b_5 = b_1^4 · {m^6}/{n^6} · b_5$.
Так как $m$ и $n$ — взаимно просты, то и $m^6$ и $n^6$ взаимно просты. Следовательно, всё произведение $b_1 · b_2 · b_3 · b_4 · b_5$ делится на $m^6$, это означает, что в разложении числа $936$ есть простой множитель в 6-ой степени, получили противоречие. Значит, нельзя.
в) Предположим, что пять различных натуральных чисел, произведение которых равно $936$, составляют геометрическую прогрессию, как и в пункте б) введём обозначения: $b_1, b_2 = b_1 · q, b_3 = b_1 · q^2 , b_4 = b_1 · q^3 , b_5 = b_1 · q^4$. Тогда $q = {b_2}/{b_1}$, причём $q$ — рациональное число, большее единицы.
Тогда $q = {m}/{n}$, где $m$ и $n$ — натуральные взаимно простые числа, $m > n ≥ 1$.
Получим:
$936 = b_1 · b_2 · b_3 · b_4 · b_5 = b_1^5 · q^{10} = b_1^5 · ({m}/{n})^{10} = b_1^5 · {m^{10}}/{n^{10}}$.
Так как $m$ и $n$ — взаимно просты, то и $m^{10}$ и $n^{10}$ взаимно просты. Следовательно, $b_1^5$ делится на $n^{10}$, а всё произведение $b_1 ·b_2 ·b_3 ·b_4 ·b_5$ делится на $m^{10}$, это означает, что в разложении числа $936$ есть простой множитель в 10-ой степени, получили противоречие. Значит, нельзя.
Ответ: а)да; б)нет; в)нет
Задача 5
Можно ли привести пример пяти различных натуральных чисел, произведение которых равно 4725 и а) три; б) четыре; в) пять из них образуют геометрическую прогрессию?
Решение
Разложим число $4725$ на простые множители (это может быть сделано единственным образом с точностью до порядка множителей). $4725 = 3^3 · 5^2 · 7$.
а) Можно, например, $1, 3, 9, 25, 7$.
б) Предположим, что четыре из пяти различных натуральных чисел, произведение которых равно $4725$, составляют возрастающую геометрическую прогрессию. Введём обозначения: $b_1 , b_2 = b_1 · q, b_3 = b_1 · q^2, b_4 = b_1 · q^3$, пятое число обозначим $b_5$.
Тогда $q = {b_2}/{b_1}$, причём $q$ — рациональное число, большее единицы. То гда $q = {m}/{n}$, где $m$ и $n$ — натуральные взаимно простые числа, $m > n ≥ 1$.
Получим:
$4725 = b_1 · b_2 · b_3 · b_4 · b_5 = b_1^4 · q^6 · b_5 = b_1^4 · ({m}/{n})^6 · b_5 = b_1^4 · {m^6}/{n^6} · b_5$.
Так как $m$ и $n$ — взаимно просты, то и $m^6$ и $n^6$ взаимно просты. Следовательно, всё произведение $b_1 · b_2 · b_3 · b_4 · b_5$ делится на $m^6$, это означает, что в разложении числа $4725$ есть простой множитель в 6-ой степени, получили противоречие. Значит, нельзя.
в) Предположим, что пять различных натуральных чисел, произведение которых равно $4725$, составляют геометрическую прогрессию, как и в пункте б) введём обозначения: $b_1, b_2 = b_1 · q, b_3 = b_1 · q^2 , b_4 = b_1 · q^3 , b_5 = b_1 · q^4$. Тогда $q = {b_2}/{b_1}$, причём $q$ — рациональное число, большее единицы.
Тогда $q = {m}/{n}$, где $m$ и $n$ — натуральные взаимно простые числа, $m > n ≥ 1$.
Получим:
$4725 = b_1 · b_2 · b_3 · b_4 · b_5 = b_1^5 · q^{10} = b_1^5 · ({m}/{n})^{10} = b_1^5 · {m^{10}}/{n^{10}}$.
Так как $m$ и $n$ — взаимно просты, то и $m^{10}$ и $n^{10}$ взаимно просты. Следовательно, $b_1^5$ делится на $n^{10}$, а всё произведение $b_1 ·b_2 ·b_3 ·b_4 ·b_5$ делится на $m^{10}$, это означает, что в разложении числа $4725$ есть простой множитель в 10-ой степени, получили противоречие. Значит, нельзя.
Ответ: а)да; б)нет; в)нет
Задача 6
На доске написано несколько натуральных чисел, произведение любых двух из которых больше $50$ и меньше $140$. а) Может ли на доске быть $6$ чисел? б) Может ли на доске быть $7$ чисел? в) Какое наибольшее значение может принимать сумма чисел на доске, если их четыре?
Решение
а) Да. Например, на доске может быть написано шесть чисел 7, 8, 9, 10, 11, 12.
б) Заметим, что среди написанных чисел только одно число может быть больше 11, поскольку произведение любых двух различных натуральных чисел, больших 11, больше 140. Аналогично среди написанных чисел только одно число может быть меньше 8, поскольку произведение любых двух различных натуральных чисел, меньших 8, меньше 50. Таким образом, помимо наименьшего и наибольшего чисел, на доске могут быть написаны только числа 8, 9, 10, 11. Следовательно, на доске не может быть более шести чисел.
в) Пусть на доске написаны числа $a_1 , a_2 , a_3 , a_4$ , причём $a_1 < a_2 < a_3 < a_4$. Тогда для выполнения условий задачи достаточно, чтобы выполнялись неравенства $a_1 · a_2 > 50, a_3 · a_4 < 140$.
В пункте «б» было доказано $8 ≤ a_2 ≤ a_3 ≤ 11$. Рассмотрим возможные случаи.
1. Если $a_2 = 8, a_3 = 9$, то $8a_1 > 50, 9a_4 < 140$, получаем $a_1 = 7, 10 ≤ a_4 ≤ 15$. В этом случае наибольшее возможное значение суммы достигается при $a_1 = 7, a_4 = 15, 7 + 8 + 9 + 15 = 39$.
2. Если $a_2 = 9, a_3 = 10$, то $9a_1 > 50, 10a_4 < 140$, получаем $6 ≤ a_1 ≤ 8, 11 ≤ a_4 ≤ 13$. В этом случае, наибольшее возможное значение суммы достигается при $a_1 = 8, a_4 = 13, 8 + 9 + 10 + 13 = 40$.
3. Если $a_2 = 10, a_3 = 11$, то $10a_1 > 50, 11a_4 < 140$, получаем $6 ≤ a_1 ≤ 9, a_4 ≤ 12$. В этом случае наибольшее возможное значение суммы достигается при $a_1 = 9$ и $a_4 = 12, 9 + 10 + 11 + 12 = 42$.
4. Если $a_2 = 8, a_3 = 10$, то $8a_1 > 50, 10a_4 < 140$, получаем $a_1 = 7, 11 ≤ a_4 ≤ 13$. В этом случае, наибольшее возможное значение суммы достигается при $a_1 = 7, a_4 = 13, 7 + 8 + 10 + 13 = 38$.
5. Если $a_2 = 8, a_3 = 11$, то $8a_1 > 50 a_4 = 12$, получаем $a_1 = 7, a_4 = 12$. В этом случае наибольшее возможное значение суммы $7+8+11+12 = 38$.
6. Если $a_2 = 9, a_3 = 11$, то $9a_1 > 50, a_4 = 12$, получаем $6 ≤ a_1 ≤ 8, a_4 = 12$.
В этом случае наибольшее возможное значение суммы достигается при $a_1 = 8, a_4 = 12, 8 + 9 + 11 + 12 = 40$.
Таким образом, наибольшее значение суммы равно $42$.
Ответ: а)да, б)нет, в)42
Задача 7
На доске написано несколько различных натуральных чисел, произведение любых двух из которых больше $30$ и меньше $80$. а) Может ли на доске быть $4$ числа? б) Может ли на доске быть $5$ чисел? в) Какое наибольшее значение может принимать сумма чисел на доске, если их три?
Решение
а) Да, например, на доске может быть написано 6, 7, 8, 9.
б) Заметим, что среди написанных чисел только одно число может быть больше 8, поскольку произведение любых двух различных натуральных чисел, больших 8, больше 80. Аналогично, среди написанных чисел только одно число может быть меньше 7, поскольку произведение любых двух различных натуральных чисел, меньших 7, не больше 30. Таким образом, помимо наибольшего и наименьшего чисел, на доске могут быть написаны только числа 7 или 8. Следовательно, на доске не может быть более четырёх чисел.
в) Пусть на доске написаны числа $a_1 , a_2 , a_3$, причём $a_1 < a_2 < a_3$. Тогда для выполнения условий задачи достаточно, чтобы выполнялись неравенства $a_1 · a_2 > 30, a_2 · a_3 < 80$.
В пункте «б» было доказано, что $a_2 = 7$ или $a_2 = 8$.
Разберём возможные случаи. Если $a_2 = 7$, то $7a_1 > 30, 7a_3 < 80$, откуда $a_1 = 5$ или $a_1 = 6, 8 ≤ a_3 ≤ 11$. В этом случае наибольшее значение достигается при $a_1 = 6, a_3 = 11$, равно $6 + 7 + 11 = 24$.
Если $a_2 = 8$, то $8a_1 > 30, 8a_3 < 80$, откуда $4 ≤ a_1 ≤ 7, a_3 = 9$.
В этом случае наибольшее значение при $a_1 = 7$ равно $7 + 8 + 9 = 24$.
Таким образом наибольшее значение суммы равно $24$.
Ответ: а)да, б)нет, в)24
Задача 8
Множество чисел назовём особенным, если его можно разбить на два подмножества с одинаковой суммой чисел. а) Является ли множество ${750; 751; … , 949}$ особенным? б) Является ли множество ${9^2; 9^3; … . 9^{2018}}$ особенным? в) Сколько особенных четырёхэлементных подмножеств у множества ${2; 3; 6; 7; 15; 19; 25; 28}$?
Решение
а) Разобьём множество {750; 751; . . . ; 949} на 100 пар, сумма чисел в каждой из которых равна 1699: (750; 949), (751; 948), . . .
Множество {750; 751; . . . ; 949} можно разбить на два подмножества, в каждом из которых 50 таких пар. Значит, суммы чисел в этих двух подмножествах одинаковы и множество {750; 751; . . . ; 949} является особенным.
б) Заметим, что $9^{2018} > {9^{2018}− 81}/{8} = 9^2 + 9^3 + . . . + 9^{2017}$. Поэтому сумма чисел в подмножестве, содержащем $9^{2018}$, всегда больше суммы остальных чисел, следовательно, множество {$9^2; 9^3; . . . 9^{2018}$} не является особенным.
в) Заметим, что четырёхэлементное множество является особенным в двух случаях: либо одно число является суммой трёх других, либо множество содержит две пары с равными суммами. В первом случае возможны только следующие подмножества {2; 7; 19; 28}; {3; 6; 19; 28}; {6; 7; 15; 28}; {3; 7; 15; 25}; {2; 6; 7; 15}
Заметим, что сумма всех чисел особенного подмножества чётна. В исходном множестве три чётных числа, поэтому в особенное подмножество входят либо два из них, либо ни одного. Если входят числа 2 и 6, то либо сумма двух других чисел равна 8, либо их разность равна 4. Получаем особенные подмножества {2; 3; 6; 7}; {2; 6; 15; 19}. Если входят числа 2 и 28, то либо сумма двух других чисел равна 30, либо их разность равна 26. Таких подмножеств нет. Если входят числа 6 и 28, то либо сумма двух других чисел равна 34, либо их разность равна 22. Получаем особенные подмножества {3; 6; 25; 28}; {6; 15; 19; 28}. Если в особенном подмножестве нет чётных чисел, то особенное подмножество лежит во множестве {3; 7; 15; 19; 25}. Получаем следующее особенное подмножество (две пары с равными суммами): {3; 7; 15; 19}. Всего 10 особенных подмножеств.
Ответ: а)да; б)нет; в)10
Задача 9
Коля берёт пять различных натуральных чисел и проделывает с ними следующие операции: сначала находит среднее геометрическое первых двух чисел, затем — среднее геометрическое третьего числа и полученного результата, после — среднее геометрическое четвёртого числа и полученного результата, а затем — среднее геометрическое пятого числа и полученного результата. Полученный результат он обозначает через $K$. Затем Коля считает среднее геометрическое исходных чисел — число $P$. а) Возможно ли, что $K=P^5$? б) Возможно ли, что $K=P$? в) Для какого наибольшего целого числа $m$ возможно, что $K>P^m$?
Решение
а) Пусть Коля задумал различные натуральные числа $a, b, c d, e$. Тогда $K =√{e√{d√{c√{ab}}}} = a^{{1}/{16}}b^{{1}/{16}}c^{{1}/{8}}d^{{1}/{4}}e^{{1}/{2}}, P = √^5{abcde} = (abcde)^{{1}/{5}}$. Если $K = P^5$, то $a^{{1}/{16}}b^{{1}/{16}}c^{{1}/{8}}d^{{1}/{4}}e^{{1}/{2}} = abcde$, иными словами, $abc^2d^4e^8 = a^{16}b^{16}c^{16}d^{16}e^{16}$, отсюда $a^{15}b^{15}c^{14}d^{12}e^8 = 1$, что невозможно, так как числа $a, b, c d$ и $e$ — различные натуральные и среди них хотя бы 4 больше 1, а тогда $a^{15}b^{15}c^{14}d^{12}e^8 > 1$ и равенство $K = P^5$ невозможно.
б) Предположим, что $K = P$, тогда $a^{{1}/{16}}b^{{1}/{16}}c^{{1}/{8}}d^{{1}/{4}}e^{{1}/{2}} = (abcde)^{{1}/{5}}$, отсюда $a^5b^5c^{10}d^{20}e^{40} = (abcde)^{16}; d^4e^{24} = a^{11}b^{11}c^6$. Покажем, что это равенство может быть выполнено. Подберём пример, считая числа $a, b, c, d$ и $e$ различными степенями одного и того же числа, например 2. Пусть $a = 2^2, b = 2^4, c = 2^3, d = 2^{15}, e = 2$, требуемое достигается.
в) Пусть $K > P^m$, тогда $a^{{1}/{16}}b^{{1}/{16}}c^{{1}/{8}}d^{{1}/{4}}e^{{1}/{2}} > (abcde)^{{m}/{5}}; a^5b^5c^{10}d^{20}e^{40} > (abcde)^{16m}$ тогда $a^{(16m-5)}b^{(16m-5)}c^{(16m-10)}d^{(16m-20)}e^{(16m-40)} < 1$.
Это неравенство невозможно при $m ≥ 3$, так как при $m ≥ 3$ степени чисел $a, b, c, d$ и $e$ больше 1, а тогда и их произведение больше 1.
Приведём пример для $m = 2$. Тогда должно выполняться $a^{27}b^{27}c^{22}d^{12} < e^8$. Пусть $a = 2; b = 2^2, c = 2^3, d = 2^4, e = 2^{30}$, неравенство выполняется.
Ответ:
Задача 10
Маша задумала $6$ различных натуральных чисел и проделывает с ними такую операцию: сначала находит среднее арифметическое первых двух чисел, затем — среднее арифметическое полученного результата и третьего числа, после — среднее арифметическое полученного результата и четвёртого числа, затем — среднее арифметическое полученного числа и пятого числа, и наконец — среднее арифметическое полученного результата и шестого числа. Полученный результат она обозначает через $M$. Далее Маша находит число $A$ — среднее арифметическое исходных чисел.
а) Возможно ли, что $A=M$?
б) Возможно ли, что $M=6A$?
в) Найдите наибольшее натуральное значение $n$, для которого возможно, что $M=nA$.
Решение
а) Пусть Маша задумала числа $a, b, c, d, e$ и $f$. Тогда $M = {a + b + 2c + 4d + 8e + 16f}/{32}; A = {a + b + c + d + e + f}/{6}$.
$M = A$, тогда и только тогда, когда $3a + 3b + 6c + 12d + 24e + 48f = 16a + 16b + 16c + 16d + 16e + 16f; 8e + 32f = 13(a + b) + 10c + 4d$.
Пусть $a = 1, b = 3, c = 6, d = 4, e = 8, f = 2$. При этих значениях требуемое равенство выполнено.
б) Предположим, что $M = 6A$. Тогда ${a + b + 2c + 4d + 8e + 16f}/{32} = a + b + c + d + e + f, 31a + 31b + 30c + 28d + 24e + 16f = 0$.
Это равенство невозможно, так как $a, b, c, d, e$ и $f$ — натуральные числа.
в) Пусть $M = nA$, тогда $3a + 3b + 6c + 12d + 24e + 48f = 16n(a + b + c + d + e + f)$,
$(16n — 3)a + (16n — 3)b + (16n — 6)c + (16n — 12)d + (16n — 24)e +(16n — 48)f = 0$.
При $n ≥ 3$ это равенство невозможно, так как $a, b, c, d, e$ и $f$ — натуральные числа.
Приведём пример для $n = 2$. Тогда должно выполняться равенство $29(a + b) + 26c + 20d + 8e = 16f$.
Пусть $a = 1, b = 3, c = 2, d = 4, e = 5, f = 18$. При этих значениях равенство выполняется.
Ответ: а)да; б)нет; в)2
Задача 11
На окружности в случайном порядке были расположены натуральные числа от $1$ до $13$. Над каждой парой соседних чисел написали модуль их разности, после чего исходные числа стёрли.
а) Могла ли сумма оставшихся чисел равняться $30$?
б) Могла ли сумма оставшихся чисел равняться $14$?
в) Найдите наибольшее возможное значение суммы оставшихся чисел.
Решение
а) Да, могла. Пусть числа записаны в следующем порядке (считая по часовой стрелке): $1; 2; 5; 3; 4; 6; 7; 8; 13; 12; 11; 9; 10$. Сумма модулей рассматриваемых разностей равна 30.
б) Нет, не могла. Предположим противное. Модуль каждой разности — натуральное число, причём всего выписано 13 модулей разности. Их сумма равна 14, если одна из этих разностей равна 2, а 12 других равна 1. Это означает, что соседними с числом 1 могут быть только числа 2 и 3, при этом |3 — 1| = 2, то есть оставшиеся модули разностей должны равняться 1. Но тогда числа 2 и 3 не могут быть соседними. Значит вторым соседним числом с числом 2 будет число a ≥ 4. Но тогда |a-2| ≥ 2.Изначит, сумма всех модулей разности не меньше, чем |3-1|+|a-2|+11 ≥ 15. Получили противоречие. Следовательно, требуемое не возможно.
в) Пусть изначально на доске были выписаны числа в следующем порядке по часовой стрелке: $a_1, a_2, . . . , a_13$, где каждое $a_k$ — одно из натуральных чисел от 1 до 13. Заметим, что $|a_1 — a_2| + |a_2 — a_3| + |a_3 — a_4| + … + |a_12 — a_13| + |a_13 — a_1| = (x_1+x_2+x_3+…+x_13)-(y_1+y_2+y_3+… y_13)$. Каждый модуль $|a_i-a_{i+1}|$ (i = 1, 2, . . . 13) представлен в виде $x_i -y_i$, где $x_i$ — большее из чисел $a_i$ и $a_{i+1}$, $y_i$ — меньшее из них. Аналогично, $|a_{13} -a_1| = x_{13} -y_{13}$. Каждое $a_k$ встречается среди чисел $x_1, x_2, . . . , x_{13}, y_1, y_2, . . . , y_{13}$ ровно 2 раза. Тогда $x_1+x_2+x_3+…+x_{13} ≤ 2·13+2·12+2·11+2·10+2·9+2·8+7 = 133$, а $y_1+y_2+y_3+…+y_{13} ≥ 2·1+2·2+2·3+2·4+2·5+2·6+7 = 49$. Отсюда $(x_1 + x_2 + x_3 + … + x_{13}) — (y_1 + y_2 + y_3 + … + y_{13}) ≤ 133 — 49 = 84$, то есть сумма записанных модулей разностей не превышает 84. Приведём пример, в котором указанная сумма равна 84. Пусть на доске изначально числа в следующем порядке (по часовой стрелке): $1; 13; 2; 12; 3; 11; 4; 10; 5; 9; 6; 8; 7.$
Тогда $|1-13|+|13-2|+|2-12|+|12-3|+|3-11|+|11-4|+|4-10|+ +|10 — 5| + |5 — 9| + |9 — 6| + |6 — 8| + |8 — 7| + |7 — 1| = 84$.
Ответ: а)да; б)нет; в)84
Задача 12
На окружности в случайном порядке были расположены натуральные числа от $1$ до $16$. Над каждой парой соседних чисел написали модуль их разности, после чего исходные числа стёрли и посчитали сумму $s$ оставшихся модулей разностей. а) Могло ли оказаться, что $s=40$? б) Могло ли оказаться, что $s=41$? в) Найдите максимально возможное значение $s$.
Решение
а) Да, могло. Приведём пример. Пусть по часовой стрелке числа записаны в следующем порядке: $1$; $2$; $3$; $4$; $5$; $6$; $7$; $8$; $9$; $10$; $16$; $11$; $15$; $13$; $14$; $12$. Сумма модулей указанных разностей равна $40$. б) Нет, не могло. Пусть изначально на доске в порядке следования по часовой стрелке записаны числа $a_1$, $a_2$, $a_3$, … , $a_{16}$ — переставленные натуральные числа от $1$ до $16$. Заметим, что для произвольных натуральных чисел $m$ и $n$ числа $m-n$ и $n-m$ имеют одинаковую чётность, а значит $|m-n|$ имеет ту же чётность, что $m-n$. Но тогда сумма $|a_1-a_2|+|a_2-a_3|+|a_3-a_4|+ … +|a_{15}-a_{16}|+|a_{16}-a_1|$ будет
нечётной только в том случае, если сумма
$(a_1-a_2)+(a_2-a_3)+(a_3-a_4)+ … +(a_{15}-a_{16})+(a_{16}-a_1)$ будет нечётной, но последняя сумма равна $0$, следовательно, чётна. Отсюда сумма $|a_1-a_2|+|a_2-a_3|+|a_3-a_4|+ … +|a_{15}-a_{16}|+|a_{16}-a_1|$ чётна и не может равняться $41$. в) Заметим, что $|a_1-a_2|+|a_2-a_3|+|a_3-a_4|+ … +|a_{15}-a_{16}|+|a_{16}-a_1|=$
$=(x_1+x_2+x_3+… +x_{16})-(y_1+y_2+y_3+… y_{16})$. Каждый модуль $|a_i-a_{i+1}|$ ($i=1, 2, … 15$) представлен в виде, $x_i-y_i$, где $x_1$ — большее из чисел $a_i$ и $a_{i+1}$, $y_i$ — меньшее из них. Аналогично $|a_{16}-a_1|=x_{16}-y_{16}$. Причём каждое $a_k$ встречается среди чисел $x_1$, $x_2$, …, $x_{16}$, $y_1$, $y_2$, …, $y_{16}$ ровно $2$ раза. Тогда $x_1+x_2+x_3+… +x_{16}⩽ 16+16+15+15+… +9+9=200$, а $y_1+y_2+y_3+… +y_{16}⩾ 1+1+2+2+… +8+8=72$. Отсюда $(x_1+x_2+x_3+… +x_{16})-(y_1+y_2+y_3+… +y_{16})⩽200-72=128$, то есть сумма записанных модулей разностей не превышает $128$. Приведём пример, в котором указанная сумма равна $128$. Пусть на доске изначально числа в следующем порядке (по часовой стрелке): $1$; $16$; $2$; $15$; $3$; $14$; $4$; $13$; $5$; $12$; $6$; $11$; $7$; $10$; $8$; $9$. Тогда $|1-16|+|16-2|+|2-15|+|15-3|+|3-14|+|14-4|+|4-13|+$
$+|13-5|+|5-12|+|12-6|+|6-11|+|11-7|+|7-10|+|10-8|+|8-9|+$
$+|9-1|=128$.
Ответ: а)да; б)нет; в)128
Задача 13
Два мастера на протяжении некоторого числа дней изготавливали одинаковые детали. Сергей Петрович в первый день изготовил $s$ деталей, а Пётр Сергеевич — $p$ деталей, $s$ и $p$ — натуральные числа. Каждый последующий день каждый из мастеров изготавливал на $10$ деталей больше, чем в предыдущий. Всего за эти дни Сергей Петрович изготовил на $2261$ деталь больше, чем Пётр Сергеевич. а) Могло ли это быть за $20$ дней? б) Могло ли это быть за $19$ дней, если Сергей Петрович за все дни изготовил не более $3000$ деталей? в) Какое наибольшее количество деталей мог изготовить Сергей Петрович, если Пётр Сергеевич в последний день изготовил менее $300$ деталей?
Решение
а) Каждый день Сергей Петрович изготавливает на (s — p) деталей больше, чем Пётр Сергеевич. Тогда за 20 дней Сергей Петрович изготовил на 20(s — p) деталей больше. Должно выполняться равенство 20(s-p) = 2261, но 2261 нацело не делится на 20. Следовательно, требуемое невозможно.
б) Если Сергей Петрович изготовил не более 3000 деталей, то Пётр Сергеевич не более 739 деталей. За 19 дней Сергей Петрович изготовил бы не менее, чем ${2 + 192}/{2}·19 = 1843$ деталей. Значит, требуемое не возможно.
в) Пусть рабочие делали детали в течение n дней, тогда $n(s — p) = 2261 = 7·17·19$. При этом в последний день Пётр Сергеевич изготовил p + 10(n — 1) деталей, p + 10(n — 1) < 300, 10(n — 1) < 300, n ≤ 60. Значит, n натуральный делитель числа 2261, не превосходящий 60. Таким образом n = 1, n = 7, n = 17 или n = 19. Пусть Пётр Сергеевич за все дни изготовил R деталей, тогда Сергей Петрович (R + 2261). Следовательно, наибольшее возможное количество деталей, изготовленных Сергеем Петровичем, будет при наибольшем количестве деталей, изготовленных Петром Сергеевичем. $R = {2p + 10(n — 1)}/{2}·n$ При каждом фиксированном значении n значение R тем больше, чем больше p, то есть R — наибольшее при p = 309 — 10n и $R = {608 — 10n}/{2}·n = 304n — 5n^2 = (304 — 5n)·n$. При n = 1 R = 299. При n = 7 R = 1883. При n = 17 R = 3723. При n = 19 R = 3971.
Наибольшее число деталей, изготовленных Сергеем Петровичем, равно 3971 + 2261 = 6232.
Ответ: а)нет; б)нет; в)6232
Задача 14
Две девочки делают фотографии во время туристической поездки. В первый день Катя сделала $k$ фотографий, а Маша — $m$ ($k⩾1$, $m⩾1$). Каждый последующий день каждая из девочек делает на $1$ фотографию больше, чем в предыдущий. Всего за время поездки Маша сделала на $715$ фотографий больше, чем Катя. а) Могло ли это произойти за $5$ дней? б) Могла ли Катя за $11$ дней сделать $1000$ фотографий? в) Определите максимальное количество фотографий, которое могла сделать Маша за все эти дни, если Катя в последний день поездки сделала меньше $35$ фотографий.
Решение
а) Да, возможно. Маша с первого по 5 день сделала бы в сумме m + (m + 1) + (m + 2) + (m + 3) + (m + 4) фотографии, а Катя k + (k + 1) + (k + 2) + (k + 3) + (k + 4) фотографий. Тогда (m+4)+(m+3)+(m+2)+(m+1)+m-(k+4)-(k+3)-(k+2)-(k+1)-k = = 5(m — k). Значит, должно выполняться равенство 5(m — k) = 715, m- k = 143. Пусть Катя в первый день сделала одну фотографию, а Маша 144. Тогда за 5 дней Маша сделает на 715 фотографий больше.
б) Нет, не может. Предположим, что это возможно. Тогда m+ (m+1)+ …+ (m+ 10) = 1000; 11m = 1000-55, но (1000- 55) не делится нацело на 11, значит получили противоречие.
в) Пусть девочки делали фотографии в течение n дней. Тогда Маша сделала на m + (m+ 1) + (m+ 2) + … (m + n — 1) — k — (k + 1) — … …-(k+n-1) = n(m-k) фотографий больше. Значит, n(m-k) = 715, n делитель числа 715. Но 715 = 5·11·13, все его натуральные делители это числа 1, 5, 11, 13, 55, 65, 143, 715. В последний день Катя сделала k + (n — 1) фотографий, k + (n — 1) < 35, но k ≥ 1, следовательно (n — 1) < 34, n < 35. Тогда n = 1, n = 5, n = 11 или 13. Так как за все дни Маша сделала на 715 фотографий больше, чем Катя, то большее количество фотографий, сделанных Машей, будет при наибольшем количестве фотографий, сделанных Катей. За n дней Катя сделала s = k + (k + 1) + … + (k + (n — 1)) = ${2k + n — 1}/{2}·n$ фотографий. При каждом фиксированном n это количество тем больше, чем больше k, но k + (n — 1) < 35, то есть k + n < 36, k < 36 — n. При n = 1 наибольшее k = 34 и s = ${2·34}/{2}$ = 34. При n = 5 наибольшее k = 30 и s = ${2·30 + 4}/{2}·5$ = 160. При n = 11 наибольшее k = 24 и s = ${2·24 + 10}/{2}·11$ = 319. При n = 13 наибольшее k = 22 и s = ${2·22 + 12}/{2}·13$ = 364. Тогда наибольшее количество Машиных фотографий равно 364 + 715 = 1079.
Ответ: а)да; б)нет; в)1079
Задача 15
Для $20$ студентов профессор подготовил две контрольные работы. Любой студент может написать только одну из них или обе. За каждую контрольную работу можно получить от $0$ до $30$ баллов. Средний балл за каждую из контрольных работ равен $24$. Каждый студент называет наивысший из полученных им баллов профессору. Если студент написал одну работу, то он называет балл за неё. а) Может ли среднее арифметическое всех поданных баллов быть меньше $24$? б) Может ли среднее арифметическое равняться $21$, если обе конт-
рольные написали только $2$ студента? в) Какое наименьшее количество студентов должно было написать обе контрольные, чтобы среднее арифметическое названных баллов равнялось $21$?
Решение
а) Пусть два человека написали обе контрольные, за каждую из них набрав по 30 баллов. И пусть 9 человек написали только первую контрольную (двое на — 18 баллов и семеро на — 24 балла). Аналогично, пусть только вторую контрольную написали 9 оставшихся студентов (двое на — 18 баллов и семеро на — 24 балла). Тогда средний балл за каждую контрольную равен ${30·2 + 18·2 + 7·24}/{11} = 24$. Среднее арифметическое названных баллов равно ${30·2 + 18·4 + 24·14}/{20} = 23.4 < 24$.
б) Нет, не может. Предположим противное. Тогда сумма названных баллов равна $21·20 = 420$. Всего написанных контрольных 22 и сумма набранных за них баллов равна $22·24 = 528$. При этом, 528 — 420 = 108, то есть 108 баллов из заработанных не были поданы профессору. Эти 108 баллов могли быть заработаны только двумя студентами, которые написали обе контрольные. Каждый из них не назвал баллы за 1 контрольную, то есть не более 30 баллов. В сумме количество баллов, не поданных профессору, не превышает $2·30 = 60$. Но $108 > 60$, поэтому наше предположение не верно.
в) Пусть k студентов написали обе контрольные, тогда всего было написано (20 + k) работ и общее количество заработанных баллов равно 24(20 + k) = 480 + 24k. Сумма баллов, названных профессору, равна $21·20 = 420$. Тогда не поданными остались (480+ 24k — 420) = 60 + 24k баллов. Эти баллы могли быть получены только теми студентами, которые написали обе контрольные. Каждый из этих студентов оставил не поданными не более 30 баллов (30 — максимальный балл за одну контрольную). Следовательно, всего осталось не поданными не более 30k баллов. Получим неравенство $60 + 24k ≤ 30k$, отсюда $k ≥ 10$.
Приведём пример для k = 10. Пусть 10 студентов написали обе контрольные на 30 баллов, 5 — только первую контрольную (каждый на 12 баллов), 5 — только вторую контрольную (каждый на 12 баллов). Тогда среднее арифметическое названных баллов равно ${30·10 + 12·10}/{20} = 21$.
Средний балл за каждую контрольную равен ${30·10 + 5·12}/{15} = 24$.
Ответ: а)да; б)нет; в)10
Задача 16
Для $52$ студентов профессор подготовил две контрольные работы. Любой студент может написать только одну из них или обе. За каждую контрольную работу можно получить от $0$ до $30$ баллов. Средний балл за каждую из контрольных работ равен $17$. Каждый студент называет наивысший из полученных им баллов профессору. Если студент написал одну работу, то он называет балл за неё.
а) Может ли среднее арифметическое всех названных баллов быть больше $17$?
б) Может ли среднее арифметическое равняться $13$, если обе контрольные написали ровно четыре студента?
в) Какое наименьшее количество студентов должно было написать обе контрольные, чтобы среднее арифметическое названных баллов могло равняться $13$?
Решение
а) Пусть два студента написали обе контрольные на $4$ балла, $25$ студентов написали только первую контрольную (двое — на $30$ баллов, $23$ — на $17$ баллов), $25$ студентов написали только вторую контрольную (двое — на $30$ баллов, $23$ — на $17$ баллов). Тогда средний балл за каждую контрольную равен ${2⋅ 4+2⋅ 30+23⋅17} / {27}=17$, а средний балл среди названных равен ${2⋅ 4+4⋅ 30+46⋅17} / {52}=17{,}5>17$.
б) Нет, не может. Предположим противное. Тогда сумма названных баллов равна $13⋅ 52=676$. Всего написанных контрольных $56$ и сумма набранных за них баллов равна $56⋅ 17=952$. При этом $952-676=276$, то есть $276$ баллов из числа заработанных не было подано профессору. Эти $276$ баллов могли быть заработаны только теми $4$ студентами, которые написали обе контрольные. Каждый из них не назвал балл за $1$ контрольную, то есть не более $30$ баллов. В сумме количество баллов, не поданных профессору, не превышает $4⋅ 30=120$. Но $120<276$, поэтому наше предположение не верно.
в) Пусть $n$ студентов написали обе контрольные, тогда всего было написано $(52+n)$ работ и общее количество заработанных баллов равно $17(52+n)=884+17n$. Сумма баллов, поданных профессору, равна $52⋅ 13=676$. Тогда не поданными остались $(884+17n)-676$ баллов, то есть $208+17n$ баллов. Эти баллы могли быть получены только теми студентами, которые написали обе контрольные. Каждый из этих студентов оставил не поданными не более $30$ баллов. Следовательно, всего остались не поданными не более $30n$ баллов. Получим неравенство $208+17n⩽30n$, $n⩾16$. Приведём пример для $n=16$. Пусть $16$ студентов написали обе контрольные на $30$ баллов, $18$ — только первую контрольную ($3$ — на $30$ баллов, $1$ — на $8$, остальные на $0$) и $18$ написали только вторую контрольную с теми же результатами.
Ответ: а)да; б)нет; в)16
Задача 17
На доске написаны $40$ натуральных чисел. Какие-то из них белые, а какие-то — зелёные. Белые числа кратны $9$, зелёные кратны $4$. Все белые числа отличаются друг от друга, все зелёные тоже отличаются друг от друга, среди чисел разных цветов могут быть одинаковые. а) Может ли сумма всех написанных чисел быть меньше $3280$, если все они зелёные? б) Может ли сумма всех чисел равняться $2453$, если только $1$ число белое? в) Найдите наименьшее количество белых чисел, если сумма всех чисел равна $2453$.
Решение
а) Нет, не может. Наименьшая сумма $40$ различных натуральных чисел, кратных $4$, равна $4·1+ 4·2+ . . .+ 4·40=4(1 + 2 + … + 40) = {4·41·40}/{2}= 3280$.
б) Нет, не может. Сумма $17$ чисел, оканчивающихся на $7$, не меньше, чем $7 + 17 + … + 167 = {7 + 167}/{2}·17 = 1479$. Значит, при $17$ числах с последней цифрой $7$ сумма всех выписанных чисел больше $840$.
б) Нет, не может. Если только $1$ число белое, то остальные $39$ чисел — зелёные и их сумма не меньше чем $4·1 + 4·2 + … + 4·39 = 4(1 + 2 + … 39) = 4·{40·39}/{2} = 3120$, а сумма всех чисел не меньше, чем $3120 + 9 = 3129$.
в) Пусть $m$ — количество белых чисел, тогда зелёных чисел выписано $(40 — m)$. Сумма всех выписанных чисел не меньше, чем $9(1+2+…+m)+4(1+2+…+40-m) = 9·{(m+ 1)m}/{2} +4·{(41 -m)(40 -m)}/{2}$. Должно выполняться неравенство ${9(m+ 1)m}/{2} + {4(41-m)(40 -m)}/{2} ≤ 2453, 13m^2 — 315m + 1654 ≤ 0$. Перебирая натуральные значения $m$, получаем, что наименьшее значение $m$, для которого выполнено это неравенство, равно $8$. Действительно, при $m ≤ 5, 315m < 1654$, следовательно, $13m^2 — 315m + 1654 > 0$. При $m = 6, 13m^2 > 360, 13m^2 + 1654 > 2000, 315m < 2000$. Аналогично, при $m = 7$ выполняется $13m^2-315m+1654 > 0$. При $m = 8$ выполняется $13m^2-315m+1654 < 0$. Построим пример для $m = 8$. Наименьшее значение суммы в этом случае равно $9·{9·8}/{2} +4·{33·32}/{2} = 2436$, что на $17$ меньше требуемой суммы.
Учитывая, что $17 = 9 + 4 + 4$, построим один из возможных примеров. Выписаны белые числа $9·1, 9·2, . . . , 9·6, 9·7$ и $9·9$ и зелёные числа $4·1, 4·2, . . . , 4·30, 4·31$ и $4·34$.
Ответ: а)нет; б)нет; в)8
Задача 18
На доске написано $30$ различных натуральных чисел, каждое из которых или оканчивается на $7$, или чётное. Сумма всех чисел равна $840$. а) Может ли на доске быть выписано ровно $28$ чётных чисел? б) Может ли быть на доске ровно $17$ чисел, оканчивающихся на $7$? в) Найдите наибольшее возможное количество чисел, оканчивающихся на $7$, среди выписанных.
Решение
а) Да, может. Пусть выписаны $2$ числа, оканчивающиеся на $7: 7, 17$ и $28$ чётных чисел: $2, 2·2, 2·3, 2·4, . . . 2·26, 2·27$, а так же число $60$.
б) Нет, не может. Сумма $17$ чисел, оканчивающихся на $7$, не меньше, чем $7 + 17 + … + 167 = {7 + 167}/{2}·17 = 1479$. Значит, при $17$ числах с последней цифрой $7$ сумма всех выписанных чисел больше $840$.
в) Пусть на доске $n$ чисел, оканчивающихся на $7$. Тогда остальные $(30 — n)$ чисел чётны. Значит, сумма всех выписанных чисел не меньше чем $7 + 17 + … (7 + (n — 1)·10) + 2·1 + 2·2 + … + 2(30 — n) = {14 + (n — 1)10}/{2}·n + {(30 — n)(31 — n)}/{2}·2 = 6n^2 — 59n + 930$.
Должно выполняться неравенство $6n^2 — 59n + 930 ≤ 840$, то есть $6n^2 — 59n + 90 ≤ 0$. Решим уравнение $6n^2 — 59n + 90 = 0$, получим $n_{1,2} = {59±√{1321}}/{12}$. Неравенство $6n^2 — 59n + 90 ≤ 0$ выполнено при ${59 — √{1321}}/{12} ≤ n ≤ {59 + √{1321}}/{12}$.
Тогда $n ≤ {59 + √{1321}}/{12} ≤ {59 + 37}/{12} = 8$. Так как $n$ натуральное число, то $n ≤ 7$. Количество чисел, оканчивающихся на $7$, должно быть чётным, иначе сумма всех выписанных чисел была бы нечетна. Приведём пример для $n = 6$. Пусть выписаны числа $7, 17, 27, 37, 47, 57$, а так же $21, . . . 2·23$ и число $96$.
Ответ: а)да; б)нет; в)6
Задача 19
На доске написано $30$ различных натуральных чисел, каждое из которых или оканчивается на $1$, или чётное. Сумма всех чисел равна $771$. а) Может ли на доске быть выписано ровно $4$ числа, оканчивающихся на $1$? б) Может ли быть выписано ровно $13$ чисел, оканчивающихся на $1$? в) Найдите наименьшее возможное количество чисел, оканчивающихся на $1$, среди выписанных.
Решение
а) Нет, не может. Сумма $4$ чисел, оканчивающихся на $1$, чётна, сумма $26$ чётных чисел — тоже чётна, следовательно, сумма $4$ чисел, оканчивающихся на $1$, и $26$ чётных чисел — чётна и не равна $771$. б) Нет. Если на доске выписаны $13$ разных чисел, оканчивающихся на $1$, то их сумма не меньше чем $1+11+… +111+121={122} / {2}⋅ 13=793>771$. Тогда сумма всех выписанных чисел тем более больше $771$. в) Пусть на доске $n$ чисел, оканчивающихся на $1$, тогда $(30-n)$ чисел — чётные. Следовательно, сумма всех чисел не меньше чем $1+11+…+(1+10(n-1))+2⋅ 1+2⋅ 2+… +2⋅ (30-n)=$ ${1+1+10(n-1)} / {2}⋅ n+{(30-n)(31-n)} / {2}⋅2=6n^2-65n+930$. Должно выполняться неравенство $6n^2-65n+930⩽771$, то есть $6n^2-65n+159⩽0$. Решим уравнение $6n^2-65n+159=0$, $ n_{1,2}={65±√ {409}} / {12}$. Неравенство $6n^2-65n+159⩽0$ выполняется при ${65-√ {409}} / {12}⩽ n⩽{65+√ {409}} / {12}$. Значит, $n⩾{65-√ {409}} / {12}>{65-21} / {12}>3$. Так как $n$ — натуральное число, то $n⩾4$. Но $n$ должно быть нечётным (иначе сумма всех чисел была бы чётной), значит, $n⩾5$. Приведём пример для $n=5$. Пусть выписаны числа $1$, $11$, $21$, $31$, $41$, а также $2⋅1$, $2⋅2$, $2⋅ 3$, … $2⋅ 24$ и число $66$.
Ответ: а)нет; б)нет; в)5
Задача 20
На доске выписаны числа $10$ и $11$. За один ход надо заменить написанные на доске числа $a$ и $b$ числами ($2a+1$) и ($a+b$). Например, из чисел $10$ и $11$ можно получить либо $21$ и $21$, либо числа $21$ и $23$. а) Может ли после нескольких ходов на доске появиться число $95$? б) Может ли после $1003$ ходов на доске появиться число $20018$? в) Укажите наибольшую разность чисел через $2018$ ходов.
Решение
а) Да, может. Пусть после первого хода получены числа 21 и 23, после второго 44 и 47, после третьего 91 и 95.
б) Если числа a и b разной чётности, то числа (2a + 1) и (a + b) нечётные, если числа a и b — одной чётности, то (2a + 1) — нечётно, а (a + b) — чётное. Таким образом, после нечётного числа ходов на доске выписаны два нечётных числа и число 20018 выписано быть не может.
в) Если выписаны числа a и b и a $≤$ b, то их разность b-a и следующим ходом будут выписаны числа 2b + 1 и a + b, их разность (b — a + 1) или числа 2a + 1 и a + b, их неотрицательная разность |b — a — 1|.
Таким образом, разность каждый раз изменяется на 1 и будет наибольшей, если каждый ход будет увеличивается на 1. Тогда её значение 1 + 2018 = 2019.
Ответ: а)да; б)нет; в)2019