Как сдать экзамен по устройству автомобиля

1. Общее устройство автомобиля

К транспортным средствам категории «В»

относятся автомобили, разрешенная максимальная масса которых не превышает 3500 кг

с количеством сидячих мест, помимо сиденья водителя, не более восьми.

Любой легковой автомобиль состоит из следующих элементов (рис. 1.1):

♦ двигателя;

♦ трансмиссии;

♦ ходовой части;

♦ механизмов управления;

♦ электрооборудования;

♦ дополнительного оборудования;

♦ кузова.

Двигатель — это «сердце» машины. Он сжигает топливо и преобразует тепловую энергию в механическую: заставляет вращаться коленчатый вал, затем вращение через трансмиссию передается на колеса (составляющую ходовой части).

Так машина приводится в движение.

Рис. 1.1.

Общий вид легкового автомобиля: 1 — фара; 2 — вентилятор системы охлаждения двигателя; 3 — радиатор системы охлаждения двигателя; 4 — распределитель зажигания; 5 — двигатель; 6 — аккумуляторная батарея; 7 — катушка зажигания; 8 — воздушный фильтр; 9 — телескопическая амортизаторная стойка передней подвески; 10 — бачок омывателя ветрового стекла; 11 — коробка передач; 12 — ручка стеклоподъемника; 13 — внутренняя ручка двери; 14 — рычаг задней подвески; 15 — элемент обогрева заднего стекла; 16 — основной глушитель; 17 — задний амортизатор; 18 — задний тормоз; 19 — балка задней подвески; 20 — поперечная штанга задней подвески; 21 — топливный бак; 22 — рычаг стояночной тормозной системы; 23 — дополнительный глушитель; 24 — вакуумный усилитель тормозной системы; 25 — вал привода передних колес; 26 — передний тормоз; 27 — штанга стабилизатора передней подвески

Во время движения водитель управляет автомобилем с помощью рулевого колеса и педалей, представляющих собой механизмы управления. Он включает свет фар и указатели поворотов, то есть пользуется электрооборудованием.

При этом водитель пристегнут ремнем безопасности, ему тепло (работает обогреватель) — задействовано дополнительное оборудование.

Кузов среднестатистического легкового автомобиля состоит из моторного отсека (там находится двигатель), пассажирского салона и багажного отделения. Он же является несущей конструкцией для узлов и агрегатов автомобиля.

Современные автомобили можно классифицировать по нескольким признакам: по типу кузова, типу и рабочему объему двигателя, типу привода колес и габаритным размерам.

Классификация по типу кузова

Кузова современных легковых автомобилей разнообразны и многофункциональны, хотя, конечно, их основное предназначение — перевозка пассажиров и небольшой поклажи.

В зависимости от формы кузова и количества посадочных мест легковые автомобили делятся на следующие типы.

Седан — машина с двумя, четырьмя или даже шестью боковыми дверями. Характерные черты — моторный отсек и багажное отделение у седанов вынесены наружу, то есть изолированы от салона (рис. 1.2). Седаны, имеющие шесть боковых дверей и перегородку, отделяющую водительскую секцию салона от пассажирской, называют лимузинами.

Рис. 1.2. Седан — самый распространенный тип кузова

Купе — двухдверный кузов с одним или двумя рядами полноразмерных или укороченных сидений (есть варианты, в которых задние сиденья — детские) (рис. 1.3).

Универсал — автомобиль с дверью в задней стенке кузова. Отличается от остальных типов тем, что имеет постоянный грузовой отсек, не отделяющийся от пассажирского стационарной перегородкой (рис. 1.4).

Рис. 1.3. Купе

Рис. 1.4. Универсалы любят дачники и путешественники

Хетчбэк — гибрид седана и универсала.

В наше время довольно популярный тип кузова. Как и в универсале, в хетчбэке задний ряд сидений складывается (рис. 1.5).

Рис. 1.5. Хетчбэк

Вагон — он же мини-вэн. Характерные признаки — моторный отсек и багажное отделение не выступают за пределы кузова (рис. 1.6).

Рис. 1.6. Мини-вэн удобен для семейных поездок

Кабриолет — автомобиль со складывающимся верхом и опускающимися боковыми стеклами окон (рис. 1.7).

Рис. 1.7. Кабриолет

Джип — все более популярный тип кузова: вытянутый вверх хетчбэк (рис. 1.8).

Рис. 1.8. Джип

Пикап — закрытая кабина (одно — или двухрядная) и открытая платформа для грузов с откидным задним бортом (может иметь мягкий или жесткий верх) (рис. 1.9).

Рис. 1.9. Пикап удобен при перевозке грузов

Классификация по типу и рабочему объему двигателя

Большинство современных автомобилей оснащено двигателями, работающими на бензине или на дизельном топливе. Следовательно, по типу двигателя автомобили делятся на бензиновые и дизельные.

По рабочему объему двигателей машины классифицируются следующим образом:

особо малый класс (так называемые малолитражки) — до 1,1 литра;

малый класс — от 1,1 до 1,8 литра;

средний класс — от 1,8 до 3,5 литра;

большой класс — 3,5 литра и более.

Классификация по типу привода колес

В зависимости от того, на какую колесную ось (переднюю или заднюю) передается крутящий момент от двигателя, автомобили делятся на заднеприводные, переднеприводные и полноприводные.

Заднеприводные — автомобили, у которых крутящий момент от двигателя передается на задние колеса (рис. 1.10).

Рис. 1.10. Заднеприводной автомобиль

Движение происходит по толкательному принципу: задние (ведущие) колеса толкают вперед автомобиль, а передние (ведомые) служат для изменения направления движения.

Переднеприводные — автомобили, в которых крутящий момент от двигателя передается на передние колеса, которые тащат за собой всю машину и служат для изменения направления движения (рис. 1.11).

Кстати, переднеприводной автомобиль более устойчив на дороге.

Рис. 1.11.

Переднеприводной автомобиль

Полноприводные — автомобили, в которых крутящий момент передается и на передние, и на задние колеса одновременно (рис. 1.12).

Рис. 1.12. Полноприводной автомобиль: а — с раздаточной коробкой; б — с полным приводом, подключаемым автоматически; в — с постоянным полным приводом

Классификация по габаритным размерам

В современной автомобильной промышленности различают шесть европейских классов в зависимости от габаритных размеров автомобиля. Классы обозначаются буквами латинского алфавита: A, B, C, D, E, S (или F) (рис. 1.13).

Рис. 1.13. Классификация автомобилей по габаритным размерам

А — мини-класс. Характеризуется длиной не более 3,6 м и шириной до 1,6 м. Такие автомобили могут быть как трех-, так и пятидверными.

В — малый класс. Длина кузова — от 3,6 до 3,9 м, ширина — от 1,5 до 1,7 м.

С — низший средний класс (в народе — гольф-класс или компакт-класс). Длина таких машин — от 3,9 до 4,4 м, ширина — от 1,6 до 1,75 м.

D — средний класс. К этой категории относятся автомобили длиной от 4,4 до 4,7 м и шириной от 1,7 до 1,8 м.

Е — высший средний класс, или бизнескласс. Это кузова от 4,6 до 4,8 м в длину и более 1,7 м в ширину.

S (F) — класс люкс (представительский класс). Автомобили длиной свыше 4,8 м и шириной более 1,7 м.

Тест по устройству автомобиля

Правильные ответы в тесты обозначены » + «

 Вопросы с ответами по курсу «Автоподготовка» к тестовому контролю

1. Из каких основных частей состоит автомобиль

+1. Двигатель, кузов, шасси.

2. Двигатель, трансмиссия, кузов.

3. Двигатель, шасси, рама.

4. Ходовая часть, двигатель, кузов.

5. Шасси, тормозная система, кузов.

2 Тест. Как расшифровывается ВАЗ 21011

1. Волынский автозавод, объем двигателя 1.8л, седан, 11 модель.

+2. Волжский автомобильный завод, легковой, объем двигателя до 1.8л, 11 модель.

3. Волжский автомобильный завод, фургон, объем двигателя 1.4л, 11 модель.

4. . Волжский автомобильный завод, модель 21, объем двигателя 1.1 л.

5. Волжский автомобильный завод, фургон.

3. Виды двигателей внутреннего сгорания в зависимости от типа топлива.

1. Бензин, дизельное топливо, газ.

2. Бензин, сжиженный газ, дизельное топливо.

+3. Жидкое, газообразное, комбинированное.

4. Комбинированное, бензин, газ.

5. Дизельное топливо, твердое топливо, бензин.

4. Перечислите основные детали ДВС.

1. Коленчатый вал, задний мост, поршень, блок цилиндров.

+2. Шатун, коленчатый вал, поршень, цилиндр.

3.Трансмиссия, поршень, головка блока, распределительный вал.

4. Поршень, головка блока, распределительный вал.

5. Трансмиссия, головка блока, распределительный вал.

5. Что называется рабочим объемом цилиндра.

+1. Объем цилиндра освобождаемый поршнем при движении от ВМТ к НМТ.

2. Объем цилиндра над поршнем в ВМТ.

3. Объем цилиндра над поршнем в НМТ.

4. Сумма рабочих объемов двигателя.

5. Количество цилиндров в двигателе.

6. Что называется литражом двигателя.

1. Сумма полных объемов всех цилиндров двигателя.

+2. Сумма рабочих объемов всех цилиндров двигателя.

3. Сумма объемов камер сгорания всех цилиндров двигателя.

4. Количество цилиндров в двигателе.

5. Размер головки блока.

7. Что показывает степень сжатия.

1. Отношение объема камеры сгорания к полному объему цилиндра.

2. Разницу между рабочим и полным объемом цилиндра.

3. Отношение объема камеры сгорания к рабочему объему.

+4. Во сколько раз полный объем больше объема камеры сгорания.

5. Расстояние от поршня до коленчатого вала.

8. Что поступает в цилиндр карбюраторного двигателя при такте «впуск»

1. Сжатый, очищенный воздух.

2. Смесь дизельного топлива и воздуха.

3. Очищенный и мелко распыленный бензин.

+4. Смесь бензина и воздуха.

5. Очищенный газ.

9. За счет чего воспламеняется горючая смесь в дизельном двигателе.

1. За счет форсунки.

+2. За счет самовоспламенения.

3. С помощью искры которая образуется на свече.

4. За счет свечи накаливания.

5. За счет давления сжатия

10. В какой последовательности происходят такты в 4-х тактном ДВС.

1. Выпуск, рабочий ход, сжатие, впуск.

2. Выпуск, сжатие, рабочий ход, впуск.

+3. Впуск, сжатие, рабочий ход, выпуск.

4. Впуск, рабочий ход, сжатие, выпуск.

5. Выпуск, рабочий ход, впуск.

11. Перечислите детали которые входят в КШМ.

1. Блок цилиндров, коленчатый вал, шатун, клапан, маховик.

+2. Головка блока, коленчатый вал, шатун, поршень, блок цилиндров.

3. Головка блока, коленчатый вал, поршневой палец, распред. вал.

4. Блок цилиндров, коленчатый вал, шатун, термостат, поршневой палец, поршень.

5. Коленчатый вал, шатун, термостат, поршневой палец, поршень.

12. К чему крепиться поршень.

1. К коленчатому валу при помощи поршневого пальца.

2. К шатуну при помощи болтов крепления.

3. К маховику при помощи цилиндров.

+4. К шатуну при помощи поршневого пальца.

5. К головке блока.

13. Назначение маховика.

1. Отдавать кинетическую энергию при запуске двигателя.

+2. Накапливать кинетическую энергию во время рабочего хода.

3. Соединять двигатель и стартер.

4. Преобразовывать возвратно-поступательное движение во вращательное.

5. Обеспечивать подачу горючей смеси.

14. Какие детали соединяет шатун.

+1. Поршень и коленчатый вал.

2. Коленчатый вал и маховик.

3. Поршень и распределительный вал.

4. Распределительный вал и маховик.

5. Блок цилиндров и поршень

———————————————————————————————

15. Как подается масло к шатунным вкладышам коленчатого вала.

1. Под давлением по каналам в головке блока цилиндров.

2. Под давлением по каналам в коленчатом и распределительном валах.

3. Разбрызгиванием от масляного насоса.

+4. Под давлением от масляного насоса по каналам в блоке цилиндров и коленчатом валу.

5. Через масляный насос.

16.Какое давление создает масленый насос.

+1. 0.2-0.5 МПа.

2. 2-5 МПа.

3. 20-50 МПа.

4. 10-20 МПа.

5. 1-9 МПА.

17. Назначение редукционного клапана масленого насоса.

1. Ограничивает температуру масла, что бы двигатель не перегрелся.

+2. Предохраняет масленый насос от разрушения при повышении давления масла.

3. Предохраняет масленый насос от разрушения при повышении температуры масла в двигателе.

4. Подает масло к шатунным вкладышам.

5. Подает масло в радиатор.

18.Тест. Через сколько километров пробега автомобиля, необходимо производить замену масла.

1. Через 5 000км.

2. Через 12 000-14 000км.

3. Через 20 000км.

+4. Через 10 000 км.

19. За счет чего производится очистка масла в центробежном фильтре тонкой очистки.

1. За счет фильтрования масла через бумажный фильтр.

+2. За счет центробежных сил действующих на частички грязи.

3. За счет центробежных сил действующих на вращающийся ротор.

4. За счет прохождения масла через фильтр.

5. За счет центробежных сил действующих на вращающийся вал..

20. Перечислите способы подачи масла к трущимся частям ДВС. Тесты на знание устройства автомобиля.

+1. Разбрызгиванием, под давлением, комбинированно.

2. Разбрызгиванием, под давлением, совмещенная.

3. Комбинированный, термосифонный, принудительный.

4. Масленым насосом и разбрызгиванием.

5. Разбрызгиванием, под давлением.

21. Каким способом смазываются наиболее нагруженные детали ДВС.

+1. Под давлением.

2. Разбрызгиванием.

3. Комбинированным.

4. Под давлением и разбрызгиванием.

5. Через масляный фильтр.

22. Назначение термостата.

1. Ограничивает подачу жидкости в радиатор.

2. Служит для сообщения картера двигателя с атмосферой.

+3. Ускоряет прогрев двигателя и поддерживает оптимальную температуру.

4. Снижает давление в системе охлаждения и предохраняет детали от разрушения при повышении давления.

5. Служит для сообщения картера двигателя с камерой сгорания..

23. За счет чего циркулирует жидкость в принудительной системе охлаждения.

1. За счет разности плотностей нагретой и охлажденной жидкости.

2. За счет давления создаваемого масленым насосом.

+3. За счет напора создаваемого водяным насосом.

4. За счет давления в цилиндрах при сжатии.

5. За счет давления создаваемого насосом.

24. Перечислите наиболее вероятные причины перегрева двигателя.

+1. Поломка термостата или водяного насоса.

2. Применение воды вместо антифриза.

3. Недостаточное количество масла в картере двигателя.

4. Поломка поршня или шатуна.

25. Назначение парового клапана в пробке радиатора.

1. Для выпуска отработавших газов.

2. Для сообщения картера двигателя с атмосферой.

3. Для предохранения радиатора от разрушения.

+4. Для повышения температуры кипения воды.

5. Для сообщения картера двигателя с цилиндром..

26. К чему может привести поломка термостата.

+1. К перегреву или медленному прогреву двигателя.

2. К повышенному расходу охлаждающей жидкости.

3. К повышению давления в системе охлаждения.

4. К внезапной остановке двигателя.

27. Что входит в большой круг циркуляции жидкости в системе охлаждения.

1. Радиатор, термостат, рубашка охлаждения, масленый насос.

+2. Рубашка охлаждения, термостат, радиатор, водяной насос.

3. Рубашка охлаждения, термостат, радиатор.

4. Радиатор, термостат, рубашка охлаждения, расширительный бачок, водяной насос.

5. Термостат, рубашка охлаждения, расширительный бачок, водяной насос.

28. Что входит в малый круг циркуляции жидкости в системе охлаждения.

1. Радиатор, водяной насос, рубашка охлаждения.

2. Рубашка охлаждения, термостат, радиатор.

+3. Рубашка охлаждения, термостат, водяной насос.

4. Шатун, поршень и радиатор.

5. Радиатор, водяной насос, рубашка охлаждения, поршень.

29. Назначение карбюратора.

1. Поддерживает оптимальный тепловой режим двигателя в пределах 80-95 град С.

+2. Приготовление и подача горючей смеси в цилиндры.

3. Предназначен для впрыскивания бензина в цилиндры под давлением 18МПа.

4. Создание давления впрыска в пределах 15-18 МПа за счет плунжерной пары.

30. Какая горючая смесь называется нормальной.

+1. В которой соотношение воздуха и бензина в пределах 15 к 1.

2. В которой соотношение воздуха и бензина в пределах 17 к 1.

3. В которой соотношение воздуха и бензина в пределах 13 к 1.

4. В которой воздуха больше чем бензина.

5. В которой бензин находится в жидком состоянии.

31. Назначение системы холостого хода в карбюраторе.

1. Подача дополнительной порции топлива при пуске двигателя. Воздушная заслонка закрыта.

+2. Обеспечение устойчивой работы двигателя без нагрузки при малых оборотах коленчатого вала. Дроссельная заслонка закрыта.

3. Подача дополнительной порции топлива при резком открытии дроссельной заслонки.

4. Приготовление обедненной смеси на всех режимах работы двигателя.

32. Назначение экономайзера в карбюраторе.

1. Приготовление нормальной смеси при прогреве двигателя.

2. Приготовление обедненной смеси при плавном увеличении нагрузки двигателя.

3. Приготовление обогащенной смеси при резком открытии дроссельной заслонки.

+4. Приготовление обогащенной смеси при плавном увеличении нагрузки двигателя.

5. Приготовление нормальной смеси при запуске двигателя.

33. Какой заслонкой в карбюраторном двигателе управляет водитель при нажатии на педаль «газа».

1. Воздушной.

+2. Дроссельной.

3. Вначале открывается дроссельная затем воздушная заслонки.

4. Дополнительной заслонкой.

5. Заслонкой расположенной на блоке цилиндров.

34. Назначение инжектора в инжекторном ДВС.

+1. Впрыск топлива во впускной трубопровод на впускной клапан.

2. Впрыск топлива в выпускной трубопровод на впускной клапан.

3. Приготовление горючей смеси определенного состава в зависимости от режима работы двигателя.

4. Впуск топлива в выпускной трубопровод на впускной клапан.

5. Впрыск топлива в выпускной трубопровод на выпускной клапан.

35. Где расположен топливный насос в инжекторном двигателе.

1. Между баком и карбюратором.

+2. В топливном баке.

3. Между фильтрами «тонкой» и «грубой» очистки.

4. Во впускном трубопроводе.

5. В головке блока.

36. Под каким давлением впрыскивается топливо инжектором.

1. 2,8-3,5 МПа.

2. 14-18 МПа.

+3. 0.28-0.35МПа.

4. 10-20 МПа.

5. 100-200 МПа.

37. Что управляет впрыском топлива в инжекторе.

+1. Электронный блок управления.

2. Топливный насос высокого давления.

3. Регулятор давления установленный на топливной рампе.

4. Специальный топливный насос.

5. Распределитель зажигания.

38. За счет чего происходит впрыск топлива в инжекторе.

1. За счет сжатия пружины удерживающей иглу инжектора.

+2. За счет открытия электромагнитного клапана инжектора.

3. За счет давления создаваемого ТНВД.

4. За счет расхода воздуха.

5. За счет давления газов.

39. Где образуется рабочая смесь в дизельном двигателе.

+1. В цилиндре двигателя.

2. Во впускном трубопроводе при подаче топлива форсункой.

3. В карбюраторе при открытой воздушной заслонке.

4. В камере сгорания.

5. В блоке цилиндров.

40. Назначение форсунки в дизельном двигателе.

1 Для впрыска мелкораспыленного топлива в камеру сгорания при впуске.

2. Приготовление горючей смеси оптимального состава и подачу ее в цилиндры.

+3. Для впрыска мелкораспыленного топлива в камеру сгорания при сжатии.

4. . Подача топлива во впускной трубопровод.

41. Какое значение имеет давление открытия форсунки в дизельном двигателе.

+1. 17.5-18 МПа.

2. 10-12 МПа.

3. 1.75-1.80 МПа.

4. 2.5-3.5 МПа.

5. 130 Мпа.

42. Назначение ТНВД.

1. Приготовление горючей смеси определенного состава в зависимости от нагрузки на двигатель и частоты вращения коленчатого вала.

+2. Для подачи в форсунки двигателя определенной дозы топлива в определенный момент и под требуемым давлением.

3. Для смешивания воздуха и дизельного топлива в камере сгорания цилиндра.

4. Для подачи горючей смеси в двигатель.

5. Для смешивания бензина и воздуха.

43. Тесты по устройству автомобиля.  Что является основными деталями ТНВД.

1. Игла форсунки которая тщательно обрабатывается и притирается к корпусу.

+2. Плунжерная пара состоящая из притертых между собой плунжера и гильзы.

3. Гильза цилиндра и поршень с поршневыми кольцами.

4. Поршень и цилиндр.

5. Гильза и блок цилиндров.

44. Какой зазор между плунжером и гильзой в топливном насосе высокого давления.

+1. 0.001-0.002 мм

2. 0.1-0.2 мм.

3. 1-2 мм

4. 0.15-0.25 мм

5. 1-2 мм.

45. Какое движение совершает плунжер в топливном насосе высокого давления.

1. Вращательное.

+2. Возвратно-поступательное.

3. Круговое под действием кулачкового вала.

4. Сложное.

5. Центробежное.

46. Что зажигает газ в дизельном двигателе при переводе его на газ.

1. Свеча накаливания.

2. Искровая свеча зажигания.

+3. Самовоспламенение небольшой дозы дизельного топлива.

4. Искра возникающая между электродами свечи.

5. Специальный факел.

47. Что входит в систему питания дизельного двигателя.

+1. Топливный бак, топливоподкачивающий насос, топливный фильтр, ТНВД, форсунки, воздушный фильтр.

2. Топливный бак, топливоподкачивающий насос, топливный фильтр, карбюратор, форсунки, воздушный фильтр, глушитель.

3. Топливоподкачивающий насос, топливный фильтр, форсунки, воздушный фильтр, топливный бак.

4. Топливный фильтр, форсунки, воздушный фильтр, топливный бак.

48. Чему равняется степень сжатия в дизельном двигателе.

1. 7-10.

2. 20-25.

+3. 15-16.

4. 4-5.

5. 35.

49. Назначение аккумуляторной батареи в автомобиле.

1.Для накопления электрической энергии во время работы двигателя.

+2. Для питания бортовой сети автомобиля при неработающем двигателе и запуска двигателя.

3. Для создания необходимого крутящего момента при запуске двигателя.

4. Для поддержания необходимого напряжения.

5. Для увеличения силы тока.

50. От чего получает вращение генератор переменного тока в ДВС.

1. От распределительного вала ДВС.

+2. От коленчатого вала ДВС.

3. От специального эл. двигателя получающего эл. энергию от аккумулятора.

4. От распределительного вала.

5. От заднего привода.

Тест по устройству автомобиля № 51. От чего зависит напряжение вырабатываемое генератором.

+1. От частоты вращения ротора и силы тока в обмотке возбуждения.

2. От скорости движения автомобиля и напряжения аккумулятора.

3. От силы тока в силовой обмотке и плотности электролита.

4. От уровня электролита и степени заряженности АКБ.

5. От скорости движения автомобиля.

52. Назначение реле-регулятора.

1. Изменять силу тока в идущего на зарядку АКБ.

2. Ограничивать напряжение поступающее на зарядку аккумулятора.

+3. Ограничивать напряжение выдаваемое генератором.

4. Увеличивать ток.

5. Увеличивать напряжение.

53. Для чего предназначен транзистор в контактно-транзисторном реле.

1. Для выпрямления переменного тока, вырабатываемого генератором.

2. Для усиления силы тока в обмотке возбуждения генератора.

+ 3. Для уменьшения силы тока проходящего через контакты реле.

4. Для поддержки напряжения в пределах 13-14 В.

5. Для усиления силы тока в обмотке возбуждения стартера..

54. Назначение катушки зажигания в контактно — транзисторной системе зажигания.

1. Разрывать цепь низкого напряжения и распределять высокое напряжение по свечам.

+2. Трансформировать низкое напряжение (12в) в высокое (20 000в)

3. Изменять по величине и направлению напряжение выдаваемое аккумуляторной батареей.

4. Снижать силу тока проходящего через контакты прерывателя-распределителя.

5. Снижать напряжение в сети.

55 Назначение контактов в прерывателе-распределителе контактной системы зажигания.

+1. Прерывать цепь низкого напряжения.

2. Прерывать цепь высокого напряжения.

3. Распределять высокое напряжение по свечам.

4. Запускать двигатель.

5. Выключать подачу тока в цепь.

56. Назначение прерывателя-распределителя в контактно — транзисторной системе зажигания.

1. Разрывать цепь низкого напряжения и распределять высокое напряжение по свечам.

2. Трансформировать низкое напряжение (12в) в высокое (20 000в)

+3. Управлять током идущим на базу транзистора и распределять высокое напряжение по свечам.

4 Разрывать цепь высокого напряжения и распределять высокое напряжение по свечам.

5. Разрывать цепь и распределять высокое напряжение по свечам.

57. Какой угол называют углом опережения зажигания.

1. Угол поворота коленчатого вала от ВМТ до НМТ.

2. Угол поворота коленчатого вала от момента появления искры до прихода поршня в НМТ.

+3. Угол поворота коленчатого вала от момента появления искры до прихода поршня в ВМТ.

4. Угол наклона поршня в цилиндре.

5. Угол между коленчатым валом и поршнем.

58. Как меняется угол опережения зажигания при повышении частоты вращения коленчатого вала.

+1. Увеличивается.

2. Остается без изменения.

3. Уменьшается на 5 градусов.

4. Не изменяется.

5. Резко уменьшается.

59. Какой регулятор меняет угол опережения зажигания при повышении частоты вращения коленчатого вала.

1. Вакуумный.

+2. Центробежный.

3. Октан –корректор.

4. Всережимный.

5. Регулировочный.

Тест № 60. Что входит в цепь высокого напряжения в бесконтактно — транзисторной системе зажигания.

+1. Вторичная обмотка катушки зажигания, прерыватель-распределитель провода высокого напряжения, свеча.

2. Вторичная обмотка катушки зажигания, прерыватель-распределитель, датчик Холла, свечи.

3. Первичная обмотка катушки зажигания, прерыватель-распределитель провода высокого напряжения, свеча.

4. Катушки зажигания, прерыватель-распределитель провода высокого напряжения, свеча.

5. Первичная обмотка, прерыватель-распределитель провода высокого напряжения, свеча.

Данная книга (пособие) по устройству автомобиля включает в себя все агрегаты современного автомобиля, такие как двигатель, топливный бак, карбюратор, системой зажигания, системой охлаждения, системой смазки, трансмиссией,  коробкой передач,  ходовой части, колесах и шинах, механизмами управления, электрооборудование автомобиля, а так же кузов автомобиля и их возможные неисправности.  Учебник по устройству автомобиля является бесплатным и предназначен для изучения всем желающим, которые хотят понять принцип работы и устройство современного автомобиля.

Вступление

Общие сведенья о легковых автомобилях

ГЛАВА I. ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

Бензиновые двигатели
Дизельные двигатели
Основные неисправности кривошипно-шатунного механизма
Эксплуатация кривошипно-шатунного механизма двигателя
Факторы, влияющие на продолжительность работы двигателя
Газораспределительный механизм (ГРМ)
Основные неисправности газораспределительного механизма двигателя
Эксплуатация газораспределительного механизма двигателя
Система питания карбюраторного двигателя

ТОПЛИВНЫЙ БАК:

Топливный бак
Первая ступень очистки топлива
Топливный фильтр
Топливный насос
Воздушный фильтр

КАРБЮРАТОР:

Режимы работы карбюратора
Основные неисправности системы питания
Эксплуатация системы питания
Системы питания двигателя с впрыском топлива
Основные неисправности систем впрыска топлива
Эксплуатация систем впрыска топлива
Система выпуска отработавших газов
Каталитический нейтрализатор отработавших газов
Основные неисправности системы выпуска отработавших газов
Эксплуатация системы выпуска отработавших газов

СИСТЕМА ЗАЖИГАНИЯ:

Контактная система зажигания
Основные неисправности контактной системы зажигания
Бесконтактная система зажигания
Основные неисправности бесконтактной системы зажигания
Эксплуатация системы зажигания
Система зажигания на автомобилях с электронным управлением двигателем
Электронная система управления двигателем
Основные неисправности электронных систем управления двигателем
Эксплуатация электронных систем управления двигателем

СИСТЕМА ОХЛАЖДЕНИЯ:

Система охлаждения
Основные неисправности системы охлаждения
Эксплуатация системы охлаждения

СИСТЕМА СМАЗКИ:

Система смазки
Основные неисправности системы смазки
Эксплуатация системы смазки
Неисправности двигателя

ГЛАВА II. ТРАНСМИССИЯ:

Трансмиссия
Сцепление
Привод выключения сцепления
Механизм сцепления
Основные неисправности сцепления
Эксплуатация сцепления

КОРОБКА ПЕРЕДАЧ:

Коробка передач
Основные неисправности коробки передач
Эксплуатация коробки передач
Карданная передача
Валы с шарнирами переднеприводных автомобилей
Основные неисправности карданной передачи и валов с шарнирами
Эксплуатация карданной передачи и валов с шарнирами
Главная передача и дифференциал
Основные неисправности главной передачи и дифференциала
Автоматическая коробка передач
Правила пользования автоматической коробкой передач

ГЛАВА III. ХОДОВАЯ ЧАСТЬ:

Ходовая часть
Подвеска колес автомобиля
Углы установки передних колес

КОЛЁСА И ШИНЫ:

Колеса и шины
Основные неисправности подвески и колес
Эксплуатация ходовой части
Неисправности ходовой части, при которых ПДД запрещают эксплуатацию транспортных средств
Требования к протектору шин прицепа такие же, как и к шинам автомобиля-тягача

ГЛАВА IV. МЕХАНИЗМЫ УПРАВЛЕНИЯ:

Рулевое управление
Основные неисправности рулевого управления
Эксплуатация рулевого управления
Неисправности рулевого управления, при которых ПДД запрещают эксплуатацию транспортных средств
Тормозная система
Основные неисправности тормозных систем
Эксплуатация тормозной системы
Неисправности тормозной системы, при которых ПДД запрещают эксплуатацию транспортных средств

ГЛАВА V. ЭЛЕКТРООБОРУДОВАНИЕ АВТОМОБИЛЯ:

Источники тока
Потребители тока
Система пуска двигателя
Приборы освещения и сигнализации
Контрольно-измерительные приборы
Дополнительное оборудование
Неисправности электрооборудования

ЭКСПУАТАЦИЯ ЭЛЕКТРООБОРУДОВАНИЯ:

Аккумуляторная батарея
Генератор
Стартер
Приборы освещения и сигнализации
Эксплуатация контрольно-измерительных приборов
Неисправности электрооборудования, при которых ПДД запрещают эксплуатацию транспортных средств

ГЛАВА VI. КУЗОВ АВТОМОБИЛЯ:

Устройство и оборудование кузова
Эксплуатация кузова
Неисправности кузова и прочих элементов конструкции, при которых ПДД запрещают эксплуатацию транспортных средств

ВСТУПЛЕНИЕ:

Итак, вы подошли к своему (или к учебному) автомобилю. Давайте разберемся с тем, что такое автомобиль и каковы составные части этого сложнейшего достижения современной техники. «А зачем?» — спросят многие из кандидатов в водители. Вот он стоит и манит, приглашает в поездку. Хочется сразу открыть дверь, сесть на мягкое сиденье, ключ на старт и, ура… вперед! Большинство из нас так и начинают, но с течением времени все равно приходится познавать то, что, оказывается, автомобиль состоит из различных агрегатов, узлов и деталей. Да еще и экзаменационные билеты постоянно спрашивают: «Так можно ездить с неработающим амортизатором или нельзя, а?..». А «кто» это такой — амортизатор? Так что имеет смысл изначально разобраться с устройством автомобиля и успешно сдать квалификационные экзамены. А если еще и понять процессы, протекающие в механизмах и системах автомобиля при его движении, то, садясь за руль своей или учебной машины, вы сможете приятно удивить как инструктора или экзаменатора, так и сам автомобиль своим грамотным с ним обращением. «Уговорили, попробую освоить и это! Так что там еще в нем есть, кроме кузова, колес и педалей?» — это разумное решение и вопрос тех, кто уже держит в руках эту книгу. Сразу хочется сказать, что данная книга не о том, как отремонтировать автомобиль «Жигули» или «БМВ». Для этого существует специальная литература по конкретной модели вашего автомобиля, которую, кстати, не мешает иметь каждому, даже если вы зареклись дотрагиваться до чего-либо кроме ключей от автомобиля, руля и педалей. В безвыходной ситуации, при наличии специальной литературы, вы имеете возможность самостоятельно устранить неисправность в своем автомобиле или, по крайней мере, сможете понять, что вам пытается объяснить механик автосервиса. В этой книге рассматривается устройство автомобиля как таковое, принципы работы его механизмов и систем, основные их неисправности, а также правила грамотной эксплуатации отдельных агрегатов и всего автомобиля в целом. Все машины мира на 99% имеют одинаковую конструкцию и работают по одним и тем же физическим законам. Именно с этим мы сейчас и будем разбираться. Как работает двигатель (и долго ли он проработает), почему автомобиль вообще движется (если мотор под капотом, а колеса совсем в другом месте), сцепление окажется сложным механизмом, а не просто педалью и выяснится, наконец-то, что карбюратор и генератор — это не одно и то же. В данной книге содержится полная информация, необходимая для успешной сдачи выпускного экзамена в автошколе по предмету «Устройство автомобиля». С особой тщательностью рассмотрены все экзаменационные вопросы ГИБДД по теме «Неисправности и условия, при которых запрещается эксплуатация транспортных средств». Неисправности, которые содержатся в официальном тексте «Приложения к Основным положениям по допуску транспортных средств к эксплуатации и обязанностям должностных лиц по обеспечению безопасности дорожного движения», выделены в книге фиолетовым шрифтом. Обнаружив эти неисправности в пути, вы должны попробовать устранить их на месте, и если это не удалось, то следовать к месту стоянки или ремонта с соблюдением мер предосторожности. При возникновении более серьезных неисправностей, которые отражены в пункте 2.3.1 Правил дорожного движения, дальнейшее движение вообще запрещено. В тексте данной книги такие неисправности выделены красным шрифтом.

Выбрать другой раздел:

ОБЩИЕ СВЕДЕНИЯ О ЛЕГКОВЫХ АВТОМОБИЛЯХ:

Автомобиль является единым и неделимым, почти живым организмом. Только при полной работоспособности всех его составляющих автомобиль может выполнять те функции, которые возлагает на него хозяин.
схема жигули

Рис. 1. Общий вид легкового автомобиля: 1 — радиатор системы охлаждения; 2 — аккумуляторная батарея; 3 — распределитель зажигания; 4 — воздушный фильтр; 5 — двигатель; 6 — вакуумный усилитель с главным цилиндром гидропривода тормозов; 7 — главный цилиндр гидропривода сцепления; 8 — рулевое колесо; 9 — внутреннее зеркало заднего вида; 10 — заднее сиденье; 11 — задний тормоз; 12 — пружина задней подвески; 13 — амортизатор задней подвески; 14 — задний мост; 15 — карданная передача; 16 — переднее сиденье; 17 — наружное зеркало заднего вида; 18 — рычаг стояночного тормоза; 19 — рычаг переключения передач; 20 — коробка передач; 21 — педаль сцепления; 22 — педаль тормоза; 23 — педаль акселератора («газа»); 24 — картер рулевого механизма; 25 — передний тормоз; 26 — пружина передней подвески с амортизатором; 27 — топливный насос; 28 — масляный фильтр

«Организм» автомобиля можно разложить на крупные и мелкие составляющие.

Легковой автомобиль состоит из:
— двигателя;
— трансмиссии;
— ходовой части;
— механизмов управления;
— электрооборудования;
— дополнительного оборудования;
— кузова.

Автомобиль может долго и упорно стоять на одном месте, опираясь «ногами» на дорогу, и поедет он только тогда, когда колеса начнут крутиться.

А что заставляет их вращаться? Каким образом двигатель автомобиля передает крутящий момент на колеса?

Двигатель сжигает топливо и преобразует тепловую энергию сгорания во вращательное движение коленчатого вала, далее вращение передается через трансмиссию на ведущие колеса, которые являются элементом ходовой части автомобиля и… машина поехала.

Во время движения автомобиля водитель пользуется рулем и тормозами (механизмы управления), включает лампочки и подает звуковые сигналы (электрооборудование), и конечно же, в это время он сидит на водительском сиденье, пристегнутый ремнями безопасности (дополнительное оборудование).

Все вышеперечисленное объединяет в себе кузов автомобиля, без которого агрегаты, механизмы и даже само сиденье водителя лежали бы огромной кучей в углу гаража.

Вот это и есть ваш автомобиль. А теперь давайте, не спеша, начнем вникать в назначение, принципы работы, детали и возможные неисправности вышеуказанных частей автомобиля. Иными словами, пойдем по порядку.

Двигатель — это агрегат, в котором тепловая энергия сгорающего топлива преобразуется в механическую энергию (в виде вращения коленчатого вала).

Трансмиссия предназначена для передачи и изменения крутящего момента от двигателя к ведущим колесам автомобиля. Она включает в себя:
— сцепление;
— коробку передач;
— карданную передачу;
— главную передачу;
— дифференциал;
— полуоси.

Ходовая часть предназначена для перемещения автомобиля по дороге с определенным уровнем комфорта без тряски и вибраций, и включает в себя:
— переднюю и заднюю подвески колес;
— сами колеса.

Механизмы управления служат для изменения направления движения, остановки и стоянки автомобиля. К механизмам управления относятся:
— рулевое управление;
— тормозная система.

Электрооборудование предназначено для обеспечения электрическим током всех электрических приборов автомобиля, и состоит из:
— источников тока;
— потребителей тока.

Дополнительное оборудование обеспечивает комфортные и безопасные условия для водителя и пассажиров. Примером дополнительного оборудования могут служить: отопитель салона автомобиля, омыватель и очиститель ветрового стекла, электроподогрев стекол и многое другое.

Кузов является несущим элементом автомобиля, на котором крепятся двигатель, агрегаты трансмиссии, ходовой части, механизмы управления, а также размещаются водитель, пассажиры и груз.

Чтобы вам было легче ориентироваться в специальной терминологии, которая неизбежно будет присутствовать в главах этой книги, давайте связывать ее с известными в жизни предметами. Для этой цели подойдет обычный велосипед. Каждый из вас, если не катался на нем, то, по крайней мере, не раз видел проезжающего мимо велосипедиста.

Функцию двигателя при езде на велосипеде выполняет сам велосипедист. Через цепь (трансмиссия) вращение от педалей передается на колесо (ходовая часть). Для выполнения поворотов и остановок служат руль и тормоза велосипеда (механизмы управления). Включая свет в лампах, чтобы вас видели в темное время, вы используете электрооборудование. А если на улице дождь, то возьмите с собой зонтик (шутка), вместе с рамой велосипеда они составят кузов.

Как правило, будущие водители на первое место по важности ставят кузов автомобиля. Да, он виден лучше всего, но без двигателя и колес кузов так и будет стоять на месте, выступая в роли неподъемного «бабушкиного сундука». Тем не менее, разговор мы начнем именно с кузова, а чуть позже разберемся и с его «начинкой».

В зависимости от формы кузова и количества посадочных мест, автомобили можно классифицировать по следующим наиболее известным типам:

Седан — это автомобиль с двух или четырехдверным кузовом на четыре — пять мест, который имеет выступающие моторный отсек и багажное отделение (рис. 2а). Примером седана может являться автомобиль Lada 110 или Lada Samara (ВАЗ-2115).
седан

Рис. 2а. Седан

Универсал — автомобиль с грузопассажирским салоном и дополнительной (пятой) дверью, закрывающей багажное отделение. В автомобиле с кузовом такого типа задний ряд сидений может трансформироваться в грузовую платформу (рис. 2б). Характерный пример «универсала» — автомобили ВАЗ-2104 и Lada 111.
универсал

Рис. 2б. Универсал

Хэтчбек — это нечто среднее между «седаном» и «универсалом» (рис. 2в). Для увеличения багажного отделения задние сиденья в таком автомобиле могут складываться. В последнее время такой тип кузова получил большое распространение. Кузов «хэтчбек» имеют автомобили Lada Samara (ВАЗ-2113 и 2114) и Lada 112.

хетчбэк

Рис. 2в. Хэтчбек

Вагон — автомобиль с кузовом, не имеющим выступающего моторного отсека и багажного отделения. Примером «вагона» является всем хорошо известное маршрутное такси — автомобиль «Газель» (рис. 2г).
вагон

Рис. 2г. Вагон (минивэн)

Лимузин — имеет большой кузов с дополнительными сиденьями и перегородкой, отделяющей водителя от салона для пассажиров. Примеры «лимузинов» все вы видели около дворцов бракосочетания (рис. 2д).

лимузин

Рис. 2д. Лимузин

Кабриолет — это автомобиль без крыши или с такой крышей, которая может складываться по желанию водителя. Примером «кабриолета» вы можете воспользоваться где-нибудь на отдыхе в теплых странах, взяв его напрокат (рис.2е).

кабриолет

Рис. 2е. Кабриолет

По литражу двигателя (объему цилиндров), легковые автомобили подразделяются на следующие классы:
— особо малый класс — до 1,1 л. Например, ВАЗ-1111 «Ока» (0,65 л);
— малый класс — от 1,1 л до 1,8 л. Например, Lada 110 (1,5 л);
— средний класс — от 1,8 л до 3,5 л. Например, ГАЗ-31105 (2,45 л);
— большой класс — от 3,5 л и более. Примеры «большого класса» можно увидеть на дороге с «мигалками» и сопровождением.

Обратите внимание на первую цифру в номере модели автомобиля. По этой цифре можно определить, к какому классу относится данная машина.
1… — особо малый (а владельцы «Оки» и так знали, что они самые маленькие);
2… — малый (это среднестатистический «жигуленок»);
3… — средний (и пусть «волгари» гордятся этим);
4… — а это тот самый — большой класс.

Габаритные размеры автомобиля относят его к одному из шести европейских классов (европейская классификация), обозначаемых буквами латинского алфавита — А, В, С, D, E или F

А — мини-класс. Длина автомобилей не превышает 3,6 м, а ширина 1,6 м. Такие машины удобно эксплуатировать в городских условиях. Кузова автомобилей этого класса могут быть трехдверными и пятидверными. Примерами мини-класса являются автомобили Smart, Renault Twingo, Ford Ka, наша «Ока» и т. п.
В- малый класс. Длина машин 3,6-3,9 м, ширина 1,5-1,7 м. К ним относятся Opel Corsa, Fiat Punto, Toyota Yaris, Lada Kalina и т.п.
C — низший средний класс. Иногда его называют «гольф-классом» или «компакт-классом». Длина автомобилей 3,9-4,4 м, ширина 1,6-1,75 м. Этот класс представляют автомобили VW-Golf, Opel Astra, Honda Civic, Ford Focus, Lada Samara, Lada 110 и т.п.
D- средний класс. К нему относятся автомобили длиной 4,4-4,7 м и шириной 1,7-1,8 м. Типичными представителями являются Opel Vectra, VW Passat, Toyota Avensis, Nissan Primera, Peugeot 406 и т.п.
E — высший средний класс. Чаще его называют «бизнес-классом». Длина таких автомобилей 4,6-4,8 м, а ширина более 1,7 м. К этому классу относятся Opel Omega, Mercedes Benz E-класса, BMW 5 серии, «Волга» ГАЗ-31105 и т.п.
F — люкс (представительский класс). Длина таких шедевров более 4,8 м, ширина свыше 1,7 м. Представителями данного класса являются автомобили BMW 7 серии, Mercedes Benz S, Audi A8, Lexus и т.п.

В зависимости от того, на какие колеса передается крутящий момент от двигателя, автомобили делятся на:
— заднеприводные,
— переднеприводные,
— полноприводные.

Поговорим об этих типах автомобилей чуть подробнее.

Заднеприводные (рис. 3) — это автомобили, у которых крутящий момент от двигателя передается на задние колеса. Примером заднеприводных автомобилей могут служить модели «Жигулей» от ВАЗ-2101 до ВАЗ-2107. Задние колеса у них являются ведущими, и именно они, отталкиваясь от покрытия дороги, двигают перед собой весь автомобиль. Передние колеса у автомобилей такого типа являются лишь направляющими (ведомыми) и служат для изменения направления движения. Можно сразу отметить, что заднеприводным автомобилям труднее сохранять прямолинейное движение на скользкой дороге, по сравнению с переднеприводными.
задний привод

Рис. 3. Заднеприводный автомобиль

Для подтверждения этой мысли попробуйте взять карандаш и, толкая его сзади, заставить перемещаться прямолинейно по плоскости стола или по любой другой поверхности. Сделать это будет трудно, так как передняя часть карандаша будет постоянно отклоняться от своей траектории. Для компенсации этого отклонения придется маневрировать задней частью карандаша. А в примере с велосипедом — это и есть обычный велосипед, где вращение от педалей через цепь передается заднему колесу.

Переднеприводные (рис. 4) — автомобили, у которых крутящий момент от двигателя передается на передние колеса. Среди автомобилей Волжского автозавода переднеприводными являются модели, начиная от ВАЗ-2108. У этих автомобилей передние колеса являются как ведущими, так и направляющими. Задние колеса таких автомобилей не выполняют никакой функции (кроме связи кузова с дорогой), они просто катятся по дороге. А передние колеса вовсю работают — получают энергию от двигателя, вращаются и «тянут» за собой всю машину, направляя ее при этом по выбранной водителем траектории. Автомобили с передним приводом более устойчивы на дороге, чем заднеприводные.
передний привод

Рис. 4. Переднеприводный автомобиль

Давайте снова возьмем карандаш. Только теперь мы будем его не толкать, а тащить вперед за кончик. Посмотрите, как легко стало перемещать его по плоскости стола в любом направлении, в том числе и прямо.

В примере с велосипедом, мы выбрасываем неудобную цепь и крутим педали на переднем колесе, вращая именно его. Самые юные обладатели трехколесных транспортных средств используют именно передний привод.

Полноприводные (рис. 5) — это автомобили, у которых передача крутящего момента от двигателя осуществляется одновременно на задние и передние колеса. Таковыми являются автомобили ВАЗ-2121 «Нива», ВАЗ-21213 «Тайга», ВАЗ-2123 «Шевроле-Нива», а также многочисленные «Джипы», которых все больше и больше появляется на наших дорогах.

полный привод

Рис. 5. Полноприводный автомобиль

У «вездеходов» все четыре колеса получают крутящий момент от двигателя, одновременно «тянут» и «толкают» автомобиль, максимально повышая его ходовые качества. Этот тип привода идеален для сохранения управляемости даже на скользкой дороге.

Придется опять взять в руки карандаш и, ухватившись за оба его конца, убедиться в том, что теперь он легко перемещается по любой поверхности и в любом направлении.

А в случае с велосипедом, давайте представим, что, работая педалями, мы передаем усилие через две цепи, одновременно заднему и переднему колесам — вот и получился полный привод.

В зависимости от того, где будут эксплуатироваться легковые автомобили, они подразделяются на две основные группы.

Городские автомобили. К основным требованиям, предъявляемым к этой группе автомобилей, относятся:
— минимальный расход топлива,
— небольшие габаритные размеры, для удобства маневрирования и парковки.

Автомобили для загородных поездок. Основные требования, предъявляемые к ним, это:
— повышенная комфортность салона для удобства при длительных поездках,
— высокие скоростные качества,
— топливная экономичность.

При покупке автомобиля, водитель, прежде всего, должен определиться с типом кузова.

Если большую часть времени автомобиль будет эксплуатироваться в городе, перевозя лишь водителя и одного — двух пассажиров, то имеет смысл приобрести «седан».

При частых перевозках груза более правильным выбором будет кузов типа «универсал».

Точно так же, зная, в каких условиях будет эксплуатироваться автомобиль, водитель выбирает и тип привода ведущих колес. Например, если эксплуатация планируется в тяжелых дорожных условиях, водители стараются приобретать полноприводные автомобили.

Необходимо отметить, что заднеприводные автомобили постепенно вытесняются с рынка машинами с передним приводом, так как последние более удобны и безопасны при эксплуатации, а кроме того имеют более рациональную конструкцию.

Выбрать другой раздел:

 

ГЛАВА I. ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

Бензиновые и дизельные двигатели

В качестве силовой установки на автомобилях используется двигатель внутреннего сгорания.

По виду применяемого топлива двигатели подразделяются на бензиновые, дизельные и газовые.

Бензиновые — это двигатели, работающие на жидком топливе (бензине) с принудительным зажиганием. Перед подачей в цилиндры двигателя топливо перемешивается с воздухом в определенной пропорции с помощью карбюратора.

Дизельные — это двигатели с воспламенением от сжатия, работающие на жидком топливе (дизельном топливе). Подача топлива осуществляется форсункой, а смешивание с воздухом происходит внутри цилиндра.

Газовые — это двигатели с принудительным зажиганием, которые работают на метане или пропанобутановой смеси. Перед подачей в цилиндры двигателя газ смешивается с воздухом в смесителе. По принципу работы такие двигатели практически не отличаются от бензиновых. Поэтому в объеме этой книги не имеет смысла подробно останавливаться на рассмотрении газовых установок. Но, если вы переоборудовали свой автомобиль на газ, то советуем вам внимательно изучить прилагаемую к газовому оборудованию инструкцию.

При работе двигателя внутреннего сгорания из каждых десяти литров использованного топлива, к сожалению, только около двух литров идет на полезную работу, а все остальные — на «согревание» окружающей среды. Коэффициент полезного действия (КПД) ныне выпускаемых двигателей составляет всего около 20%. Но мир пока не придумал более совершенного теплового двигателя, который мог бы долго и надежно работать при более высоком КПД.

Выбрать другой раздел:

Бензиновые двигатели

К основным механизмам и системам бензинового двигателя относятся:
— кривошипно-шатунный механизм,
— газораспределительный механизм,
— система питания,
— система выпуска отработавших газов,
— система зажигания,
— система охлаждения,
— система смазки.

Для начала, возьмем простейший одноцилиндровый бензиновый двигатель (рис. 6) и разберемся с принципом его работы. Рассмотрим протекающие в нем процессы и выясним, наконец, откуда все-таки берется тот самый крутящий момент, который в конечном итоге приходит на ведущие колеса автомобиля.

Основной частью одноцилиндрового двигателя (рис. 6) является цилиндр с укрепленной на нем съемной головкой. одноцилиндровый двигатель внутреннего сгорания

Рис. 6. Одноцилиндровый бензиновый двигатель внутреннего сгорания: 1 — головка цилиндра; 2 — цилиндр; 3 — поршень; 4 — поршневые кольца; 5 — поршневой палец; 6 — шатун; 7 — коленчатый вал; 8 — маховик; 9 — кривошип; 10 — распределительный вал; 11 — кулачок распределительного вала; 12 — рычаг; 13 — впускной клапан; 14 — свеча зажигания

Если продолжить сравнение элементов автомобиля с известными в быту предметами, то цилиндр вместе с головкой будет похож на обыкновенный стакан, перевернутый вверх дном.

Внутри цилиндра помещен еще один «стакан», тоже вверх дном, — это поршень. На поршне в специальных канавках находятся поршневые кольца. Они скользят по зеркалу внутренней поверхности цилиндра и они же не дают возможности газам, образующимся в процессе работы двигателя, прорваться вниз. В то же время кольца препятствуют попаданию вверх масла, которым смазывается внутренняя поверхность цилиндра.

С помощью пальца и шатуна поршень соединен с кривошипом коленчатого вала, который вращается в подшипниках, установленных в картере двигателя. На конце коленчатого вала крепится массивный маховик.

Через впускной клапан в цилиндр поступает горючая смесь (смесь воздуха с бензином), а через выпускной клапан выходят отработанные газы. Клапаны открываются при набегании кулачков вращающегося распределительного вала на рычаги. При сбегании кулачков с рычагов клапаны надежно закрываются под воздействием мощных пружин. Распределительный вал с кулачками приводится во вращение от коленчатого вала двигателя.

В резьбовое отверстие в головке цилиндра ввернута свеча зажигания, которая электрической искрой, проскакивающей между ее электродами, воспламеняет рабочую смесь (это горючая смесь, перемешанная с остатками выхлопных газов, о чем более подробно будет рассказано через пару страниц).

После знакомства с основными деталями одноцилиндрового двигателя вы уже начали догадываться о том, как он работает. Но давайте все-таки разберемся с тем, как происходит преобразование возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала. Этим в двигателе занимается шатунно-поршневая группа.

Давайте посмотрим со стороны на действия велосипедиста.

Нажимая на педаль одной ногой, мы поворачиваем ось педалей на пол-оборота, затем помогает вторая нога, нажимая на вторую педаль и… колесо вращается, велосипед едет.

Необходимо отметить, что работа двух ног — это пример двухцилиндрового двигателя. Чтобы не чувствовать себя обманутым, можете привязать одну ногу к педали и использовать для нашего эксперимента только ее.

При дальнейшем изучении работы ноги велосипедиста можно увидеть принцип работы шатунно-поршневой группы двигателя. Роль шатуна выполняет голень ноги, поршнем с верхней головкой шатуна является колено, ну а нижняя головка шатуна на кривошипе — это ступня на педали.

Колено велосипедиста движется только вверх-вниз (как поршень), а ступня с педалью уже по окружности (как кривошип коленчатого вала). Это и есть преобразование возвратно-поступательного движения во вращательное.

В двигателе взаимодействие деталей шатунно-поршневой группы точно такое же, как и в рассмотренном нами примере с ногой велосипедиста.

На рисунке 7 показаны некоторые параметры цилиндра и поршня, которыми характеризуется двигатель (объемы цилиндра и ход поршня).
ход поршня и объём цилиндра двигателя

Рис. 7. Ход поршня и объемы цилиндра двигателя: а) поршень в нижней мертвой точке; б) поршень в верхней мертвой точке

Крайние положения поршня, когда он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней «мертвой» точкой (ВМТ) и нижней «мертвой» точкой (НМТ).

При езде на велосипеде колено вашей ноги, так же как и поршень, периодически будет находиться в крайнем верхнем и в крайнем нижнем положении.

Ходом поршня (S) называется путь, пройденный от одной «мертвой» точки до другой.

Объемом камеры сгорания (Vc) называется объем, расположенный над поршнем, находящимся в ВМТ.

Рабочим объемом цилиндра (Vp) называется объем, освобождаемый поршнем при перемещении от ВМТ к НМТ.

Полным объемом цилиндра является сумма объемов камеры сгорания и рабочего объема: Vn = VP + Vc.

Рабочий объем двигателя — это сумма рабочих объемов всех цилиндров. Измеряется рабочий объем в литрах.

Пока мы рассматриваем только одноцилиндровый двигатель, а вообще двигатели современных легковых автомобилей, как правило, имеют 2, 3, 4, 5, 6, 8 и даже 12 цилиндров.

Чем больше суммарный рабочий объем, тем более мощным будет двигатель. Измеряется мощность в киловаттах или в лошадиных силах (кВт или л.с.).

Рабочий цикл четырехтактного карбюраторного двигателя

Двигатели внутреннего сгорания отличаются друг от друга рабочим циклом, по которому они работают.

Рабочий цикл — это комплекс последовательных рабочих процессов, периодически повторяющихся в каждом цилиндре при работе двигателя.

Рабочий процесс, происходящий в цилиндре за один ход поршня, называется тактом.

По числу тактов, составляющих рабочий цикл, двигатели делятся на два вида:
— четырехтактные, в которых рабочий цикл совершается за четыре хода поршня,
— двухтактные, в которых рабочий цикл совершается за два хода поршня.

На легковых автомобилях, как правило, применяются четырехтактные двигатели, а на мотоциклах и моторных лодках — двухтактные. О путешествиях по водным просторам поговорим как-нибудь потом, а с четырьмя тактами работы автомобильного двигателя разберемся сейчас.

Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов:
— впуск горючей смеси,
— сжатие рабочей смеси,
— рабочий ход,
— выпуск отработавших газов.
рабочий цикл четырехтактного карбюраторного двигателя

Рис. 8. Рабочий цикл четырехтактного карбюраторного двигателя: а) впуск; б) сжатие; в) рабочий ход; г) выпуск

Первый такт — впуск горючей смеси (рис. 8а).

Горючей смесью называется смесь мелко распыленного бензина с воздухом в определенной пропорции. Приготовлением смеси в двигателе занимается карбюратор или форсунка, о чем мы поговорим чуть позже. А пока следует знать, что соотношение бензина к воздуху примерно 1:15 считается оптимальным для обеспечения нормального процесса сгорания.

При такте впуска поршень от верхней мертвой точки перемещается к нижней мертвой точке. Объем над поршнем увеличивается. Цилиндр заполняется горючей смесью через открытый впускной клапан. Иными словами, поршень всасывает горючую смесь.

Впуск смеси продолжается до тех пор, пока поршень не дойдет до нижней мертвой точки. За первый такт работы двигателя кривошип коленчатого вала поворачивается на пол-оборота.

В процессе заполнения цилиндра горючая смесь перемешивается с остатками отработавших газов и меняет свое название, теперь эта смесь называется рабочая.

Второй такт — сжатие рабочей смеси (рис. 8б).

При такте сжатия поршень от нижней мертвой точки перемещается к верхней мертвой точке. Оба клапана плотно закрыты, поэтому рабочая смесь сжимается.

Из школьной физики всем известно, что при сжатии газов их температура повышается. Давление в цилиндре над поршнем в конце такта сжатия достигает 9-10 кг/см?, а температура 300-400°С.

В заводской инструкции к автомобилю можно увидеть один из параметров двигателя с названием — «степень сжатия» (например 8,5). А что это такое?

Степень сжатия показывает, во сколько раз полный объем цилиндра больше объема камеры сгорания (Vn/Vc — см. рис. 7). У бензиновых двигателей в конце такта сжатия объем над поршнем уменьшается в 8-11 раз.

В процессе такта сжатия коленчатый вал двигателя поворачивается на очередные пол-оборота. От начала первого такта и до окончания второго, он повернется уже на один оборот.

Третий такт — рабочий ход (рис. 8в).

Во время третьего такта происходит преобразование выделяемой при сгорании рабочей смеси энергии в механическую работу. Давление от расширяющихся газов передается на поршень и затем, через шатун и кривошип, на коленчатый вал.

Вот откуда берется та сила, которая заставляет вращаться коленчатый вал двигателя и, в конечном итоге, ведущие колеса автомобиля.

В самом конце такта сжатия рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода сгорающая смесь начинает активно расширяться. Поскольку впускной и выпускной клапаны все еще закрыты, то расширяющимся газам остается только один единственный выход — давить на подвижный поршень.

Под действием давления, достигающего величины 50 кг/см?, поршень начинает перемещаться к нижней мертвой точке. При этом на всю площадь поршня давит сила в несколько тонн, которая через шатун передается на кривошип коленчатого вала, создавая крутящий момент.

При такте рабочего хода температура в цилиндре достигает более 2000 градусов.

Коленчатый вал при рабочем ходе делает очередные пол-оборота.

Четвертый такт — выпуск отработавших газов (рис. 8г).

При движении поршня от нижней мертвой точки к верхней мертвой точке открывается выпускной клапан (впускной все еще закрыт), и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя.

Вот почему слышен тот сильный грохот, когда по дороге движется автомобиль без глушителя, но об этом позже. А пока обратим внимание на коленчатый вал двигателя — при такте выпуска он делает еще пол-оборота. И всего, за четыре такта рабочего цикла, он сделал два полных оборота.

После такта выпуска начинается новый рабочий цикл, и все повторяется: впуск — сжатие — рабочий ход — выпуск… и так далее.

Теперь, интересно, кто из вас обратил внимание на то, что полезная механическая работа совершается одноцилиндровым двигателем только в течение одного такта — такта рабочего хода! Остальные три такта (выпуск, впуск и сжатие) являются лишь подготовительными и совершаются они за счет кинетической энергии вращающихся по инерции коленчатого вала и маховика.

Маховик (рис. 9) — это массивный металлический диск, который крепится на коленчатом валу двигателя. Во время рабочего хода поршень через шатун и кривошип раскручивает коленчатый вал двигателя, который передает маховику запас энергии вращения.
коленчатый вал двигателя с маховиком

Рис. 9. Коленчатый вал двигателя с маховиком: 1 — шатунная шейка; 2 — противовес; 3 — маховик с зубчатым венцом; 4 — коренная (опорная) шейка; 5 — коленчатый вал двигателя

Запасенная в массе маховика энергия вращения позволяет ему в обратном порядке через коленчатый вал, шатун и поршень осуществлять подготовительные такты рабочего цикла двигателя. Поршень движется вверх (при такте выпуска и сжатия) и вниз (при такте впуска) именно за счет отдаваемой маховиком энергии.

Если двигатель имеет несколько цилиндров, работающих в определенном порядке, то подготовительные такты в одних цилиндрах совершаются за счет энергии, развиваемой в других, ну и маховик, конечно, тоже помогает.

В детстве у вас наверняка была игрушка, которая называлась волчок. Вы раскручивали его энергией своей руки (рабочий ход) и радостно наблюдали за тем, как долго он вращается. Точно так же и массивный маховик двигателя — раскрутившись, он запасает энергию, но только значительно большую, чем детская игрушка, а затем эта энергия используется для перемещения поршня в подготовительных тактах.

Выбрать другой раздел:

Дизельные двигатели

Главной особенностью работы дизельного двигателя является то, что топливо подается форсункой или насосом-форсункой непосредственно в цилиндр двигателя под большим давлением в конце такта сжатия. Необходимость подачи топлива под большим давлением обусловлена тем, что степень сжатия у таких двигателей значительно больше, чем у бензиновых.

Поскольку давление и температура в цилиндре дизельного двигателя очень велики, то происходит самовоспламенение топлива. Это означает, что искусственно поджигать смесь не надо. Поэтому у дизельных двигателей отсутствуют не только свечи, но и вся система зажигания.

Рабочий цикл четырехтактного дизельного двигателя

Первый такт — впуск, служит для наполнения цилиндра двигателя только воздухом.

При движении поршня от верхней мертвой точки к нижней мертвой точке происходит всасывание воздуха через открытый впускной клапан.

Второй такт — сжатие, необходим для подготовки к самовоспламенению дизельного топлива.

При движении к верхней мертвой точке поршень сжимает воздух в 18-22 раза (у бензиновых в 8-11 раз). Поэтому в конце такта сжатия, давление над поршнем достигает 40 кг/см?, а температура поднимается выше 500 градусов.

Третий такт — рабочий ход, служит для преобразования энергии сгораемого топлива в механическую работу.

В конце такта сжатия в камеру сгорания через форсунку под давлением подается дизельное топливо, которое самовоспламеняется за счет высокой температуры сжатого воздуха.

При сгорании дизельного топлива расширяющиеся газы создают усилие, которое перемещает поршень к нижней мертвой точке и через шатун проворачивает коленчатый вал.

Во время рабочего хода давление в цилиндре достигает 100 кг/см?, а температура превышает 2000°С.

Четвертый такт — выпуск отработавших газов, служит для освобождения цилиндра от отработавших газов.

Поршень от нижней мертвой точки поднимается к верхней мертвой точке и, через открытый выпускной клапан, выталкивает отработавшие газы.

При последующем движении вниз поршень засасывает свежую порцию воздуха, происходит такт впуска и рабочий цикл повторяется.

В дизельном двигателе нагрузки на все механизмы и детали значительно больше, чем в бензиновом, и это закономерно приводит к увеличению его массы, размеров и стоимости.

В то же время, дизельный двигатель имеет и неоспоримые преимущества — меньший расход топлива, чем у его бензинового «брата», а также отсутствие системы зажигания, что значительно уменьшает количество возможных неисправностей при эксплуатации.

Кривошипно-шатунный механизм (КШМ)

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала двигателя.

Ранее рассматривалась работа одноцилиндрового двигателя. Это было необходимо для простоты восприятия протекающих в нем процессов.

На большинстве легковых автомобилей, как отечественных, так и зарубежных, устанавливаются четырехцилиндровые двигатели. Конечно, существуют варианты и с другим количеством цилиндров (от двух до двенадцати), но в объеме этой книги мы ограничимся знакомством именно с четырехцилиндровым двигателем, так как он является самым распространенным.
основные детали четырехцилиндрового бензинового двигателя

Рис. 10. Основные детали четырехцилиндрового бензинового двигателя: а) продольный разрез; б) поперечный разрез; 1 — блок цилиндров; 2 — головка блока цилиндров; 3 — поддон картера; 4 — поршни с кольцами и пальцами; 5 — шатуны; 6 — коленчатый вал; 7 — маховик; 8 — распределительный вал; 9 — рычаги; 10 — впускные клапаны; 11 — выпускные клапаны; 12 — пружины клапанов; 13 — впускные и выпускные каналы

Кривошипно-шатунный механизм состоит из (рис. 10): — блока цилиндров с картером;
— головки блока цилиндров;
— поддона картера двигателя;
— поршней с кольцами и пальцами;
— шатунов;
— коленчатого вала;
— маховика.

Блок цилиндров объединяет в себе не только уже известные нам цилиндры и шатунно-поршневую группу, но и другие системы двигателя. Блок является основой двигателя, в которой имеется множество литых каналов и сверлений, подшипников и заглушек. Именно в блоке вращается (на подшипниках) коленчатый вал. Во внутренних полостях блока циркулирует жидкость системы охлаждения, там же проходят и масляные каналы системы смазки двигателя. Большая часть из навесного оборудования двигателя монтируется, опять же, на блоке цилиндров. Нижняя часть блока называется картером.

Головка блока цилиндров является второй по значимости и по величине составной частью двигателя. В головке расположены камеры сгорания, клапаны и свечи цилиндров, в ней же на подшипниках вращается распределительный вал с кулачками. В головке, как и в блоке цилиндров, имеются водяные и масляные каналы и полости. Головка крепится к блоку цилиндров и при работе двигателя составляет с блоком единое целое.

Устройство и взаимодействие основных деталей кривошипно-шатунного механизма (шатунно-поршневой группы) мы с вами рассмотрели ранее, при изучении работы ног велосипедиста и рабочего цикла двигателя.

Для тех, кто уже вернулся обратно на эту страницу, предлагается небольшой экскурс в мир цифр.

На холостом ходу коленчатый вал двигателя вращается со скоростью приблизительно 800-900 оборотов в минуту (13-15 об/сек). На средней и большой скорости движения автомобиля число оборотов коленчатого вала в минуту составляет от 2000 до 4000. А в ходе автомобильных соревнований, у специально подготовленных автомобилей, двигатель «раскручивается» до 12000 об/мин (200 оборотов в секунду) и даже больше.

А что поршни? Они движутся в цилиндре с огромной скоростью! За один оборот коленчатого вала каждый поршень успевает подняться вверх, «развернуться» и опуститься вниз (или наоборот — сначала вниз, потом вверх). При этом путь от одной мертвой точки до другой поршни «пролетают» за сотые доли секунды! А если вспомнить еще и об огромных температурах и давлении в цилиндрах в это время!

Вот в таких непростых, мягко выражаясь, условиях работают детали двигателя вашего автомобиля.

Мы с вами разобрались с очень сложным и уникальным процессом, происходящим внутри двигателя с одним цилиндром. Многоцилиндровый двигатель принципиально ничем не отличается от простейшего одноцилиндрового. Но, когда цилиндров много, представьте, в каких условиях работает двигатель (температуры, давление, трение…), при этом работает безотказно и продолжительное время, ничего не требуя взамен, кроме лишь «кормления» бензином и периодического обслуживания.

Выбрать другой раздел:

Основные неисправности кривошипно-шатунного механизма

Стуки в двигателе могут возникнуть по причине износа поршневых пальцев, шатунных и коренных подшипников.

Для устранения неисправности необходимо заменить изношенные детали.

Повышенная дымность выхлопных газов и (или) падение компрессии (давление в конце такта сжатия) случается из-за износа поршневых колец, поршней, цилиндров, залегания поршневых колец в канавках поршней.

Для устранения неисправности следует заменить изношенные детали.

Выбрать другой раздел:

Эксплуатация кривошипно-шатунного механизма двигателя

Правильная эксплуатация двигателя крайне необходима, так как его ремонт достаточно трудоемкий и дорогостоящий процесс. И к кривошипно-шатунному механизму это относится в первую очередь.

Ресурс двигателя — это продолжительность нормальной работы двигателя без его капитального ремонта. Для отечественных автомобилей ресурс двигателя составляет приблизительно 150-200 тысяч километров пробега, и несколько больше для иномарок.

Многим из вас эти цифры покажутся недосягаемо большими, но это не означает, что можно забывать о своевременной смене масел, жидкостей, фильтров и других расходных материалов. Плюс к этому, двигатель требует периодических регулировок. Необходимо соблюдать сроки обслуживания его механизмов и систем, как это рекомендовано заводом-изготовителем вашего автомобиля. А иначе, через удивительно короткий промежуток времени, вам может понадобиться капитальный ремонт двигателя.

Выбрать другой раздел:

Факторы, влияющие на продолжительность работы двигателя

Первый фактор, уменьшающий ресурс двигателя — частые перегрузки автомобиля. Если загрузка салона, багажника и прицепа превышает все разумные пределы, то, двигаясь на такой перегруженной машине продолжительное время, вы рискуете выработать ресурс двигателя ранее вышеуказанного срока.

Водители, полагающие, что металл выдержит все, очень сильно ошибаются. Попробуем «примерить» это утверждение на себя.

Если сумка, с которой вы идете по улице, весит полтора-два кило, то можно долго не ощущать усталости. А теперь давайте возьмем на прогулку свой любимый телевизор с диагональю 51 см и, «погуляв» по набережным часика эдак два, оценим свое состояние. А ведь в отличие от нашего с вами организма, металл претерпевает необратимые изменения.

Вторым фактором, влияющим на срок службы двигателя, является движение с максимально возможной скоростью длительное время.

Если на трехкилометровой дистанции по кроссу вы будете бежать так же быстро, как и на 100 метров, то вам не избежать быстрой усталости и потери сил.

Вспоминается фраза из песни В. Высоцкого: «На десять тысяч я рванул, как на пятьсот… и… спекся!».

Последствия в этом случае для человеческого организма могут быть плачевными. То же самое происходит и с двигателем автомобиля. Жаль, что многие начинают понимать это слишком поздно.

Мы с вами не так далеко ушли от «страшно» больших цифр (температуры, давления, скорости…), характеризующих условия, в которых работают механизмы двигателя. Согласитесь, что количество «взрывов» в цилиндрах, периодичность колебаний температуры и давления за одну секунду, не могут не влиять на продолжительность «жизни» деталей двигателя.

Третий фактор, ускоряющий износ двигателя — экология. Грязный воздух и грязные дороги укорачивают жизнь не только человеку, но и разрушающе действуют на структуру металла, уменьшая ресурс двигателя. Поэтому не забывайте вовремя производить замену фильтров, по возможности применяйте качественные масла и топливо, следите за внешним видом двигателя своего автомобиля. Хотя бы пару раз в год его следует очищать от грязи и мыть с использованием специальных жидкостей.

Выбрать другой раздел:

Газораспределительный механизм (ГРМ)

Газораспределительный механизм предназначен для своевременного впуска в цилиндры двигателя горючей смеси и выпуска отработавших газов.

Газораспределительный механизм состоит из (см. рис. 10):
— распределительного вала;
— рычагов или толкателей;
— впускных и выпускных клапанов с пружинами;
— впускных и выпускных каналов.

Распределительный вал располагается чаще всего в верхней части головки блока цилиндров. Составной частью вала являются кулачки, количество которых соответствует количеству впускных и выпускных клапанов двигателя. Иными словами, над каждым клапаном расположен свой персональный кулачок. Именно эти кулачки при вращении распределительного вала обеспечивают своевременное, согласованное с движением поршней в цилиндрах, открытие и закрытие клапанов.

Распределительный вал приводится во вращение от коленчатого вала двигателя с помощью шестерен, цепной передачи или зубчатого ремня. Натяжение цепи привода регулируется специальным натяжителем, а зубчатого ремня — натяжным роликом (рис. 11).
цепной привод

а) цепной привод: 1 — звездочка распределительного вала; 2 — цепь; 3 — успокоитель цепи; 4 — звездочка привода масляного насоса; 5 — звездочка коленчатого вала; 6 — башмак натяжителя цепи; 7 — натяжитель цепи

ременной привод

б) ременной привод: 1 — зубчатый шкив распределительного вала; 2 — зубчатый ремень; 3 — зубчатый шкив коленчатого вала; 4 — зубчатый шкив водяного насоса; 5 — натяжной ролик

Рис. 11. Схема привода распределительного вала

Давайте вернемся к упрощенной схеме двигателя и разберемся с работой газораспределительного механизма (рис. 12).

Рис. 12. Схема взаимодействия деталей газораспределительного механизма

При вращении распределительного вала кулачок набегает на рычаг, который, в свою очередь, нажимает на стержень соответствующего клапана (впускного или выпускного) и открывает его (рис. 12 а). Продолжая вращаться, кулачок сбегает с рычага, и под воздействием сильной пружины клапан закрывается (рис. 12 б).

А что дальше, вы уже знаете — поршень, через открытый впускной или выпускной клапан, соответственно засасывает горючую смесь или выталкивает отработавшие газы.

Выбрать другой раздел:

Основные неисправности газораспределительного механизма двигателя

Стуки в газораспределительном механизме появляются по причине увеличенных тепловых зазоров в клапанном механизме, износе подшипников или кулачков распределительного вала, рычагов, а также из-за поломки пружин клапанов.

Для устранения стуков необходимо отрегулировать тепловой зазор, а изношенные детали и узлы заменить.

Повышенный шум цепи привода распределительного вала появляется вследствие износа шарнирных соединений звеньев цепи и ее удлинения.

Следует отрегулировать натяжение цепи, а при чрезмерном ее износе заменить.

Потеря мощности двигателя и повышенная дымность выхлопных газов происходят при нарушении теплового зазора в клапанном механизме, неплотном закрытии клапанов, износе маслоотражательных колпачков.

Зазор следует отрегулировать, изношенные колпачки заменить, а клапаны «притереть» к седлам.

Выбрать другой раздел:

Эксплуатация газораспределительного механизма двигателя

Обратите внимание на тепловой зазор между рычагом и кулачком распределительного вала (рис. 12 б). Немного знаний физики позволит понять, что этот зазор должен быть строго определенного размера. Ведь при нагревании все детали двигателя расширяются, в том числе и детали газораспределительного механизма.

Если зазор между рычагом и кулачком распределительного вала меньше нормального, то клапан будет открываться больше, чем ему положено, и не будет полностью закрываться. Это нарушит рабочий цикл двигателя и, плюс ко всему, в скором времени придется менять «подгоревшие» клапаны.

Если тепловой зазор будет слишком велик, то встреча кулачка с рычагом будет происходить с ударом, что выразится в заметном увеличении шума при работе двигателя и приведет к быстрому износу деталей газораспределительного механизма.

При неправильной установке теплового зазора наблюдается целый «букет» неприятностей. Двигатель начинает работать неустойчиво, глохнуть и преподносить прочие «сюрпризы», описанные в неисправностях газораспределительного механизма. Используя инструкцию по эксплуатации своего автомобиля, следует периодически контролировать правильность «зазора в клапанах».

Причем разговор идет о десятых долях миллиметра! Например, для двигателей ВАЗ, в зависимости от модели, тепловой зазор должен быть в пределах 0,15-0,35 мм. Если у вас есть соответствующие инструменты и решимость «залезть» в двигатель, то после нескольких попыток можно научиться «регулировать клапана». А если вы не собираетесь осваивать профессию автомеханика, то при подозрениях на «разрегулированные клапана» следует обратиться к специалистам.

При эксплуатации двигателя необходимо следить за натяжением цепи (зубчатого ремня) привода распределительного вала и при необходимости его регулировать.

Владельцам ВАЗ-2108 и 2109 с рабочим объемом двигателя 1,3 литра следует быть особенно внимательными к состоянию ремня привода распределительного вала и вовремя его менять, не допуская обрыва изношенного ремня при движении. У этих двигателей при выходе ремня из строя возможна «встреча» поршней с клапанами, что влечет к серьезным взаимным повреждениям. Это отнюдь не та встреча, на которую стремишься со сладостным ожиданием, а совсем другая, за которой последует сложный ремонт с заменой деталей газораспределительного и кривошипно-шатунного механизмов двигателя.

Большинству из вас никогда не придется разбирать и собирать двигатель, да это и не нужно, если вы не являетесь специалистом в этой области. Но при любых экспериментальных работах с автомобилем, разбирая какой-то узел, а потом его собирая, обязательно запоминайте расположение деталей и последовательность демонтажа. А то могут остаться «лишние» детали!

Причем, сборка всегда труднее, чем разборка. Не забывайте арабскую пословицу: «Прежде чем тащить осла на крышу подумай, как снять его оттуда».

В начале автомобильной жизни не рекомендуется включать музыку сразу же после запуска двигателя. Проехав некоторое расстояние, прислушайтесь к звукам, доносящимся из-под капота. Они могут быть самыми разными, но любой «выделяющийся» звук говорит о том, что с двигателем не все в порядке. При появлении новых, незнакомых вам звуков, следует обратиться в автосервис или к знакомому умельцу.

Ни одна неисправность в автомобиле не появляется, не предупредив водителя об этом заранее. В то же время немало «юных» водителей ездят на своих машинах с явно аварийными узлами, думая, что так и должно быть.

Одной из проблем начинающих водителей является то, что зачастую они не знают, как должен вести себя исправный автомобиль, какие шумы нормальные, а какие «говорят» о надвигающихся финансовых затратах. А знать это важно, так как многие неисправности влияют еще и на безопасность движения.

Если во время движения вы ничего не слышите из-под капота своей машины (не слышно или не умеете слышать), то дайте проехаться на ней знающему человеку, который сможет определить причину постороннего шума.

Выбрать другой раздел:

Система питания карбюраторного двигателя

Автомобиль с двигателем внутреннего сгорания на одной заправке топливом может проехать 500-600 и более километров. Это расстояние называется запасом хода автомобиля. Конечно, максимальный пробег машины «на одном баке» зависит от многих факторов, но основным из них является правильная работа системы питания двигателя.

Система питания двигателя предназначена для хранения, очистки и подачи топлива, очистки воздуха, приготовления горючей смеси и подачи ее в цилиндры двигателя. На различных режимах работы двигателя количество и качество горючей смеси должно быть различным, и это тоже обеспечивается системой питания.

Поскольку в этой книге мы рассматриваем работу бензинового двигателя, то в дальнейшем под топливом будет подразумеваться именно бензин.
Схема расположения элементов системы питания карбюраторного двигателя

Рис. 13. Схема расположения элементов системы питания карбюраторного двигателя: 1 — заливная горловина с пробкой; 2 — топливный бак; 3 — датчик указателя уровня топлива с поплавком; 4 — топливозаборник с фильтром; 5 — топливопроводы; 6 — фильтр тонкой очистки топлива; 7 — топливный насос; 8 — поплавковая камера карбюратора с поплавком; 9 — воздушный фильтр; 10 — смесительная камера карбюратора; 11 — впускной клапан; 12 — впускной трубопровод; 13 — камера сгорания

Система питания состоит из (рис. 13): — топливного бака;
— топливопроводов;
— фильтров очистки топлива;
— топливного насоса;
— воздушного фильтра;
— карбюратора.

Выбрать другой раздел:

Топливный бак

Топливный бак — это емкость для хранения топлива. Обычно он размещается в задней, более безопасной при аварии части автомобиля. От топливного бака к карбюратору бензин поступает по топливопроводам, которые тянутся вдоль всего автомобиля, как правило, под днищем кузова.

Выбрать другой раздел:

Первая ступень очичтки топлива

Первая ступень очистки топлива — это сетка на топливозаборнике внутри бака. Она не дает возможности содержащимся в бензине крупным примесям и воде попасть в систему питания двигателя.

Количество бензина в баке водитель может контролировать по показаниям указателя уровня топлива, расположенного на щитке приборов (см. рис. 67).

Емкость топливного бака среднестатистического легкового автомобиля обычно составляет 40-50 литров. Когда уровень бензина в баке уменьшается до 5-9 литров, на щитке приборов загорается соответствующая желтая (или красная) лампочка — лампа резерва топлива. Это сигнал водителю о том, что пора подумать о заправке.

Выбрать другой раздел:

Топливный фильтр (как правило, устанавливается самостоятельно) — второй этап очистки топлива. Фильтр располагается в моторном отсеке и предназначен для тонкой очистки бензина, поступающего к топливному насосу (возможна установка фильтра и после насоса). Обычно применяется неразборный фильтр, при загрязнении которого требуется его замена.

Выбрать другой раздел:

Топливный насос

Топливный насос — предназначен для принудительной подачи топлива из бака в карбюратор.

Насос состоит из (рис. 14): корпуса, диафрагмы с пружиной и механизмом привода, впускного и нагнетательного (выпускного) клапанов. В нем также находится сетчатый фильтр для очередной третьей ступени очистки бензина.
 Схема работы топливного насоса

Рис. 14. Схема работы топливного насоса: 1 — нагнетательный патрубок; 2 — стяжной болт; 3 — крышка; 4 — всасывающий патрубок; 5 — впускной клапан с пружиной; 6 — корпус; 7 — диафрагма насоса; 8 — рычаг ручной подкачки; 9 — тяга; 10 — рычаг механической подкачки; 11 — пружина; 12 — шток; 13 — эксцентрик; 14 — нагнетательный клапан с пружиной; 15 — фильтр очистки топлива

Топливный насос приводится в действие от валика привода масляного насоса или от распределительного вала двигателя. При вращении вышеуказанных валов, имеющийся на них эксцентрик набегает на шток привода топливного насоса. Шток начинает давить на рычаг, а тот, в свою очередь, заставляет диафрагму опускаться вниз. Над диафрагмой создается разряжение и впускной клапан, преодолевая усилие пружины, открывается. Порция топлива из бака засасывается в пространство над диафрагмой.

При сбегании эксцентрика со штока диафрагма освобождается от воздействия рычага и за счет жесткости пружины поднимается вверх. Возникающее при этом давление закрывает впускной клапан и открывает нагнетательный. Бензин над диафрагмой поступает к карбюратору. При очередном набегании эксцентрика на шток процесс повторяется.

Обратите внимание на то, что подача бензина в карбюратор происходит лишь за счет усилия пружины, которая поднимает диафрагму. Это означает, что когда поплавковая камера карбюратора будет заполнена и игольчатый клапан (см. рис. 16) перекроет путь бензину, диафрагма топливного насоса останется в нижнем положении. До тех пор, пока двигатель не израсходует часть топлива из карбюратора, пружина будет не в состоянии «вытолкнуть» из насоса очередную порцию бензина.

Так как топливный бак расположен ниже карбюратора, то возникает необходимость в принудительной подаче бензина. Если предположить, что бак находится на крыше автомобиля, то потребность в насосе отпадает. В этом случае бензин будет поступать в карбюратор самотеком, что и используют некоторые водители в «безвыходной» ситуации при отказе насоса в работе. Закрепив канистру с бензином в положении, явно выше карбюратора и соединив их между собой, можно продолжить поездку (не забывая при этом правил противопожарной безопасности).

Выбрать другой раздел:

Воздушный фильтр

Воздушный фильтр (рис. 15) — необходим для очистки воздуха, поступающего в цилиндры двигателя. Фильтр устанавливается на верхней части воздушной горловины карбюратора.
Воздушный фильтр

Рис. 15. Воздушный фильтр: 1 — крышка; 2 — фильтрующий элемент; 3 — корпус; 4 — воздухозаборник

При загрязнении фильтра возрастает сопротивление движению воздуха, что может привести к повышенному расходу топлива, так как горючая смесь будет слишком обогащаться бензином. Чем это грозит кроме лишних финансовых затрат, вы узнаете через несколько страниц.

Карбюратор предназначен для приготовления горючей смеси и подачи ее в цилиндры двигателя. В зависимости от режима работы двигателя карбюратор меняет качество (соотношение бензина и воздуха) и количество смеси.

Карбюратор, это одно из самых сложных устройств автомобиля. Он состоит из множества деталей и имеет несколько систем, которые принимают участие в приготовлении горючей смеси, обеспечивая бесперебойную работу двигателя. Давайте разберемся с устройством и принципом работы карбюратора на несколько упрощенной схеме.
Схема устройства и работы простейшего карбюратора

Рис. 16. Схема устройства и работы простейшего карбюратора: 1 — топливная трубка; 2 — поплавок с игольчатым клапаном; 3 — отверстие для связи поплавковой камеры с атмосферой; 4 — воздушная заслонка; 5 — распылитель 6 — диффузор; 7 — дроссельная заслонка; 8 — корпус карбюратора; 9 — топливный жиклер

Простейший карбюратор состоит из (рис. 16):
— поплавковой камеры;
— поплавка с игольчатым запорным клапаном;
— распылителя;
— смесительной камеры;
— диффузора;
— воздушной и дроссельной заслонок;
— топливных и воздушных каналов с жиклерами.

При движении поршня в цилиндре от верхней мертвой точки к нижней (такт впуска), над ним создается разряжение. Поток воздуха с улицы, через воздушный фильтр и карбюратор, устремляется в освободившийся объем цилиндра (см. рис. 13).

При прохождении воздуха через карбюратор, из поплавковой камеры через распылитель, который расположен в самом узком месте смесительной камеры (диффузоре), вытекает топливо (рис. 16). Это происходит по причине разности давлений в поплавковой камере карбюратора, которая связана с атмосферой, и в диффузоре, где создается значительное разрежение.

Поток воздуха дробит вытекающее из распылителя топливо и смешивается с ним. На выходе из диффузора происходит окончательное перемешивание бензина с воздухом, и затем эта горючая смесь поступает в цилиндр.

Каждый из вас периодически пользуется каким-либо устройством, где применен принцип пульверизации. Не важно, что это — флакон с духами, банка с краской и насадкой к пылесосу или бачок-опрыскиватель для увлажнения цветов. В любом случае, за счет разности давлений из некой емкости высасывается жидкость, которая затем дробится и смешивается с воздухом.

Для примера можно взять даже обычный чайник, который вместе со своим носиком очень похож на поплавковую камеру с распылителем.

Нальем в чайник воду так, чтобы уровень в его носике не доходил до края примерно на 1-1,5 мм. Если вы создадите сильный поток воздуха (например, вентилятором или феном), то он будет высасывать воду из носика чайника, смешиваться с ней и «увлажнять» пол в вашей квартире. Примерно так это происходит и в карбюраторе, но здесь тщательно распыленный и смешанный с воздухом бензин попадает в цилиндры двигателя.

Из схемы работы простейшего карбюратора (рис. 16) можно понять, что двигатель не будет работать нормально, если уровень топлива в поплавковой камере (воды в чайнике) выше нормы, так как в этом случае бензина будет выливаться больше чем надо. Если уровень бензина будет меньше нормы, то и его содержание в смеси будет тоже меньше, что опять-таки нарушит правильную работу двигателя. Следовательно, количество бензина в камере всегда должно быть неизменным.

Уровень топлива в поплавковой камере карбюратора регулируется специальным поплавком (рис. 16), который, опускаясь вместе игольчатым запорным клапаном, позволяет бензину поступать в камеру. Когда поплавковая камера начинает наполняться, поплавок всплывает и закрывает игольчатым клапаном проход для бензина.

В салоне автомобиля у водителя под правой ногой имеется педаль «газа», предназначенная для управления карбюратором. А на что конкретно, на какую деталь карбюратора передается усилие ноги?

Когда водитель «давит на газ», на самом деле он управляет той заслонкой, которая обозначена на рисунке 16 как дроссельная.

Дроссельная заслонка связана с педалью «газа» посредством рычагов или троса. В исходном положении заслонка закрыта. Когда водитель нажимает на педаль, заслонка начинает открываться и поток воздуха, проходящего через карбюратор, увеличивается. При этом чем больше открывается дроссельная заслонка, тем больше высасывается топлива, так как повышаются объем и скорость потока воздуха, проходящего через диффузор и «высасывающее» разряжение увеличивается.

Когда водитель отпускает педаль «газа», заслонка под воздействием возвратной пружины начинает закрываться. Поток воздуха уменьшается, и в цилиндры поступает все меньше и меньше горючей смеси. Двигатель теряет обороты, уменьшается скорость вращения колес автомобиля, и соответственно, мы с вами едем медленнее.

А если совсем убрать ногу с педали «газа»?

Тогда дроссельная заслонка закроется полностью. И тут же возникает вопрос. А как теперь со смесеобразованием? Ведь мотор заглохнет!

Оказывается, для поддержания работы двигателя на холостом ходу в карбюраторе есть свои каналы, по которым воздух может попасть под дроссельную заслонку, смешиваясь по пути с бензином (рис. 17 а, поз. 6).

Схема работы системы холостого хода

Рис. 17 (а). Схема работы системы холостого хода: 1 — игольчатый клапан поплавковой камеры карбюратора; 2 — топливный жиклер системы холостого хода; 3 — топливный канал системы холостого хода; 4 — воздушная заслонка; 5 — воздушный жиклер системы холостого хода; 6 — канал системы холостого хода; 7 — винт «качества» системы холостого хода; 8 — дроссельная заслонка; 9 — топливный жиклер

При закрытой дроссельной заслонке воздуху не остается другого пути, кроме как проходить в цилиндры по каналу холостого хода. По пути он высасывает бензин из топливного канала и, смешиваясь с ним, превращается в горючую смесь. Почти готовая к «употреблению» смесь попадает в поддроссельное пространство и затем через впускной трубопровод поступает в цилиндры.

На рисунке 17а (поз. 7) показан один из двух винтов регулировки карбюратора. С помощью этого винта регулируется качество смеси (соотношение воздуха и бензина), необходимое для работы двигателя на холостом ходу. Вторым винтом, «количества» смеси (рис. 17б, поз. 1), регулируется плотность прикрытия дроссельной заслонки, от положения которой зависит объем проходящего через карбюратор потока воздуха.
Винты регулировки карбюратора

Рис. 17 (б). Винты регулировки карбюратора: 1 — винт «количества»; 2 — винт «качества»

На холостом ходу, при нормально работающей системе подачи топлива и отрегулированном карбюраторе, коленчатый вал двигателя должен устойчиво вращаться со скоростью примерно 800-900 об/мин.

В объеме этой книги не хотелось бы затрагивать работу других систем карбюратора, так как у всех вас будут различные модели этого весьма сложного устройства. Карбюраторы «Озон» отличаются от своих «собратьев» серии «Солекс», «пятерочные» (ВАЗ-2105) отличается от «восьмерочных» (ВАЗ-2108, 2109), а об «иномарочных» и говорить не стоит. Поэтому хочется еще раз напомнить вам о том, что существует литература по конкретным моделям ваших автомобилей.

Тем не менее в карбюраторных автомобилях отечественного производства есть и кое-что общее. В частности, на панели приборов (или под ней) располагается рукоятка «подсоса», которая управляет воздушной заслонкой карбюратора (рис. 16 и 17). Если прикрывать эту заслонку (вытягивать рукоятку «подсоса» на себя), то разрежение в смесительной камере карбюратора будет увеличиваться. Вследствие этого топливо из поплавковой камеры начинает высасываться более интенсивно и горючая смесь обогащается, что необходимо для запуска холодного двигателя.

По мере прогрева двигателя, водитель должен постепенно задвигать рукоятку «подсоса» (приоткрывать заслонку), не допуская очень больших оборотов коленчатого вала, так как повышенные обороты не полностью прогретого двигателя резко сокращают его ресурс. По окончании прогрева воздушную заслонку следует открыть полностью (это ее нормальное положение).

О степени прогрева двигателя вам «расскажет» стрелочный указатель температуры охлаждающей жидкости, который расположен на щитке приборов (см. рис. 67). Вертикальное положение стрелки говорит о том, что двигатель прогрелся полностью.

При вытягивании рукоятки «подсоса» на щитке приборов включается лампочка, подсвечивающая окошко (обычно желтого цвета) с соответствующим символом. Погаснет эта лампочка только тогда, когда воздушная заслонка будет полностью открыта (рукоятка «подсоса» полностью задвинута).

Карбюратор смешивает бензин с воздухом в строго определенной пропорции. Горючая смесь называется нормальной, если на одну часть бензина приходится пятнадцать частей воздуха (1:15). В зависимости от различных факторов качество смеси (соотношение бензина и воздуха) может меняться. Если воздуха будет больше, то смесь становится обедненной или бедной. Если воздуха меньше, то смесь превращается в обогащенную или богатую.

Обедненная и бедная смеси — это «голодная» пища для двигателя, в них топлива меньше нормы. Обогащенная и богатая смеси — слишком калорийная пища, так как топлива в них больше, чем надо. Вышеприведенной терминологии соответствует известные слова: «недоедание» и «голод» или «переедание» и «обжорство». Если подумать о своем здоровье, то из четырех предложенных вариантов для постоянного рациона лучше выбрать легкое «недоедание», чем три другие «убивающие» диеты.

Выбрать другой раздел:

Карбюратор и его устройство

 

Режимы работы карбюратора

Для каждого режима работы двигателя карбюратор готовит горючую смесь соответствующего качества.

Пуск холодного двигателя. При этом режиме воздушную заслонку карбюратора следует полностью закрыть. Это означает, что рукоятка «подсоса» должна быть вытянута на себя «до упора». Педаль «газа» при пуске холодного двигателя трогать не рекомендуется, поэтому дроссельная заслонка будет тоже полностью закрыта. Состав горючей смеси для пуска холодного двигателя должен быть, и получается, богатым.

Режим холостого хода. Автомобиль стоит на месте или движется «накатом». Двигатель (полностью прогретый) работает на оборотах холостого хода. Воздушная заслонка открыта, а дроссельная закрыта. Состав смеси при этом получается обогащенным.

Режим частичных (средних) нагрузок. Машина движется со скоростью около 60 км/час или близко к этому. Включена высшая передача, нога водителя слегка нажимает педаль «газа», поддерживая средние обороты коленчатого вала двигателя. Состав смеси получается обедненный.

Режим полных нагрузок. Водитель плавно, почти до конца нажал педаль «газа», автомобиль движется с большой скоростью. Для поддержания этого режима состав смеси должен быть обогащенным.

Режим ускорения. Водитель резко нажал педаль «газа» «до пола», для ускорения автомобиля при обгоне, при «отрыве» от потока транспорта и т. п. Состав смеси получается обогащенным, близким к богатому.

Обратите внимание, наиболее экономичный режим работы карбюратора получается в случае частичных (средних) нагрузок!

Если в вашем автомобиле имеется прибор «эконометр», то на средней скорости движения автомобиля он покажет минимальный расход топлива.

Любая «грубая» работа педалью «газа» значительно увеличивает расход топлива, резко возрастают нагрузки на все механизмы и детали двигателя. При этом страдают еще и детали агрегатов трансмиссии, через которые крутящий момент передается на ведущие колеса.

Вождение автомобиля с резкими ускорениями и замедлениями крайне нежелательно. Расход бензина при таком стиле вождения резко увеличивается, уменьшается ресурс двигателя, загрязняется окружающая среда, тратятся нервы, а выигрыш во времени составляет мизерную величину или вообще отсутствует. Разница во времени прибытия в конечную точку маршрута протяженностью 40-50 километров в городских условиях, у «нормальных» и «дерганых» водителей, составляет не более 5-6 минут. Так стоит ли «дергаться»?

Выбрать другой раздел:

Основные неисправности системы питания

Не поступает топливо в карбюратор вследствие засорения компенсационного отверстия в пробке топливного бака (или вентиляционной трубки бака), чрезмерного засорения фильтра топливозаборника или фильтра тонкой очистки. Возможны неисправности и топливного насоса: повреждение диафрагмы или ее пружины, а также «зависание» или неплотное закрытие клапанов.

Для устранения неисправности все упомянутые элементы системы питания следует последовательно проверить. Затем промыть и поставить на место все то, что исправно, а неисправные узлы и детали заменить.

Двигатель не развивает полной мощности и (или) работает с перебоями из-за нарушения уровня топлива в поплавковой камере, загрязнения топливных или воздушных фильтров, жиклеров или каналов. Возможно, карбюратор просто неправильно отрегулирован.

Для устранения неисправности надо заменить или промыть соответствующие фильтры, продуть воздухом под давлением все каналы и жиклеры карбюратора, а также произвести необходимые регулировки.

Подтекание топлива может происходить по причине нарушения герметичности топливного бака, фильтра, насоса, карбюратора или в многочисленных соединениях топливопроводов.

Для устранения неисправности следует подтянуть хомуты креплений топливных шлангов, поменять поврежденные прокладки. Негерметичность, возникшую по причине механических повреждений элементов системы питания, устраняют путем их замены. А если вы предпочитаете ремонт, то производить его следует только в специализированных мастерских.

То, что очередной дилетант пытался заварить дырку в бензобаке, обычно слышат все в радиусе километра от взрыва.

Выбрать другой раздел:

Эксплуатация системы питания

Топливный бак, как правило, не требует к себе внимания со стороны водителя на протяжении всего срока службы автомобиля. Но иногда все же приходится снимать бак с машины и промывать его от грязи, которая попала туда в результате заправки машины некачественным бензином. В случае небольшого загрязнения можно попробовать слить отстой, для чего надо отвернуть пробку в нижней части топливного бака. А если сильно не повезло, то приходится демонтировать всю систему питания.

Если засоряется компенсационное отверстие в пробке топливного бака или вентиляционная трубка, то создается разрежение, которое не позволяет бензину поступать в карбюратор (топливный насос не в состоянии справиться с этим разрежением). Определить «вакуум» можно по звуку во время открытия пробки топливного бака. Каждому из нас приходилось открывать консервные банки, поэтому звук будет знакомым.

Загрязнение воздушного фильтра способствует увеличению концентрации вредных веществ в выхлопных газах, выбрасываемых в атмосферу, так как содержание бензина в горючей смеси значительно возрастает. Необходимо периодически заменять фильтрующий элемент. Срок его замены оговаривается инструкцией завода-изготовителя, но при эксплуатации автомобиля по пыльным дорогам, этот срок может и должен быть уменьшен.

Правильно отрегулированный карбюратор готовит нормальную горючую смесь. Однако со временем нарушаются регулировки, засоряются жиклеры и каналы, выходят из строя детали карбюратора, и в цилиндры может поступать постоянно богатая или бедная смесь, что пагубно сказывается на работе двигателя.

Если карбюратор готовит богатую смесь, то наблюдаются следующие явления:
— черный дым и «выстрелы» из глушителя;
— повышенный расход топлива;
— потеря мощности двигателя;
— перегрев двигателя;
— разжижение масла в поддоне картера двигателя.

Признаками того, что карбюратор готовит бедную смесь, являются:
— «хлопки» в карбюраторе;
— потеря мощности двигателя;
— перегрев двигателя.

Вышеописанные «кошмары» могут наблюдаться также и при неисправностях системы зажигания, но об этом мы поговорим чуть позже.

А сейчас надо призадуматься и решить для себя один важный вопрос. Или вам придется овладеть необходимым минимумом навыков по регулировкам карбюратора, или периодически, при малейших подозрениях в неправильной работе двигателя, отправляться к автомеханику.

При обслуживании карбюратора необходимо производить очистку наружной и внутренней поверхностей его корпуса, продувку сжатым воздухом жиклеров топливных и воздушных каналов, проверку и регулировку уровня топлива в поплавковой камере, проверку и, в случае необходимости, замену диафрагм карбюратора, а также регулировку оборотов холостого хода двигателя с помощью винтов «качества» и «количества».

Для успешного обслуживания карбюратора следует внимательно изучить соответствующий раздел «Руководства по ремонту и эксплуатации» вашего автомобиля. Тогда, после нескольких попыток, вы будете в состоянии наладить правильную работу карбюратора.

О том, что существует топливный насос, необходимо вспоминать перед первой поездкой после длительной стоянки автомобиля. Поскольку поплавковая камера карбюратора связана с атмосферой, то, естественно, бензин частично испаряется. При длительной стоянке автомобиля бензин испаряется практически полностью.

Чтобы не «мучить» двигатель безуспешными попытками запуска, предварительно следует накачать бензин в поплавковую камеру карбюратора с помощью рычага ручной подкачки, который располагается в нижней части корпуса топливного насоса (см. рис. 14).

Выбрать другой раздел:

Системы питания двигателя с впрыском топлива

Карбюраторы, так долго служившие верой и правдой многим поколениям автомобилистов, уходят в историю. Основная причина этого заключается в том, что карбюраторы не могут удовлетворять современным требованиям по расходу топлива и содержанию вредных веществ в отработавших газах. Применение систем впрыска топлива позволяет решить эти проблемы.

Система центрального (одноточечного) впрыска топлива является родоначальницей всех систем впрыска (рис. 18 а).
Схема центрального впрыска топлива

Рис. 18а. Схема центрального впрыска топлива: 1 — цилиндры двигателя; 2 — впускной трубопровод; 3 — дроссельная заслонка; 4 — подача топлива; 5 — электрический провод, по которому к форсунке поступает управляющий сигнал; 6 — поток воздуха; 7 — электромагнитная форсунка; 8 — факел топлива; 9 — горючая смесь

При центральном впрыске порция топлива через электромагнитную форсунку (инжектор) подается в зону дроссельной заслонки во впускном коллекторе, где смешивается с потоком воздуха. Получается горючая смесь, которая затем поступает в цилиндры двигателя.

Многоточечная система впрыска (распределенный впрыск) — это следующий этап в эволюции систем впрыска (рис. 18 б).
Схема многоточечного впрыска топлива

Рис. 18б. Схема многоточечного впрыска топлива: 1 — цилиндры двигателя; 2 — факел топлива; 3 — электрический провод, по которому к форсунке поступает управляющий сигнал; 4 — подача топлива; 5 — впускной трубопровод; 6 — дроссельная заслонка; 7 — поток воздуха; 8 — топливная рампа; 9 — электромагнитная форсунка

При многоточечном впрыске топливо подается в зону открытого впускного клапана отдельной форсункой для каждого цилиндра двигателя. Такие конструкции более сложны, но получили наибольшее применение, так как обеспечивают лучшие показатели по экономичности двигателя и токсичности отработавших газов.

Устройство системы впрыска топлива, а также схема расположения ее основных узлов показаны на рис. 19.
Схема расположения основных узлов системы впрыска топлива

Рис. 19. Схема расположения основных узлов системы впрыска топлива: 1 — топливный бак; 2 — топливный насос; 3 — топливный фильтр; 4 — регулятор давления топлива; 5 — датчик положения распределительного вала; 6 — распределительный вал; 7 — высоковольтный провод; 8 — электрический провод, по которому к форсунке поступает управляющий сигнал от ЭБУ; 9 — электромагнитная форсунка; 10 — дроссельная заслонка; 11 — впускной трубопровод; 12 — датчик массового расхода воздуха; 13 — воздушный фильтр; 14 — датчик температуры воздуха; 15 — датчик положения дроссельной заслонки; 16 — впускной клапан; 17 — камера сгорания; 18 — цилиндр; 19 — поршень; 20 — датчик температуры охлаждающей жидкости; 21 — выпускной клапан; 22 — свеча зажигания; 23 — пружина впускного клапана; 24 — выпускной трубопровод; 25 — датчик концентрации кислорода (лямбда-зонд); 26 — каталитический нейтрализатор; 27 — дополнительный глушитель; 28 — основной глушитель; 29 — электронный блок управления (ЭБУ); 30 — диагностическая лампа-сигнализатор; 31 — диагностическая колодка

Топливный насос с электрическим приводом находится внутри топливного бака либо закреплен на кузове. Он подает топливо под небольшим давлением по бензопроводам к форсункам, расположенным в зоне впускных клапанов. Топливо проходит две ступени очистки. Избыток бензина возвращается через обратный трубопровод в топливный бак.

Регулятор давления топлива поддерживает определенное давление топлива в трубопроводе (топливной рампе) перед форсункой.

Датчики преобразуют измеряемые параметры в электрические сигналы, которые передаются электронному блоку управления. В системе впрыска применяются несколько датчиков, определяющих различные параметры в конкретный момент времени:
— датчик массового расхода воздуха, устанавливается сразу после воздушного фильтра;
— датчик температуры воздуха, размещен в корпусе воздушного фильтра;
— датчик абсолютного давления воздуха, может устанавливаться вместо датчика массового расхода воздуха;
— датчик положения дроссельной заслонки, установлен на оси заслонки;
— датчик угла поворота и частоты вращения коленчатого вала, расположен в корпусе распределителя зажигания;
— датчик концентрации кислорода (лямбда-зонд), устанавливается в выпускной системе и следит за содержанием кислорода в отработавших газах;
— датчик положения распределительного вала;
— датчик температуры охлаждающей жидкости;
— датчик детонации и др.

Электронный блок управления (ЭБУ) получает информацию от всех датчиков об измеряемых параметрах, анализирует их и выдает команду форсункам на впрыск определенной порции топлива в строго обозначенное время.

Электромагнитная форсунка относится к исполнительному механизму системы. При получении управляющего сигнала от ЭБУ игла форсунки поднимается для распыления порции топлива.

Работа системы впрыска топлива заключается в том, чтобы на любом режиме работы двигателя обеспечить оптимальный состав горючей смеси в цилиндрах. Это достигается тем, что ЭБУ, основываясь на постоянно получаемой от датчиков информации о различных параметрах, управляет моментом и продолжительностью открытия иглы распылителя форсунки. Изменение любого параметра (температуры воздуха и охлаждающей жидкости, оборотов коленчатого вала, состава выхлопных газов и т.п.) ЭБУ мгновенно пересчитывает и выдает сигнал на форсунки для формирования иной порции топлива и времени ее подачи.

Стехиометрический состав горючей смеси при соотношении топлива к воздуху 1:14,7 (по массе) обеспечивает идеальный теоретический цикл сгорания. Иными словами для полного сгорания 1 кг топлива требуется 14,7 кг воздуха (в объемных единицах: 1 литр топлива полностью сгорает в 9500 литрах воздуха).

Выбрать другой раздел:

Основные неисправности систем впрыска топлива

Негерметичность впускной системы, приводит к тому, что датчик массового расхода или абсолютного давления воздуха дает «неправильный» сигнал электронному блоку, который посылает форсунке неверные управляющие импульсы.

Признаком этой неисправности будет неустойчивая работа двигателя, плохая приемистость автомобиля.

Для устранения неисправности необходимо подтянуть хомуты крепления, проверить герметичность резиновых соединений и переходов впускного тракта системы питания. Следует также проверить электрические разъемы и состояние проводки, очистить клеммы от окислов и грязи. Необходимо удалить отложения, которые мешают свободному перемещению заслонок и регуляторов.

Работу «подозрительного» датчика можно проверить, установив на его место заведомо исправный. Метод временной подмены помогает провести быструю диагностику в «полевых условиях».

Холодный или горячий двигатель не запускается. Включение стартера не обеспечивает запуск двигателя. В таком случае нет смысла повторять попытки без проверки системы.

Возможные причины могут быть в ненадежности электрических соединений, негерметичности топливной системы, неисправности датчика температуры воздуха, датчика массового расхода воздуха, повреждении шланга между регулятором давления и топливным баком, негерметичности форсунок.

Устранение неисправностей заключается в проверке соединений электрических разъемов, соединений топливной системы, замене неработающих датчиков, поврежденных шлангов и форсунок.

При возникновении в системе впрыска какой-либо неисправности на щитке приборов загорается красный сигнал с соответствующим предупреждением. Система «умеет» сама себя диагностировать и записывать коды неисправностей, которые можно прочитать, имея соответствующее оборудование. Для этого предусмотрен специальный диагностический вывод, при подключении к которому неисправный датчик будет тотчас определен.

Выбрать другой раздел:

Эксплуатация систем впрыска топлива

Владельцы насыщенных электронными компонентами автомобилей встречаются с явно враждебной средой на наших дорогах. Влажная дорожная грязь, особенно в смеси с противоледными реагентами, окисляет и разъедает провода, наконечники и разъемы. Перебои и отказ в работе большей части электрических и электронных компонентов системы случается именно из-за нарушения цепей их питания.

Следовательно, управляя современным автомобилем, надо отказаться от вождения с большой скоростью по дорогам, покрытым слоем мокрого снега, а также от желания проехать через лужу с фонтанами брызг. Только так можно свести к минимуму вредное воздействие влаги на компоненты системы.

Выполняя какие-либо работы в подкапотном пространстве автомобиля с системой впрыска, необходимо придерживаться определенных правил.

Проверять, разъединять и снимать узлы, имеющие электрические соединения следует только при выключенном зажигании.

Необходимо помнить о том, что при отключении аккумуляторной батареи часть информации в электронной памяти ЭБУ будет стерта.

При проведении электросварочных работ недостаточно отсоединить аккумуляторную батарею от бортовой сети, необходимо снять ЭБУ с автомобиля.

Перед началом проверки датчиков, имеющих кабельные соединения с ЭБУ, следует разъединять штекеры.

Нельзя прикасаться к штекерам ЭБУ после разъединения штекерного разъема, так как электронные узлы могут быть повреждены статическим напряжением человека.

Выбрать другой раздел:

Система выпуска отработавших газов

Система выпуска предназначена для отвода отработавших газов от цилиндров двигателя, а также для уменьшения шума при выбросе их в атмосферу.

Система выпуска отработавших газов состоит из (рис. 20):
— выпускного клапана;
— выпускного трубопровода; — дополнительного глушителя (резонатора);
— основного глушителя;
— соединительных хомутов.

Путь отработавших газов понятен из схемы (рис. 20). «Обработка» выхлопных газов перед выпуском их в атмосферу происходит в дополнительном и основном глушителях. Внутри глушителей имеются многочисленные отверстия и камеры, расположенные в шахматном порядке. При прохождении газов по такому лабиринту, они теряют свою скорость и, как следствие этого, шумность их уменьшается. А дальше, «успокоенные» газы выходят и растворяются в воздухе, которым мы с вами, кстати, дышим.

Выбрать другой раздел:

Каталитический нейтрализатор отработавших газов

В системе выпуска современных автомобилей устанавливается каталитический нейтрализатор отработавших газов. Назначение нейтрализатора — уменьшить концентрацию вредных веществ, которые содержатся в продуктах сгорания. Самые вредные из них три — углеводороды, окись углерода и окислы азота. Каждая составляющая должна нейтрализоваться отдельно, поэтому появилось название трехфункциональный (трехкомпонентный) каталитический нейтрализатор.

Нейтрализатор размещается как можно ближе к двигателю в выхлопной системе (см. рис. 20).
Схема системы выпуска отработавших газов

Рис. 20. Схема системы выпуска отработавших газов: а) без каталитического нейтрализатора; б) с каталитическим нейтрализатором: 1 — выпускной клапан; 2 — выпускной трубопровод; 3 — приемная труба глушителя; 4 — дополнительный глушитель (резонатор); 5 — основной глушитель; 6 — соединительный хомут; 7 — датчик концентрации кислорода (лямбда-зонд); 8 — каталитический нейтрализатор; 9 — керамическая основа нейтрализатора

Внутри термостойкого корпуса нейтрализатора находится носитель из керамической основы, на которую наносится активный каталитический материал, состоящий из тончайшего слоя благородных металлов. В носителе имеется множество продольных каналов, проходя по которым отработавшие газы подвергаются нейтрализации, в результате чего токсичность выхлопа снижается примерно на 90%. После нейтрализатора основными компонентами выхлопных газов становятся относительно безопасная двуокись углерода, а также совсем безвредные азот и водяной пар.

Каталитический нейтрализатор может успешно работать при соотношении топлива с воздухом близким к стехиометрическому (см. стр. 23). Для измерения количества кислорода в выпускной системе устанавливается датчик концентрации кислорода (лямбда-зонд). Датчик отслеживает концентрацию кислорода в отработавших газах и передает информацию в электронный блок управления двигателем (ЭБУ), который дает команду на изменение количества впрыскиваемого в цилиндры двигателя топлива.

Датчик концентрации кислорода не работает только во время прогрева двигателя, при этом ЭБУ определяет состав смеси, впрыскиваемой в цилиндр двигателя, без участия этого датчика.

Высокая стоимость и недолговечность катализаторов, являются их серьезным недостатком, но здоровье людей важнее.

Выбрать другой раздел:

Основные неисправности системы выпуска отработавших газов

Повышенный шум выхлопных газов является следствием повреждения основного или дополнительного глушителя, потери плотности соединений, а также повреждения прокладок.

Для устранения этой неисправности поврежденные элементы системы выпуска отработавших газов следует заменить на новые. При наличии сварочного оборудования можно попробовать заварить те дыры в трубах и глушителях, которые еще можно заварить.

Повышенное содержание окиси углерода в выхлопных газах и потеря мощности двигателя могут стать следствием частичного или полного выхода из строя каталитического нейтрализатора. Устраняется такая неисправность только заменой нейтрализатора.

Выбрать другой раздел:

Эксплуатация системы выпуска отработавших газов

Каталитический нейтрализатор, основной и дополнительный глушители, а также соединительные трубы не должны прикасаться к металлическим частям кузова, амортизаторам и тросу стояночного тормоза. К примеру, «ручник» нередко выходит из строя только из-за того, что горячая труба прожгла или оплавила оболочку тросика. Поэтому основной глушитель должен надежно «висеть» на резиновых амортизаторах, поддерживая при этом в подвешенном состоянии и дополнительный глушитель с трубами.

Давление и температура в системе выпуска отработавших газов весьма велики, поэтому лучший ремонт при повреждении элементов системы — это их замена. Попытки «залепить» дыры в глушителе даже специальной клеящей лентой или пастой, как правило, не дают ожидаемого эффекта. Через пару недель или чуть позже, опять образуются дыры, но теперь уже в бюджете хозяина машины, так как «залатанную» трубу или глушитель все же приходится менять.

При эксплуатации автомобиля с каталитическим нейтрализатором необходимо помнить о том, что долговечность нейтрализатора зависит от качества бензина. Учтите, нейтрализатор моментально выйдет из строя, если в топливный бак был залит этилированный бензин, правда, такой бензин в наше время еще надо поискать.

Выбрать другой раздел:

Устройство системы зажигания

Система зажигания

Систему зажигания, которая обеспечивает работу двигателя, придется рассмотреть в этом разделе, хотя она и является составной частью «Электрооборудования автомобиля».

Когда мы изучали рабочий цикл двигателя, было отмечено, что в самом конце такта сжатия рабочую смесь необходимо поджечь. Это означает, что между электродами свечи зажигания в этот момент должна проскочить высоковольтная искра.

Система зажигания предназначена для создания тока высокого напряжения и распределения его по свечам цилиндров. Импульс тока высокого напряжения подается на свечи в строго определенный момент времени, который меняется в зависимости от частоты вращения коленчатого вала и нагрузки на двигатель.

На автомобилях прежних лет выпуска устанавливалась контактная или бесконтактная система зажигания. В современном автомобиле с системой впрыска топлива система зажигания является частью комплексной электронной системы управления двигателем.

Контактная система зажигания

Источники электрического тока (аккумуляторная батарея и генератор, подробный разговор о которых будет в разделе «Электрооборудование автомобиля») вырабатывают ток низкого напряжения. Они «выдают» в бортовую электрическую сеть автомобиля 12-14 вольт. Для возникновения искры между электродами свечи на них необходимо подать 18-20 тысяч вольт! Поэтому в системе зажигания имеются две электрические цепи — низкого и высокого напряжения (рис. 21). Контактная система зажигания состоит из (рис. 21):
— катушки зажигания;
— прерывателя тока низкого напряжения;
— распределителя тока высокого напряжения;
— центробежного регулятора опережения зажигания;
— вакуумного регулятора опережения зажигания;
— свечей зажигания;
— проводов низкого и высокого напряжения;
— включателя зажигания.

Катушка зажигания (рис. 21) предназначена для преобразования тока низкого напряжения в ток высокого напряжения. Как и большинство приборов системы зажигания, она располагается в моторном отсеке автомобиля.
электрическая цепь низкого напряжения

а) электрическая цепь низкого напряжения: 1 — «масса» автомобиля; 2 — аккумуляторная батарея; 3 — контакты замка зажигания; 4 — катушка зажигания; 5 — первичная обмотка (низкого напряжения); 6 — конденсатор; 7 — подвижный контакт прерывателя; 8 — неподвижный контакт прерывателя; 9 — кулачок прерывателя; 10 — молоточек контактов
электрическая цепь высокого напряжения

б) электрическая цепь высокого напряжения: 1 — катушка зажигания; 2 — вторичная обмотка (высокого напряжения); 3 — высоковольтный провод катушки зажигания; 4 — крышка распределителя тока высокого напряжения; 5 — высоковольтные провода свечей зажигания; 6 — свечи зажигания; 7 — распределитель тока высокого напряжения («бегунок»); 8 — резистор; 9 — центральный контакт распределителя; 10 — боковые контакты крышки

Рис. 21. Контактная система зажигания

Принцип работы катушки зажигания очень прост и знаком из школьного курса физики. Когда по обмотке низкого напряжения протекает электрический ток, вокруг нее создается магнитное поле. Если прервать ток в этой обмотке, то исчезающее магнитное поле индуцирует ток уже в другой обмотке (высокого напряжения).

За счет разницы в количестве витков обмоток катушки, из 12-ти вольт мы получаем необходимые нам 20 тысяч вольт! Цифра весьма впечатляющая, но это как раз то напряжение, которое в состоянии пробить воздушное пространство (около миллиметра) между электродами свечи зажигания.

Если кто из вас, испугавшись этой цифры, решил вообще не дотрагиваться до чего-либо электрического в машине, то напрасно.

«Убивает не напряжение, а ток» — известное выражение у электриков, как нельзя лучше подходит к ситуации с электричеством в автомобиле.

В системе зажигания очень малые токи, поэтому, если вы и дотронетесь до проводов или приборов системы, то будет лишь несколько «неприятно», но не более того. Да и произойдет это только, если вы стоите босиком (или в мокрой обуви) на сырой земле или если одна рука на «массе», а другая на тех самых 20000 В.

Прерыватель тока низкого напряжения (контакты прерывателя — рис. 21) нужен для того, чтобы размыкать ток в цепи низкого напряжения. При этом во вторичной обмотке катушки зажигания индуцируется ток высокого напряжения, который затем поступает на центральный контакт распределителя.

Контакты прерывателя находятся под крышкой распределителя зажигания. Пластинчатая пружина подвижного контакта постоянно прижимает его к неподвижному контакту. Размыкаются они лишь на короткий срок, когда набегающий кулачок приводного валика прерывателя-распределителя надавит на молоточек подвижного контакта.

Параллельно контактам включен конденсатор, который необходим для того, чтобы контакты не обгорали в момент размыкания. Во время отрыва подвижного контакта от неподвижного между ними хочет проскочить мощная искра, но конденсатор поглощает в себя большую часть электрического разряда и искрение уменьшается до незначительного.

Но это только половина полезной работы конденсатора. Он еще участвует и в увеличении напряжения во вторичной обмотке катушки зажигания. Когда контакты прерывателя полностью размыкаются, конденсатор разряжается, создавая обратный ток в цепи низкого напряжения, и тем самым, ускоряет исчезновение магнитного поля. А чем быстрее исчезает это поле, тем больший ток возникает в цепи высокого напряжения.

«Зачем такой длинный разговор о такой маленькой штучке в такой большой машине?» — спросите вы.

Так вот учтите, при выходе конденсатора из строя двигатель работать не будет! Напряжение во вторичной цепи получится недостаточно большим для того, чтобы пробить воздушную преграду между электродами свечи зажигания. Может быть, иногда, слабая искорка и будет проскакивать, но нам нужна достаточно «горячая» и стабильная искра, которая гарантированно воспламенит рабочую смесь и обеспечит нормальный процесс ее сгорания. А для этого, как раз и необходимы те самые «страшные» 20 тысяч вольт, в «приготовлении» которых участвует и конденсатор тоже.

Прерыватель тока низкого напряжения и распределитель высокого напряжения расположены в одном корпусе и имеют привод от коленчатого вала двигателя.

Часто водители называют этот узел коротко — «прерыватель-распределитель» (или еще короче — «трамблер»).

Крышка распределителя и распределитель (ротор) тока высокого напряжения (рис. 21 и 22) предназначены для распределения тока высокого напряжения по свечам цилиндров двигателя.
Прерыватель-распределитель

Рис. 22. Прерыватель-распределитель: 1 — диафрагма вакуумного регулятора; 2 — корпус вакуумного регулятора; 3 — тяга; 4 — опорная пластина; 5 — ротор распределителя («бегунок»); 6 — боковой контакт крышки; 7 — центральный контакт крышки; 8 — контактный уголек; 9 — резистор; 10 — наружный контакт пластины ротора; 11 — крышка распределителя; 12 — пластина центробежного регулятора; 13 — кулачок прерывателя; 14 — грузик; 15 — контактная группа; 16 — подвижная пластина прерывателя; 17 — винт крепления контактной группы; 18 — паз для регулировки зазоров в контактах; 19 — конденсатор; 20 — корпус прерывателя-распределителя; 21 — приводной валик; 22 — фильц для смазки кулачка

После того, как в катушке зажигания образовался ток высокого напряжения, он попадает (по высоковольтному проводу) на центральный контакт крышки распределителя, а затем через подпружиненный контактный уголек на пластину ротора.

Во время вращения ротора ток через небольшой воздушный зазор «соскакивает» с его пластины на боковые контакты крышки. Далее, через высоковольтные провода импульс тока высокого напряжения попадает к свечам зажигания.

Боковые контакты крышки распределителя пронумерованы и соединены высоковольтными проводами со свечами цилиндров в строго определенной последовательности.

Таким образом, устанавливается «порядок работы цилиндров», который выражается рядом цифр.

Как правило, для четырехцилиндровых двигателей применяется порядок работы: 1-3-4-2. Это означает, что после воспламенения рабочей смеси в первом цилиндре, следующий «взрыв» произойдет в третьем, потом в четвертом и, наконец, во втором цилиндре. Такой порядок работы цилиндров установлен для равномерного распределения нагрузки на коленчатый вал двигателя.

Подача высокого напряжения на электроды свечи зажигания должна происходить в конце такта сжатия, когда поршень не доходит до верхней мертвой точки примерно 4-6°, измеряя по углу поворота коленчатого вала. Этот угол называют углом опережения зажигания.

Необходимость опережения момента зажигания горючей смеси обусловлена тем, что поршень движется в цилиндре с огромной скоростью. Если смесь поджечь несколько позже, то расширяющиеся газы не будут успевать делать свою основную работу, то есть давить на поршень в должной степени. Хотя горючая смесь и сгорает в течение 0,001-0,002 секунды, поджигать ее надо до подхода поршня к верхней мертвой точке. Тогда в начале и середине рабочего хода поршень будет испытывать необходимое давление газов, а двигатель будет обладать той мощностью, которая требуется для движения автомобиля.

Первоначальный угол опережения зажигания выставляется и корректируется с помощью поворота корпуса прерывателя-распределителя. Тем самым мы выбираем момент размыкания контактов прерывателя, приближая их или, наоборот, удаляя от набегающего кулачка приводного валика прерывателя-распределителя.

В зависимости от режима работы двигателя, условия процесса сгорания рабочей смеси в цилиндрах постоянно меняются. Поэтому для обеспечения оптимальных условий необходимо постоянно менять и указанный выше угол (4-6°). Это обеспечивают центробежный и вакуумный регуляторы опережения зажигания.

Центробежный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания в зависимости от скорости вращения коленчатого вала двигателя.

При увеличении оборотов коленчатого вала двигателя поршни в цилиндрах увеличивают скорость своего возвратно-поступательного движения. В то же время скорость сгорания рабочей смеси остается практически неизменной. Следовательно, для обеспечения нормального рабочего процесса в цилиндре смесь необходимо поджигать чуть раньше. Для этого искра между электродами свечи должна проскочить раньше, а это возможно лишь в том случае, если контакты прерывателя тоже разомкнутся раньше. Это и должен обеспечить центробежный регулятор опережения зажигания (рис. 23).
 расположение деталей регулятора

а) расположение деталей регулятора: 1 — кулачок прерывателя; 2 — втулка кулачков; 3 — подвижная пластина; 4 — грузики; 5 — шипы грузиков; 6 — опорная пластина; 7 — приводной валик; 8 — стяжные пружины
грузик вместе

б) грузики вместе
грузики разошлись

в) грузики разошлись

Рис. 23. Схема работы центробежного регулятора угла опережения зажигания

Центробежный регулятор опережения зажигания находится в корпусе прерывателя-распределителя (см. рис. 22 и 23). Он состоит из двух плоских металлических грузиков, каждый из которых одним из своих концов закреплен на опорной пластине, жестко соединенной с приводным валиком. Шипы грузиков входят в прорези подвижной пластины, на которой закреплена втулка кулачков прерывателя. Пластина с втулкой имеют возможность проворачиваться на небольшой угол относительно приводного валика прерывателя-распределителя.

По мере увеличения числа оборотов коленчатого вала двигателя, увеличивается и частота вращения валика прерывателя-распределителя. Грузики, подчиняясь центробежной силе, расходятся в стороны и сдвигают втулку кулачков прерывателя «в отрыв» от приводного валика, в результате чего набегающий кулачок поворачивается на некоторый угол по ходу вращения навстречу молоточку контактов. Контакты размыкаются раньше, угол опережения зажигания увеличивается.

При уменьшении скорости вращения приводного валика центробежная сила уменьшается, и под воздействием пружин грузики возвращаются на место — угол опережения зажигания уменьшается.

Вакуумный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания в зависимости от нагрузки на двигатель.

На одной и той же частоте вращения коленчатого вала двигателя положение дроссельной заслонки (педали «газа») может быть различным. Это означает, что в цилиндрах будет образовываться смесь различного состава, а скорость сгорания рабочей смеси как раз и зависит от ее состава.

При полностью открытой дроссельной заслонке (педаль «газа» «в полу») смесь сгорает быстрее, и поджигать ее можно и нужно попозже. Следовательно, угол опережения зажигания надо уменьшать.

И наоборот, когда дроссельная заслонка прикрыта, скорость сгорания рабочей смеси падает. Значит, угол опережения зажигания должен быть увеличен.

Именно этим и занимается вакуумный регулятор опережения зажигания.

Вакуумный регулятор (рис. 24) крепится к корпусу прерывателя-распределителя (см. рис. 22). Корпус регулятора разделен диафрагмой на два объема. Один из них связан с атмосферой, а другой через соединительную трубку сообщается с полостью под дроссельной заслонкой. С помощью тяги диафрагма регулятора соединена с подвижной пластиной, на которой располагаются контакты прерывателя.
Вакуумный регулятор угла опережения зажигания

Рис. 24. Вакуумный регулятор угла опережения зажигания

При увеличении угла открытия дроссельной заслонки (увеличение нагрузки на двигатель) разряжение под ней уменьшается. В этом случае, под воздействием пружины диафрагма через тягу сдвигает пластину вместе с контактами на небольшой угол в сторону от набегающего кулачка прерывателя. Контакты будут размыкаться позже, угол опережения зажигания уменьшится.

И наоборот, угол увеличивается, когда вы прикрываете дроссельную заслонку (уменьшаете «газ»). Разрежение под заслонкой увеличивается, передается к диафрагме и она, преодолевая сопротивление пружины, тянет на себя пластину с контактами. Это означает, что кулачок прерывателя быстрее встретится с молоточком контактов и разомкнет контакты раньше. Таким образом мы увеличиваем угол опережения зажигания для плохо горящей рабочей смеси.

Свеча зажигания (рис. 25) необходима для образования искрового разряда и поджигания рабочей смеси в камере сгорания. Как вы помните, устанавливается свеча зажигания в головке цилиндра двигателя (см. рис. 6).
 Свеча зажигания

Рис. 25. Свеча зажигания: 1 — контактная гайка; 2 — изолятор; 3 — корпус; 4 — уплотнительное кольцо; 5 — центральный электрод; 6 — боковой электрод

Когда импульс тока высокого напряжения от распределителя зажигания попадает на свечу, между ее электродами проскакивает искра. Именно эта «искорка» и воспламеняет рабочую смесь, обеспечивая тем самым нормальное прохождение рабочего цикла двигателя (см. рис. 8). Свеча зажигания маленькая, но очень важная деталь вашего двигателя.

В обычной жизни вы можете посмотреть на принцип работы свечи зажигания, поиграв с пьезо- или электрозажигалкой, которая используется на кухне. Искра, проскакивающая между электродами зажигалки, воспламеняет газ и обеспечивает рабочий «кухонный» процесс.

Высоковольтные провода служат для подачи тока высокого напряжения от катушки зажигания к распределителю и от него на свечи зажигания.

Выбрать другой раздел:

Основные неисправности контактной системы зажигания

Отсутствует искра между электродами свечей из-за обрыва или плохого контакта проводов в цепи низкого напряжения, обгорания контактов прерывателя или отсутствия зазора между ними, «пробоя» конденсатора. Искра может отсутствовать также при неисправности катушки зажигания, крышки распределителя, ротора, высоковольтных проводов или самой свечи.

Для устранения этой неисправности необходимо последовательно проверить цепи низкого и высокого напряжения. Зазор в контактах прерывателя следует отрегулировать, а неработоспособные элементы системы зажигания заменить.

Двигатель работает с перебоями и (или) не развивает полной мощности из-за неисправной свечи зажигания, нарушения величины зазора в контактах прерывателя или между электродами свечей, повреждения ротора или крышки распределителя, а также при неправильной установке начального угла опережения зажигания.

Для устранения неисправности необходимо восстановить нормальные зазоры в контактах прерывателя и между электродами свечей, выставить начальный угол опережения зажигания в соответствии с рекомендациями завода-изготовителя, а неисправные детали следует заменить.

Выбрать другой раздел:

Бесконтактная система зажигания

Преимущество бесконтактной системы зажигания заключается в возможности увеличения подаваемого напряжения на электроды свечи (увеличение «мощности» искры). Это означает, что улучшается процесс воспламенения рабочей смеси. Тем самым облегчается запуск холодного двигателя, повышается устойчивость его работы на всех режимах, что имеет особое значение для суровых зимних месяцев.

Немаловажным фактом является то, что при использовании бесконтактной системы зажигания двигатель становится более экономичным.

У бесконтактной системы, как и у контактной, есть цепи низкого и высокого напряжения.

Цепи высокого напряжения контактной и бесконтактной систем зажигания практически ничем не отличаются, но цепи низкого напряжения у них различны. В бесконтактной системе используются электронные устройства — коммутатор и датчик-распределитель (датчик Холла) (рис. 26).
схема электрической цепи низкого напряжения

а) схема электрической цепи низкого напряжения: 1 — аккумуляторная батарея; 2 — контакты замка зажигания; 3 — транзисторный коммутатор; 4 — датчик-распределитель (датчик Холла); 5 — катушка зажигания
схема электрических соединений коммутатора и датчика-распределителя

б) схема электрических соединений коммутатора и датчика-распределителя

Рис. 26. Бесконтактная система зажигания

Бесконтактная система зажигания включает в себя следующие узлы:
— катушку зажигания;
— датчик-распределитель;
— коммутатор;
— свечи зажигания;
— провода высокого и низкого напряжения;
— выключатель зажигания.
В такой системе зажигания отсутствуют контакты прерывателя, а значит, нечему подгорать и нечего регулировать. Функцию контактов в этом случае выполняет бесконтактный датчик Холла, который посылает управляющие импульсы в электронный коммутатор. А коммутатор, в свою очередь, управляет катушкой зажигания, которая преобразует ток низкого напряжения в те самые «страшно большие» вольты.

Выбрать другой раздел:

Основные неисправности бесконтактной системы зажигания

Если «заглох» и не хочет заводиться двигатель с бесконтактной системой зажигания, то в первую очередь стоит проверить… подачу бензина. Может быть, к вашей радости, причина была именно в этом. Если с бензином все в порядке, а искры на свече нет, то у вас есть три варианта решения проблемы.

Начнем с третьего. Надо хлопнуть дверцей машины, сказать нехорошие слова и опоздать на работу, добираясь туда на общественном транспорте.

Первый вариант предполагает попытку проверить на практике мнение о том, что «электроника — это наука о контактах». Открываем капот и проверяем, зачищаем, подергиваем и подпихиваем на свои места все провода и проводочки, которые попадаются под руку. Если до этих судорожных движений где-то были ненадежные электрические соединения, то двигатель заведется. А если нет, то остается еще второй вариант.

Для возможности воплощения в жизнь второго варианта вам следует быть запасливым водителем. Из резерва необходимых вещей, которые вы возите с собой в машине, в первую очередь надо взять запасной коммутатор и заменить им прежний. Как правило, после этой процедуры двигатель оживает. Если же он все еще не хочет запускаться, то имеет смысл, последовательно меняя на новые, проверить крышку распределителя, ротор, бесконтактный датчик и катушку зажигания. В процессе этой «меняльной» процедуры двигатель все-таки заведется, а позже дома, вместе со специалистом вы сможете разобраться, какой конкретно узел вышел из строя и почему.

Выбрать другой раздел:

Эксплуатация системы зажигания

При нормальной эксплуатации автомобиля и периодическом его обслуживании система зажигания не доставляет водителю больших хлопот. Но некоторые водители вообще забывают о том, что кроме пепельницы и магнитолы в автомобиле есть еще и многострадальный двигатель, и в частности его система зажигания.

Наступает момент, и машина «говорит» водителю о том, что у нее тоже есть «нервы и предел терпения». Двигатель начинает фыркать и дымить, глохнуть и не заводиться. Это могут быть крупные поломки или мелкие неисправности в системах и механизмах двигателя, но, как правило, проблема кроется всего лишь в нарушенных регулировках и соединениях.

Так как мы уже знаем, что «электроника — это наука о контактах», то в первую очередь необходимо следить за чистотой и надежностью электрических соединений. Поэтому при эксплуатации автомобиля иногда приходится зачищать клеммы проводов и штекерные разъемы.

Периодически следует контролировать зазор в контактах прерывателя (рис. 21) и при необходимости его регулировать. Если зазор в контактах прерывателя больше нормы (0,35-0,45 мм), то наблюдается неустойчивая работа двигателя на больших оборотах. Если меньше — неустойчивая работа на оборотах холостого хода. Все это происходит по причине того, что нарушенный зазор меняет время замкнутого состояния контактов. А это уже влияет и на мощность искры, проскакивающей между электродами свечи, и на сам момент ее возникновения в цилиндре (опережение зажигания).

К сожалению, качество нашего бензина нередко оставляет желать лучшего. Поэтому, если сегодня вы заправили свой автомобиль не очень качественным бензином, то в следующий раз он может оказаться еще хуже. Естественно, это не может не влиять на качество приготавливаемой карбюратором горючей смеси и процесс ее сгорания в цилиндре. В таких случаях, чтобы двигатель безотказно продолжал выполнять свою работу, необходимо подстраивать систему зажигания под «сегодняшний» бензин.

Если первоначальный угол опережения зажигания не соответствует оптимальному, то можно наблюдать и ощущать следующие явления.

Угол опережения зажигания слишком велик (раннее зажигание):
— затрудненный запуск холодного двигателя;
— «хлопки» в карбюраторе (обычно хорошо слышны из-под капота при попытках запуска двигателя);
— потеря мощности двигателя (машина плохо «тянет»);
— перерасход топлива;
— перегрев двигателя (индикатор температуры охлаждающей жидкости активно стремится к красному сектору);
— повышенное содержание вредных веществ в выхлопных газах.

Угол опережения зажигания меньше нормы (позднее зажигание):
— «выстрелы» в глушителе;
— потеря мощности двигателя;
— перерасход топлива;
— перегрев двигателя.

Короче говоря, при неправильно выставленном зажигании двигатель хочет «умереть», а машина не хочет ехать. Перечень вышеописанных «кошмаров» можно было бы и продолжить, но и этого достаточно для того, чтобы вы поняли, что двигатель и его системы требуют периодических регулировок. А кто будет этим заниматься, зависит от вас. Можно самостоятельно овладеть некоторыми навыками в не очень трудоемких и не очень сложных операциях по регулировкам. Или можно обращаться к специалисту, которому вы будете доверять свою «ласточку».

Свеча зажигания, как было упомянуто ранее, это маленький и с виду простенький элемент системы зажигания, но это только с виду.

Нормальная работа двигателя возможна при условии, если зазор между электродами свечи будет конкретным и одинаковым в свечах всех цилиндров. Для контактных систем зажигания зазор должен быть в пределах 0,5-0,6 мм, а для бесконтактных систем 0,7-0,9 мм и более.

Теперь вспомните «жуткие» условия, в которых работают свечи зажигания. Не всякий металл выдержит огромные температуры в агрессивной среде. Поэтому со временем электроды свечей подгорают и покрываются нагаром.

Вообще-то, изношенные или обросшие нагаром свечи рекомендуется заменить. Но если в пути запасных свечей не оказалось, то очищаем электроды «забарахлившей» свечи от нагара мелкозернистым надфилем или специальной алмазной пластинкой, регулируем зазор, подгибая боковой электрод, и вкручиваем свечу на место.

Каждый раз, выкручивая свечи зажигания, обращайте внимание на цвет их электродов. Если они светло-коричневые, то свеча работает нормально. А если они черные, то возможно свеча вообще не работает.

Сегодня в продаже есть силиконовые высоковольтные провода. При замене вышедших из строя старых проводов имеет смысл приобрести именно силиконовые, так как они не «пробиваются» током высокого напряжения. А ведь перебои в работе двигателя нередко происходят из-за утечки импульса тока высокого напряжения по высоковольтному проводу на «массу» автомобиля. Вместо того чтобы пробивать воздушный барьер между электродами свечи и поджигать рабочую смесь, электрический ток выбирает путь наименьшего сопротивления и «уходит» на сторону.

Старайтесь не открывать капот автомобиля, когда на улице идет дождь или снег. После мокрого душа двигатель может не запуститься, так как вода, попав на приборы электрооборудования и провода, образует токопроводящие мостики, по которым высокое напряжение утекает на «массу».

Тот же эффект, но более усугубленный, возникает у любителей прокатиться по глубоким лужам на большой скорости. В результате «купания»

водой заливаются все приборы и провода системы зажигания, расположенные под капотом, и двигатель, естественно, глохнет, поскольку ток высокого напряжения уже не может добраться до свечей зажигания. Возобновить поездку в таких случаях удается лишь после того, как горячий двигатель своим теплом просушит все «электрическое» в подкапотном пространстве.

Выбрать другой раздел:

Система зажигания на автомобилях с электронным управлением двигателем

На современных автомобилях с электронным управлением двигателем система зажигания состоит из (рис. 27):
— электронного блока управления (ЭБУ);
— датчиков (угла поворота коленчатого вала, положения дроссельной заслонки, детонации, температуры охлаждающей жидкости);
— катушки зажигания (общей или по одной катушке на каждый цилиндр);
— распределителя тока высокого напряжения (при общей катушке зажигания);
— высоковольтных проводов;
— свечей зажигания.
Схема электронной системы зажигания

Рис. 27. Схема электронной системы зажигания. Вариант А — с общей катушкой зажигания; Вариант Б — с отдельной катушкой на каждый цилиндр: 1 — маховик с зубчатым венцом; 2 — поршень; 3 — цилиндр двигателя; 4 — камера сгорания; 5 — впускной клапан; 6 — поток воздуха; 7 — дроссельная заслонка; 8 — датчик положения дроссельной заслонки; 9 — катушка зажигания; 9′ — катушка зажигания на каждой свече; 10 — распределитель тока высокого напряжения; 11 — высоковольтные провода; 11′ — электрический провод, по которому к катушке зажигания поступает импульсный сигнал от ЭБУ; 12 — свеча зажигания; 13 — выпускной клапан; 14 — датчик температуры охлаждающей жидкости; 15 — датчик детонации; 16 — датчик угла поворота коленчатого вала; 17 — электронный блок управления (ЭБУ); 18 — диагностическая лампа-сигнализатор; 19 — диагностическая колодка; 20 — замок зажигания; 21 — аккумуляторная батарея

При работе двигателя информация от датчиков поступает в электронный блок управления (ЭБУ). В результате обработки полученной информации ЭБУ устанавливает оптимальный момент зажигания, необходимый для получения максимальной экономичности работы двигателя в каждый отдельный момент времени, и подает импульсный сигнал катушке (катушкам) зажигания.

Электронная система зажигания не требует регулировок и очень надежна в течение всего срока службы.

Выбрать другой раздел:

Электронная система управления двигателем

Принцип работы электронной системы управления двигателем заключается в том, что электронный блок управления (ЭБУ) получает непрерывную информацию о всех параметрах работы систем и механизмов двигателя, а также об окружающей среде. Мгновенно оценивая информацию, ЭБУ выдает команду на впрыск определенной порции топлива и подачу высоковольтного разряда на электроды свечи зажигания в строго определенный момент времени.

Изменение температуры двигателя и воздуха, оборотов коленчатого вала и давления воздуха мгновенно определяется и передается ЭБУ, который изменяет команду «о дозе топлива и угле опережения зажигания». Неважно, что температура изменилась на один градус, а число оборотов коленчатого вала уменьшилось на один или два. Блок управления «посчитает» все точно и изменит свою команду.
Схема электронной системы управления двигателем

Рис. 28. Схема электронной системы управления двигателем

Если электронный блок не получил данные от какого-то из датчиков, он возьмет «непослушную железку на карандаш», запишет сбой в работе и «наябедничает» хозяину или мастеру в автосервисе. Система контролирует свою работу, диагностирует неисправности, записывает их. Она может даже отключить неработающий контур, задействовав резервный. И это не фантастика, а предусмотренный режим работы системы.

Выбрать другой раздел:

Основные неисправности электронных систем управления двигателем

Все неисправности электронных систем управления двигателем могут быть поделены на два основных вида.

Первый вид неисправностей заключается в невозможности запуска двигателя и, соответственно, самостоятельного перемещения, хотя бы до места ремонта. В этом случае вызывается эвакуатор для доставки автомобиля на станцию техобслуживания.

Второй вид неисправностей, при котором существует возможность добраться до места возможного ремонта, но это движение будет с «неправильным», аварийным режимом работы отдельной системы или узла. При втором типе неисправности предварительно рекомендуется получить совет у специалиста по телефону о целесообразности самостоятельного движения.

Дело в том, что в некоторых случаях «докатывание» к месту оказания квалифицированной помощи может полностью вывести систему из строя с последующим крупным ремонтом и заменой деталей. Поэтому водитель современного автомобиля должен серьезно подумать, прежде чем принимать решение о движении в аварийном режиме.

Двигатель не запускается.

Причина может быть в неработающем топливном насосе, сгоревшем предохранителе, неисправном реле насоса, датчике массового расхода воздуха, обрыве или потере контакта в электрической цепи форсунки.

Устранение неисправностей заключается в проверке электрических цепей топливного насоса, замене реле насоса и сгоревшего предохранителя, очистки от грязи разъемов форсунок и восстановлении электрической цепи.

Двигатель работает с перебоями, глохнет, плохо «тянет».

Причиной может оказаться плохой контакт разъемов датчиков, топливного насоса, форсунок, загрязнение топливных фильтров, подсос воздуха в систему.

Для устранения неисправностей необходимо проверить разъемы датчиков, топливного насоса, форсунок, заменить элементы фильтров, устранить негерметичность впускного тракта.

Выбрать другой раздел:

Эксплуатация электронных систем управления двигателем

Эксплуатируя автомобиль с электронной системой управления двигателем, необходимо быть внимательным к показаниям приборов, следить за световыми индикаторными лампами на щитке приборов. Система управления своевременно извещает водителя о возникающих проблемах в работе своих электронных компонентов. Лампа красного цвета запрещает эксплуатацию автомобиля до выяснения причины ее включения и устранения неисправности. Желтый (оранжевый) цвет лампы предупреждает о том, что неисправность может возникнуть, но время для ее предотвращения еще есть.

Рекомендации по эксплуатации в неблагоприятных климатических условиях, а также некоторые правила производства работ в подкапотном пространстве автомобиля с электронной системой управления двигателем совпадают с теми, что были рассмотрены ранее (см. «Эксплуатация систем впрыска топлива»).

Выбрать другой раздел:

Устройство системы охлаждения

Система охлаждения

Система охлаждения предназначена для поддержания нормального теплового режима двигателя.

При работе двигателя температура в цилиндрах двигателя периодически поднимается выше 2000 градусов, а средняя температура составляет 800-900°С!

Если не отводить тепло от двигателя, то через несколько десятков секунд после запуска он станет уже не холодным, а безнадежно горячим. Следующий раз вы сможете запустить свой холодный двигатель только после его капитального ремонта.

Система охлаждения необходима для отвода тепла от механизмов и деталей двигателя, но это только половина ее предназначения, правда, большая половина.

Для обеспечения нормального рабочего процесса важно также ускорять прогрев холодного двигателя. И это вторая часть работы системы охлаждения.

Как правило, на автомобилях применяется жидкостная система охлаждения, закрытого типа, с принудительной циркуляцией жидкости и расширительным бачком (рис. 29).

Система охлаждения состоит из:
— рубашки охлаждения блока и головки блока цилиндров,
— центробежного насоса,
— термостата,
— радиатора с расширительным бачком,
— вентилятора,
— соединительных патрубков и шлангов.

На рис. 29 вы без труда можете различить два круга циркуляции охлаждающей жидкости.
Схема системы охлаждения двигателя

Рис. 29. Схема системы охлаждения двигателя: 1 — радиатор; 2 — патрубок для циркуляции охлаждающей жидкости; 3 — расширительный бачок; 4 — термостат; 5 — водяной насос; 6 — рубашка охлаждения блока цилиндров; 7 — рубашка охлаждения головки блока; 8 — радиатор отопителя с электровентилятором; 9 — кран радиатора отопителя; 10 — пробка для слива охлаждающей жидкости из блока; 11 — пробка для слива охлаждающей жидкости из радиатора; 12 — вентилятор

Малый круг циркуляции (красные стрелки) служит для скорейшего прогрева холодного двигателя. А когда к красным стрелкам присоединяются синие, то уже нагревшаяся жидкость начинает циркулировать по большому кругу, охлаждаясь в радиаторе. Руководит этим процессом автоматическое устройство — термостат.

Для контроля за работой системы охлаждения, на щитке приборов имеется указатель температуры охлаждающей жидкости (см. рис. 67). Нормальная температура охлаждающей жидкости при работе двигателя должна быть в пределах 80-90°С.

Рубашка охлаждения двигателя состоит из множества каналов в блоке и головке блока цилиндров, по которым циркулирует охлаждающая жидкость.

Насос центробежного типа заставляет жидкость перемещаться по рубашке охлаждения двигателя и всей системе. Насос приводится в действие ременной передачей от шкива коленчатого вала двигателя. Натяжение ремня регулируется отклонением корпуса генератора (см. рис. 63 а) или натяжным роликом привода распределительного вала двигателя (см. рис. 11 б).

Термостат предназначен для поддержания постоянного оптимального теплового режима двигателя. При пуске холодного двигателя термостат закрыт, и вся жидкость циркулирует только по малому кругу (рис. 29 а) для скорейшего ее прогрева. Когда температура в системе охлаждения поднимается выше 80-85°С, термостат автоматически открывается и часть жидкости поступает в радиатор для охлаждения. При больших температурах термостат открывается полностью, и теперь уже вся горячая жидкость направляется по большому кругу для ее активного охлаждения.

Радиатор служит для охлаждения проходящей через него жидкости за счет потока воздуха, который создается при движении автомобиля или с помощью вентилятора. В радиаторе имеется множество трубок и перегородок, образующих большую площадь поверхности охлаждения.

Расширительный бачок необходим для компенсации изменения объема и давления охлаждающей жидкости при ее нагреве и охлаждении.

Вентилятор предназначен для принудительного увеличения потока воздуха, проходящего через радиатор движущегося автомобиля, а также для создания потока воздуха в случае, когда автомобиль стоит без движения с работающим двигателем.

Применяются два типа вентиляторов: постоянно включенный, с ременным приводом от шкива коленчатого вала и электровентилятор, который включается автоматически, когда температура охлаждающей жидкости достигает приблизительно 100°С.

Патрубки и шланги служат для соединения рубашки охлаждения с термостатом, насосом, радиатором и расширительным бачком.

В систему охлаждения двигателя включен также отопитель салона. Горячая охлаждающая жидкость проходит через радиатор отопителя и нагревает воздух, подающийся в салон автомобиля.

Температура воздуха в салоне регулируется специальным краном, с помощью которого водитель увеличивает или уменьшает поток жидкости, проходящей через радиатор отопителя.

Выбрать другой раздел:

Основные неисправности системы охлаждения

Подтекание охлаждающей жидкости может появиться в результате повреждений радиатора, шлангов, уплотнительных прокладок и сальников.

Для устранения неисправности необходимо подтянуть хомуты крепления шлангов и трубок, а поврежденные детали заменить на новые. В случае повреждения трубок радиатора можно попробовать залатать дырки и трещины, но, как правило, все заканчивается заменой радиатора.

Перегрев двигателя происходит по причине недостаточного уровня охлаждающей жидкости, слабого натяжения ремня вентилятора, засорения трубок радиатора, а также при неисправности термостата.

Для устранения перегрева двигателя следует восстановить уровень жидкости в системе охлаждения, отрегулировать натяжение ремня вентилятора, промыть радиатор, заменить термостат.

Нередко перегрев двигателя случается и при исправных элементах системы охлаждения, когда машина движется с малой скоростью и большими нагрузками на двигатель. Это происходит при движении в тяжелых дорожных условиях, таких как проселочные дороги и всем надоевшие городские «пробки». В этих случаях стоит подумать о двигателе своего автомобиля, да и о себе тоже, устраивая периодические, хотя бы кратковременные «передышки».

Будьте внимательны за рулем и не допускайте аварийного режима работы двигателя! Помните о том, что даже разовый перегрев двигателя нарушает структуру металла, при этом продолжительность жизни «сердца» автомобиля значительно уменьшается.

Выбрать другой раздел:

Эксплуатация системы охлаждения

При эксплуатации автомобиля следует периодически заглядывать под капот. Своевременно замеченная неисправность в системе охлаждения позволит вам избежать капитального ремонта двигателя.

Если уровень охлаждающей жидкости в расширительном бачке понизился или жидкость вообще отсутствует, то для начала необходимо ее долить, а затем следует разобраться (самостоятельно или с помощью специалиста), куда она делась.

В процессе работы двигателя жидкость нагревается до температуры, близкой к точке кипения. Это означает, что вода, входящая в состав охлаждающей жидкости, будет понемногу испаряться.

Если за полгода ежедневной эксплуатации автомобиля уровень в бачке немного понизился, то это нормально. Но если вчера был полный бачок, а сегодня в нем только на донышке, то надо искать место утечки охлаждающей жидкости.

Подтекание жидкости из системы можно легко определить по темным пятнам на асфальте или снегу после более или менее продолжительной стоянки. Открыв капот, вы без затруднений сможете найти место утечки, сопоставив мокрые следы на асфальте с расположением элементов системы охлаждения под капотом.

Уровень жидкости в бачке необходимо контролировать хотя бы раз в неделю. Если уровень заметно понизился, то надо определить и устранить причину его снижения. Иными словами, систему охлаждения надо привести в порядок, иначе двигатель может серьезно «заболеть» и потребовать «госпитализации».

Практически на всех отечественных автомобилях в качестве охлаждающей жидкости используется специальная низкозамерзающая жидкость с названием Tосол А-40. Цифра 40 показывает отрицательную температуру, при которой жидкость начинает замерзать (кристаллизоваться). В условиях Крайнего Севера применяется Тосол А-65, и соответственно замерзать он начинает при температуре минус 65°С.

Тосол представляет собой смесь воды с этиленгликолем и присадками. Такой раствор сочетает в себе массу достоинств. Во-первых, замерзать он начинает лишь после того, как уже замерзнет сам водитель (шутка), а во-вторых, Тосол обладает антикоррозионными, антивспенивающими свойствами и практически не дает отложений в виде обычной накипи, так как в его состав входит чистая дистиллированная вода. Поэтому доливать в систему охлаждения можно только дистиллированную воду.

При эксплуатации автомобиля необходимо контролировать не только натяжение, но и состояние ремня привода водяного насоса, так как его обрыв в дороге всегда неприятен. Рекомендуется иметь в дорожном комплекте запасной ремень. Если не вы сами, то кто-нибудь из добрых людей поможет вам его поменять.

Охлаждающая жидкость может закипеть и привести к поломке двигателя в том случае, если вышел из строя датчик электропривода вентилятора. Если электровентилятор не получил команды на включение, то жидкость продолжает нагреваться, приближаясь к точке кипения, не имея остужающей помощи.

А ведь у водителя перед глазами есть прибор со стрелкой и красным сектором! Мало того, практически всегда при включении вентилятора ощущается небольшой дополнительный шум. Было бы желание контролировать, а способы всегда найдутся.

Если в пути (а чаще в «пробке») вы заметили, что температура охлаждающей жидкости приближается к критической, а вентилятор работает, то и в этом случае есть выход из положения. Надо включить в работу системы охлаждения дополнительный радиатор — радиатор отопителя салона. Полностью открывайте кран отопителя, на все обороты включайте вентилятор отопителя, опускайте стекла дверей и «потейте» до дома или до ближайшего автосервиса. Но при этом продолжайте внимательно следить за стрелкой указателя температуры двигателя. Если она все-таки зайдет в красную зону, немедленно останавливайтесь, открывайте капот и «остывайте».

Со временем может доставить неприятность термостат, если он перестанет пускать жидкость по большому кругу циркуляции. Определить, работает ли термостат, не трудно. Радиатор не должен нагреваться (определяется рукой) до тех пор, пока стрелка указателя температуры охлаждающей жидкости не дойдет до среднего положения (термостат закрыт). Позже, горячая жидкость начнет поступать в радиатор, быстро его нагревая, что говорит о своевременном открытии клапана термостата. Если радиатор продолжает оставаться холодным, то тогда есть два пути. Постучать по корпусу термостата, может быть, он все-таки откроется, или сразу, морально и материально, готовиться к его замене.

Немедленно «сдавайтесь» механику, если на масляном щупе вы увидите капельки жидкости, попавшей из системы охлаждения в систему смазки. Это означает, что повреждена прокладка головки блока цилиндров и охлаждающая жидкость просачивается в поддон картера двигателя. Если продолжать эксплуатацию двигателя с маслом, наполовину состоящим из Тосола, то износ деталей двигателя приобретает катастрофическую скорость.

Подшипник водяного насоса не ломается «вдруг». Сначала появится специфический свистящий звук из-под капота, и если водитель «думает о будущем», то своевременно заменит подшипник. Иначе, его все равно придется менять, но уже с последствием опоздания в аэропорт или на деловую встречу, из-за «внезапно» сломавшейся машины.

Каждый из водителей должен знать и помнить о том, что на горячем двигателе система охлаждения находится в состоянии повышенного давления!

Если двигатель вашего автомобиля перегрелся и «закипел», то, конечно, надо остановиться и открыть капот машины, но нельзя открывать пробку радиатора или расширительного бачка. Для ускорения процесса охлаждения двигателя это практически ничего не даст, а получить сильнейшие ожоги можно.

Все знают, чем оборачивается для нарядно одетых гостей неумело открытая бутылка шампанского. В автомобиле все намного серьезнее. Если быстро и бездумно открыть пробку горячего радиатора, то оттуда вылетит фонтан, но уже не вина, а кипящего Тосола! При этом может пострадать не только водитель, но и оказавшиеся рядом пешеходы. Поэтому, если вам когда-нибудь придется открывать пробку радиатора или расширительного бачка, то предварительно стоит предпринять меры предосторожности и делать это не спеша.

Выбрать другой раздел:

Устройство системы смазки

Система смазки

Система смазки предназначена для подачи масла к трущимся деталям и частичного их охлаждения, а также для удаления продуктов износа.
Схема системы смазки двигателя

Рис. 30. Схема системы смазки двигателя: 1 — канал подачи масла к газораспределительному механизму; 2 — главная масляная магистраль; 3 — канал подачи масла к подшипникам коленчатого вала; 4 — картер двигателя; 5 — фильтрующий элемент; 6 — корпус масляного фильтра; 7 — масляный насос; 8 — маслоприемник с сетчатым фильтром; 9 — поддон картера; 10 — пробка для слива масла

Система смазки состоит из (рис. 30):
— поддона картера;
— масляного насоса с маслоприемником;
— масляного фильтра;
— каналов для подачи масла под давлением, просверленных в блоке цилиндров, головке блока и в других деталях двигателя.

Поддон картера двигателя является резервуаром для хранения масла. Когда вы заливаете масло через маслозаливную горловину, оно проходит по пустотам внутри двигателя и сливается в поддон картера. Уровень имеющегося в поддоне масла можно измерить масляным щупом через отверстие в блоке цилиндров.

Масляный насос (рис. 31) под давлением подает масло (через фильтр и каналы) к трущимся деталям кривошипно-шатунного и газораспределительного механизмов. Насос состоит из двух шестерен и приводится в действие от коленчатого вала двигателя. При вращении шестеренок зубья захватывают масло и нагнетают его в главную масляную магистраль.
Схема работы масляного насоса

Рис. 31. Схема работы масляного насоса: 1 — шестерни масляного насоса; 2 — редукционный клапан; 3 — пружина

Редукционный клапан (рис. 31) служит для ограничения давления в системе масляных каналов двигателя. При избыточном давлении пружина сжимается, и часть масла поступает обратно в поддон картера двигателя.

Масляный фильтр (рис. 30) служит для очистки проходящего через него масла от механических примесей. Он устанавливается сразу же после насоса и пропускает через себя все масло, которое поступает в масляную магистраль. Чаще всего фильтр имеет неразборную конструкцию и подлежит замене одновременно с плановой сменой масла в двигателе.

Вентиляция картера двигателя (см. рис. 32) обеспечивает отсос из картера и отвод во впускной трубопровод паров бензина и выхлопных газов, которые попадают в нижнюю часть двигателя. Во время тактов сжатия и рабочего хода эти пары и газы частично прорываются по стенкам цилиндров в картер двигателя, разжижают масло и очень агрессивны по отношению к деталям кривошипно-шатунного механизма.
Схема вентиляции картера двигателя

Рис. 32. Схема вентиляции картера двигателя: 1 — корпус воздушного фильтра; 2 — фильтрующий элемент; 3 — всасывающий коллектор вентиляции картера; 4 — карбюратор; 5 — впускной трубопровод; 6 — впускной клапан; 7 — шланг вентиляции картера; 8 — маслоотделитель; 9 — сливная трубка маслоотделителя; 10 — картер двигателя; 11 — поддон картера

Вентиляция картера осуществляется принудительно за счет разрежения, которое возникает в воздушной горловине карбюратора при работе двигателя.

Корпус воздушного фильтра соединяется с картером двигателя с помощью шланга, по которому картерные газы направляются сначала в карбюратор, а затем в цилиндры на дожигание.

В двигателях внутреннего сгорания применяется комбинированная система смазки — под давлением и разбрызгиванием. К наиболее нагруженным трущимся поверхностям масло подается под давлением, а остальные детали механизмов двигателя смазываются брызгами масла и масляным туманом.

К подшипникам коленчатого и распределительного валов масло подходит по каналам системы под давлением. Сделав свое дело, то есть смазав, немного охладив и забрав с собой продукты износа, масло стекает обратно в поддон картера двигателя.

При вращении коленчатого вала из его шатунных и коренных подшипников масляные брызги попадают на зеркало цилиндров, поршни и поршневые пальцы. Все движущиеся детали кривошипно-шатунного и газораспределительного механизмов как бы «купаются» в масле. Этим достигается высокая износостойкость пар трения.

Выбрать другой раздел:

Основные неисправности системы смазки

Подтекание масла возможно из-за слабо затянутой сливной пробки поддона картера, повреждения уплотнительных прокладок и наружных маслопроводов, износа уплотнительных сальников.

Для устранения неисправности необходимо восстановить герметичность соединений, заменить поврежденные и изношенные прокладки и сальники.

Низкое давление в системе смазки может быть по причине недостаточного количества масла, применения некачественного масла, износа подшипников коленчатого вала или деталей масляного насоса.

Для устранения неисправности следует проверить уровень масла и в случае необходимости долить, изношенные детали следует заменить. Марка масла должна соответствовать инструкции завода-изготовителя и температуре окружающей среды.

Выбрать другой раздел:

Эксплуатация системы смазки

Выход из строя или плохая работа системы смазки может привести к серьезной поломке двигателя. Поэтому на щитке приборов имеется контрольная лампа аварийного давления масла.

Мигание и свечение этой лампы красным светом при работающем двигателе недопустимо. В таких случаях надо немедленно заглушить двигатель и разобраться в причине неисправности.

Одной из причин того, что зажглась красная лампочка аварийного давления, может быть недостаточный уровень масла в поддоне картера двигателя. Хотя бы раз в неделю следует проверять уровень масла. После остановки мотора сделайте небольшую паузу в 2-3 минуты, за это время масло из каналов системы стечет в поддон. Уровень масла в поддоне картера двигателя всегда должен быть в норме. Нормой считается граница следа масла на щупе между рисками «MIN» и «MAX».

Подтекание масла из системы смазки определяется по характерным следам на асфальте после стоянки автомобиля. Причины утечки масла устраняются довольно сложно, поэтому лучше обратиться к специалисту. Но с незначительными подтеканиями можно смириться и ездить довольно долго, так как любое вмешательство в систему смазки весьма трудоемкое занятие.

Для нормального функционирования двигателя необходимо вовремя доливать масло до нормального уровня, а также заменять его с одновременной заменой масляного фильтра. Периодически следует промывать систему смазки специальным промывочным маслом.

Масла, применяемые в системе смазки двигателей, могут быть минеральными (Multigrade), полусинтетическими (Semi Synthetic) и синтетическими (Fully Synthetic).

Применение синтетического масла после использования любого другого желательно только после промывки системы смазки с помощью специальных моющих препаратов.

Если соблюдать рекомендованные сроки замены синтетического масла, то в дальнейшем промывка системы смазки не потребуется, так как это масло имеет очень высокие эксплуатационные свойства.

Большое распространение получили всесезонные масла. Они имеют двойное обозначение, например, SAE 10W-30, SAE 15W-40 и т.п., где W — сокращенно от winter — зима, а цифры определяют вязкость масла.

Наступающую «старость» цилиндропоршневой группы можно вычислить по сильному дымлению из выхлопной трубы глушителя или трубки отсоса картерных газов, увеличению количества вредных веществ в составе выбрасываемых в атмосферу выхлопных газов и по потере мощности двигателя. В таких случаях хозяин автомобиля может начинать впадать в отчаяние, так как «сердце машины» пора ставить на капитальный ремонт или менять на новое.

С основными проблемами системы смазки двигателя мы познакомились и вроде бы можно спокойно ехать дальше. Но прежде чем переезжать в другую тему вам следует узнать еще об одной неприятности, которая иногда случается с системой смазки.

Если вам предстоит поездка за город по проселочной дороге, то у вас есть возможность разом потерять все масло через пробоину в поддоне картера двигателя. Это происходит тогда, когда машина наезжает на спрятавшийся в высокой траве пенек или валун, да и в городе дороги тоже бывают с сюрпризами.

Чтобы избежать повреждения поддона картера, имеет смысл защитить его металлическим щитом. Советуем приобрести и установить такой щит, называется он — защита поддона картера двигателя.

У читателей может сложиться впечатление, что в поездке с ними обязательно и непрерывно будет что-то случаться, и что им постоянно придется оживлять свой автомобиль. Это, конечно, заблуждение. Современный автомобиль сделан так, что за несколько лет его грамотной эксплуатации вам доведется, быть может, пару раз поменять проколотое колесо на запасное. В то же время при разгильдяйском отношении к своей машине у водителя появляется возможность за очень короткий срок получить весьма пышный букет дорогостоящих неприятностей.

После знакомства с работой механизмов и систем двигателя можно сделать интересный и важный вывод о том, что двигатель — это агрегат, работающий по принципу самообеспечения.

Если все узлы двигателя исправны и отрегулированы, то в процессе работы одни механизмы отдают энергию другим, а те третьим, кто-то крутит вал, кто-то качает бензин или масло и так далее.

Энергия в двигателе перераспределяется таким образом, что он сам себя обеспечивает всем необходимым. Готовит горючую смесь, подает искру на электроды свечи, отводит лишнее тепло, смазывает трущиеся поверхности и в конечном итоге крутит колеса автомобиля. Если двигатель работает, живет, значит, все в порядке, будет движение, комфорт для водителя и пассажиров.

Выбрать другой раздел:

Неисправности двигателя

Любая неисправность имеет свою историю и свои последствия. Ни в вождении автомобиля, ни в его эксплуатации ничего не бывает внезапного, невозможного или непредсказуемого. Любая неисправность заранее скажет о себе, предупредит, а задача водителя реагировать на эти предупреждения должным образом — отрегулировать, заменить или отремонтировать неисправный узел или деталь, не дожидаясь, когда незначительная неисправность перерастет в крупные неприятности. Поэтому при движении на автомобиле, кроме умения «давить на газ», необходимо выработать в себе привычку слушать двигатель и контролировать его состояние по показаниям приборов.

По большей части отказы в работе механизмов и систем двигателя можно отнести к неисправностям первого типа, при которых конфликт возникает лишь между автомобилем и водителем. Неисправности такого типа практически никак не влияют на остальных участников дорожного движения. Ваша неработающая машина — это ваша личная проблема, так как срывается выполнение какой-либо вашей программы, встречи и т. д.

К неисправностям второго типа относятся такие неисправности, которые напрямую затрагивают интересы других участников движения и «мирных жителей», их безопасность и здоровье. Эксплуатация транспортного средства с такими опасными неисправностями запрещается «Правилами дорожного движения» и «Основными положениями по допуску транспортных средств к эксплуатации», о чем сейчас мы и поговорим.

К неисправностям второго типа, при которых эксплуатация транспорта запрещена, обоснованно причислены и некоторые неисправности двигателя, так как они явно выходят за рамки личных проблем водителя.

При возникновении в пути неисправностей, отмеченных в этой книге фиолетовым шрифтом (официальный текст ПДД), водитель должен попробовать устранить неисправность на месте, а если это не удалось, то с соблюдением всех необходимых мер предосторожности он имеет право следовать к месту стоянки или к пункту ремонта.

Неисправности двигателя, при которых Правила дорожного движения запрещают эксплуатацию транспортных средств

6.1. Содержание вредных веществ в отработавших газах и их дымность превышают величины, установленные ГОСТом Р 52033-2003 и ГОСТом Р 52160-2003 [Здесь и далее нумерация неисправностей приводится в соответствии с «Перечнем неисправностей и условий, при которых запрещается эксплуатация транспортных средств», согласно «Основным положениям по допуску транспортных средств к эксплуатации и обязанностям должностных лиц по обеспечению безопасности дорожного движения».]

Повышенное содержание вредных веществ и дымность отработавших газов крайне вредны для здоровья людей и наносят непоправимый ущерб всему животному и растительному миру.

При движении по дороге водитель находится в самом центре облака выхлопных газов окружающих его машин. Своим автомобилем он тоже постоянно травит коллег-автомобилистов и пешеходов.

Повышенное содержание вредных веществ в отработавших газах приводит к тому, что у водителей появляются профессиональные «болячки», а дети, проводящие летние каникулы в городе, заметно проигрывают по состоянию здоровья, в сравнении с теми одноклассниками, кому удалось уехать «к бабушке в деревню».

Долг каждого из нас содержать двигатель своего автомобиля в надлежащем виде!

Причинами повышенного содержания окислов углерода, углеводородов, окислов азота в выхлопных газах двигателя могут стать:
— сильный износ деталей цилиндропоршневой группы (поршней, поршневых колец, цилиндров),
— неправильная регулировка клапанов (тепловой зазор между стержнем клапана и рычагом меньше или больше нормального),
— неправильная регулировка карбюратора (не обеспечивается приготовление нормального состава горючей смеси),
— неправильная установка зажигания (угол опережения зажигания больше или меньше нормального).

6.2. Нарушена герметичность системы питания.

Эксплуатация транспортных средств с подтекающим топливом из системы питания запрещается законом и здравомыслием.

При попадании бензина на горячие детали двигателя или на искрящие щетки генератора, если повезет, то гореть будете медленно, минут этак 15-20. А если не судьба, то, как в боевиках, унесетесь вместе со столбом дыма и пламени «в сиреневую даль». Правда для достижения последнего варианта надо еще потрудиться, в обычной жизни он, как правило, не получается.

Проехав по плохой проселочной дороге или по глубокому снегу, имеет смысл заглянуть под свой автомобиль и проверить, не повреждены ли трубки бензопровода, проходящие по днищу машины. Многочисленные соединения бензопровода с элементами системы питания имеют хомуты крепления, которые иногда самопроизвольно ослабляют свою хватку, с «вытекающими оттуда» последствиями.

К сожалению, есть еще один классический вариант возникновения пожара в автомобиле. Латунный штуцер, через который бензин поступает в карбюратор, вставляется в корпус поплавковой камеры под, так называемым, натягом. В процессе эксплуатации автомобиля вибрации и перепады температур расшатывают этот штуцер, и однажды наступает момент, когда он выходит из своего гнезда, и тогда бензин поступает уже не в карбюратор, а просто льется на горячий двигатель.

Иными словами, в салоне автомобиля никогда не должно быть запаха бензина, так как после запаха нередко появляется и огонь. Топливная система имеет не так уж много точек возможной утечки бензина, и каждый водитель в состоянии их контролировать.

6.3. Неисправна система выпуска отработавших газов.

6.5. Допустимый уровень внешнего шума превышает величины, установленные ГОСТом Р 52231-2004.

Грохот выхлопных газов, вырывающихся из двигателя через поврежденную систему выпуска, знаком всем. Ну и как, приятно вам было это слышать, ощущая вибрацию внутренностей собственного тела? Можете не отвечать, и так понятно.

Не будем трогать санитарно-эпидемиологические нормативы, но даже простая логика подсказывает, что пара-тройка таких машин может вывести из строя психику не только ребенка, стоящего на остановке автобуса, но и оператора атомного реактора, который позже случайно нажмет не ту кнопку.

Необходимо добавить, что грохот — это не самое страшное. При неисправном глушителе снопы искр (несгоревших частиц топлива), а иногда и выбросы открытого пламени, в жаркое летнее время нередко являются причиной пожаров в лесах, да и в населенных пунктах тоже. Это, конечно, страшнее любого грохота, хотя нашим соотечественникам шума хватает и без вашей машины.

Кроме этого, выхлопные газы из-за неисправности системы выпуска просачиваются в салон вашего же автомобиля, и у вас появляется возможность на себе ощутить отравление выхлопными газами. А ведь даже при легкой степени отравления из-за плохого самочувствия водитель может стать виновником дорожно-транспортного происшествия. Помните об этом!

6.4. Нарушена герметичность системы вентиляции картера.

Одним из примеров нарушения герметичности системы вентиляции является чадящий шланг, который вместо того, чтобы направлять картерные газы на дожигание в двигатель, болтается под машиной и отравляет вокруг все живое.

Выбрать другой раздел:

ГЛАВА II. ТРАНСМИССИЯ

Трансмиссия служит для передачи крутящего момента от двигателя на ведущие колеса, а также для изменения величины крутящего момента и его направления.

Агрегаты трансмиссии заднеприводного автомобиля распределены вдоль всего кузова и передают крутящий момент от двигателя на задние колеса.
Схема трансмиссии заднеприводного автомобиля

Рис. 33. Схема трансмиссии заднеприводного автомобиля: I — Двигатель; II — Сцепление; III — Коробка передач; IV — Карданная передача: 1 — эластичная муфта; 2 — шлицевое соединение; 3 — передний карданный вал; 4 — подвесной подшипник; 5 — передний карданный шарнир; 6 — задний карданный вал; 7 — задний карданный шарнир; V — Задний мост с главной передачей и дифференциалом: 8 — полуоси; 9 — ведущие (задние) колеса

Трансмиссия заднеприводного автомобиля включает в себя (рис. 33):
— сцепление,
— коробку передач,
— карданную передачу,
— главную передачу,
— дифференциал,
— полуоси.

В автомобиле с приводом на передние колеса крутящий момент не уходит так далеко от двигателя, как в автомобиле с задним приводом. Все агрегаты трансмиссии переднеприводного автомобиля сконцентрированы под капотом машины и объединены в один большой агрегат (рис. 34). Механизм сцепления «зажат» в кожухе между двумя «монстрами» — двигателем и коробкой передач, которая, в свою очередь, содержит в себе еще и главную передачу с дифференциалом. Поэтому валы привода передних колес выходят непосредственно из картера коробки передач.
Схема трансмиссии переднеприводного автомобиля

Рис. 34. Схема трансмиссии переднеприводного автомобиля: I — двигатель; II — сцепление; III — коробка передач; IV — главная передача и дифференциал; V — правый и левый приводные валы с шарнирами равных угловых скоростей; VI — ведущие (передние) колеса

Трансмиссия переднеприводного автомобиля включает в себя:
— сцепление,
— коробку передач,
— главную передачу,
— дифференциал,
— валы привода передних колес.

Выбрать другой раздел:

Сцепление

Сцепление является первым агрегатом трансмиссии и предназначено для передачи крутящего момента от маховика коленчатого вала двигателя к первичному валу коробки передач. Сцепление позволяет водителю кратковременно прерывать передачу крутящего момента, как бы отделять двигатель от трансмиссии, а затем и плавно их соединять.

Сцепление состоит из привода сцепления и механизма сцепления.

Выбрать другой раздел:

Привод выключения сцепления

Дальнейшее изучение автомобиля невозможно без понимания термина «привод». Попробуем раз и навсегда с этим разобраться.

В обычной жизни человек самостоятельно, посредством своих ног и рук, перемещается по улице и квартире, прилагает усилия и передает их окружающим предметам. Что-то открывает и закрывает, включает и выключает, и все это без применения всяких там трубопроводов и рычагов.

И совсем другое дело в автомобиле. Когда надо передать усилие от водителя к некому механизму или от одного агрегата к другому, то без «посредников» не обойтись. Ведь в машине все надежно закреплено в различных местах кузова, и водитель не имеет возможности на ходу выйти из-за руля, чтобы, допустим, руками приоткрыть дроссельную заслонку карбюратора. Поэтому в автомобиле существует привод механизмов.

Представьте ситуацию, когда вам необходимо постоянно что-то закрывать и открывать, а сами вы передвигаться не можете. Если трудно себе это представить, тогда для начала привяжите себя покрепче к своему любимому дивану. А теперь попробуйте открыть входную дверь!

Для передачи усилия на расстоянии по «открыванию» и «закрыванию» двери вам придется применить веревку или палку, дистанционное управление или еще что-нибудь.

Пусть это будет длинная палка, привязанная веревками одним концом к вашей руке, а другим к ручке двери. А дальше дерзайте — тяните и толкайте, впуская к себе по одному толпу приглашенных в гости друзей. В этом случае палка с веревками и будут являться тем «приводом», который передает усилие на расстоянии.

В автомобиле практически каждый механизм имеет свой привод, посредством которого он приводится в действие. Привод может состоять из большого количества отдельных узлов и деталей, может быть механическим, гидравлическим или иным.

Привод выключения сцепления (гидравлический) состоит из (рис. 35):
— педали;
— главного цилиндра;
— рабочего цилиндра;
— вилки выключения сцепления;
— выжимного подшипника;
— трубопроводов.

При нажатии на педаль сцепления усилие ноги водителя через шток и поршень передается жидкости, которая, в свою очередь, передает давление от поршня главного цилиндра на поршень рабочего цилиндра.

Далее шток рабочего цилиндра перемещает вилку выключения сцепления и нажимной подшипник, который передает усилие на механизм сцепления.

Когда водитель отпускает педаль, под воздействием возвратных пружин все детали привода занимают исходные позиции.
Схема гидравлического привода выключения сцепления и механизма сцепления

Рис. 35. Схема гидравлического привода выключения сцепления и механизма сцепления: 1 — трубопровод; 2 — нажимной диск; 3 — ведомый диск; 4 — маховик; 5 — коленчатый вал; 6 — картер сцепления; 7 — кожух сцепления; 8 — нажимные пружины; 9 — отжимные рычаги; 10 — выжимной подшипник; 11 — первичный вал коробки передач; 12 — шестерня первичного вала; 13 — вилка выключения сцепления; 14 — рабочий цилиндр; 15 — картер коробки передач; 16 — главный цилиндр; 17 — педаль сцепления

В гидравлическом приводе сцепления автомобилей ВАЗ ранних лет выпуска использовалась тормозная жидкость «Нева», «Роса», «Томь» На современных автомобилях применяется жидкость класса DOT-4. При покупке жидкости или, по крайней мере, перед тем, как заливать ее в бачок привода, стоит прочесть, что написано на этикетке флакона. Можно ли ее смешивать с той жидкостью, которая, уже залита в гидропривод сцепления вашего автомобиля? Как правило, ответ бывает положительным, но существуют жидкости, которые смешиванию не подлежат.

На переднеприводных автомобилях ВАЗ используется механический привод, где педаль сцепления связана с вилкой выключения с помощью троса в оболочке.

Выбрать другой раздел:

Механизм сцепления

Механизм сцепления представляет собой устройство, в котором происходит передача крутящего момента за счет работы сил трения. Механизм сцепления позволяет кратковременно разъединять двигатель и коробку передач, а затем вновь плавно их соединять. Элементы механизма заключены в картер, сцепления который крепится к картеру двигателя.

Механизм сцепления состоит из (см. рис. 35):
— картера и кожуха,
— ведущего диска (которым является маховик коленчатого вала двигателя),
— нажимного диска с пружинами,
— ведомого диска со специальными износостойкими накладками.

Ведомый диск, связанный с первичным валом коробки передач, постоянно прижат к маховику нажимным диском под воздействием сильных пружин. За счет огромных сил трения между маховиком, ведомым и нажимным дисками, все это вместе, как единое целое, вращается при работе двигателя. Но это только тогда, когда водитель не трогает педаль сцепления, независимо от того движется его автомобиль или стоит на месте.

Для выключения сцепления водитель нажимает на педаль, при этом нажимной диск отходит от маховика и освобождает ведомый диск, прерывая передачу крутящего момента от двигателя к коробке передач (рис. 36). Нажимать на педаль сцепления следует достаточно быстрым, но не резким, спокойным движением до конца хода педали.
Сцепление выключено

Рис. 36. Сцепление выключено

Для начала движения машины необходимо прижать ведомый диск, связанный с ведущими колесами (через первичный вал коробки передач и другие составляющие трансмиссии) к вращающемуся маховику, то есть включить сцепление (рис. 37). И это сложная задача, так как угловая скорость вращения маховика составляет 20-25 оборотов в секунду, а скорость вращения ведущих колес — ноль.
Сцепление включено

Рис. 37. Сцепление включено

Давайте подумаем, как решить эту задачу. Представьте, что вы опоздали на поезд, который уже начал движение. При грамотных действиях сначала вы его догоняете, двигаясь параллельно, затем хватаетесь за поручень, и когда ваша скорость уравняется со скоростью поезда, то можно уже и запрыгивать в вагон.

Но вам может присниться кошмарный сон, в котором вы, двигаясь наперерез поезду, пытаетесь сразу попасть в движущийся вагон. Конечно промахиваетесь и не попадаете в больницу только потому, что вовремя просыпаетесь в холодном поту. Зато после этого начинаете всегда правильно отпускать педаль сцепления только в три этапа.

На первом этапе работы по включению сцепления — приотпускаем педаль, то есть даем возможность пружинам нажимного диска подвести ведомый диск к маховику до их легкого соприкосновения (догнали поезд). За счет сил трения диск, проскальзывая некоторое время относительно маховика, тоже начнет вращаться, а ваш автомобиль — потихоньку ползти.

На втором этапе — удерживаем ведомый диск от какого-либо перемещения в средней позиции в течение двух-трех секунд для того, чтобы скорость вращения маховика и диска уравнялись (ухватились за поручни вагона). Машина при этом немного увеличивает скорость движения.

На третьем этапе — маховик вместе с нажимным и ведомым дисками уже вращаются вместе без проскальзывания и с одинаковой скоростью, стопроцентно передавая крутящий момент к коробке передач и далее на ведущие колеса автомобиля (запрыгнули в вагон). Это соответствует состоянию механизма сцепления включено, автомобиль движется. Теперь остается только полностью отпустить педаль сцепления и убрать с нее ногу.

Если в начале движения педаль сцепления резко бросить, то автомобиль «прыгнет» вперед, а двигатель заглохнет. В худшем варианте что-нибудь еще и сломается, так как в этот момент возникает сильная ударная волна, которая многократно увеличивает нагрузки на все детали двигателя и агрегаты трансмиссии.

Действия водителя по выключению и включению сцепления в течение поездки (при стартах с места, остановках и переключениях передач) повторяются многократно, особенно в условиях городского движения. Если вы освоите работу педалью сцепления в три этапа, то позже это войдет в незаметную полезную привычку, которая обеспечит плавность хода автомобиля, комфорт пассажирам и увеличение ресурса не только деталей сцепления, но и всего автомобиля в целом.

Выбрать другой раздел:

Основные неисправности сцепления

Сцепление «ведет» (выключается не полностью) из-за большого свободного хода педали сцепления, наличия воздуха в гидроприводе, перекоса нажимного подшипника, коробления ведомого диска или поломки пружин.

Для устранения неисправности следует отрегулировать свободный ход педали, удалить воздух из гидропривода, заменить неработоспособные диски и пружины.

Сцепление «пробуксовывает» (включается не полностью) из-за малого свободного хода педали, замасливания или износа фрикционных накладок ведомого диска, поломки пружин.

Для устранения неисправности необходимо отрегулировать свободный ход педали, промыть или поменять диски, пружины.

Сцепление включается резко вследствие заеданий в механизме привода, задиров на рабочих поверхностях дисков, маховика и разрушения фрикционных накладок ведомого диска.

Для устранения неисправности следует заменить неисправные узлы привода, если заметны задиры на поверхностях дисков, заменить их.

Подтекание тормозной жидкости в гидроприводе сцепления возможно из главного или рабочего цилиндров, а также в соединительных трубках.

Для устранения неисправности следует визуально определить место утечки и заменить неисправные узлы с последующей прокачкой всего гидропривода (удалить из него воздух).

Выбрать другой раздел:

Эксплуатация сцепления

При эксплуатации автомобиля необходимо периодически проверять уровень в бачке, питающем жидкостью гидравлический привод сцепления. Если уровень окажется меньше нормы, то его обязательно следует восстановить, долив тормозной жидкости. В противном случае, когда уровень понизится до нуля, усилие вашей ноги на педали сцепления будет передаваться в никуда.

Пониженный уровень жидкости или неправильная регулировка сцепления может привести к тому, что передачи на вашем автомобиле будут включаться с огромным усилием или вообще не будут включаться. А если при полностью нажатой педали сцепления вам все-таки удастся воткнуть первую передачу, то автомобиль самопроизвольно начнет движение, хотя по результатам всего предыдущего разговора в данный момент двигатель отделен от ведущих колес. Здорово, да? Все стоят на красный сигнал светофора, а вы уже едете!

Как это может случиться, почему машина вдруг поехала?

Описанная неприятность называется — сцепление ведет (с этим выражением вы уже познакомились в неисправностях). Суть происходящего следующая. В то время, как ведомый диск сцепления не должен иметь контакта с маховиком, он все-таки за него немного цепляется, и часть крутящего момента передается на первичный вал коробки передач, а затем и на ведущие колеса.

Каковы причины того, что диск не полностью отходит от маховика? Их несколько и почти все они требуют вмешательства специалиста или вашей решимости не только испачкать руки, но и освоить «Руководство по ремонту и эксплуатации» вашего автомобиля.

На этом проблемы со сцеплением не заканчиваются. Поскольку каждый раз, отпуская педаль сцепления, мы заставляем обе поверхности ведомого диска сильно тереться о железный маховик и не менее железный нажимной диск, то, естественно, боковые поверхности ведомого диска изнашиваются. Это нормальный процесс, обусловленный конструкцией автомобиля, и ведомый диск является расходным материалом. Но наступает в жизни опять не очень смешной момент, когда все уже давно уехали с того самого перекрестка со светофором (после включения зеленого сигнала), а вы все еще стоите на месте. Хотя и первая передача включена, и педаль сцепления наверху, и газуете вы так, что у проезжающих мимо водителей сердце кровью обливается. Но износ накладок ведомого диска оказался настолько велик, что теперь он не зажимается между маховиком и нажимным диском с должным усилием и, пробуксовывая, не передает крутящий момент от двигателя к трансмиссии. Такое явление имеет название — сцепление пробуксовывает.

Конечно, здесь описан пример совсем уж «глухого» и «слепого» водителя, потому что машина намного раньше «предупреждала» его о том, что несмешной случай может произойти в ближайший месяц. Еще раньше на подходе к максимальному износу ведомый диск уже начал пробуксовывать, сначала на четвертой передаче, затем на третьей и так далее. А вообще, при нормальной эксплуатации автомобиля, замена ведомого диска сцепления требуется после 80 тысяч и более километров пробега. Но не все водители являются мастерами вождения, и поэтому износ диска может наступить значительно раньше.

Начало критического износа легко определить, двигаясь на четвертой передаче со скоростью 40-45 км/ч. Если при активном нажатии на педаль «газа» обороты двигателя начинают увеличиваться, а машина продолжает движение с прежней скоростью, то в подтверждение своей догадки вы еще и почувствуете специфический запах «подгорающих» накладок диска. Значит, пора покупать диск и искать автосервис подешевле или понадежней, кому что больше подходит.

Неоднократно в этой книге упоминалось и будет упоминаться о том, что автомобиль пытается с вами «разговаривать», он заранее предупреждает о своих «недугах» и «болячках» с помощью звуков вибраций и запахов.

Например, что это там «шелестит» в районе сцепления и перестает «шелестеть» при полностью нажатой педали сцепления. Этот звук означает, что вы должны готовиться к замене выжимного подшипника.

А что это там постукивает, поскрипывает, попахивает и так далее. И не важно, что у вас новый «Фольксваген», он точно так же, как и старый «Жигуленок», подвержен износу, а тем более на наших родных дорогах. Поэтому прислушивайтесь и принюхивайтесь к своей машине!

О стиле вождения автомобиля разговор уже был, и он будет продолжаться. Резкие старты и ускорения машины, постоянное «держание» ноги на педали сцепления при движении («болезнь» таксистов) ведут к износу не только сцепления, но и других агрегатов автомобиля.

Укорачивает срок службы сцепления и еще одна не очень «мудрая» привычка. Это когда водитель удерживает педаль сцепления в нажатом состоянии на все время остановки перед красным сигналом светофора. Грамотным ожиданием разрешающего сигнала светофора по многим причинам будет — нейтральная передача и полностью отпущенная педаль сцепления.

Выбрать другой раздел:

Устройство коробки передач и её виды

Коробка передач

Коробка передач предназначена для изменения по величине и направлению крутящего момента и передачи его от двигателя к ведущим колесам. Также она обеспечивает длительное разобщение двигателя и ведущих колес, причем на неограниченный срок и без усилий со стороны водителя (по сравнению со сцеплением).
Схема работы коробки передач

Рис. 38. Схема работы коробки передач: 1 — первичный вал; 2 — рычаг переключения передач 3 — механизм переключения передач; 4 — вторичный вал; 5 — сливная пробка; 6 — промежуточный вал; 7 — картер коробки передач

Коробка передач состоит из (рис. 38):
— картера;
— первичного, вторичного и промежуточного валов с шестернями;
— дополнительного вала и шестерни заднего хода;
— синхронизаторов;
— механизма переключения передач с замковым и блокировочным устройствами;
— рычага переключения.

Картер содержит в себе все основные узлы и детали коробки передач. Он крепится к картеру сцепления, который, в свою очередь, закреплен на двигателе. Поскольку шестерни коробки передач при работе испытывают большие нагрузки, то они должны хорошо смазываться. Поэтому в картер коробки передач залито трансмиссионное масло (в некоторых моделях автомобилей применяется моторное масло)

Валы коробки передач вращаются в подшипниках, установленных в картере, и имеют наборы шестерен с различным числом зубьев.

Синхронизаторы необходимы для плавного бесшумного и безударного включения передач путем уравнивания угловых скоростей вращающихся шестерен (наши руки на поручне вагона поезда в примере с работой сцепления).

Механизм переключения передач служит для смены передач и управляется водителем с помощью рычага из салона автомобиля. При этом замковое устройство не позволяет включаться одновременно двум передачам, а блокировочное устройство удерживает передачи от самопроизвольного выключения.
 Передаточное отношение

Рис. 39. Передаточное отношение

Как же происходит изменение величины крутящего момента (числа оборотов) на различных передачах? Давайте с этим разберемся на примере (рис. 39 а).

Возьмем две шестерни, не поленимся и сосчитаем число их зубьев. Первая шестеренка имеет 20 зубьев, а вторая 40. Значит, при двух оборотах первой шестерни, вторая сделает только один оборот (передаточное число равно 2).

На рисунке 39 б у первой шестерни («А») 20 зубьев, у второй («Б») 40, у третьей («В») снова 20, у четвертой («Г») опять 40.

Дальше очень простая арифметика. Первичный вал коробки передач и шестерня «А» вращаются с угловой скоростью, допустим, 2000 об/мин. Шестерня «Б» на промежуточном валу вращается в 2 раза медленнее — 1000 об/мин. Поскольку шестерни «Б» и «В» закреплены на одном валу, то третья шестеренка вращается с той же скоростью — 1000 об/мин. Тогда шестерня «Г» на вторичном валу будет вращаться еще в 2 раза медленнее — 500 об/мин.

Итак, от двигателя на первичный вал коробки передач пришло 2000 об/мин, а на вторичном валу получилось 500 об/мин, в то время как на промежуточном валу было 1000 об/мин.

В данном примере передаточное число первой пары шестерен равно двум, второй пары шестерен тоже двум. Общее передаточное число этой схемы: 2?2 = 4. Следовательно, вторичный вал коробки передач будет вращаться в 4 раза медленнее, чем первичный вал.

Обратите внимание, если мы выведем из зацепления шестерни «Г» и «В», то вторичный вал коробки вращаться не будет. При этом прекращается передача крутящего момента и на ведущие колеса автомобиля, что соответствует нейтральной передаче.

Задняя передача, то есть вращение вторичного вала коробки передач в другую сторону, обеспечивается дополнительной осью с шестерней заднего хода. Эта шестерня необходима для того, чтобы получилось нечетное число пар шестерен, тогда крутящий момент изменит свое направление (рис. 40).
Схема передачи крутящего момента при включении задней передачи

Рис. 40. Схема передачи крутящего момента при включении задней передачи: 1 — первичный вал; 2 — шестерня первичного вала; 3 — промежуточный вал; 4 — шестерня передачи заднего хода; 5 — вторичный вал

Поскольку в коробке передач реального автомобиля имеется большой набор шестерен, то, вводя в зацепление различные их пары (включая различные передачи), мы изменяем и общее передаточное отношение.

Давайте посмотрим на передаточные числа двух коробок передач (табл. 1).

Таблица 1. Передаточные отношения

Передачи: Ваз 2105 Лада 110
1 3.67 3.36
2 2.10 1.95
3 1.36 1.357
4 1.00 0.951
5 0.82 0.784
R(задний ход) 3.53 3.53

Такие «неудобные» числа получаются в результате деления количества зубьев одной шестерни на неудобно делимое число зубьев второй шестерни и далее по цепочке.

Если передаточное число равно единице (1,00), то это означает, что вторичный вал вращается с такой же угловой скоростью, что и первичный. Передачу, на которой скорость вращения валов уравнена, обычно называют прямой и, как правило, это четвертая передача.

Вернемся к нашему старому знакомому — велосипеду. На современных велосипедах тоже есть передачи. Владельцы такого транспортного средства наверняка обратили внимание на то, что когда сзади включена звездочка с большим числом зубьев, то крутить педали легко, но скорость движения получается небольшой. Если переключиться на меньшую звездочку (с меньшим числом зубьев), то скорость возрастает, но усилие на педалях при этом увеличивается.

Меняя звездочки на велосипеде (переключая передачи), можно найти оптимальный режим движения с учетом сил велосипедиста и дорожных условий.

Тот же принцип используется и в автомобиле. Передачи необходимо переключать в зависимости от скорости движения, от дорожных условий и с учетом возможностей двигателя.

Первая передача и передача заднего хода — самые «сильные», и двигателю не трудно крутить колеса, но машина в этом случае движется медленно.

На большой скорости движения используются «шустрые» пятая и четвертая передачи, но в крутую гору на них не заедешь, двигателю просто не хватает сил (как и велосипедисту), и тогда приходится переключаться на более низкие но «сильные» передачи.

Первая передача необходима для начала движения автомобиля, для того чтобы двигатель смог сдвинуть с места тяжелое железное «чудовище». Далее, увеличив скорость движения и обеспечив некоторый запас инерции движения машины, можно переключиться на вторую передачу, более «слабую», но более «быструю», затем на третью, четвертую и пятую передачу.

Все ступеньки переключения передач вверх (с первой по пятую) следует проходить последовательно. Переключение передач в нисходящем порядке можно производить, «прыгая через ступеньки». Например, после пятой передачи может потребоваться первая или после четвертой — вторая.

Обычный режим движения автомобиля — на четвертой или пятой передаче, так как они самые скоростные и экономичные.

Выбрать другой раздел:

Основные неисправности коробки передач

Подтекание масла происходит из-за повреждения уплотнительных прокладок сальников и ослабления крепления крышек картера. Для устранения неисправности необходимо поменять прокладки сальники и подтянуть крепления крышек.

Шум при работе коробки передач может возникнуть из-за неисправного синхронизатора, износа подшипников, шестерен и шлицевых соединений. Для устранения неисправности необходимо заменить вышедшие из строя детали.

Затрудненное включение передач может происходить из-за поломок деталей механизма переключения, износа синхронизаторов или шестерен. Для устранения неисправности необходимо заменить вышедшие из строя детали и узлы.

Самопроизвольное выключение передач случается из-за неисправности блокировочного устройства, а также при сильном износе шестерен и синхронизаторов. Для устранения неисправности необходимо заменить блокировочное устройство, вышедшие из строя шестерни и синхронизаторы.

Выбрать другой раздел:

Эксплуатация коробки передач

Если вас правильно учили в автошколе или, по крайней мере, вы читали и другие книги из серии учебных пособий для будущих автомобилистов, то навряд ли в ближайшие годы коробка передач омрачит ваше настроение. При грамотном обращении с рычагом переключения передач и периодической замене масла в картере коробки она не напоминает водителю о себе до конца срока службы самого автомобиля.

Неисправности в коробке передач обычно появляются в результате грубой работы рычагом переключения. Если водитель постоянно дергает рычаг, переводит его из одной позиции в другую быстрым резким движением, то капитальный ремонт коробки передач потребуется очень скоро. При таком обращении с рычагом выходят из строя механизм переключения, синхронизаторы, да и сами валы с шестернями «железные» лишь до определенной степени.

Рычаг переключения передач должен переводиться всегда плавным движением, с паузами в нейтральной позиции, для того чтобы успели сработать синхронизаторы, оберегающие шестерни от поломок.

При эксплуатации коробки передач необходимо следить за уровнем масла в картере, и доливать его в случае необходимости. Полная замена масла производится в сроки, рекомендованные «Инструкцией по эксплуатации» вашего автомобиля.

Будем надеяться, что вам никогда не придется разбирать и ремонтировать коробку передач самостоятельно, так как при последующей сборке может остаться очень много разных «лишних деталей». Поэтому лучше не пытайтесь — для этого случая есть специалисты.

Выбрать другой раздел:

Карданная передача

Карданная передача заднеприводного автомобиля

Карданная передача заднеприводных автомобилей предназначена для передачи крутящего момента от вторичного вала коробки передач к главной передаче под изменяющимся углом.

Карданная передача состоит из (см. рис. 33, поз. IV):
— переднего и заднего валов;
— промежуточной опоры с подшипником;
— шарниров с вилками и крестовинами;
— шлицевого соединения;
— эластичной муфты.

Шарниры с вилками и крестовинами обеспечивают возможность передачи крутящего момента под изменяющимся углом.

Задний мост с колесами у заднеприводного автомобиля связан с кузовом не жестко. В то же время двигатель, коробка передач и передний вал карданной передачи крепятся к кузову почти «намертво».

Так как кузов автомобиля, «прыгая» на неровностях дороги, постоянно перемещается относительно заднего моста вверх-вниз, то меняется и угол (до 15°) между передним валом карданной передачи и главной передачей, расположенной в заднем мосту автомобиля. А ведь именно туда мы и должны передавать крутящий момент, причем постоянно и равномерно. Поэтому задний вал карданной передачи не может быть просто жесткой трубой. Он имеет два шарнира, которые позволяют без рывков и толчков передавать крутящий момент от коробки передач к главной передаче при любых «прыжках» автомобиля.

Шлицевое соединение компенсирует линейное перемещение карданной передачи относительно кузова автомобиля при изменении угла передачи крутящего момента.

Поскольку в результате колебаний кузова автомобиля линейное расстояние от коробки передач до заднего моста получается величиной переменной, то при перемещении кузова вверх карданная передача должна удлиняться, а когда кузов идет вниз — укорачиваться. Это и происходит в шлицевом соединении — удлиняются и укорачиваются не жесткие трубы, но их суммарная длина.

Эластичная муфта принимает на себя ударную волну, проходящую по трансмиссии при грубой работе педалью сцепления.

Выбрать другой раздел:

Валы с шарнирами переднеприводных автомобилей

У переднеприводных автомобилей крутящий момент на ведущие колеса передается двумя карданными передачами, каждая из которых имеет свой вал и по два шарнира (см. рис. 34, поз. V).

Вы уже знаете, что в конструкции переднеприводного автомобиля двигатель и все агрегаты трансмиссии объединены в единый узел, расположенный под капотом. Крутящий момент выходит из этого узла уже измененный по величине и направлению, готовый для передачи на ведущие передние колеса.

Так как единый узел агрегатов крепится на «прыгающем» кузове автомобиля, а передние колеса плюс ко всему еще и поворачиваются, то возникает потребность уже в двух карданных передачах, отдельно на правое и левое колесо. Каждый вал этой передачи с двумя шаровыми шарнирами равных угловых скоростей (ШРУС) может непрерывно передавать крутящий момент своему колесу при любом изменении угла передачи. Валы располагаются в моторном отсеке под капотом, один конец каждого из них связан с узлом агрегатов, а другой соответственно с правым или левым ведущим передним колесом.

Шрусы переднеприводных автомобилей обеспечивает передачу крутящего момента при изменяющихся углах до 42°. Все шарниры защищены от грязи, пыли и влаги резиновыми чехлами.

Выбрать другой раздел:

Основные неисправности карданной передачи и валов с шарнирами

Шум, стуки и вибрация при движении возникают из-за износа шарниров, подшипника промежуточной опоры, деформации валов.

Неисправность устраняется только путем замены поврежденных элементов.

Утечка смазки из шаровых шарниров возможна вследствие повреждения защитных чехлов.

Для устранения неисправности следует заменить чехлы, с обязательной промывкой шарниров и заменой в них смазки.

Эксплуатация карданной передачи и валов с шарнирами

В карданных передачах, как заднеприводных автомобилей, так и переднеприводных, основной проблемой являются шарниры. Трубы и валы очень редко требуют замены, если только вы не прыгаете с моста в речку с каменистым дном каждый день. Да и шарниры могут служить долго, если стиль вашего вождения отличается от гонок на выживание.

Любой автомобиль следует водить по дорогам спокойно и размеренно, но передний привод требует особо аккуратного вождения, так как при повреждении защитных чехлов шарниров в них попадает грязь, и они очень быстро выходят из строя. Необходимо следить за состоянием этих чехлов и сразу же их заменять, как только появились разрывы или всего лишь трещины.

При износе шарниров или подшипников крестовин слышен характерный щелкающий звук при трогании с места и переключении передач. У валов с шаровыми шарнирами эти щелчки могут быть слышны и при повороте передних колес на предельные углы.

Когда износ подшипника промежуточной опоры карданного вала заднеприводного автомобиля достигает определенного рубежа, появляется заметный шум под днищем автомобиля и ощущается значительная вибрация.

При нормальной эксплуатации автомобиля шарниры карданного вала и шаровые шарниры передних валов служат довольно долго, около 100 тысяч километров пробега. А трубы и валы, в принципе, вообще вечные, если так уж случилось, что погнулся один из карданных валов или деформировался вал с шаровыми шарнирами, то имеет смысл поменять поврежденные узлы в сборе.

Срок службы шарниров карданного вала и шаровых шарниров укорачивают: резкие старты и разгоны, неправильный выбор скорости и передачи на плохих дорогах, буксование в грязи, особенно на переднеприводных автомобилях, а также движение по глубокой грунтовой колее и снегу.

Когда некоторые водители путают свою легковую машину с трактором или вездеходом, идет сильнейший износ узлов и агрегатов автомобиля.

Выбрать другой раздел:

Главная передача и дифференциал

Главная передача и дифференциал заднеприводных автомобилей

Главная передача предназначена для увеличения крутящего момента и передачи его на полуоси колес под углом.

Главная передача состоит из:
— ведущей шестерни,
— ведомой шестерни.

Крутящий момент коленчатого вала двигателя через сцепление, коробку передач и карданную передачу передает ару конических шестерен, которые находят в постоянном зацеплении.

На рисунке 41 колеса вращаются с одинаковой угловой скоростью. В этом случае поворот автомобиля будет невозможен, так как при этом маневре правое колесо должны пройти неодинаковое расстояние!
 Схема работы главной передачи

Рис. 41. Схема работы главной передачи: 1 — фланец; 2 — вал ведущей шестерни; 3 — ведущая шестерня; 4 — ведомая шестерня; 5 — ведущие (задние) колеса; 6 — полуоси; 7 — картер главной передачи

Если взять игрушечную машинку, у которой задние колеса связаны между собой жесткой осью, и немного покатать ее по полу, то паркет в вашем доме может заметно пострадать. При каждом повороте автомобильчика одно из его колес обязательно будет проскальзывать и оставлять за собой черный след.

Давайте посмотрим на следы, оставленные на повороте мокрыми колесами любого реального автомобиля. Рассматривая эти следы заинтересованно, можно увидеть, что внешнее от центра поворота колесо проходит путь значительно больший, чем внутреннее.

Если бы каждому колесу передавалось одинаковое количество оборотов, то поворот автомобиля без черных следов на «паркете», был бы невозможен. Следовательно, настоящий автомобиль, в отличие от игрушечного, имеет некий механизм, позволяющий осуществлять повороты без черчения резиной колес по асфальту. Называется этот механизм — дифференциалом.

Дифференциал предназначен для распределения крутящего момента между полуосями ведущих колес при повороте автомобиля и при движении по неровностям дороги. Дифференциал позволяет колесам вращаться с разной угловой скоростью и проходить неодинаковый путь без проскальзывания относительно покрытия дороги.

Иными словами, 100% крутящего момента, который приходит на дифференциал, могут распределяться между ведущими колесами как 50?50, так и в другой пропорции, например, 60?40.

К сожалению, пропорция может быть и 100?0. Это означает, что одно из колес стоит на месте (в яме), а другое в это время буксует (по сырой земле, глине, снегу).

Что поделаешь! Ничто не бывает абсолютно идеальным, зато данная конструкция позволяет автомобилю поворачивать без заноса, а водителю не менять каждый день напрочь изношенные шины.

Конструктивно дифференциал выполнен в одном узле вместе с главной передачей (рис. 42) и состоит из:
— двух шестерен полуосей,
— двух шестерен сателлитов.
Главная передача с дифференциалом

Рис. 42. Главная передача с дифференциалом: 1 — полуоси; 2 — ведомая шестерня; 3 — ведущая шестерня; 4 — шестерни полуосей; 5 — шестерни-сателлиты

Главная передача и дифференциал переднеприводных автомобилей

У переднеприводных автомобилей главная передача и дифференциал расположены в корпусе коробки передач (см. рис. 34, поз. IV).

Двигатель у таких автомобилей расположен не вдоль, а поперек оси движения, значит, изначально крутящий момент от двигателя передается в плоскости вращения колес. Поэтому нет необходимости изменять направление крутящего момента на 90°, как у заднеприводных автомобилей. Но функция увеличения крутящего момента и распределения его по осям колес остается неизменной и в этом случае.

Выбрать другой раздел:

Основные неисправности главной передачи и дифференциала

Шум («вой») главной передачи при движении на большой скорости возникает из-за износа шестерен, неправильной их регулировки или в случае отсутствия масла в картере главной передачи.

Для устранения неисправности необходимо отрегулировать зацепление шестерен, заменить изношенные детали, восстановить уровень масла.

Подтекание масла может происходить через сальники и неплотные соединения.

Для устранения неисправности следует заменить сальники, подтянуть крепления соединений.

Выбрать другой раздел:

Эксплуатация главной передачи и дифференциала

Как и любые шестеренки, шестерни главной передачи и дифференциала требуют «смазки и ласки».

Сначала по поводу «ласки». Несмотря на то, что все детали главной передачи и дифференциала выглядят массивными «железяками», они тоже имеют запас прочности. Поэтому рекомендации относительно резких стартов и торможений, грубых включений сцепления и прочей перегрузки машины остаются в силе.

Теперь о смазке. Трущиеся детали и зубья шестерен должны постоянно смазываться, это мы уже знаем. Поэтому в картер заднего моста (у заднеприводных автомобилей) или в картер блока — коробка передач, главная передача, дифференциал (у переднеприводных автомобилей), заливается масло, уровень которого необходимо периодически контролировать.

Масло, в котором работают шестерни, имеет склонность к утеканию через неплотности в соединениях и через изношенные маслоудерживающие сальники. А еще, любой картер должен иметь постоянную связь с атмосферой. Когда в наглухо закрытой коробке с шестеренками и маслом выделяется тепло, что неизбежно при работе механизмов, давление внутри резко увеличивается и тогда масло обязательно найдет какую-нибудь щелочку. Чтобы не доливать масло по два раза в день, следует помнить о маленькой детальке любого картера — сапуне.

Сапун — это подпружиненный колпачок, прикрывающий вентиляционное отверстие или трубку. Со временем он «залипает», и возможна потеря связи картера с атмосферой. При очередной плановой замене масла или ранее, в случае необходимости, проверните колпачки и восстановите работоспособность пружин всех сапунов на агрегатах вашего автомобиля. В результате этой несложной операции небольшие утечки масла могут прекратиться.

Обычно среднестатистическому водителю трудно разобраться в той гамме звуков, которые издает его «заболевший» автомобиль. Мало обладать хорошим слухом, надо еще и понимать, что означают эти «завывания», «похрустывания» и прочие «поскрипывания», доносящиеся из определенных зон автомобиля.

При возникновении подозрения на какую-либо неприятность в трансмиссии район поиска неисправности можно немного сузить. Подложите противооткатные упоры под колеса автомобиля и поднимите его домкратом так, чтобы одно из ведущих колес «оторвалось» от земли, после чего обязательно опустите машину на устойчивую подставку. Запустите двигатель, включите передачу, плавно отпустите педаль сцепления (на полноприводных автомобилях в этот момент блокировка межосевого дифференциала должна быть выключена). В результате этих действий «вывешенное» ведущее колесо начнет вращаться. Посмотрите на все что крутится, послушайте все что издает подозрительные звуки. Затем поднимите домкратом колесо с другой стороны. При повышенном шуме, вибрации и подтекании масла — начинайте поиск мастера, которому вы с гордостью сможете сказать, что проблемы у вашего автомобиля слева, а не справа.

Выбрать другой раздел:

Автоматическая коробка передач (правила пользования)

При вождении автомобиля водителю приходится постоянно работать педалью сцепления и рычагом коробки передач. Это отнимает немало времени, а также доставляет неудобства начинающим автомобилистам.

В свое время у самых ленивых возник вопрос — можно ли избежать этих повторяющихся действий? Так появилась конструкция, которая называется автоматическая коробка передач.

В автомобиле с автоматической коробкой передач всего две педали («газ» и тормоз). Когда водитель давит на «газ» или на тормоз, выбор и смена передач происходит автоматически.

Наверное, не стоит тратить время на изучение устройства этого сложного агрегата, так как его сервисное обслуживание и ремонт возможны только в специализированных технических центрах. Мы с вами рассмотрим лишь правила пользования автоматической коробкой передач.

Выбрать другой раздел:

Правила пользования автоматической коробкой передач

В автомобиле с «автоматом» рычага переключения передач нет, но зато есть переключатель режимов работы коробки передач, который называется рычагом селектора (рис. 43).
Схема положений рычага селектора автоматической коробки передач

Рис. 43. Схема положений рычага селектора автоматической коробки передач

Рычаг селектора имеет следующие основные положения: Р, R, N, D. Есть также положения D3 (или S) и D2 (или L) (рис. 43а). Могут быть и дополнительные режимы, например W (winter — зима).

Давайте разберемся с этими буквами, одновременно поглядывая на схему переключения рычага селектора (рис. 43а).

Р (парковка) — в это положение рычаг можно переводить только после полной остановки автомобиля и фиксации его стояночным тормозом. Именно в этом положении следует оставлять машину на стоянке, а также осуществлять запуск двигателя.

R (задний ход) — можно включать, удерживая педаль тормоза нажатой и только после полной остановки автомобиля (иначе не избежать поломок).

N (нейтральное положение) — означает, что крутящий момент от двигателя не передается ведущим колесам. При этом положении рычага разрешается запуск двигателя. Во время движения автомобиля переводить рычаг селектора в положение «N» нельзя, возможна поломка коробки передач!

D (движение) — при этом положении рычага селектора обеспечивается движение автомобиля в нормальных условиях. В этом режиме передачи меняются по мере увеличения или уменьшения скорости движения автомобиля автоматически, без участия водителя.

D3 (S) — диапазон пониженных передач. Обычно включается на дороге с небольшими подъемами и спусками. Торможение двигателем более эффективно, чем в положении D.

D2 (L) — второй диапазон пониженных передач. Включается водителем в тяжелых дорожных условиях (горы, бездорожье и тому подобное). Торможение двигателем при этом более эффективно, чем в положении S.

Перевод рычага селектора автоматической коробки передач из положения D в положение D3 или D2 и обратно может производиться во время движения автомобиля.

Автоматические коробки передач последних лет выпуска могут дополнительно оборудоваться переключателями режимов разгона:
N — нормальный,
Е — экономичный,
S — спортивный.

Существуют также «автоматы» с режимом ручного переключения передач. При переходе на такой режим необходимо перевести рычаг селектора в дополнительный «коридор» (рис. 43б). Кратковременно отклоняя рычаг к отметке » + » или «-«, водитель имеет возможность последовательно переключать передачи в порядке повышения или понижения.

Для начала движения автомобиля с автоматической коробкой передач следует, нажав правой ногой на педаль тормоза, рукой перевести рычаг селектора из положения Р, R или N в положение D (движение), и затем выключить стояночный тормоз.

При отпускании педали тормоза (правой ногой) автомобиль сразу же начинает движение!

Для увеличения скорости движения надо лишь перенести правую ногу на педаль «газа» и плавно ее нажать. Передачи при разгоне автомобиля будут меняться автоматически.

Для снижения скорости движения достаточно ослабить усилие на педали «газа» или просто ее отпустить, при этом передачи будут самостоятельно переключаться в нисходящем порядке.

Если вам необходимо снизить скорость более активно или вообще остановиться, то вы должны перенести правую ногу на педаль тормоза и мягко с ней поработать.

Левая нога в управлении автомобилем участия не принимает!

Для начала движения после кратковременной остановки (или после снижения скорости) снова переносим правую ногу с педали тормоза на педаль «газа» и автомобиль начинает (продолжает) движение. Причем рычаг селектора постоянно остается в положении D (движение). Перемещать его не надо, кроме как при длительных остановках.

Таким образом, при городском цикле движения водителю достаточно один раз перевести рычаг селектора автоматической коробки передач в положение D (движение) и, нажимая правой ногой на педаль «газа» или тормоза, регулировать скорость движения.

Для тех, кто усмотрел в вышеизложенном явно легкий путь в освоении автомобиля, можно добавить, что учиться вождению машины лучше с обычной коробкой передач. Научившись водить автомобиль с автоматической коробкой, в дальнейшем вы будете «обречены» управлять машинами только с «автоматом», так как не сможете правильно работать педалью сцепления. А переучиваться всегда труднее, чем учиться!

Выбрать другой раздел:

ГЛАВА III. ХОДОВАЯ ЧАСТЬ

Ходовая часть автомобиля предназначена для перемещения автомобиля по дороге с определенным уровнем комфорта, без тряски и вибраций. Механизмы и детали ходовой части связывают колеса с кузовом, гасят его колебания, воспринимают и передают силы, действующие на автомобиль со стороны дороги.

Находясь в салоне легкового автомобиля, водитель и пассажиры испытывают медленные колебания с большими амплитудами и быстрые колебания с малыми амплитудами. От быстрых колебаний защищают резиновые опоры двигателя и коробки передач, мягкая обивка сидений и так далее. Защитой от медленных колебаний служат упругие элементы подвески, колеса и шины.

Ходовая часть состоит из:
— передней и задней подвесок колес;
— колес и шин.

Выбрать другой раздел:

Подвеска колес автомобиля

Подвеска предназначена для смягчения и гашения колебаний, передаваемых от неровностей дороги на кузов автомобиля.

Благодаря подвеске колес кузов совершает вертикальные, продольные, угловые и поперечно-угловые колебания. Все эти колебания определяют плавность хода автомобиля.

Давайте разберемся с тем, как колеса автомобиля связаны с кузовом, а для примера возьмем… деревенскую телегу.

Если вы никогда не ездили на деревенской телеге, то, вспоминая какой-нибудь фильм, можете догадаться о том, что колеса телеги жестко закреплены к ее «кузову», в результате чего все проселочные ямы и ухабы отзываются на седоках. Мало того, на большой скорости телега в буквальном смысле слова «рассыпается» и происходит это именно из-за ее «жесткости».

Дабы наш транспорт служил подольше, а «седоки» чувствовали себя получше, колеса автомобилей связаны с кузовом не жестко.

К примеру, если поднять автомобиль в воздух, то его колеса отвиснут и будут «болтаться», подвешенные к кузову на рычагах и пружинах.

Вот это и есть подвеска колес автомобиля. Конечно, шарнирно закрепленные рычаги и пружины «железные», но эта конструкция позволяет колесам перемещаться относительно кузова. А правильнее сказать, кузов имеет возможность перемещаться относительно колес, которые движутся по дороге.

Подвеска может быть зависимой и независимой.

Зависимая подвеска (рис. 44), это когда оба колеса одной оси автомобиля связаны между собой жесткой балкой (задние колеса). При наезде на неровность дороги одного из колес второе наклоняется на такой же угол.
Схема работы зависимой подвески колес автомобиля

Рис. 44. Схема работы зависимой подвески колес автомобиля

Независимая подвеска (рис. 45), это когда колеса одной оси автомобиля жестко друг с другом не связаны (передние колеса). При наезде на неровность дороги одно из колес может менять свое положение, не изменяя при этом положения второго колеса.
 Схема работы независимой подвески колес автомобиля

Рис. 45. Схема работы независимой подвески колес автомобиля

Упругий элемент подвески (пружина или рессора) служит для смягчения ударов и колебаний, передаваемых от дороги к кузову.

Гасящий элемент подвески — амортизатор (рис. 46) необходим для гашения колебаний кузова за счет сопротивления, возникающего при перетекании жидкости через калиброванные отверстия из полости А в полость Б и обратно.
 Схема амортизатора

Рис. 46. Схема амортизатора: 1 — верхняя проушина; 2 — защитный кожух; 3 — шток; 4 — цилиндр; 5 — поршень с клапанами сжатия и «отбоя»; 6 — нижняя проушина; 7 — рычаг подвески; 8 — кузов автомобиля

Стабилизатор поперечной устойчивости автомобиля (рис. 47) предназначен для повышения управляемости и уменьшения крена автомобиля на поворотах.
Детали передней подвески

Рис. 47. Детали передней подвески: 1 — подшипники ступицы переднего колеса; 2 — колпак ступицы; 3 — регулировочная гайка; 4 — шайба; 5 — цапфа поворотного пальца; 6 — ступица колеса; 7 — сальник; 8 — тормозной диск; 9 — поворотный кулак; 10 — верхний рычаг подвески; 11 — корпус подшипника верхней опоры; 12 — буфер хода сжатия; 13 — ось верхнего рычага подвески; 14 — кронштейн крепления штанги стабилизатора; 15 — подушка штанги стабилизатора; 16 — штанга стабилизатора; 17 — ось нижнего рычага; 18 — подушка штанги стабилизатора; 19 — пружина подвески; 20 — обойма крепления штанги амортизатора; 21 — амортизатор; 22 — корпус подшипника нижней опоры; 23 — нижний рычаг подвески

На повороте кузов автомобиля одним своим боком прижимается к земле, в то время как второй бок хочет уйти в отрыв от земли. В отрыв ему не дает возможности уйти стабилизатор, который, прижавшись к земле одним концом, вторым своим концом прижимает и другую сторону автомобиля.

При наезде какого-либо колеса на препятствие стержень стабилизатора закручивается и стремится побыстрее вернуть это колесо на свое место.

Выбрать другой раздел:

Углы установки передних колес

Раз уж мы начали говорить об устойчивости и управляемости автомобиля, то имеет смысл сразу разобраться и с углами установки передних колес.

Наверняка вы слышали такие слова, как «схождение» и «развал». Чаще водители произносят их сокращенно и слитно — «сход-развал». Давайте разберемся с тем, что означают эти слова.

Если отойти от машины подальше (по ходу движения), обернуться и посмотреть на колеса, то те из вас, у кого «глаз-алмаз», смогут увидеть, что передние колеса стоят на дороге не перпендикулярно ей и не параллельно друг другу (рис. 48). Они как бы «развалились» в стороны от вертикальной оси, а траектории их движения «сходятся» в перспективе, то есть они смотрят чуть-чуть друг на друга. Ну, так это и есть углы установки передних колес, что в обиходе называется «развал» колес и их «схождение» («сход»).

Это были углы, видимые острым глазом. Но есть еще и невидимые: продольный и поперечный углы наклона оси поворотной стойки (кулака) подвески колес, углы одновременного поворота правого и левого колес автомобиля. Невидимые углы устанавливаются на заводе-изготовителе автомобиля и, как правило, не требуют вмешательства со стороны водителя на протяжение всего срока службы машины.
Углы установки передних колес

Рис. 48. Углы установки передних колес

«Развал» и «схождение» колес обеспечиваются и регулируются с помощью специально предназначенных для этого шайб в подвеске передних колес и за счет укорачивания или удлинения боковых тяг в рулевом приводе.

А для чего нужны все эти углы?

Есть пухлые тома и немало научных работ по одному из разделов науки об автомобиле — о его управляемости. В объеме этой книги мы ограничимся лишь основными понятиями этого раздела.

Давайте вернемся к забытому нами велосипеду.

При езде на велосипеде заметно наблюдается эффект стабилизации. За счет продольного наклона вилки переднего колеса (вперед по ходу), это колесо всегда стремится занять положение для движения прямо. Именно по этой причине на велосипеде можно ехать, не держась за руль!

В автомобиле эффект стабилизации тоже присутствует. Если вы не ухватились за рулевое колесо с «побелением костяшек пальцев», то машина хочет и будет двигаться прямо. Водителю следует лишь немного корректировать направление прямолинейного движения автомобиля.

Эффект стабилизации создается не только за счет продольного наклона вертикальной оси поворотной стойки подвески передних колес, но и остальными вышеперечисленными углами.

Все эти углы, вместе взятые, обеспечивают:
— устойчивое прямолинейное движение автомобиля;
— уменьшение усилия, прикладываемого к рулевому колесу на повороте;
— качение передних колес на повороте, без проскальзывания;
— самовозвращение передних колес в положение прямолинейного движения по окончании поворота;
— смягчение ударов по подвеске колес от неровностей дороги;
— снятие излишних нагрузок с наиболее ответственных деталей и подшипников.

Можно догадаться о ваших мыслях относительно этого списка. Успокойтесь, перед вами не диссертация, а книга о принципиальном устройстве легкового автомобиля. Поэтому вам надо знать лишь то, что углы эти есть, что их необходимо поддерживать в пределах рекомендаций завода-изготовителя вашего автомобиля и пользоваться теми «благами», которые эти углы дают.

Тем, кто уже водит автомобиль, пусть даже он пока учебный, не мешает знать и использовать на практике одно из перечисленных свойств правильно установленных передних колес.

После поворота направо или налево передние колеса сами хотят вернуться в исходное положение (для движения прямо), и не стоит им мешать. Вам надо лишь слегка придерживать рулевое колесо и оно, скользя в ваших руках, самостоятельно найдет свое среднее положение. А если честно, то в последний момент рулю надо все-таки немного помочь, так как скорость его возврата по мере приближения к исходному положению, заметно снижается. На практике это выглядит так — сначала руль активно скользит в руках, а потом водитель слегка его доворачивает.

Выбрать другой раздел:

Колеса и шины

Колеса принимают крутящий момент от двигателя и за счет сил сцепления с дорогой обеспечивают движение автомобиля. Колеса также воспринимают и сглаживают удары и толчки от неровностей дороги.

Колесо состоит из (рис. 49):
— диска с ободом;
— шины.

Диск, с приваренным к нему ободом, крепится к ступице колеса (см. рис. 47) или к полуоси заднего моста с помощью нескольких специальных болтов или гаек. В дальнейшем диск вместе с ободом будем называть просто «диском», так как на легковых автомобилях, в отличие от грузовиков, обод не является съемным. Мало того, сварные стальные диски постепенно вытесняются с рынка дисками литыми (изготовленными методом литья из легких сплавов), которые с ободом составляют единое целое.

Шина может быть камерной или бескамерной.

В камерной шине находится резиновая камера, которая заполняется воздухом. Шина без камеры раньше называлась покрышкой.

Шина состоит из каркаса (корда) и протектора, а также боковин и бортов (рис. 49).
Колесо легкового автомобиля

Рис. 49. Колесо легкового автомобиля: 1 — диск колеса; 2 — обод; 3 — борт; 4 — камера; 5 — боковина; 6 — корд; 7 — протектор

Каркас шины является главной несущей частью, ее силовой основой. Он выполняется из нескольких слоев специальной ткани — корда.

Корд воспринимает давление сжатого воздуха изнутри и нагрузки от дороги снаружи. Материалом нитей корда могут служить: хлопок, вискоза, капрон, нейлон, металлическая проволока, стекловолокно и другие материалы.

Протектор — это толстый слой резины с определенным рисунком, который расположен на наружной поверхности покрышки и непосредственно соприкасается с поверхностью дороги.

Рисунок протектора может быть дорожным, универсальным и специальным. Выбор покрышки с тем или иным рисунком протектора зависит от предполагаемых условий эксплуатации автомобиля.

Каждый человек меняет обувь в зависимости от сезона. Если туфли на высоком каблуке идеальны для сухого асфальта или паркета, то в них абсолютно невозможно передвигаться по грязи, мокрому снегу или льду. А шины, это обувь вашего автомобиля, и если вы подбираете рисунок протектора в зависимости от условий эксплуатации, то поступаете очень мудро. Это повышает безопасность движения вашего автомобиля, а также обеспечивает безопасность других участников дорожного движения.

Разглядывая «зимнюю» покрышку, обратите внимание на рисунок протектора — он может быть «направленным». Это означает, что такая покрышка должна вращаться по направлению стрелки, нанесенной на ее боковине. При этом покрышка устанавливается только на правую сторону автомобиля или только на левую. Перестановка колес с направленным рисунком протектора шин с одной стороны машины на другую не допускается!

В бескамерной шине отсутствует, и не предусмотрена, резиновая камера для воздуха. Полость, заключенная между покрышкой и ободом, должна быть герметичной, так как непосредственно она и заполняется воздухом. Поэтому диск для бескамерной шины отличается от обычного диска наличием уплотняющих буртиков на ободе (рис. 49 б). При покупке дисков на это следует обращать внимание. Если вы используете шины с камерой, то подойдут любые диски, буртики вам не помешают.

Шины бывают с диагональным и радиальным расположением нитей корда, в зависимости от конструкции каркаса.

В диагональных шинах (рис. 50 а) нити корда располагаются перекрестно под углом 35-38° и соединяют боковины покрышки по диагонали. На легковых автомобилях такие шины уже не применяются.

В радиальных шинах (рис. 50 б) нити корда расположены по отношению к бортам почти под прямым углом.

Основными достоинствами радиальных шин являются: хорошее сцепление с дорогой, малое сопротивление качению и большой срок службы. Они более эластичны, чем диагональные, поэтому поездка на автомобиле становится более комфортной и безопасной. В тоже время, при небрежном отношении к радиальным шинам срок их службы может снизиться до первого наезда на бордюрный камень (ввиду слабых по прочности боковин таких шин).
расположение нитей корда

Маркировка шин

При покупке шин внимательно изучайте их маркировку. Например, на боковине шины можно увидеть надпись 175/70 R13. Это означает следующее:

175 — ширина профиля шины в миллиметрах,

70 — соотношение высоты профиля шины к ее ширине в процентах,

R — радиальная шина (с радиальным расположением нитей корда),

13 — посадочный диаметр шины в дюймах (1 дюйм равен 2,54 см).

Параметры шин и дисков для конкретной модели вашего автомобиля вы можете найти в заводской инструкции по его эксплуатации.

Выбрать другой раздел:

Основные неисправности подвески и колес

Шум и стуки в подвеске возникают из-за ослабления болтов крепления, износа шарниров, поломки пружины, неисправного амортизатора.

Для устранения неисправности необходимо проверить и подтянуть крепления элементов подвески, а вышедшие из строя узлы и детали заменить на новые.

Повышенный и неравномерный износ шин происходит по причине износа шаровых шарниров подвески, дисбаланса колес, при нарушенных углах установки передних колес и грубого стиля вождения.

Для устранения неисправности следует восстановить углы установки передних колес, заменить изношенные детали, отбалансировать колеса и изменить стиль вождения.

Увод автомобиля в сторону от прямолинейного движения происходит в случае нарушения углов установки передних колес, неодинакового давления воздуха в шинах, деформации рычагов передней подвески, неодинаковой жесткости пружин, повреждения верхней опоры одной из телескопических стоек, поломки стабилизатора поперечной устойчивости автомобиля.

Для устранения неисправности необходимо отрегулировать углы установки передних колес в соответствии с рекомендациями завода-изготовителя, выровнять давление воздуха в шинах, заменить изношенные или деформированные детали и узлы.

Повышенные вибрации при движении могут появиться из-за дисбаланса колес, вздутия на боковине шины, повреждения (деформации) дисков колес, неудовлетворительного состояния подшипников ступиц колес, износа шаровых опор рычагов подвески.

Для устранения неисправности следует отбалансировать колеса, заменить поврежденные шины и диски колес, отрегулировать или заменить подшипники ступиц, заменить шаровые опоры.

Выбрать другой раздел:

Эксплуатация ходовой части

Наверное, каждый владелец автомобиля понимает серьезность последствий неисправностей, которые могут возникнуть в ходовой части автомобиля. Ведь даже на разумной скорости эти неисправности могут привести к печальным последствиям, а о любителях «безумной» скорости в этом случае лучше и не говорить.

При нормальной эксплуатации ходовой части элементы подвески колес обычно не требуют тщательного визуального контроля. Но если что-то начало поскрипывать, повизгивать или издавать другие необычные звуки, появились заметные вибрации, машина стала немного приседать на один бок, то тогда надо обязательно найти источник дискомфорта и устранить его причину.

Проблемы, возникающие при замене пружин, рессор, рычагов или подшипников ступиц колес, лучше доверить мастеру. Конечно, читающие эту книгу водители из сельской местности будут смеяться над постоянным «посыланием» к механику. Если живешь «на земле», а ближайший автосервис далеко, то приходится все делать самому и это нормальное явление.

Заменить неисправный узел в сборе бывает не сложно. Но попытка залезть внутрь, допустим, амортизатора или другого сложного устройства с нашим любимым инструментом молотком, заканчивается, как правило, выбрасыванием этого узла после ремонта максимум через неделю.

Кстати, об амортизаторах и экзаменационных билетах. Если амортизаторы не работают, то при наезде на любую неровность дороги передняя или задняя часть автомобиля может после этого долго качаться в вертикальной плоскости (прыгать по дороге), несколько ухудшая управляемость автомобиля и комфортность поездки. Естественно, неисправный амортизатор следует заменить, но эксплуатировать автомобиль с неисправными амортизаторами ПДД не запрещают.

Срок службы подвески колес и самих колес тесно связан со стилем вождения автомобиля. Любая грубость в отношении машины будет активно отражаться на состоянии и долговечности ходовой части.

На дорогах встречаются ямы, трамвайные и железнодорожные рельсы, а также прочие препятствия для движения. При неосмотрительном проезде таких препятствий возможна деформация диска колеса. Если выправить диск не удается, то его необходимо заменить, иначе он своими вибрациями может вывести из строя всю подвеску.

Помните о том, что современная шина «боится» ударов о бордюрные камни, разлитого бензина или дизельного топлива, других агрессивных жидкостей и, конечно, различных острых предметов, в изобилии присутствующих на наших дорогах.

Пройдитесь по обочине любой дороги хотя бы с полкилометра. После этого, у вас пропадет желание объезжать стоящие в пробке автомобили с правой стороны. Количество железяк и осколков стекла, просто валяющихся или вдавленных в землю на дороге, около нее и на обочине, превышает все разумные пределы. Однажды автору этих строк довелось «поймать» колесом свечу зажигания, которая впилась своей верхней частью в протектор шины и дошла-таки до своей цели — до камеры.

Эксплуатируя колеса, следует помнить о необходимости их периодической балансировки. При движении с малой скоростью или по плохой дороге дисбаланс практически никак не влияет на поведение машины. Но если дорожные условия позволяют двигаться с большой скоростью, то на неотбалансированных колесах у вас это не получится из-за самопроизвольного «дерганья» рулевого колеса и сильной вибрации всего автомобиля. Кроме активного износа не прошедших балансировку шин, идет интенсивнейший износ всех элементов трансмиссии, ходовой части, рулевого управления и тормозной системы. Неопытные водители, пренебрегающие балансировкой, добровольно выводят из строя свой автомобиль.

В случае прокола колеса монтаж-демонтаж и вулканизацию лучше делать в специализированной мастерской, где одновременно можно будет и отбалансировать это колесо.

Идеальный вариант для автомобиля и водителя, когда все пять колес имеют одинаковые шины, когда они отбалансированы и накачаны воздухом с одинаковым давлением. Давление в современных шинах, как правило, не удается определить на глаз. И если вы не старый профессионал, определяющий правильность накачки колес ударом ноги по покрышке, то следует взять в руки манометр, «Инструкцию по эксплуатации» вашего автомобиля и проверить давление в шинах. А вообще эту проверку необходимо производить хотя бы раз-два в неделю. Поездки на колесах с разным давлением приводят к повышенному износу покрышек, а сам автомобиль в это время весьма неустойчив на дороге.

Рекомендуется периодически производить перестановку колес (для их равномерного износа) согласно схеме, предлагаемой инструкцией к автомобилю.

Прочие повреждения колес и их подвески в процессе эксплуатации автомобиля являются проявлением неаккуратности водителя, манеры «бить» колесами бордюры и рельсы, делать повороты с обязательным визгом резины. А ведь все это приводит к аварийному состоянию машины и незапланированным расходам. Если такой водитель не слушает рекомендаций, не следует закону дороги и продолжает издеваться над машиной, то последствия «шуток» с ходовой частью автомобиля могут быть самые непредвиденные и печальные. Это то самое ружье, которое уж если висит на стене, то обязательно когда-нибудь выстрелит.

Выбрать другой раздел:

Неисправности ходовой части, при которых Правила дорожного движения запрещают эксплуатацию транспортных средств

5.1. Шины легковых автомобилей имеют остаточную высоту рисунка протектора менее 1,6 мм, грузовых автомобилей — 1 мм, автобусов — 2 мм, мотоциклов и мопедов — 0,8 мм.

Чтобы понять, о чем идет разговор, возьмите в руки свои ботинки и рассмотрите рисунок подошвы. Если рисунка нет, значит, его высота равна нулю и при ходьбе по скользкой дороге вы будете постоянно поскальзываться, а может быть и падать. Если рисунок выступает и не сильно изношен, то ходить удобно, обувь надежно фиксирует своим рисунком (протектором) положение ноги человека на дороге. А если ваша обувь имеет рельефную горную подошву, то вообще никаких проблем нет.

То же самое относится и к рисунку протектора автомобильной шины. При сильном износе протектора шин автомобиль начинает значительно хуже «цепляться» за дорогу и легче скользить по ней.

Выбрать другой раздел:

Требования к протектору шин прицепа такие же, как и к шинам автомобиля-тягача.

5.2. Шины имеют внешние повреждения (пробои, порезы, разрывы), обнажающие корд, а также расслоение каркаса, отслоение протектора и боковины.

Вы познакомились с устройством шины и должны понимать всю опасность возможных последствий при незначительных с виду «внешних повреждениях», и тем более при повреждении основы покрышки — корда. Давление воздуха в шине большое, приблизительно 1,8-2,2 кг/см?. Самая опасная неприятность, которая может случиться при движении на поврежденной шине — это мгновенный выход воздуха из шины («взрыв» шины). В этом случае автомобиль внезапно отклоняется в сторону вышедшего из строя колеса.

Особенно опасен «взрыв» переднего колеса, при котором машина сворачивает в сторону резким прыжком! Требуется немало усилий, чтобы удержать автомобиль на дороге, снизить скорость и остановиться. Неопытный водитель при этом обычно пугается и теряется, в результате чего автомобиль может вылететь на обочину дороги (при «взрыве» правого колеса) или на полосу встречного движения (при «взрыве» левого колеса).

Когда «взрывается» заднее колесо тяжелых последствий, как правило, не наступает. Лишившись одного из задних колес, автомобиль не «прыгает» в сторону, а лишь активно «хочет» уйти с дороги, и водителям обычно удается вернуть его на место.

Для любого водителя, так же как и для пешехода, абсолютно понятно, что если его обувь износилась и прохудилась, то ее надо менять на новую. Иначе можно простудиться и заработать насморк.

С «обувью» для машины то же самое! Изношенные и поврежденные шины надо менять. В противном случае, последствия могут быть намного серьезнее и страшнее насморка.

5.3. Отсутствует болт (гайка) крепления или имеются трещины диска и ободьев колес, имеются видимые нарушения формы и размеров крепежных отверстий.

Комментировать отсутствие одного или нескольких болтов крепления колес, а также слабую их затяжку, не очень хочется.

Вершиной преступной беспечности водителя является ситуация, когда он теряет колесо при движении автомобиля.

Если вы думаете, что такого не бывает, то ошибаетесь, спросите у «бывалых» водителей.

Начало «болтания» колеса при движении автомобиля может почувствовать любой водитель и даже пассажир. Определив, какое из колес ненадежно закреплено, необходимо сразу же устранить неисправность. Учтите, оторвавшееся и укатившееся на полкилометра колесо может натворить немало бед!

Трещины диска колеса приводят к тому, что колесо уже не «убегает» от автомобиля, а остается на дороге грудой железа вперемешку с резиной. Во избежание такой «перспективы» необходимо контролировать состояние дисков колес и незамедлительно менять поврежденные диски на новые.

Замятые и деформированные диски колес создают сильные вибрации, которые при движении машины передаются на рулевое колесо и выводят из строя не только элементы рулевого управления и подвески колес, но и детали других узлов автомобиля.

Неисправности ходовой части автомобиля по степени тяжести последствий сравнимы, пожалуй, с отказом тормозов или рулевого управления, при этом могут пострадать абсолютно посторонние люди. Поэтому в вопросе контроля состояния узлов и деталей ходовой части автомобиля следует быть особо внимательным и предупредительным.

5.4. Шины по размеру или допустимой нагрузке не соответствуют модели транспортного средства.

Пешеходам не приходит в голову носить обувь на два-три размера больше или меньше своего, поскольку в такой обуви совершенно невозможно передвигаться. В то же время, некоторые водители пытаются «обуть» свою машину в неподходящую «обувь», да еще потом, после аварии на повороте дороги, спрашивают: «А чего это она (покрышка), соскочила, а?»

Для каждого автомобиля выпускаются соответствующие шины. Во времена всеобщего дефицита трудно было найти любую шину. Сейчас это сделать совсем не сложно. В продаже есть огромный ассортимент отечественных и импортных шин (позволяли бы только средства). При покупке новых шин для своей машины обращайте внимание не только на их размер, но и на другие параметры. Шины должны соответствовать модели именно вашего автомобиля.

С допустимой нагрузкой проблем обычно не бывает, так как запас прочности современных шин очень большой. Но, найдя на чердаке завалявшуюся покрышку, сначала стоит уточнить, подходит ли она по допустимой нагрузке к вашему двухтонному джипу.

5.5. На одну ось транспортных средств установлены шины различных размеров, конструкций (радиальной, диагональной, камерной, бескамерной), моделей, с различными рисунками протектора, ошипованные и неошипованные, морозостойкие и не морозостойкие, новые и восстановленные.

Опять вернемся к нашей обуви. Если на одну ногу надеть ботинок, не соответствующий тому, что надет на другую ногу, то передвигаться будет, мягко говоря, неудобно как по снегу, так и по паркету.

Эффект, возникающий при этом, можно ощутить, надев на одну ногу туфлю на высоком каблуке и кожаной подошве, а на другую без каблука и на рифленой резиновой подошве. Представить ваше состояние во время прогулки, а также реакцию окружающих, не сложно.

Когда дело касается безопасности — шутки в сторону! На одной оси автомобиля должны быть установлены обе диагональные или обе радиальные покрышки. В противном случае, из-за разницы в характеристиках диагональных и радиальных шин, при движении машину обязательно будет «уводить», а при интенсивном или экстренном торможении вам будет гарантирован занос автомобиля. Это связано с тем, что, в то время как диагональная шина «стоит колом» на дороге, радиальная «распластывается» по асфальту. Соответственно, у колес справа и слева будет различный коэффициент сцепления с дорогой, что неминуемо приведет к уводу автомобиля в сторону при движении и к его заносу при торможении.

Рисунок протектора шин на одной оси автомобиля тоже должен быть одинаковым, иначе опять не избежать «танцев» на дороге. Ваш автомобиль не будет двигаться по заданной траектории, что особенно опасно в условиях интенсивного движения и на скользкой дороге.

На паре передних колес автомобиля допускается иметь рисунок протектора, отличающийся от пары задних. Но в этом случае неудобно пользоваться запасным колесом. При проколе одного из колес вы будете вынуждены или нарушить закон, или возить с собой два запасных колеса, по одному для каждой пары.

Все вышеизложенное относится также и к колесам прицепа. Если у вас встал вопрос о замене покрышек на прицепе к своей машине, то не имеет смысла покупать комплект шин другого типа или с рисунком протектора, отличным от колес самого автомобиля. Лучше, если шины тягача и прицепа будут взаимозаменяемы, так удобнее и дешевле.

Выбрать другой раздел:

ГЛАВА IV. МЕХАНИЗМЫ УПРАВЛЕНИЯ

Во время движения автомобиля по дороге возникает необходимость в изменении направления его движения, уменьшении скорости, остановке и стоянке. Все это обеспечивают механизмы управления, которые включают в себя рулевое управление и тормозную систему.

Рулевое управление:

Рулевое управление служит для обеспечения движения автомобиля в заданном водителем направлении.

Рулевое управление состоит из:
— рулевого механизма,
— рулевого привода.

Рулевой механизм служит для увеличения и передачи на рулевой привод усилия, прилагаемого водителем к рулевому колесу. В отечественных легковых автомобилях распространение получили рулевые механизмы червячного и реечного типов.

Рулевой механизм червячного типа состоит из (рис. 51): — рулевого колеса с валом;
— картера;
— пары «червяк-ролик»;
— рулевой сошки.
Схема рулевого управления с механизмом типа

Рис. 51. Схема рулевого управления с механизмом типа «червяк-ролик»: 1 — рулевое колесо; 2 — рулевой вал с червяком; 3 — ролик с валом сошки; 4 — рулевая сошка; 5 — средняя тяга; 6 — боковые тяги; 7 — поворотные рычаги; 8 — передние колеса автомобиля; 9 — маятниковый рычаг; 10 — шарниры рулевых тяг

В картере рулевого механизма в постоянном зацеплении находится пара «червяк-ролик». Червяк связан с нижним концом рулевого вала, а ролик, в свою очередь, находится на валу рулевой сошки. При вращении рулевого колеса ролик начинает обкатываться по профилю червяка, что приводит к повороту вала рулевой сошки.

Червячная пара, как и любой другой редуктор требует смазки, поэтому в картер рулевого механизма заливается трансмиссионное масло, марка которого указана в инструкции к автомобилю.

Результатом взаимодействия пары «червяк-ролик» является преобразование вращения рулевого колеса в поворот рулевой сошки в ту или другую сторону. Далее от сошки усилие передается на рулевой привод и от него на управляемые (передние) колеса.

В современных автомобилях применяется безопасный рулевой вал, который может складываться или сжиматься при ударе водителя о рулевое колесо во время аварии (во избежание серьезного повреждения грудной клетки).

Рулевой привод предназначен для передачи усилия от рулевого механизма на управляемые колеса, обеспечивая при этом их поворот на неодинаковые углы.

Углы должны быть различными для того, чтобы колеса могли двигаться по дороге без проскальзывания. При движении на повороте каждое из колес описывает свою окружность, отличную от окружности другого колеса, причем внешнее колесо (дальнее от центра поворота) движется по большему радиусу, чем внутреннее.

Поскольку центр поворота у колес общий, то соответственно внешнее колесо необходимо повернуть на меньший угол, чем внутреннее. Это обеспечивается конструкцией рулевой трапеции, которая включает в себя рулевые тяги с шарнирами и поворотные рычаги.

Каждая рулевая тяга на концах имеет шарниры, позволяющие подвижным деталям рулевого привода свободно поворачиваться относительно друг друга и кузова в разных плоскостях.

Рулевой привод, применяемый с механизмом червячного типа, включает в себя (рис. 51):
— правую и левую боковые тяги;
— среднюю тягу;
— маятниковый рычаг;
— правый и левый поворотные рычаги колес. Рулевой механизм реечного типа (рис. 52)

отличается от червячного тем, что вместо пары «червяк-ролик» применяется пара «шестерня-рейка». Поворачивая рулевое колесо, водитель вращает шестерню, которая заставляет рейку перемещаться вправо или влево. А дальше рейка передает прилагаемое к рулевому колесу усилие на рулевой привод.

Рулевой привод, применяемый с механизмом реечного типа (рис. 52), тоже отличается от своего предшественника. Он гораздо проще и имеет всего две рулевые тяги. Тяги передают у на поворотные рычаги телескопических стоек вески колес и поворачивают их вправо или.
Схема рулевого управления с механизмом типа

Рис. 52. Схема рулевого управления с механизмом типа «шестерня-рейка»: 1 — рулевое колесо; 2 — вал с приводной шестерней; 3 — рейка рулевого механизма; 4 — правая и левая рулевые тяги; 5 — поворотные рычаги; 6 — передние колеса автомобиля

Выбрать другой раздел:

Основные неисправности рулевого управления

Увеличенный люфт рулевого колеса, а также стуки могут явиться следствием ослабления крепления картера рулевого механизма, рулевой сошки или кронштейна маятникового рычага, чрезмерного износа шарниров рулевых тяг или втулок маятникового рычага, износа передающей пары («червяк-ролик», «шестерня-рейка») или нарушения регулировки ее зацепления.

Для устранения неисправности следует подтянуть все крепления, отрегулировать зацепление в передающей паре, заменить изношенные детали.

Тугое вращение рулевого колеса может быть из-за неправильной регулировки зацепления в передающей паре, отсутствия смазки в картере рулевого механизма, нарушения углов установки передних колес.

Для устранения неисправности необходимо отрегулировать зацепление в передающей паре рулевого механизма, проверить уровень и при необходимости долить смазку в картер, отрегулировать углы установки передних колес в соответствии с рекомендациями завода-изготовителя.

Выбрать другой раздел:

Эксплуатация рулевого управления

Если вы загляните в Правила дорожного движения и найдете перечень неисправностей, при которых запрещается дальнейшее движение автомобиля (п. 2.3.1 ПДД), то на первом месте идет неработоспособная тормозная система, а рулевое управление только на втором. Объективно это неправильно. Из практики можно сказать (и в кино показывают), что в экстренной ситуации при определенных навыках вождения автомобиль можно остановить и без тормозов. А когда отказывает рулевое управление, то лучше, если это вам только приснится во сне, да и то следует быстрее проснуться.

Дабы этот кошмар не произошел с вами наяву, необходимо помнить о серьезности возможных последствий при неисправности рулевого управления и прислушиваться к своим ощущениям во время движения автомобиля. Звуки и вибрации обычно подсказывают водителю местоположение «заболевшего» органа машины. И если у вас появилось подозрение на неисправность в рулевом управлении, то следует незамедлительно, самостоятельно или с помощью специалиста, найти эту неисправность и устранить ее.

Всем известно выражение: «Лучшее лечение, это профилактика». Поэтому каждый раз, «общаясь» со своим автомобилем снизу (на смотровой яме или на эстакаде), одним из первых дел надо проверить элементы рулевого привода и механизма. Все защитные чехлы должны быть целы, гайки затянуты и зашплинтованы, рычаги в шарнирах не должны болтаться и так далее.

Люфты в шарнирах рулевого привода легко определяются, когда помощник непрерывно покачивает рулевое колесо на небольшой угол вправо-влево, а вы на ощупь, по взаимному перемещению сочлененных деталей, находите неисправный узел.

К счастью, времена всеобщего дефицита прошли, и есть возможность приобрести качественные детали, а не те многочисленные подделки, которые выходят из строя через неделю эксплуатации, как это было в недавнем прошлом.

Ранее уже говорилось о том, что решающую роль в долговечности деталей и узлов автомобиля играют стиль вождения, состояние дорог и своевременное обслуживание. Все это влияет и на срок службы деталей рулевого управления.

Когда водитель резко дергает руль, крутит его на месте, прыгает по ямам и устраивает гонки по бездорожью, происходит интенсивный износ всех шарнирных соединений привода и деталей рулевого механизма.

Если после такой «жесткой» поездки ваш автомобиль при движении стало уводить в сторону, то в лучшем случае вы обойдетесь регулировкой углов установки передних колес, ну а в худшем, затраты будут более ощутимы, так как придется заменить поврежденные детали.

После замены любой детали рулевого привода, а также при уводе автомобиля от прямолинейного движения, необходимо отрегулировать «сход-развал» передних колес (см. рис. 48). Работы по этим регулировкам следует проводить на стенде с использованием специального оборудования.

Выбрать другой раздел:

Неисправности рулевого управления, при которых ПДД запрещают эксплуатацию транспортных средств

2.1. Суммарный люфт в рулевом управлении превышает следующие значения:
— легковые автомобили и созданные на из базе грузовые автомобили и автобусы — не более 10 градусов.

«А что это за нерусское слово такое, люфт?» — часто приходится слышать этот вопрос от будущих водителей. Сейчас мы с этим разберемся.

Если вы встанете около одного из передних колес вашего автомобиля и попросите кого-нибудь покрутить рулевое колесо туда-сюда на небольшой угол, то «с ужасом» увидите, что колеса стоят на месте!

Не пугайтесь, это нормальное явление. Прежде чем колеса начнут поворачиваться, выбираются все зазоры в рулевом механизме и в сочленениях рулевых тяг. Вот это и есть люфт, то есть свободный ход рулевого колеса без поворота передних колес. Только любой люфт должен быть в пределах нормы.

Если суммарный люфт рулевого управления превышает 10°, то эксплуатация автомобиля запрещена, так как движение по заданной траектории становится весьма проблематичным, а в условиях интенсивного движения просто невозможным. Автомобиль начинает «рыскать» по дороге с большими перемещениями в поперечном направлении, что может привести к незапланированным контактам с другими участниками движения.

При движении за городом на большой скорости эффект рыскания автомобиля по дороге обычно усиливается и, в конце концов, водитель просто теряет контроль над поведением машины. Кроме того, повышенный люфт руля требует постоянной коррекции направления движения автомобиля, вследствие чего водитель сильно утомляется, что не может не сказаться на общей безопасности дорожного движения.

2.2. Имеются не предусмотренные конструкцией перемещения деталей и узлов. Резьбовые соединения не затянуты или не зафиксированы установленным способом. Неработоспособно устройство фиксации положения рулевой колонки.

Очень опасно эксплуатировать автомобиль, если имеются нарушения в креплениях многочисленных шарниров рулевых тяг, рулевого механизма, когда сорваны или не затянуты резьбовые соединения, а также, если они ненадежно зафиксированы. При движении машины из-за постоянных вибраций возможно разъединение элементов рулевого управления. А это уже ведет к полной или частичной потере управляемости автомобиля и к непредсказуемой траектории его движения.

Вот почему в рулевом управлении все резьбовые соединения затянуты специальными гайками, которые фиксируются шплинтами от самопроизвольного отворачивания. В некоторых конструкциях применяются разовые самоконтрящиеся гайки. И не стоит экономить на этих копеечных деталях, повторно используя разовую гайку или погнутый шплинт, ведь эта экономия может «аукнуться» весьма плачевно.

2.3. Неисправен или отсутствует предусмотренный конструкцией усилитель рулевого управления или рулевой демпфер (для мотоциклов).

Прежде всего, давайте разберемся с тем, что такое «усилитель рулевого управления».

Гидроусилитель руля предназначен для облегчения работы водителя при повороте рулевого колеса. Он состоит из насоса, распределительного устройства и гидроцилиндра (рис. 53).
Схема гидроусилителя рулевого управления:

Рис. 53. Схема гидроусилителя рулевого управления: 1 — насос усилителя; 2 — распределительное устройство; 3 — трубопроводы; 4 — силовой цилиндр усилителя; 5 — поршень усилителя со штоком; 6 — маятниковый рычаг; 7 — емкость для масла

При повороте руля распределительное устройство под давлением направляет жидкость в одну из полостей гидроцилиндра, помогая тем самым водителю поворачивать управляемые колеса.

При повороте рулевого колеса налево жидкость под давлением поступает в полость А (рис. 53), а при повороте направо в полость Б. Когда двигатель не работает, поворот руля будет осуществляться с заметным усилием, так как гидроусилитель не действует.

Запрещается движение при неисправности рулевого управления. [Здесь и далее красным шрифтом дается перечень неисправностей, при которых дальнейшее движение транспортных средств запрещается в соответствии с пунктом 2.3.1. Правил дорожного движения.]

Если в пути произошел отказ в работе рулевого управления, то дальнейшее движение автомобиля запрещено! Самостоятельно вы не имеете права проехать ни метра, да и навряд ли это вам удастся. Правда, есть возможность устранить неисправность на месте, если вы «дока» во «внутренностях» автомобиля и возите с собой массу запасных деталей. В противном случае, вам предстоит вызвать передвижную службу автосервиса или специализированного буксировщика.

Выбрать другой раздел:

Тормозная система

Тормозная система (рис. 54) предназначена для уменьшения скорости движения и остановки автомобиля (рабочая тормозная система). Она также позволяет удерживать автомобиль от самопроизвольного движения во время стоянки (стояночная тормозная система).
Общая схема тормозной системы

Рис. 54. Общая схема тормозной системы: 1 — передний тормоз; 2 — педаль тормоза; 3 — вакуумный усилитель; 4 — главный цилиндр гидропривода тормозов; 5 — трубопровод контура привода передних тормозов; 6 — защитный кожух переднего тормоза; 7 — суппорт переднего тормоза; 8 — вакуумный трубопровод; 9 — бачок главного цилиндра; 10 — кнопка рычага привода стояночного тормоза; 11 — рычаг привода стояночного тормоза; 12 — тяга фиксатора рычага; 13 — фиксатор рычага; 14 — кронштейн рычага привода стояночного тормоза; 15 — возвратный рычаг; 16 — трубопровод контура привода задних тормозов; 17 — фланец наконечника оболочки троса; 18 — задний тормоз; 19 — регулятор давления задних тормозов; 20 — рычаг привода регулятора давления; 21 — колодки заднего тормоза; 22 — рычаг ручного привода колодок; 23 — тяга рычага привода регулятора давления; 24 — кронштейн крепления наконечника оболочки троса; 25 — задний трос; 26 — контргайка; 27 — регулировочная гайка; 28 — втулка; 29 — направляющая заднего троса; 30 — направляющий ролик; 31 — передний трос; 32 — упор выключателя контрольной лампы стояночного тормоза; 33 — выключатель стоп-сигнала

При неисправности усилителя прикладываемое к рулевому колесу усилие значительно возрастает и в случае внезапного изменения дорожной обстановки водитель может не успеть быстро повернуть руль. Кроме того, при неработающем усилителе руля возрастает физическая и эмоциональная усталость водителя. После непродолжительной поездки он уже не в состоянии принимать правильные решения и может стать виновником дорожно-транспортного происшествия.

Рабочая тормозная система приводится в действие нажатием на педаль тормоза, которая располагается в салоне автомобиля. Усилие ноги водителя передается на тормозные механизмы всех четырех колес.

Стояночная тормозная система нужна не только на стоянке, она необходима также для предотвращения скатывания автомобиля назад при трогании с места на подъемах дороги. С помощью рычага стояночного тормоза, который располагается между передними сиденьями автомобиля, водитель может управлять тормозными механизмами задних колес.

Рабочая тормозная система состоит из:
— тормозного привода;
— тормозных механизмов колес.

Привод тормозов служит для передачи усилия ноги водителя от педали тормоза к исполнительным тормозным механизмам колес автомобиля.

На легковых автомобилях применяется гидравлический привод тормозов, в котором используется специальная тормозная жидкость.

Гидравлический привод тормозов состоит из (рис. 55):
— педали тормоза;
— главного тормозного цилиндра;
— рабочих тормозных цилиндров;
— тормозных трубок;
— вакуумного усилителя.
Схема гидропривода тормозов:

Рис. 55. Схема гидропривода тормозов: 1 — тормозные цилиндры передних колес; 2 — трубопровод передних тормозов; 3 — трубопровод задних тормозов; 4 — тормозные цилиндры задних колес; 5 — бачок главного тормозного цилиндра; 6 — главный тормозной цилиндр; 7 — поршень главного тормозного цилиндра; 8 — шток; 9 — педаль тормоза

Когда водитель нажимает на педаль тормоза, его усилие передается через шток на поршень главного тормозного цилиндра. Поршень давит на жидкость, которая находится в главном цилиндре и трубопроводах. Давление жидкости от главного цилиндра передается по трубкам ко всем колесным тормозным цилиндрам, заставляя выдвигаться их поршни. Поршни, в свою очередь, передают усилие на тормозные колодки передних и задних колес, которые, прижимаясь к тормозным дискам и барабанам, останавливают автомобиль.

Современный гидропривод тормозов состоит из двух независимых контуров, связывающих между собой пару колес. При отказе одного из контуров срабатывает второй, что обеспечивает, хотя и менее эффективное, но все-таки торможение автомобиля.

К примеру, на заднеприводных автомобилях ВАЗ один контур объединяет тормозные механизмы передних колес, а другой — задних. На переднеприводных ВАЗах между собой связаны: переднее левое колесо с задним правым и переднее правое с задним левым.

Для уменьшения усилия при нажатии на педаль тормоза и более эффективной работы системы применяется вакуумный усилитель. Усилитель заметно облегчает работу водителя, так как использование педали тормоза при движении в городском цикле носит постоянный характер и довольно быстро утомляет.

Вакуумный усилитель (рис. 56) конструктивно связан с главным тормозным цилиндром. Основным элементом усилителя является камера, разделенная резиновой перегородкой (диафрагмой) на два объема. Один объем связан с впускным трубопроводом двигателя, где создается разрежение около 0,8 кг/см?, а другой сообщается с атмосферой (1 кг/см?). Из-за перепада давления в 0,2 кг/см?, благодаря большой площади диафрагмы, «помогающее» усилие на педали тормоза может достигать 30-40 кг и более.
Схема вакуумного усилителя:

Рис. 56. Схема вакуумного усилителя: 1 — главный тормозной цилиндр; 2 — корпус вакуумного усилителя; 3 — диафрагма; 4 — пружина; 5 — педаль тормоза

Тормозной механизм предназначен для уменьшения скорости вращения колеса за счет сил трения, возникающих между накладками тормозных колодок и тормозным барабаном или диском.

Тормозные механизмы делятся на барабанные и дисковые. На легковых автомобилях малого и среднего классов барабанные тормозные механизмы обычно применяются на задних колесах, а дисковые на передних. Хотя в зависимости от модели автомобиля могут применяться только барабанные или только дисковые тормоза на всех четырех колесах.

Барабанный тормозной механизм состоит из (рис. 57):
— тормозного щита;
— тормозного цилиндра;
— двух тормозных колодок;
— стяжных пружин;
— тормозного барабана.

Тормозной щит жестко крепится на балке заднего моста автомобиля, а на щите, в свою очередь, закреплен рабочий тормозной цилиндр.

При нажатии на педаль тормоза поршни в цилиндре расходятся и начинают давить на верхние концы тормозных колодок. Колодки в форме полуколец прижимаются своими накладками к внутренней поверхности тормозного барабана, который при движении автомобиля вращается вместе с закрепленным на ступице колесом.

Торможение колеса происходит за счет сил трения, возникающих между накладками колодок и барабаном. Когда воздействие на педаль тормоза прекращается, стяжные пружины оттягивают колодки на исходные позиции.

Дисковый тормозной механизм состоит из (рис. 58):
— суппорта;
— одного или двух тормозных цилиндров;
— двух тормозных колодок;
— тормозного диска.
схема работы барабанного тормозного механизма

Рис. 57. Схема работы барабанного тормозного механизма: 1 — тормозной барабан; 2 — тормозной щит; 3 — рабочий тормозной цилиндр; 4 — поршни рабочего тормозного цилиндра; 5 — стяжная пружина; 6 — фрикционные накладки; 7 — тормозные колодки

Суппорт крепится на поворотном кулаке переднего колеса автомобиля (см. рис. 47). В нем находятся два тормозных цилиндра и две тормозные колодки (рис. 58). Колодки с обеих сторон «обнимают» тормозной диск, который вращается вместе с закрепленным на ступице колесом.
схема работы дискового тормозного механизма

Рис. 58. Схема работы дискового тормозного механизма: 1 — наружный рабочий цилиндр ; 2 — поршень; 3 — соединительная трубка; 4 — тормозной диск переднего (левого) колеса; 5 — тормозные колодки с фрикционными накладками; 6 — поршень; 7 — внутренний рабочий цилиндр

При нажатии на педаль тормоза поршни начинают выходить из цилиндров и прижимают тормозные колодки к диску. После того, как водитель отпустит педаль, колодки и поршни возвращаются в исходное положение за счет легкого «биения» диска.

Дисковые тормоза очень эффективны и просты в обслуживании. Даже дилетанту замена тормозных колодок в этих механизмах доставляет мало хлопот.

Стояночный тормоз (см. рис. 54) приводится в действие поднятием рычага стояночного тормоза (в обиходе — «ручника») в верхнее положение.

Поднимая рычаг стояночного тормоза вверх, водитель натягивает два металлических троса, последний из которых заставляет тормозные колодки задних колес прижаться к барабанам и, как следствие этого, автомобиль удерживается на месте в неподвижном состоянии.

В поднятом состоянии рычаг стояночного тормоза автоматически остается в том положении, в котором его оставил водитель, за счет работы фиксатора. Фиксатор необходим для того, чтобы не произошло самопроизвольное выключение стояночного тормоза и бесконтрольное движение автомобиля в отсутствии водителя. Для выключения стояночного тормоза следует нажать («утопить») кнопку фиксатора и опустить рычаг «ручника» вниз.

Выбрать другой раздел:

Основные неисправности тормозных систем

Увеличенный ход педали или «мягкая» педаль тормоза возможен из-за сильного износа накладок тормозных колодок, наличия воздуха в системе гидропривода, утечки тормозной жидкости.

Для устранения неисправности необходимо заменить тормозные колодки, устранить утечку тормозной жидкости путем замены поврежденных деталей, прокачать систему гидропривода для удаления воздуха.

Увод автомобиля в сторону (при торможении) возможен по причине выхода из строя одного из колесных тормозных цилиндров, чрезмерного износа или замасливания накладок тормозных колодок одного из колесных тормозных механизмов.

Для устранения неисправности необходимо заменить неисправный цилиндр и тормозные колодки, а загрязненные колодки следует промыть.

Шум при нажатии на педаль тормоза или вибрация возникают по причине загрязнения тормозных механизмов, чрезмерного износа накладок тормозных колодок, ослабления или поломки стяжных пружин задних тормозных колодок, неравномерного износа тормозных барабанов или дисков.

Для устранения неисправности следует промыть загрязненные колодки, а изношенные и поврежденные колодки, барабаны, диски и пружины необходимо заменить на новые.

Выбрать другой раздел:

Эксплуатация тормозной системы

Любая неисправность в тормозной системе может привести к весьма неприятным последствиям. Поэтому при эксплуатации автомобиля следует внимательно относиться к работе тормозов своего автомобиля.

Конечно, водителю легче заметить изменения в эффективности торможения своего автомобиля во время движения. Но определить и предотвратить возможное снижение эффективности тормозов до нуля можно лишь на стоянке, открыв капот машины.

Печально, когда нерадивый водитель «теряет» тормоза только из-за того, что вовремя не обратил внимания на постоянно уменьшавшийся уровень жидкости в тормозном бачке. Ему было лень открывать капот автомобиля и рассматривать «какие-то» там бачки, в результате чего, уровень тормозной жидкости неконтролируемо снизился до критической отметки и при очередном нажатии на педаль тормоза, водитель «жал» уже не тормоза, а воздух.

«А куда делась тормозная жидкость?» — законный вопрос с вашей стороны.

К сожалению, «ничто не вечно под Луной», и детали тормозной системы в том числе. Со временем изнашиваются уплотнительные манжеты поршней цилиндров, от вибраций и ржавчины теряют свою герметичность трубки и шланги гидропривода тормозов, да и вообще любая жидкость может понемногу испаряться.

Если вы заметили подтеки на колесах или мокрые следы на сухом асфальте, совпадающие с местом расположения элементов тормозной системы, то следует отказаться от поездки и устранить неисправность. Водитель на машине без тормозов — убийца (как бы жестко это не звучало).

При работе тормозов все детали рабочих механизмов и пространство вокруг них очень сильно нагреваются. Это естественный процесс, так как торможение автомобиля есть ни что иное, как перевод кинетической энергии движущейся машины в тепловую энергию за счет сил трения в тормозных механизмах.

А что происходит с тормозной жидкостью, которая находится рядом в цилиндрах и трубках? Она заметно нагревается и однажды может наступить момент, когда жидкость закипит, а дальше — школьная физика. Пузырьки воздуха в отличие от жидкости сжимаются, вместо того чтобы передавать давление от педали тормоза к исполнительным тормозным механизмам. И до тех пор, пока вы, многократно и быстро нажимая на педаль тормоза, не сожмете весь воздух в трубках, шлангах и цилиндрах — тормозов у машины не будет! Когда вы все-таки остановите свой автомобиль, стоит разобраться с тем, как все это произошло и как теперь избавиться от пузырьков воздуха в системе.

Чтобы избежать вышеописанной «неприятности», следует чаще использовать торможение двигателем, а на крутых и затяжных спусках, это вообще единственно разумный вариант торможения! В противном случае, приходится часто нажимать на педаль тормоза, увеличивая нагрев деталей, а к чему это может привести, вы уже знаете.

После закипания тормозной жидкости или в результате негерметичности гидравлического привода в системе появляются пузырьки воздуха. Как это определить?

Очевидные признаки наличия воздуха в гидравлическом приводе тормозов следующие:
— педаль тормоза становится «мягкой», эффективность торможения снижается,
— при «накачивании педали» многократными и быстрыми нажатиями она становится жестче.

А как избавиться от воздуха в гидроприводе тормозов?

Это не очень сложно, но вам понадобится помощник. Он «накачивает педаль», а вы выпускаете порции тормозной жидкости с пузырьками воздуха поочередно из каждого рабочего колесного цилиндра. Операция проводится до полного удаления воздуха из системы. Только не забывайте в процессе прокачки периодически доливать тормозную жидкость. Нельзя допускать падения уровня жидкости в бачке главного цилиндра до нуля, так как при очередном «накачивании» педали в гидропривод может попасть новая порция воздуха и тогда прокачку тормозов придется начинать заново.

При эксплуатации автомобиля могут возникнуть и другие проблемы с тормозной системой.

Внезапно педаль тормоза становится тугой и требуется значительное усилие для ее нажатия. Причин может быть несколько. Вот две из них:
— при неработающем двигателе так и должно быть, поскольку усилитель тормозов сейчас не работает (будьте осторожны при буксировке!);
— при работающем двигателе так быть не должно, значит, усилитель неисправен и требуется его ремонт.

Если стояночный тормоз не удерживает машину на подъеме, то необходима его регулировка или замена тросов, а может быть, пришло время менять задние тормозные колодки. Отрегулированный ручной тормоз при трех-четырех «щелчках» фиксатора рычага должен обеспечивать удержание автомобиля на уклоне до 23%.

Многие необходимые работы по обслуживанию тормозной системы вы можете выполнять сами, но при серьезных неисправностях лучше обратиться к специалистам. Ведь это все-таки тормоза!

Выбрать другой раздел:

Неисправности тормозной системы, при которых ПДД запрещают эксплуатацию транспортных средств

1.1. Нормы эффективности торможения рабочей тормозной системы не соответствуют ГОСТу Р 51709-2001.

Эффективность тормозной системы автомобиля оценивается путем проверки тормозов на специальных стендах или в процессе дорожных испытаний.

В дорожных условиях при торможении рабочей тормозной системой с начальной скоростью торможения 40 км/ч легковой автомобиль (в том числе с прицепом) не должен ни одной своей частью выходить из нормативного коридора движения шириной 3 м, тормозной путь не должен превышать 14,7 м, а установившееся замедление 5,8 м/с?.

Испытания в дорожных условиях проводят на прямой ровной горизонтальной сухой чистой дороге с цементо- или асфальтобетонным покрытием.

Торможение рабочей тормозной системой осуществляют в режиме экстренного полного торможения путем однократного воздействия на педаль тормоза, при этом время приведения тормозной системы в действие не должно превышать 0,2 с.

Здесь все понятно, кроме одного. А что такое «установившееся замедление»?

На вооружении ГИБДД есть прибор, который при испытаниях тормозов жестко крепится к кузову автомобиля. Он показывает интенсивность торможения в тех же единицах, что и обычные ускорение и замедление. При проведении так называемого «инструментального контроля» технического состояния транспортных средств вышеуказанные параметры снимаются с показаний испытательного тормозного стенда.

1.2. Нарушена герметичность гидравлического тормозного привода.

Негерметичность трубок, шлангов и цилиндров является одной из причин появления пузырьков воздуха в системе, а чем это грозит, вы уже знаете. Кроме того, незначительное поначалу подтекание может привести к «прорыву плотины» в каком-то конкретном месте гидропривода тормозов. Обычно это происходит при резком и сильном нажатии на педаль тормоза. Педаль проваливается до пола, и тогда уже никто не знает, кто или что поможет остановить автомобиль.

1.5. Стояночная тормозная система не обеспечивает неподвижное состояние:
— транспортных средств с полной нагрузкой — на уклоне до 16 процентов включительно,
— легковых автомобилей в снаряженном состоянии — на уклоне до 23 процентов включительно.

Зачем нужен стояночный тормоз, вы недавно узнали. От работоспособности стояночного тормоза зависит сохранность вашего автомобиля, а также безопасность других участников дорожного движения.

Представьте себе массу около тонны, которая без участия водителя начинает самопроизвольное движение. Наверное, будет много неприятностей! Вот почему водитель при остановке на уклоне обязательно включает стояночный тормоз. А при длительной стоянке с выключенным двигателем «бывалый» водитель дополнительно включает еще и первую (или заднюю) передачу. Неработающий двигатель через соединенные узлы трансмиссии надежно удерживает колеса и сам автомобиль от самопроизвольного движения в отсутствие хозяина.

Теперь давайте разберемся с терминологией официального текста.

Автомобиль в снаряженном состоянии это автомобиль, полностью заправленный эксплуатационными жидкостями и материалами, укомплектованный штатным инструментом и запасным колесом, а в салоне автомобиля в это время находится только один водитель без пассажиров.

Автомобиль с полной нагрузкой — это снаряженный автомобиль, в котором находятся не только водитель, но и все пассажиры в соответствии с количеством предназначенных для них мест, а также 50 кг груза в багажнике.

Так как дорожная наука и математика не совсем одно и тоже, то уклон дороги обозначается в процентах, а не в градусах.

«А это еще как?» — обязательно должны спросить девять из десяти читателей.

Ответ на вопрос поясняет рисунок 59. Дорога на уклоне может иметь участки с переменным углом подъема, поэтому общий уклон дороги (от подножья до вершины) вычисляется, как отношение высоты подъема к его длине и выражается в процентах.
уклон дороги

Рис. 59. Уклон дороги

Запрещается движение при неисправности рабочей тормозной системы.

В случае выхода из строя тормозной системы, как и при неисправности рулевого управления, дальнейшее движение автомобиля категорически запрещено! Да и вряд ли у кого возникнет желание продолжить поездку «без тормозов».

Выбрать другой раздел:

ГЛАВА V. ЭЛЕКТРООБОРУДОВАНИЕ АВТОМОБИЛЯ

Электрооборудование автомобиля включает в себя источники и потребители тока (
источники и потребители электрического тока

Рис. 60. Источники и потребители электрического тока: 1 — аккумуляторная батарея 2 — генератор; 3 — выключатели потребителей

Источники тока

К источникам тока относятся аккумуляторная батарея и генератор.

Аккумуляторная батарея (рис. 61) предназначена для питания потребителей электрическим током при неработающем двигателе и при его работе на малых оборотах. Батарея расположена в моторном отсеке автомобиля и крепится на специальной полке. «Минус» аккумуляторной батареи соединен с «массой» (кузовом) автомобиля, а «плюс» соединяется с электрической цепью потребителей тока с помощью проводников

аккумуляторная батарея

Рис. 61. Аккумуляторная батарея: 1 — корпус; 2 — крышка; 3 — «плюсовая» клемма; 4 — один из шести аккумуляторов; 5 — «минусовая» клемма; 6 — пробка; 7 — заливное отверстие; 8 — пластины аккумулятора

Аккумуляторная батарея состоит из шести аккумуляторов, объединенных в одном корпусе и соединенных между собой последовательно в единую электрическую цепь. Каждый аккумулятор в результате протекающих в нем электрохимических процессов «выдает» по 2 В, поэтому в сумме на полюсных штырях батарея имеет напряжение 12 В постоянного тока.

В зависимости от модели автомобиля могут применяться батареи различной мощности. Например, на большинстве моделей автомобилей ВАЗ устанавливается аккумуляторная батарея 6СТ-55А. Маркировка батареи означает следующее:

6 — количество аккумуляторов в батарее. Для легковых автомобилей эта цифра всегда будет постоянной, так как в них используются 12-вольтовые (6?2 = 12) батареи.

СТ — означает, что батарея стартерного типа. Такие батареи выдерживают большие разрядные токи, что требуется для запуска двигателя с помощью самого «крупного» потребителя электроэнергии — стартера.

55 — емкость батареи, измеряемая в ампер-часах (А·ч). Чем больше емкость батареи, тем больше времени она может выдержать «издевательства» водителя при запуске холодного двигателя.

А — буквой обозначают материал, из которого сделан корпус батареи. В частности, А — это полупрозрачная пластмасса (полипропилен)

Генератор (рис. 62) предназначен для питания электрическим током всех потребителей, а также для подзарядки аккумуляторной батареи при работе двигателя на средних и больших оборотах.

генератор

Рис. 62. Генератор: 1 — корпус генератора; 2 — обмотка статора; 3 — ротор; 4 — шкив привода генератора; 5 — ремень; 6 — кронштейн крепления; 7 — контактные кольца; 8 — щетки; 9 — регулятор напряжения; 10 — вывод «30» для подключения потребителей; 11 — вывод «61» для питания цепи амперметра и контрольных ламп на щитке приборов; 12 — выпрямитель

Генератор включен в электрическую цепь автомобиля параллельно аккумуляторной батарее. Поэтому питать потребителей и заряжать батарею он будет только в том случае, если вырабатываемое им напряжение превысит напряжение аккумуляторной батареи. Произойдет это тогда, когда двигатель автомобиля начнет работать на оборотах выше холостых, так как напряжение, вырабатываемое генератором, зависит от скорости вращения его ротора.

С увеличением частоты вращения ротора генератора вырабатываемое им напряжение постепенно увеличивается, и может наступить момент, когда напряжение превысит требуемое. Поэтому генератор работает в паре с регулятором напряжения.

Регулятор напряжения является электронным прибором, который ограничивает вырабатываемое генератором напряжение, поддерживая его в пределах 13,6-14,2 В. В зависимости от модели автомобиля регулятор монтируется в корпусе генератора («таблетка» на щеточном узле) или устанавливается отдельно в подкапотном пространстве.

Если вернуться к нашим велосипедам, то на некоторые из них тоже устанавливают генераторы. Пока велосипедист стоит на месте лампа фары его велосипеда не светит из-за отсутствия аккумуляторной батареи. Когда велосипед движется, генератор вырабатывает ток и фара светит. Причем по мере увеличения скорости движения она светит все ярче и ярче, так как колесико генератора вращается все быстрее и быстрее. Яркость свечения фары определяется только скоростью движения велосипеда, регулятор напряжения на нем не применяется.

Генератор устанавливается на специальном кронштейне двигателя и приводится в действие от шкива коленчатого вала через ременную передачу.

На некоторых моделях автомобилей это тот же самый ремень, который заставляет вращаться крыльчатку водяного насоса и постоянно включенный вентилятор системы охлаждения двигателя (рис. 63а). На других моделях для привода генератора выделяется отдельный ремень (рис. 63б). Натяжение ремня, как в одном, так и в другом случае, регулируется отклонением корпуса генератора.

привод генератора с общем ремнём
а)

привод генератора с выделенным ремнём
б)

Рис. 63. Привод генератора: a) общим ремнем; 1 — генератор; 2 — гайка; 3 — натяжная планка; 4 — шкив водяного насоса; 5 — вентилятор; 6 — ремень; 7 — шкив коленчатого вала; А — прогиб ремня; б) индивидуальным ремнем: 1 — гайка; 2 — натяжная планка; 3 — генератор; 4 — ремень привода генератора; 5 — шкив коленчатого вала; А — прогиб ремня

На щитке приборов перед водителем имеется контрольная лампа заряда аккумуляторной батареи. При включении зажигания лампа загорается красным светом. Когда двигатель запустится, она погаснет, что будет означать начало работы генератора. Если лампочка не погасла, то у вас появились проблемы, о чем чуть ниже.

Выбрать другой раздел:

Потребители тока

К потребителям тока в системе электрооборудования автомобиля относятся: — система зажигания;
— система пуска двигателя;
— система освещения и сигнализации;
— контрольно-измерительные приборы;
— дополнительное оборудование.

Работу системы зажигания мы разобрали в соответствующем разделе. Там был разговор о «страшно» сильной искре, которая поджигала рабочую смесь в цилиндре и тем самым обеспечивала рабочий процесс двигателя. Как вы догадываетесь, высоковольтная искра берется не из воздуха, ее вырабатывает система зажигания, которая при включенном зажигании является одним из постоянных потребителей электрического тока.

Повторно разбирать работу системы зажигания мы, конечно, не будем. Тем читателям, кто пропустил эту тему, следует отправиться к соответствующему разделу, а остальных приглашаем дальше.

Выбрать другой раздел:

Система пуска двигателя

Система пуска двигателя включает в себя (рис. 64):
— стартер с тяговым реле и механизмом привода;
— реле включения стартера;
— замок зажигания.

стартер выключен

а) стартер выключен: 1 — корпус стартера; 2 — вал якоря стартера; 3 — шестерня привода с муфтой свободного хода; 4 — рычаг привода шестерни; 5 — обмотки тягового реле; 6 — якорь тягового реле; 7 — контактная пластина; 8 — контактные болты; 9 — обмотки стартера; 10 — якорь стартера; 11 — коленчатый вал двигателя; 12 — зубчатый венец маховика

стартер включен

б) стартер включен

схема электрической цепи стартера

в) схема электрической цепи стартера:1 — аккумуляторная батарея; 2 — предохранитель; 3 — замок зажигания; 4 — реле стартера

Рис. 64. Схема системы пуска двигателя

Стартер (рис. 64) представляет собой электрический двигатель постоянного тока, который служит для запуска двигателя автомобиля. Простым поворотом ключа в замке зажигания в положение запуска двигателя (стартер) ток через реле подается от аккумуляторной батареи на обмотки стартера, и двигатель запускается.

Работа стартера состоит из трех этапов:

1. Механизм привода стартера вводит шестерню на валу якоря в зацепление с зубчатым венцом маховика.

2. Начинается вращение вала якоря стартера вместе с шестерней, которая проворачивает коленчатый вал двигателя через маховик, тем самым запуская двигатель.

3. После начала работы двигателя механизм привода стартера выводит шестерню на валу якоря из зацепления с зубчатым венцом маховика.

Выбрать другой раздел:

Приборы освещения и сигнализации

Приборы освещения и сигнализации — это потребители тока, к которым электрический ток с напряжением 12 вольт подается при включении соответствующего переключателя, находящегося в салоне автомобиля.

Приборы освещения необходимы при движении автомобиля в темное время суток и в условиях недостаточной видимости. Они обозначают габаритные размеры транспортных средств, обеспечивают освещение дороги и внутренних пространств автомобиля.

Приборы освещения включают в себя:
— фары (блок-фары);
— задние фонари;
— лампы освещения номерного знака;
— лампы освещения салона автомобиля;
— лампу освещения подкапотного пространства;
— лампу освещения багажника.

Блок-фара (рис. 65) состоит из корпуса, отражателя и рассеивателя. Внутри нее в специальном гнезде установлена лампа, имеющая два режима работы — ближнего и дальнего света фар. Управление режимами работы фар производится из салона автомобиля с помощью переключателя. Также в фаре находится лампа габаритного света, которая включается для обозначения размеров машины. В этом же общем корпусе расположена и лампа указателя поворота.

блок-фара

Рис. 65. Блок-фара: 1 — корпус; 2 — отражатель; 3 — рассеиватель; 4 — лампа ближнего/дальнего света; 5 — лампа габаритного света; 6 — лампа указателя поворота

Задние фонари (рис. 66) имеют лампы габаритного света, которые включаются вместе с передними габаритными огнями. Там же находятся лампы стоп-сигналов, указателей поворота и заднего хода.

задний фонарь

Рис. 66. Задний фонарь: 1 — стоп-сигнал; 2 — световозвращатель; 3 — фонарь заднего хода; 4 — габаритный фонарь; 5 — указатель поворота

Приборы сигнализации служат для информирования других водителей и пешеходов об изменениях направления движения автомобиля, торможении и остановке, а также для предупреждения об опасности.

К приборам сигнализации относятся:
— передние и задние указатели поворотов;
— бортовые повторители указателей поворотов;
— лампы стоп-сигналов;
— лампы включения заднего хода;
— звуковой сигнал.

При включении кнопки (клавиши) аварийной сигнализации передние указатели поворотов, боковые повторители указателей и задние указатели работают в прерывистом режиме одновременного «мигания». Это сигнал предупреждения других участников движения о неприятностях с автомобилем или водителем.

Выбрать другой раздел:

Контрольно-измерительные приборы

Как правило, все контрольно-измерительные приборы находятся в салоне автомобиля на щитке приборов перед водителем (рис. 67). При работающем двигателе категорически не допускается свечение красных лампочек или положение стрелки указателя в красном секторе шкалы на любом приборе, так как это говорит о неисправности в каком-то узле или системе. В этом случае нельзя начинать или продолжать движение до устранения причины появления красного сигнала на щитке приборов.

щиток приборов

Рис. 67. Щиток приборов: 1 — контрольные лампы; 2 — суточный счетчик пройденного пути; 3 — указатель температуры охлаждающей жидкости; 4 — вольтметр; 5 — счетчик пройденного пути; 6 — спидометр; 7 — эконометр; 8 — указатель уровня топлива

В цветовой гамме ламп любого щитка приборов применяется принцип светофора: красный — ехать нельзя, желтый — скоро будут проблемы, а если зеленый — то все в порядке, ехать можно.

Выбрать другой раздел:

Дополнительное оборудование

Дополнительное оборудование, применяемое в современном автомобиле, включает в себя:
— отопитель салона автомобиля;
— омыватель и очиститель ветрового стекла;
— омыватель и очиститель фар;
— омыватель и очиститель заднего стекла;
— электроподъемники стекол дверей и сидений;
— устройства обогрева стекол, зеркал и сидений.

У машин высокого класса элементов дополнительного оборудования может быть очень много, начиная от банального кондиционера, телевизора или холодильника и заканчивая спутниковой навигационной системой и прочими «наворотами». Все потребители дополнительного оборудования включаются в электрическую цепь автомобиля параллельно и работают при включении соответствующего тумблера или кнопки.

Выбрать другой раздел:

Неисправности электрооборудования

Если попробовать перечислить хотя бы основные неисправности электрооборудования автомобиля, то на следующей же странице вы закроете такую книгу и не прочитаете оставшиеся 200 страниц с перечнем этих неисправностей. Дело в том, что в автомобиле проложена не одна сотня метров проводов и установлен не один десяток электроприборов. У вас в доме наберется меньше!

А общие проблемы, известны всем. Для проводников, это нарушение изоляции, перетирание и обрыв, окисление соединений и так далее. Для приборов — обрыв обмотки, замыкание на «массу», окисление или «залипание» контактов, «пробой» транзисторов и диодов, механические повреждения и многое другое.

Единственно, о чем хотелось бы с вами сразу договориться, так это о том, что прежде чем сильно расстраиваться и менять лампочку или разбирать на запчасти что-либо из электрооборудования автомобиля, не мешает взглянуть на предохранитель.

В любом автомобиле есть некая коробочка, где установлены плавкие предохранители, каждый из которых защищает определенное количество потребителей электрического тока.

А то ведь бывает так, что после полной разборки генератора выясняется — он в полном порядке! Вместо трехчасового (и даже дольше) «развлечения», надо было сначала проверить предохранитель той цепи, в которую включена обмотка генератора. Потратив всего пару минут на замену перегоревшего предохранителя, можно было спокойно ехать дальше.

И как обычно, напоминаем вам о том, что только «Инструкция по эксплуатации» или даже лучше «Руководство по ремонту и эксплуатации» именно вашего автомобиля сможет помочь вам в поиске конкретной неисправности.

Выбрать другой раздел:

Эксплуатация электрооборудования

Аккумуляторная батарея

Состояние аккумуляторной батареи, особенно зимой, позволяет вам (или наоборот — не позволяет) добраться до работы на своем автомобиле. Наверняка каждый из вас видел утреннюю зимнюю суету вокруг машин, которые так и не смогли «завестись» (батарея «кончилась»). Кто-то пытается «прикурить», а кто-то уже нарезает круги вокруг дома, болтаясь на веревке за грузовиком.

Чтобы машина всегда была готова отвезти своего хозяина на работу, надо периодически проверять уровень и плотность электролита в аккумуляторной батарее. А если на завтра обещали минус тридцать, то следует не полениться и принести аккумуляторную батарею домой. Завтра же она «тепленькая» будет резво крутить двигатель вашего автомобиля на зависть замерзшим соседям.

За уровнем и плотностью электролита в аккумуляторной батарее необходимо следить как зимой, так и летом. Если уровень понизился, то следует доливать дистиллированную воду, так как в процессе эксплуатации батареи из электролита выкипает и испаряется именно вода. Кислота, которая является вторым компонентом электролита, остается в батарее.

Плотность электролита говорит о том, в какой степени аккумулятор заряжен. Для средней полосы с умеренным климатом в полностью заряженной батарее плотность должна быть в пределах 1,27-1,28 гр/см? (при температуре электролита +25°). Падение плотности на 0,01 гр/см? от нормальной говорит о том, что аккумуляторная батарея разряжена приблизительно на 7%.

Для измерения плотности используется специальный прибор — ареометр или плотномер.

Если батарея разряжена более чем на 25% (плотность меньше 1,24) зимой или на 50% (плотность менее 1,21) летом, то ее следует зарядить до нормального состояния. Для этого отечественному автомобилисту необходимо иметь еще один прибор зарядное устройство.

Максимальная величина зарядного тока должна составлять примерно одну десятую часть от емкости аккумуляторной батареи. Если емкость батареи 55 А·ч, то величина зарядного тока не должна превышать 5,5 А.

О степени заряженности аккумуляторной батареи можно судить и по показаниям цифрового вольтметра (табл. 2).

Таблица 2. Контроль состояния аккумуляторной батареи.

Напряжение,В 12,0 12,3 12,54 12,72
Заряженность,% 25% 50% 75% 100%

При эксплуатации аккумуляторной батареи необходимо следить за чистотой ее поверхности. Загрязненную батарею стоит протереть, так как по грязи, особенно влажной, протекают малые токи, которые могут привести к разряду батареи.

Занимаясь «влажной уборкой», заодно имеет смысл проконтролировать и состояние выводов батареи. Если они сильно окислены, то увеличивается сопротивление в электрической цепи и самый «голодный» потребитель (стартер), может недополучить положенного ему тока. А дальше вы знаете — «прикуривание» от соседа, буксир от грузовика и опоздание на работу.

Не часто, но бывают случаи, когда аккумуляторная батарея и вентилятор системы охлаждения «встречаются» друг с другом, естественно, с взаимными повреждениями. Это беспечный водитель не закрепил батарею штатным креплением, а затем долго «скакал» по кочкам проселочной дороги, приняв свой автомобиль за ковбойскую лошадь. И как он теперь будет выбираться в город, этого не знает никто.

Крепление аккумуляторной батареи всегда должно быть надежным, так как незакрепленная батарея может упасть.

Выбрать другой раздел:

Генератор

Некоторые из водителей даже не знают, где он находится, этот генератор. Может быть, и правильно делают, потому что лишь немногие отваживаются на разборку и последующую сборку генератора, да и снимать его с машины не очень-то просто и приятно. Максимум, что может сделать почти каждый из представителей сильного пола, это заменить щеточный узел генератора, который изнашивается в процессе эксплуатации автомобиля. Поэтому, давайте лучше поговорим о том, что будет явно под силу любому водителю.

Генератор приводится в действие ременной передачей от шкива коленчатого вала (см. рис. 63). Если есть ремень, значит надо контролировать его состояние. Он может вытянуться, расслоиться или порваться. А это означает, что генератор не будет питать током потребителей и заряжать аккумуляторную батарею.

Если ремень присутствует на месте и он не в «лохмотьях», то можно проверить его натяжение. В наиболее удаленной от шкивов точке надо надавить на ремень пальцами руки с некоторым ощутимым усилием, и если прогиб ремня получается более чем 10-15 мм, то его следует подтянуть.

О проблемах с генератором можно узнать, не покидая своего водительского места. Ранее упоминалось о том, что перед водителем расположен щиток приборов, на котором в виде разноцветных лампочек и показаний стрелочных приборов отображается работа агрегатов и узлов его автомобиля. Там же есть и контрольная лампа заряда аккумуляторной батареи.

Когда при работающем двигателе контрольная лампа продолжает гореть красным светом, причиной этому может быть и сгоревший предохранитель, и неисправность регулятора напряжения, но чаще всего неприятности случаются именно с ремнем. Надо открыть капот автомобиля, проверить ремень привода генератора, и если с ним все в порядке, и предохранитель цел, то вам не повезло, так как найти неисправность в этом случае будет нелегко.

Выбрать другой раздел:

Стартер

Необходимо отметить, что включение стартера должно производиться на срок не более чем 10-12 секунд. Если двигатель не запустился, то необходимо сделать паузу 20-30 секунд, после которой можно повторить попытку.

При двух-трех неудачных запусках двигателя следует начинать поиск неисправности в системе зажигания или питания. Нет смысла «гонять» стартер до тех пор, пока не «сядет» аккумулятор. Не забывайте, что стартер является потребителем очень большого тока — до 550 ампер!

При полном отказе стартера и аккумуляторной батареи можно попробовать запустить двигатель пусковой рукояткой («кривым стартером»), если ее использование предусмотрено конструкцией вашего автомобиля, или с помощью буксира. Если вам это удастся, то вы сможете спокойно доехать до места назначения, но только при условии, что лишний раз двигатель глушить не будете. А для этого следует немного выдвинуть рукоятку управления воздушной заслонкой («подсоса») и поднять обороты двигателя выше холостых.

При правильной эксплуатации стартера сам он нечасто выходит из строя, хотя стартеры тоже не вечны. Однажды вы поворачиваете ключ в замке зажигания, а в ответ тишина или несильное потрескивание реле стартера. Поиск неисправности обычно заключается в проверке работоспособности аккумуляторной батареи, и если с ней все в порядке, то тогда уже начинается поиск мастера или соседа-умельца.

Выбрать другой раздел:

Приборы освещения и сигнализации

При эксплуатации автомобиля в темное время суток важнейшим вопросом является правильная регулировка света фар. Направление световых пучков должно быть таким, чтобы дорога перед автомобилем хорошо освещалась и в то же время, водители встречного транспорта не ослеплялись светом фар вашего автомобиля.

Для регулировки света фар используются два винта, к которым открывается доступ из моторного отсека автомобиля. Вращением одного из винтов изменяется направление пучка света в вертикальной плоскости, а другого в горизонтальной.

На рисунке 68 показано, как правильно регулировать фары. Необходимо найти горизонтальную площадку со стеной, на которой вы сможете нанести мелом линии в соответствии со схемой, приведенной в руководстве к вашей машине. Потом надо отъехать на расстояние 5 м, включить ближний свет фар и, вращая винты регулировки, добиться совмещения пучка света с картинкой на стене. Если у вас есть гараж, то имеет смысл раскрасить одну из его стен разметкой для регулировки фар, для того чтобы в любой момент вы могли проверить правильность их установки.

регулировка света фар

Рис. 68. Регулировка света фар: А и В — вертикальные линии, обозначающие расположение ламп ближнего света фар; С — горизонтальная линия, обозначающая расположение ламп ближнего света фар; D — линия, обозначающая высоту подъема горизонтальной границы пучков света; О — ось автомобиля; h — расстояние от поверхности площадки до ламп ближнего света фар

Хорошо тем, у кого в автомобиле есть гидрокорректор фар. Водитель имеет возможность, не выходя из машины, с помощью ручки управления корректором изменить вертикальный угол наклона пучка света фар. Это необходимо делать в тех случаях, когда меняется загруженность автомобиля. Если вы положили в багажник тяжелый груз, то, естественно, задняя часть автомобиля присядет, а передняя вместе с фарами приподнимется. В результате продольного наклона машины вы плохо видите ночную дорогу, а встречные водители ослепляются даже ближним светом «задранных» вверх фар.

Независимо от наличия или отсутствия корректора, при изменении загруженности автомобиля и соответствующем изменении наклона фар, обязательно отрегулируйте их, если вам предстоит ночная поездка. Иначе эта поездка может закончиться не так, как вы хотели.

При необходимости замены ламп фар и прочих лампочек, это должен уметь делать сам водитель. Не мешает знать, что, меняя галогенную лампу, следует работать в перчатках. Нельзя браться голой рукой за стеклянную колбу, так как жирные следы от пальцев выведут лампу из строя.

Прежде чем менять не горящую лампу, сначала стоит проверить предохранитель, защищающий электрическую цепь, в которую она включена. Если вы поставили новый предохранитель и при включении потребителя он сразу же вышел из строя, то не пытайтесь продолжать эксперимент. Найдите сами или с помощью специалиста причину короткого замыкания в цепи, в противном случае недалеко и до пожара.

Обращайте внимание на маркировку предохранителей. Как правило, это 8 и 16 ампер, но могут быть и другие, особенно в автомобилях последних лет выпуска. Для того чтобы не путаться можно взять инструкцию к автомобилю выписать на бумажку место расположения предохранителей, их номиналы и приклеить эту памятку на внутреннюю сторону крышки блока предохранителей (если это не было сделано на заводе). И, простите за банальность, в автомобильной электрической сети, как и в любой другой — применение «жучков» недопустимо!

Часто причиной отказа в работе ламп и прочих потребителей электрического тока является окисление и коррозия контактов, связанных с «массой» автомобиля, и реже с плюсовым проводом. Это происходит потому, что в условиях города зимняя дорожная каша попадает на электрические разъемы и интенсивно их разъедает. Что поделаешь, так о нас, об автомобилистах, «заботятся» соответствующие городские службы! А мы в ответ берем мелкозернистую шкурку, надфиль и паяльник — зачищаем, подпаиваем и, назло всем, продолжаем ездить.

Если вы знакомы с электричеством и умеете «читать» схемы, то, может быть, вам удастся «прозвонить» поврежденную цепь и определить место ее обрыва. Но в обширной паутине электрической сети автомобиля это бывает не очень легко сделать.

Случается, водитель узнает о том, что звуковой сигнал его автомобиля не работает в самый критический момент. Мало того, что с неработающим звуковым сигналом эксплуатация автомобиля запрещена, водитель еще и не сможет воспользоваться сигналом для предотвращения дорожно-транспортного происшествия. Поэтому, в нарушение ПДД, где-нибудь в укромном местечке стоит разочек «бибикнуть» для проверки работоспособности своего звукового сигнала. И если окажется, что он не работает, то придется приобрести новый, так как обычно отремонтировать звуковой сигнал не получается. Только прежде не забудьте проверить предохранитель его электрической цепи.

Выбрать другой раздел:

Эксплуатация контрольно-измерительных приборов

Чуть позже мы перейдем к неисправностям электроприборов автомобиля, при которых ПДД запрещают эксплуатацию транспортных средств, а сейчас хочется сказать, что водить автомобиль с любой неисправностью означает — искать приключения на свою голову.

Например, при неработающем указателе уровня топлива — можно поупражняться в толкании своего автомобиля до ближайшей АЗС или покататься на попутных машинах с емкостью для бензина туда и обратно.

Не работает указатель температуры охлаждающей жидкости двигателя — стоим и кипим, а если не повезет, то и двигатель заклинит.

При включении стояночного тормоза на щитке приборов не включается контрольная лампочка — поехали и «сожгли» тормоза.

Не работает автоматический включатель лампочки (или перегорела сама лампочка) аварийного уровня жидкости в тормозном бачке — эту тему лучше не развивать.

Приводить примеры таких неисправностей можно долго, причем все эти примеры покажут вам, что незначительных неисправностей в машине не бывает. За любой неисправностью следуют крупные или не очень крупные, но все же неприятности. Следовательно, водитель должен постоянно контролировать состояние всех систем, агрегатов, деталей и даже лампочек своего автомобиля.

Если вы не можете самостоятельно определить техническое состояние автомобиля, то периодически обращайтесь к специалистам или, по крайней мере, попросите знающего соседа прокатиться на вашей машине. За время короткой поездки дока в автомобиле сможет перечислить все легкие и тяжелые «заболевания» вашего железного друга.

Выбрать другой раздел:

Неисправности электрооборудования, при которых ПДД запрещают эксплуатацию транспортных средств

3.1. Количество, тип, цвет, расположение и режим работы внешних световых приборов не соответствует требованиям конструкции транспортного средства.

Примечание. На транспортных средствах, снятых с производства, допускается установка внешних световых приборов от транспортных средств других марок и моделей.

Иными словами, все фары, подфарники, фонари и указатели поворотов должны в точности соответствовать тому, что на машину устанавливает завод-изготовитель.

Допускается некоторое дооборудование автомобиля по желанию его владельца. Вы имеете право установить на свою машину спереди — две противотуманные фары (на мотоцикл только одну).

Разрешается устанавливать один или два задних противотуманных фонаря, если они не были предусмотрены конструкцией данного автомобиля, причем они должны быть только красного цвета.

Если вы устанавливаете и подключаете к бортовой электрической цепи противотуманные фары и фонари самостоятельно, то они должны включаться только после включения габаритных огней и освещения номерного знака автомобиля (совместно с ними).

Если ваш автомобиль на заводе-изготовителе не был оборудован противотуманными фарами и фонарями, а вы любитель дальних поездок, то советуем вам оснастить ими свою машину. Не приходилось слышать о том, что противотуманные фары кому-либо помешали, совсем наоборот, они весьма помогают при движении ночью и в условиях природных капризов.

3.2. Регулировка фар не соответствует ГОСТу Р 51709-2001.

При неправильной регулировке фар вы подвергаете опасности всех встречных и попутных водителей, так как можете их ослепить и стать виновником дорожно-транспортного происшествия. Трудно ехать и вам, потому что при плохой освещенности дороги перед машиной увеличивается вероятность попасть в неприятность. Например, можно не увидеть стоящий на обочине или на проезжей части автомобиль, не заметить выпавший из впереди идущей машины груз, не говоря уже о наших исторических «неровностях дороги». Короче говоря, с регулировкой фар шутить не стоит.

3.3. Не работают в установленном режиме или загрязнены внешние световые приборы и световозвращатели.

Насчет «установленного режима» все понятно. Как в инструкции завода-изготовителя написано, так и должно работать.

Световозвращатели — это то, что ночью блестит в свете фар на современной детской одежде и обуви, а также на нашем безвременно забытом велосипеде. Раньше это называлось тоже не совсем русским словом катафоты. Вероятность того, что стоящий ночью на краю дороги автомобиль-нарушитель с выключенным внешним освещением, но с чистыми световозвращателями будет вовремя замечен, значительно увеличивается.

Совершенно очевидно, что, если слой грязи на стеклах световых приборов достиг безумной толщины, то и вы перед собой ничего не видите и для остальных ваш автомобиль превращается в «невидимку». В этом случае другим участникам движения трудно определить габаритные размеры и положение вашего автомобиля в пространстве, что может послужить причиной серьезного дорожно-транспортного происшествия. Не становитесь «летучим голландцем» для других водителей, особенно в темные месяцы года.

Если не работают или загрязнены задние фонари и стоп-сигналы, то можно «приятно удивиться», когда кто-нибудь из водителей, следующих за вами автомобилей «въедет» в необозначенную заднюю часть вашей любимой машины.

3.4. На световых приборах отсутствуют рассеиватели либо используются рассеиватели и лампы, не соответствующие типу данного светового прибора.

Рассеиватель должен рассеивать свет лампочек. Если светит «голая» лампа, то пучок света будет слишком неприятен для других участников дорожного движения. Ведь никому из вас не нравится, когда в комнате горит яркая лампа без абажура или плафона.

Ослепить можно не только встречных водителей (разбитой фарой), но и водителей сзади идущих автомобилей. Если на машине разбит рассеиватель заднего фонаря или он цел, но в фонаре установлены лампы большей, чем положено яркости, то ждите неприятностей.

В продаже периодически появляются различные лампы иностранного производства, и некоторые водители стараются купить и, к сожалению, установить самые дорогие и мощные из них. Несколько дней они радуются яркому свету вокруг них, но потом почему-то свет становится уже не таким ярким. Это потому, что ослепленный водитель другого автомобиля «выключил» одну из лампочек бампером своей машины. Приобретая запасные части к своему автомобилю, не забывайте поглядывать в инструкцию завода-изготовителя, где расписано все — и какие лампы должны быть, и какое масло заливается в двигатель, какие свечи и колеса.

3.5. Установка проблесковых маячков, способы их крепления и видимость светового сигнала не соответствуют установленным требованиям.

Большинству из читателей этой книги маячки на собственной машине «не грозят». Маячки устанавливают те, кто таких книжек обычно не читает. В то же время не мешает знать, что разрешение на установку специальных световых сигналов дают органы ГИБДД. Если вам все же предстоит приобретение комплекта спецсигналов, то лучше это сделать там же (в ГИБДД), так вы убережете себя от подделок, которые не отвечают стандартам.

3.6. На транспортном средстве установлены:

o спереди — световые приборы с огнями любого цвета, кроме белого, желтого или оранжевого, и световозвращающие приспособления любого цвета, кроме белого;

o сзади — фонари заднего хода и освещения государственного регистрационного знака с огнями любого цвета, кроме белого, и иные световые приборы с огнями любого цвета, кроме красного, желтого или оранжевого, а также световозвращающие приспособления любого цвета, кроме красного.

Примечание. Положения настоящего пункта не распространяются на государственные регистрационные, отличительные и опознавательные знаки, установленные на транспортных средствах.

В переводе на более понятный язык это означает, что на вашей машине должны быть:

o спереди: — световые приборы — только белые, желтые или оранжевые;
— световозвращатели — только белые;

o сзади: — фонари заднего хода — только белые;
— фонари освещения государственного регистрационного знака — только белые;
— другие световые приборы — только красные, желтые или оранжевые;
— световозвращатели — только красные. Отличие цвета световых приборов и световозвращателей на вашей машине от тех, что утверждены указанным пунктом, влечет за собой запрещение эксплуатации автомобиля и наложение штрафа.

4.1. Не работают в установленном режиме стеклоочистители.

Если на автомобиле не работают стеклоочистители, то здравомыслящий водитель и без запрещения не отправится в поездку.

Ведь даже в яркий солнечный день можно встретить участок мокрой или загрязненной дороги, после проезда которого без стеклоочистителей не обойтись.

4.2. Не работают предусмотренные конструкцией транспортного средства стеклоомыватели.

Нельзя, да и неудобно, ездить с неработающими стеклоомывателями во время мелкого дождя, несильного снегопада и просто по мокрой дороге. Водитель вынужден включать щетки «насухую», что дает малый эффект и приводит к еще одной неприятности «затирается» (становится матовым) ветровое стекло. Учтите, из-за плохой видимости дороги через загрязненное и помутневшее ветровое стекло произошла не одна авария.

Зимой в бачок омывателя стекол лучше заливать специальную жидкость, которая замерзает при низкой температуре. Тогда вы будете спокойно ездить по дорогам с чистым стеклом, видя обстановку вокруг, не создавая проблем ни себе, ни окружающим.

7.2. Не работает звуковой сигнал.

Водитель может и должен пользоваться звуковым сигналом для предотвращения дорожно-транспортных происшествий в городе, а также имеет право воспользоваться им при обгонах за городом. Нельзя эксплуатировать автомобиль с неработающим звуковым сигналом, так как в сложных ситуациях на дороге вы будете лишены «языка» и не сможете «поговорить» с другими водителями и пешеходами.

Запрещается движение при не горящих (отсутствующих) фарах и задних габаритных огнях в темное время суток или в условиях недостаточной видимости.

Запрещается движение при недействующем со стороны водителя стеклоочистителе во время дождя или снегопада.

Обо всем этом ранее уже шел разговор, и, наверное, не стоит заниматься повторением. Только не забудьте для себя отметить, что данные неисправности выделены красной рамкой! Значит, они относятся к группе неисправностей, которые катастрофически влияют на безопасность движения и пренебрегать ими нельзя.

При возникновении любой из перечисленных неисправностей водитель обязан незамедлительно прекратить движение. Если вам не удастся устранить неисправность на месте, то возобновить поездку можно будет лишь после того, как рассветет (при неисправных фарах и фонарях) или после прекращения атмосферных осадков (при неисправном стеклоочистителе).

Выбрать другой раздел:

ГЛАВА VI. КУЗОВ АВТОМОБИЛЯ

Устройство и оборудование кузова

Кузов является несущим элементом автомобиля (см. рис. 1). В кузове располагаются водитель и пассажиры, к кузову крепятся двигатель, агрегаты трансмиссии и ходовой части, механизмы управления и дополнительное оборудование. Он же является «минусовым» проводником для системы электрооборудования автомобиля.

Кузов автомобиля, это сложная инженерная, геометрически правильная конструкция из металла, стекла и других материалов.

Металлическая часть кузова состоит из днища и крыши, крыльев и панелей, дверей, крышек капота и багажника, а также множества более мелких элементов. В специальные проемы кузова устанавливаются лобовое, заднее и боковые стекла. Говорить о всевозможных деталях из пластмассы и других искусственных материалов вообще не имеет смысла, а об их количестве можно только догадываться.

Для размещения водителя и пассажиров в салоне предусмотрены сиденья. С целью обеспечения безопасности людей в движущемся автомобиле сиденья оборудованы специальными ремнями. В случае аварии эти ремни способны удержать взрослого человека на его сиденье.

Внутри салона располагается все необходимые органы управления автомобилем и приборы для контроля за работой его агрегатов и систем. Комфорт при движении в любых погодных условиях обеспечивают системы вентиляции и отопления салона машины. В салоне заложен весь комплекс комфортных услуг, начиная от пепельницы и подлокотников, и заканчивая тем, что придет вам в голову и на что хватит средств.

Предела усовершенствованию внутреннего пространства салона нет. Но при этом не должны быть нарушены требования по обеспечению безопасности дорожного движения. Имеется в виду, что наряду с установкой внутрисалонного панорамного зеркала, радиоприемника, телевизора, телефона и другого «безобидного» дополнительного оборудования, установка, например, зеркальных стекол однозначно запрещена.

Обычно по состоянию салона можно легко определить характер и привычки водителя. Салон автомобиля как дом, в котором вы проводите немалую часть своей жизни, только дом этот в миниатюре. Содержать его по-другому, чем обычное жилище, просто невозможно.

Выбрать другой раздел:

Эксплуатация кузова

Первое, что видит владелец, подходя утром к своему автомобилю, это кузов. И какова же его реакция на увиденное?

Он радостно улыбается, если кузов блестит или мрачно вздыхает, если вместо блеска — ржавчина и дыры. Состояние кузова и ваше утреннее настроение полностью зависят от вашей прилежности по уходу за автомобилем. И поверьте, в данном случае ваши финансовые затраты будут явно оправданы, так как кузовной ремонт образует большую дыру в бюджете семьи.

Чтобы кузов служил подольше, изначально следует произвести антикоррозийную обработку днища и скрытых полостей. Есть умельцы, которые сами делают эту трудоемкую и не очень чистую работу, но лучше все-таки сделать это на специализированной станции. Обработка будет качественной, если сделана она под большим давлением, которое в домашних условиях создать сложно.

Подкрылки, которые закрывают внутренние полости крыльев, жизненно необходимы для некоторых моделей автомобилей. Ни для кого не секрет, что на таких машинах, как ВАЗ-2105, в первую очередь ржаветь начинают именно крылья (передние). Происходит это по причине постоянной мокрой «пескоструйной обработки» и плохой вентиляции передней области крыльев. Уж в этом случае экономить на подкрылках точно не стоит.

Лакокрасочное покрытие кузова «дышит», и именно от вас зависит, чем будет «дышать» ваш «дом на колесах». В наших отечественных условиях с грязью и солью на дорогах этому вопросу надо отдать определенное личное время. Это и банальная мойка кузова (желательно ежедневная), и покрытие его специальными пастами, полировка и прочая косметика.

Небольшие царапины на кузове необходимо сразу же подкрашивать, пятна ржавчины удалять, потускневшие детали хромированной декоративной отделки полировать и так далее. В общем, внешний вид вашего автомобиля полностью зависит от вашего трудолюбия и финансовых возможностей.

Большая беда современных автомобилей — это наличие многочисленных пластмассовых накладок, щитков, ручек и прочих элементов облицовки салона. Дребезжание, поскрипывание, попискивание и прочие неприятные уху звуки во время движения не так уж безобидны. Любой шум постепенно расшатывает нервную систему человека, и если не найти способ устранения «шумовой атаки», то можно стать неврастеником. Как правило, владельцы автомобилей сами находят путь к победе в «пластмассовой войне», начиная от подкладывания бумажек и тряпочек и заканчивая полной разборкой облицовки салона и подклейкой войлочной основы на все дребезжащие детали.

В процессе эксплуатации автомобиля могут порваться, завернуться, замяться резиновые уплотнители дверей и багажника, что позволит попадать в салон летом пыли, а зимой холодному воздуху. Кроме этого, в салон начинают «подсасываться» выхлопные газы, а это уже серьезно. Водитель становится вялым и невнимательным, замедляется реакция, ухудшается зрение. И если у вас нет желания постоянно попадать в аварийные ситуации, то стоит восстановить герметичность салона кузова.

Независимо от срока эксплуатации автомобиля могут возникать те или иные проблемы и неисправности с его кузовом, оборудованием, агрегатами и системами. Если водитель относится к машине как к надежному помощнику в своих делах, если он хочет иметь свой автомобиль в полной готовности к поездке, то необходимо не только периодически, но и ежедневно уделять ему определенное внимание и время. Тогда автомобиль ответит тем же, будет приятно блестящим, твердо стоящим на своих четырех «ногах» и с ласково журчащим звуком мотора уверенно повезет своего хозяина хоть на край земли.

Выбрать другой раздел:

Неисправности кузова и прочих элементов конструкции, при которых ПДД запрещают эксплуатацию транспортных средств

7.1. Количество, расположение и класс зеркал заднего вида не соответствует ГОСТу Р 517092001, отсутствуют стекла, предусмотренные конструкцией транспортного средства.

Когда автомобиль лишен зеркал заднего вида, очень трудно и небезопасно управлять наполовину «ослепшей» машиной.

Если «потерялось» внутрисалонное зеркало, приходится постоянно отвлекаться от контроля ситуации в направлении движения, поворачивая голову вправо, влево и назад.

При отсутствии боковых зеркал увеличивается «мертвая», не просматриваемая около автомобиля зона, что уменьшает безопасность поездки и увеличивает вероятность возникновения аварийной ситуации. По поводу правого наружного зеркала заднего вида следует сказать, что оно совсем не лишнее, поверьте. Если ваш автомобиль изначально не был оборудован правым зеркалом, то его стоит приобрести и установить.

Можете «поздравить» себя с суровым испытанием, если разбилось ветровое стекло автомобиля. Ехать без ветрового стекла даже в сухую солнечную погоду весьма неприятно. А если это случилось зимой, когда на дороге много снега и грязи, то потом вы будете долго вспоминать эту поездку.

7.3. Установлены дополнительные предметы или нанесены покрытия, ограничивающие обзорность с места водителя.

Примечание. На верхней части ветрового стекла автомобилей и автобусов могут прикрепляться прозрачные цветные пленки. Разрешается применять тонированные стекла (кроме зеркальных), светопропускание которых соответствует ГОСТу 5727-88. Допускается применять шторки на окнах туристских автобусов, а также жалюзи и шторки на задних стеклах легковых автомобилей при наличии с обеих сторон наружных зеркал заднего вида.

Некоторые водители превращают свою машину в рождественскую елку. Конечно, для уюта можно что-то повесить, приклеить или привинтить, но законы дороги все же должны соблюдаться. Это «что-то» не должно ограничивать обзор дороги, ухудшать прозрачность стекол, ограничивать свободу движений водителя. Правила здесь неумолимы, и можете потом долго доказывать сотруднику ГИБДД, что «это» вам не мешает и что вообще вы купили машину уже с «этим», но путь для вас будет один — в отделение Сбербанка, где оплачивают штрафы за нарушение ПДД.

Тонирование стекол допускается в строго определенных пределах и у инспекторов ГИБДД есть соответствующие приборы для контроля их затененности. При этом имейте в виду, что водители машин, движущихся за автомобилем «в футляре», не в состоянии контролировать дорожную ситуацию сквозь него и перед ним.

Правила разрешают водителю «спрятаться» за шторками или жалюзи, установленных на заднем стекле. Но в таком случае необходимо иметь наружные зеркала заднего вида с обеих сторон автомобиля.

И все-таки, во всех случаях «загрязнения» стекол автомобиля значительно возрастает вероятность того, что ограничение видимости для вас и других водителей приведет к неприятностям. Если уж прятаться от людей, то лучше в лесу или в мотеле, а стекла машины безопаснее содержать чистыми.

7.4. Не работают предусмотренные конструкцией:
— замки дверей кузова или кабины,
— запоры бортов грузовой платформы,
— пробки топливных баков,
— механизм регулировки положения сиденья водителя,
— спидометр,
— противоугонные устройства,
— устройства обогрева и обдува стекол.

Авторы взяли на себя смелость немного видоизменить и сократить официальный текст ПДД. Зато теперь этот пункт закона стал более приемлем для восприятия.

Если возникнет потребность срочно покинуть машину, то вам не удастся этого сделать при неработающих замках дверей. И наоборот, можно случайно «эвакуироваться» тогда, когда этого не требовалось (допустим, на вираже дороги).

Не хочется давать характеристику водителю автомобиля, из бензобака которого бензин льется на дорогу, под горячий глушитель собственной машины и под колеса соседних автомобилей. О последствиях утечки бензина можно догадаться, посмотрев по телевизору пару «боевиков».

Досадно бывает, когда в тебя «въезжает» автомобиль без водителя.

«А куда делся водитель?» — спросите вы.

Так он лежит головой на заднем сиденье, одновременно находясь и в водительском сиденье тоже, как космонавт при старте ракеты, и поэтому через стекла машины его не видно. Это у него при нажатии на педаль тормоза водительское сиденье оторвалось от днища автомобиля.

А если без «кошмаров», то сиденье водителя должно быть надежно закреплено и иметь как минимум две степени регулировки. Если водитель сидит, зажимая коленками уши, или едва дотягивается до педалей и руля, то это уже не соответствует посадке за рулем того, кто отвечает за человеческие жизни. Такой водитель не может правильно и своевременно реагировать на изменение дорожной обстановки.

Спидометр необходим водителю для контроля скорости автомобиля. При выходе спидометра из строя вы не сможете «на глаз» определить скорость с точностью, необходимой для выполнения требований дорожных знаков «Ограничение скорости». А из-за этого увеличивается вероятность возникновения аварийной ситуации и появляются непредвиденные расходы по оплате штрафов.

Противоугонное устройство, о котором идет речь в законе, вовсе не то, о чем вы сейчас подумали. Никто не заставляет вас устанавливать на свой старый «Жигуленок» электронную суперсигнализацию, стоимостью в два ваших автомобиля. Имеется в виду штатное противоугонное устройство, предусмотренное конструкцией завода-изготовителя.

«Ну, это уж совсем сказки! Чтобы завод ставил «секретки»…?!» — недоуменно-вопросительный возглас с вашей стороны.

А в ответ вам ехидненькое замечание — перелистайте-ка заново «Инструкцию по эксплуатации» вашего автомобиля. Оказывается, если вынуть ключ из замка зажигания и повернуть рулевое колесо вправо или влево хотя бы на пол-оборота, то руль механически фиксируется в одном положении штатным заводским противоугонным устройством! Так вот о его работоспособности и идет разговор.

Разумно поступает тот водитель, который к штатному устройству добавляет еще и электронную охранную систему, дополнительные механические устройства (запоры на педали, руль, рычаг коробки передач) и различные секреты «собственного производства».

Без обогрева и обдува стекол автомобиля ездить практически невозможно, так как стекла в салоне запотевают (особенно во время дождя) и покрываются инеем (зимой). Попробуйте перейти какой-нибудь оживленный проспект с закрытыми глазами. Не хочется? Ну и правильно! Точно так же вам не должно хотеться выезжать на машине с закрытыми для обзора дороги стеклами.

7.5. Отсутствуют предусмотренные конструкцией заднее защитное устройство, грязезащитные фартуки и брызговики.

Двигаясь по грязной дороге за грузовиком, автобусом или просто легковым автомобилем, даже при наличии у них грязезащитных фартуков, чувствуешь себя в танке с узкой смотровой щелью. Нет, это не о том, что под тяжестью грязи машина стала весить как танк, а о щели амбразуры, в которую превратилось большое лобовое стекло. А если грязезащитные фартуки отсутствуют, то лобовое стекло сзади идущей машины загрязняется практически моментально. Обзорность резко уменьшается и вероятность дорожно-транспортного происшествия катастрофически увеличивается. Если сегодня в машину без брызговиков никто не «въехал», то ждите этого завтра.

7.6. Неисправны тягово-сцепное и опорно-сцепное устройства тягача и прицепного звена, а также отсутствуют или неисправны предусмотренные их конструкцией страховочные тросы (цепи).

При движении с прицепом (с легковым прицепом, в том числе) исправность связующего звена с машиной-тягачом жизненно необходима.

Даже представить трудно, каких «дел» в состоянии натворить оторвавшийся на ходу прицеп. Опасность можно и нужно предвидеть! Поэтому конструкцией любого прицепа в его сцепке с машиной предусмотрены страховочные цепи или тросы. При внезапном разъединении сцепки эти цепи не дадут возможности прицепу отправиться в самостоятельную неуправляемую поездку, круша на своем пути все попавшееся.

Необходимо предпринять все возможные меры для того, чтобы не «потерять» свой прицеп во время поездки.

7.7. Отсутствуют:
— на автобусе, легковом и грузовом автомобилях, колесных тракторах — медицинская аптечка, огнетушитель, знак аварийной остановки по ГОСТу Р 41.27-99;
— на мотоцикле с боковым прицепом — медицинская аптечка, знак аварийной остановки по ГОСТу Р 41.27-99.

Попробуем чуть конкретнее. Во время поездки на легковом автомобиле вы должны иметь:
1. Медицинскую аптечку установленного образца,
2. Огнетушитель, заправленный и работоспособный,
3. Знак аварийной остановки.

Мотоциклист при движении на мотоцикле с коляской в своем арсенале должен иметь:
1. Медицинскую аптечку установленного образца,
2. Знак аварийной остановки.

Остается только мотоцикл без коляски. Аптечка ему не обязательна, и, вместо того чтобы мигать посередине дороги, его можно откатить или отнести на обочину.

А если без мрачных шуток, то все эти обязательные принадлежности транспортных средств прописаны в законе не просто так. Практически каждый из водителей «со стажем» пользовался чем-либо из этого списка и не только в случае страшной аварии. Все это может пригодиться на отдыхе, в гараже или просто в быту. Да и мотоциклисту (как с коляской, так и без нее) не мешает найти местечко для этих важных вещей.

Не забывайте восполнять использованные и заменять просроченные материалы из аптечки. Если вы применяли огнетушитель, то позже необходимо приобрести новый или зарядить старый.

7.8. Неправомерное оборудование транспортных средств проблесковыми маячками и (или) специальными звуковыми сигналами либо наличие на наружных поверхностях транспортных средств специальных цветографических схем, надписей и обозначений, не соответствующих государственным стандартам Российской Федерации.

Ранее уже говорилось о том, что запрещено применение специальных «мигалок» и «гуделок» на автомобилях, не принадлежащих оперативным и специальным службам, и развивать эту тему не имеет смысла.

А вот насчет всевозможных «кукарач» и прочих «заморских» сирен, следует знать, что использовать их на дороге нельзя, так как нестандартными звуками можно ввести в заблуждение других участников движения. Дорога — это не концертный зал, на ней и без вашей «музыки» хватает самых разнообразных звуков.

7.9. Отсутствуют ремни безопасности и подголовники сидений, если их установка предусмотрена конструкцией транспортного средства.

7.10. Ремни безопасности неработоспособны или имеют видимые надрывы на лямке.

Не стоит долго говорить о необходимости использования ремней безопасности, это прописные истины. Но стоит напомнить о том, что согласно Правилам дорожного движения (пункт 2.1.2.), во время поездки не только водитель и его пассажир справа, но и все пассажиры на задних сиденьях тоже должны быть пристегнуты ремнями безопасности.

Следовательно, в своем автомобиле вы обязаны иметь полный комплект ремней. Так что придется докупить и установить недостающие. Причем сделать это надо не столько для выполнения требований ПДД, сколько для того, чтобы в критической ситуации ремни обеспечили людям реальную безопасность.

Если ремни износились и потеряли свою прочность, то, естественно, их следует заменить на новые. Ведь никому не придет в голову прыгать с парашютом, у которого местами перетерлись лямки и стропы. В машине примерно то же самое. «Может, выдержат, а может, нет» — не годится.

7.13. Нарушена герметичность уплотнителей и соединений двигателя, коробки передач, бортовых редукторов, заднего моста, сцепления, аккумуляторной батареи, систем охлаждения и кондиционирования воздуха и дополнительно устанавливаемых на транспортное средство гидравлических устройств.

Разговор идет о том, что машина не должна походить на старое колодезное ведро, из щелей которого то капает, то льется. Обнаружить подтекания из многочисленных агрегатов автомобиля несложно, надо только заглянуть под капот, где места подтекания обрастают слоем дорожной пыли или внимательно посмотреть на следы, которые остаются на асфальте там, где «отдыхала» ваша машина. Сопоставив лужицы и капли на земле с месторасположением узлов и агрегатов автомобиля, вы легко сможете «вычислить», где нарушилась герметичность. А дальше нарушенную герметичность уплотнителей, соединений, крышек и пробок, надо восстановить. Не забывайте о том, что мы дышим испарениями того, что остается на дороге после проезда «прохудившегося» автомобиля.

7.14. Технические параметры, указанные на наружной поверхности газовых баллонов автомобилей и автобусов, оснащенных газовой системой питания, не соответствуют данным технического паспорта, отсутствуют даты последнего и планируемого освидетельствования.

Не стоит доказывать вам опасность, таящуюся в просроченном или неисправном газовом баллоне. Если ваш автомобиль оборудован газовой системой питания двигателя, будет правильно следовать каждому пункту прилагаемой к этому оборудованию инструкции по эксплуатации.

7.15. Государственный регистрационный знак транспортного средства или способ его установки не отвечает ГОСТу Р 50577-93.

Если регистрационный номерной знак был поврежден при аварии или утерян, не надо заказывать его копию у ближайшего жестянщика. Обратитесь в отделение ГИБДД с заявлением и получите легальные знаки, отвечающие требованиям стандарта.

Если номерные знаки с вашего автомобиля были украдены, не стоит делать большую паузу перед визитом в ГИБДД. Иначе кто-нибудь из «криминального мира» может воспользоваться вашими знаками в своих неблаговидных целях, а вы потом будете долго доказывать свою кристальную чистоту и невинность.

7.18. В конструкцию транспортного средства внесены изменения без разрешения Государственной инспекции безопасности дорожного движения Министерства внутренних дел Российской Федерации или иных органов, определяемых Правительством Российской Федерации.

А здесь о том, что прежде чем проявлять «творчество» в модернизации своего автомобиля, сначала надо уточнить в ГИБДД, можно ли воплотить в жизнь ваши задумки.

Запрещается движение при неисправности сцепного устройства (в составе автопоезда).

Об этом разговор уже был, но повторить будет нелишне. При обнаружении неисправности сцепного устройства перед началом поездки или уже в пути дальнейшее движение с прицепом категорически запрещено.

ВВЕРХ:

Громаковский А., Бранихин Г
Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Введение

Уважаемые будущие, настоящие и вчерашние курсанты автошкол! Из личного опыта знаем: каждому, кто готовится к нелегкому жизненному испытанию под названием «водительские курсы», очень уж хочется как-нибудь «опустить» теорию и поскорее сесть за руль автомобиля, пусть даже учебного. Равно как и тем, кто уже ерзает на стуле, сидя за партой, и с тоской изучает, что такое гужевая повозка или чем велосипед отличается от мопеда.

Однако же в теоретической части есть немало полезной и интересной информации. Проблема в том, что часто в стандартных учебниках она изложена сухо и непонятно. По этой причине и родилась книга, которую вы держите в руках.

Поверьте, все, что в ней содержится, пригодится не только для сдачи зачетов и экзаменов на пути к заветной цели, но и послужит вам в будущем хорошим подспорьем. Ведь гораздо лучше «опустить» не теорию, а звание «чайника» в водительской карьере. Для этого необходимо обладать знаниями, чтобы не тратить пол-стоимости автомобиля на замену целого узла вместо одного подшипника.

К сожалению, подобный «развод на деньги» происходит сплошь и рядом.

Так что читайте, запоминайте, усваивайте, переваривайте, сдавайте экзамены, покупайте машину и становитесь настоящим водителем!

1. Общее устройство автомобиля

К транспортным средствам категории «В»

относятся автомобили, разрешенная максимальная масса которых не превышает 3500 кг

с количеством сидячих мест, помимо сиденья водителя, не более восьми.

Любой легковой автомобиль состоит из следующих элементов (рис. 1.1):

♦ двигателя;

♦ трансмиссии;

♦ ходовой части;

♦ механизмов управления;

♦ электрооборудования;

♦ дополнительного оборудования;

♦ кузова.

Двигатель — это «сердце» машины. Он сжигает топливо и преобразует тепловую энергию в механическую: заставляет вращаться коленчатый вал, затем вращение через трансмиссию передается на колеса (составляющую ходовой части).

Так машина приводится в движение.

Рис. 1.1. Общий вид легкового автомобиля:

1 — фара; 2 — вентилятор системы охлаждения двигателя; 3 — радиатор системы охлаждения двигателя; 4 — распределитель зажигания; 5 — двигатель; 6 — аккумуляторная батарея; 7 — катушка зажигания; 8 — воздушный фильтр; 9 — телескопическая амортизаторная стойка передней подвески; 10 — бачок омывателя ветрового стекла; 11 — коробка передач; 12 — ручка стеклоподъемника; 13 — внутренняя ручка двери; 14 — рычаг задней подвески; 15 — элемент обогрева заднего стекла; 16 — основной глушитель; 17 — задний амортизатор; 18 — задний тормоз; 19 — балка задней подвески; 20 — поперечная штанга задней подвески; 21 — топливный бак; 22 — рычаг стояночной тормозной системы; 23 — дополнительный глушитель; 24 — вакуумный усилитель тормозной системы; 25 — вал привода передних колес; 26 — передний тормоз; 27 — штанга стабилизатора передней подвески

Во время движения водитель управляет автомобилем с помощью рулевого колеса и педалей, представляющих собой механизмы управления. Он включает свет фар и указатели поворотов, то есть пользуется электрооборудованием.

При этом водитель пристегнут ремнем безопасности, ему тепло (работает обогреватель) — задействовано дополнительное оборудование.

Кузов среднестатистического легкового автомобиля состоит из моторного отсека (там находится двигатель), пассажирского салона и багажного отделения. Он же является несущей конструкцией для узлов и агрегатов автомобиля.

Современные автомобили можно классифицировать по нескольким признакам: по типу кузова, типу и рабочему объему двигателя, типу привода колес и габаритным размерам.

Классификация по типу кузова

Кузова современных легковых автомобилей разнообразны и многофункциональны, хотя, конечно, их основное предназначение — перевозка пассажиров и небольшой поклажи.

В зависимости от формы кузова и количества посадочных мест легковые автомобили делятся на следующие типы.

Седан — машина с двумя, четырьмя или даже шестью боковыми дверями. Характерные черты — моторный отсек и багажное отделение у седанов вынесены наружу, то есть изолированы от салона (рис. 1.2). Седаны, имеющие шесть боковых дверей и перегородку, отделяющую водительскую секцию салона от пассажирской, называют лимузинами.

Рис. 1.2.Седан — самый распространенный тип кузова

Купе — двухдверный кузов с одним или двумя рядами полноразмерных или укороченных сидений (есть варианты, в которых задние сиденья — детские) (рис. 1.3).

Универсал — автомобиль с дверью в задней стенке кузова. Отличается от остальных типов тем, что имеет постоянный грузовой отсек, не отделяющийся от пассажирского стационарной перегородкой (рис. 1.4).

Рис. 1.3. Купе

Рис. 1.4. Универсалы любят дачники и путешественники

Хетчбэк — гибрид седана и универсала.

В наше время довольно популярный тип кузова. Как и в универсале, в хетчбэке задний ряд сидений складывается (рис. 1.5).

Рис. 1.5. Хетчбэк

Вагон — он же мини-вэн. Характерные признаки — моторный отсек и багажное отделение не выступают за пределы кузова (рис. 1.6).

Рис. 1.6. Мини-вэн удобен для семейных поездок

Кабриолет — автомобиль со складывающимся верхом и опускающимися боковыми стеклами окон (рис. 1.7).

Рис. 1.7. Кабриолет

Джип — все более популярный тип кузова: вытянутый вверх хетчбэк (рис. 1.8).

Рис. 1.8. Джип

Пикап — закрытая кабина (одно— или двухрядная) и открытая платформа для грузов с откидным задним бортом (может иметь мягкий или жесткий верх) (рис. 1.9).

Рис. 1.9. Пикап удобен при перевозке грузов

Классификация по типу и рабочему объему двигателя

Большинство современных автомобилей оснащено двигателями, работающими на бензине или на дизельном топливе. Следовательно, по типу двигателя автомобили делятся на бензиновые и дизельные.

По рабочему объему двигателей машины классифицируются следующим образом:

♦ особо малый класс (так называемые малолитражки) — до 1,1 литра;

♦ малый класс — от 1,1 до 1,8 литра;

♦ средний класс — от 1,8 до 3,5 литра;

♦ большой класс — 3,5 литра и более.

Классификация по типу привода колес

В зависимости от того, на какую колесную ось (переднюю или заднюю) передается крутящий момент от двигателя, автомобили делятся на заднеприводные, переднеприводные и полноприводные.

Заднеприводные — автомобили, у которых крутящий момент от двигателя передается на задние колеса (рис. 1.10).

Рис. 1.10. Заднеприводной автомобиль

Движение происходит по толкательному принципу: задние (ведущие) колеса толкают вперед автомобиль, а передние (ведомые) служат для изменения направления движения.

Переднеприводные — автомобили, в которых крутящий момент от двигателя передается на передние колеса, которые тащат за собой всю машину и служат для изменения направления движения (рис. 1.11).

Кстати, переднеприводной автомобиль более устойчив на дороге.

Рис. 1.11. Переднеприводной автомобиль

Полноприводные — автомобили, в которых крутящий момент передается и на передние, и на задние колеса одновременно (рис. 1.12).

Рис. 1.12. Полноприводной автомобиль: а — с раздаточной коробкой; б — с полным приводом, подключаемым автоматически; в — с постоянным полным приводом

Классификация по габаритным размерам

В современной автомобильной промышленности различают шесть европейских классов в зависимости от габаритных размеров автомобиля. Классы обозначаются буквами латинского алфавита: A, B, C, D, E, S (или F) (рис. 1.13).

Рис. 1.13. Классификация автомобилей по габаритным размерам

♦ А — мини-класс. Характеризуется длиной не более 3,6 м и шириной до 1,6 м. Такие автомобили могут быть как трех-, так и пятидверными.

♦ В — малый класс. Длина кузова — от 3,6 до 3,9 м, ширина — от 1,5 до 1,7 м.

♦ С — низший средний класс (в народе — гольф-класс или компакт-класс). Длина таких машин — от 3,9 до 4,4 м, ширина — от 1,6 до 1,75 м.

♦ D — средний класс. К этой категории относятся автомобили длиной от 4,4 до 4,7 м и шириной от 1,7 до 1,8 м.

♦ Е — высший средний класс, или бизнескласс. Это кузова от 4,6 до 4,8 м в длину и более 1,7 м в ширину.

♦ S (F) — класс люкс (представительский класс). Автомобили длиной свыше 4,8 м и шириной более 1,7 м.

2. Двигатель внутреннего сгорания (ДВС)

Общее устройство и работа ДВС

Почти на всех современных автомобилях в качестве силовой установки применяется двигатель внутреннего сгорания (ДВС) (рис. 2.1).

Существуют еще электромобили, но их мы рассматривать не будем.

Рис. 2.1. Внешний вид двигателя внутреннего сгорания

В основе работы каждого ДВС лежит движение поршня в цилиндре под действием давления газов, которые образуются при сгорании топливной смеси, именуемой в дальнейшем рабочей.

При этом горит не само топливо. Горят только его пары, смешанные с воздухом, которые и являются рабочей смесью для ДВС. Если поджечь эту смесь, она мгновенно сгорает, многократно увеличиваясь в объеме. А если поместить смесь в замкнутый объем, а одну стенку сделать подвижной, то на эту стенку будет воздействовать огромное давление, которое будет двигать стенку.

ПРИМЕЧАНИЕ

В ДВС из каждых 10 литров топлива только около 2 литров используется на полезную работу, остальные 8 литров сгорают впустую. То есть КПД ДВС составляет всего 20 %.

ДВС, используемые на легковых автомобилях, состоят из двух механизмов: кривошипношатунного и газораспределительного, а также из следующих систем:

♦ питания;

♦ выпуска отработавших газов;

♦ зажигания;

♦ охлаждения;

♦ смазки.

Основные детали ДВС:

♦ головка блока цилиндров;

♦ цилиндры;

♦ поршни;

♦ поршневые кольца;

♦ поршневые пальцы;

♦ шатуны;

♦ коленчатый вал;

♦ маховик;

♦ распределительный вал с кулачками;

♦ клапаны;

♦ свечи зажигания.

Большинство современных автомобилей малого и среднего класса оснащены четырехцилиндровыми двигателями. Существуют моторы и большего объема — с восьмью и даже двенадцатью цилиндрами (рис. 2.2). Чем больше объем двигателя, тем он мощнее и тем выше потребление топлива.

Рис. 2.2. Схемы расположения цилиндров в двигателях различной компоновки:

а — четырехцилиндровые; б — шестицилиндровые; в — двенадцатицилиндровые (α — угол развала)

Принцип работы ДВС проще всего рассматривать на примере одноцилиндрового бензинового двигателя. Такой двигатель состоит из цилиндра с внутренней зеркальной поверхностью, к которому прикручена съемная головка. В цилиндре находится поршень цилиндрической формы — стакан, состоящий из головки и юбки (рис. 2.3). На поршне есть канавки, в которых установлены поршневые кольца. Они обеспечивают герметичность пространства над поршнем, не давая возможности газам, образующимся при работе двигателя, проникать под поршень. Кроме того, поршневые кольца не допускают попадания масла в пространство над поршнем (масло предназначено для смазки внутренней поверхности цилиндра). Иными словами, эти кольца играют роль уплотнителей и делятся на два вида: компрессионные (те, которые не пропускают газы) и маслосъемные (препятствующие попаданию масла в камеру сгорания) (рис. 2.4).

Рис. 2.3. Поршень

Смесь бензина с воздухом, приготовленная карбюратором или инжектором, попадает в цилиндр, где сжимается поршнем и поджигается искрой от свечи зажигания. Сгорая и расширяясь, она заставляет поршень двигаться вниз. Так тепловая энергия превращается в механическую.

Рис. 2.4. Поршень с шатуном:

1 — шатун в сборе; 2 — крышка шатуна; 3 — вкладыш шатуна; 4 — гайка болта; 5 — болт крышки шатуна; 6 — шатун; 7 — втулка шатуна; 8 — стопорные кольца; 9 — палец поршня; 10 — поршень; 11 — маслосъемное кольцо; 12, 13 — компрессионные кольца

Далее следует преобразование хода поршня во вращение вала. Для этого поршень с помощью пальца и шатуна шарнирно соединен с кривошипом коленчатого вала, который вращается на подшипниках, установленных в картере двигателя (рис. 2.5).

В результате перемещения поршня в цилиндре сверху вниз и обратно через шатун происходит вращение коленчатого вала.

Верхней мертвой точкой (ВМТ) называется самое верхнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вверх и готов начать движение вниз) (см. рис. 2.3). Самое нижнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вниз и готов начать движение вверх) называют нижней мертвой точкой (НМТ) (см. рис. 2.3). А расстояние между крайними положениями поршня (от ВМТ до НМТ) называется ходом поршня.

Рис. 2.5. Коленчатый вал с маховиком:

1 — коленчатый вал; 2 — вкладыш шатунного подшипника; 3 — упорные полукольца; 4 — маховик; 5 — шайба болтов крепления маховика; 6 — вкладыши первого, второго, четвертого и пятого коренных подшипников; 7 — вкладыш центрального (третьего) подшипника

Когда поршень перемещается сверху вниз (от ВМТ до НМТ), объем над ним изменяется от минимального до максимального. Минимальный объем в цилиндре над поршнем при его положении в ВМТ — это камера сгорания.

А объем над цилиндром, когда он находится в НМТ, называют рабочим объемом цилиндра.

В свою очередь, рабочий объем всех цилиндров двигателя в сумме, выраженный в литрах, называется рабочим объемом двигателя. Полным объемом цилиндра называется сумма его рабочего объема и объема камеры сгорания в момент нахождения поршня в НМТ.

Важной характеристикой ДВС является его степень сжатия, которая определяется как отношение полного объема цилиндра к объему камеры сгорания. Степень сжатия показывает, во сколько раз сжимается поступившая в цилиндр топливо-воздушная смесь при перемещении поршня от НМТ к ВМТ. У бензиновых двигателей степень сжатия находится в пределах 6–14, у дизельных — 14–24. Степень сжатия во многом определяет мощность двигателя и его экономичность, а также существенно влияет на токсичность отработавших газов.

Мощность двигателя измеряется в киловаттах либо в лошадиных силах (используется чаще). При этом 1 л. с. равна примерно 0,735 кВт.

Как мы уже говорили, работа двигателя внутреннего сгорания основана на использовании силы давления газов, образующихся при сгорании в цилиндре топливо-воздушной смеси.

В бензиновых и газовых двигателях смесь воспламеняется от свечи зажигания (рис. 2.6), в дизельных — от сжатия.

Рис. 2.6. Свеча зажигания

При работе одноцилиндрового двигателя его коленчатый вал вращается неравномерно: в момент сгорания горючей смеси резко ускоряется, а все остальное время замедляется.

Для повышения равномерности вращения на коленчатом валу, выходящем наружу из корпуса двигателя, закрепляют массивный диск — маховик (см. рис. 2.5). Когда двигатель работает, вал с маховиком вращаются.

А сейчас поговорим немного подробнее о работе одноцилиндрового двигателя.

Повторим, первое действие — попадание внутрь цилиндра (в пространство над поршнем) топливо-воздушной смеси, которую приготовил карбюратор или инжектор. Этот процесс называется тактом впуска (первый такт). Заполнение цилиндра двигателя топливо-воздушной смесью происходит, когда поршень из верхнего положения движется в нижнее. При этом к цилиндру двигателя подведены два канала: впускной и выпускной. Горючая смесь впускается через первый канал, а продукты ее сгорания выходят через второй. Непосредственно перед входом в цилиндр в этих каналах установлены клапаны. Их принцип действия очень прост: клапан — это подобие гвоздя с большой круглой шляпкой, перевернутый шляпкой вниз, которой закрывается вход из канала в цилиндр.

При этом шляпка прижимается к кромке канала мощной пружиной и закупоривает его.

Если нажать на клапан (тот самый гвоздь), преодолев сопротивление пружины, то вход в цилиндр из канала откроется (рис. 2.7).

Первый такт — впуск

Во время этого такта поршень перемещается из ВМТ в НМТ. При этом впускной клапан открыт, а выпускной закрыт. Через впускной клапан цилиндр заполняется горючей смесью до тех пор, пока поршень не окажется в НМТ, то есть его дальнейшее движение вниз станет невозможным. Из ранее сказанного мы с вами уже знаем, что перемещение поршня в цилиндре влечет за собой перемещение кривошипа, а следовательно, вращение коленчатого вала и наоборот. Так вот, за первый такт работы двигателя (при перемещении поршня из ВМТ в НМТ) коленвал проворачивается на пол-оборота.

Второй такт — сжатие

После того как топливо-воздушная смесь, приготовленная карбюратором или инжектором, попала в цилиндр, смешалась с остатками отработавших газов и за ней закрылся впускной клапан, она становится рабочей.

Теперь наступил момент, когда рабочая смесь заполнила цилиндр и деваться ей стало некуда: впускной и выпускной клапаны надежно закрыты. В этот момент поршень начинает движение снизу вверх (от НМТ к ВМТ) и пытается прижать рабочую смесь к головке цилиндра (см. рис. 2.7). Однако, как говорится, стереть в порошок эту смесь ему не удастся, поскольку преступить черту ВМТ поршень не может, а внутреннее пространство цилиндра проектируют так (и соответственно располагают коленчатый вал и подбирают размеры кривошипа), чтобы над поршнем, находящимся в ВМТ, всегда оставалось пусть не очень большое, но свободное пространство — камера сгорания. К концу такта сжатия давление в цилиндре возрастает до 0,8–1,2 МПа, а температура достигает 450–500 °C.

Рис. 2.7. Процесс работы четырехтактного двигателя:

а — такт впуска; б — такт сжатия; в — такт рабочего хода; г — такт выпуска

Третий такт — рабочий ход

Третий такт — самый ответственный момент, когда тепловая энергия превращается в механическую. В начале третьего такта (а на самом деле в конце такта сжатия) горючая смесь воспламеняется с помощью искры свечи зажигания (рис. 2.8). Давление от расширяющихся газов передается на поршень, и он начинает двигаться вниз (от ВМТ к НМТ). При этом оба клапана (впускной и выпускной) закрыты. Рабочая смесь сгорает с выделением большого количества тепла, давление в цилиндре резко возрастает, и поршень с большой силой перемещается вниз, приводя во вращение через шатун коленчатый вал. В момент сгорания температура в цилиндре повышается до 1800–2000 °C, а давление — до 2,5–3,0 МПа.

Рис. 2.8. Искра между электродами свечи

Обратите внимание, что главная цель создания самого двигателя — это как раз и есть третий такт (рабочий ход). Поэтому остальные такты называют вспомогательными.

Четвертый такт — выпуск

Во время этого процесса впускной клапан закрыт, а выпускной открыт. Поршень, перемещаясь снизу вверх (от НМТ к ВМТ), выталкивает оставшиеся в цилиндре после сгорания и расширения отработавшие газы через открытый выпускной клапан в выпускной канал (трубопровод). Далее через систему выпуска отработавших газов, наиболее известная часть которой — глушитель, отработавшие газы уходят в атмосферу (рис. 2.9).

Рис. 2.9. Фрагмент глушителя

Все четыре такта периодически повторяются в цилиндре двигателя, тем самым обеспечивая его непрерывную работу, и называются рабочим циклом.

Рабочий цикл дизельного двигателя имеет некоторые отличия от рабочего цикла бензинового. В нем во время такта впуска в цилиндр поступает не горючая смесь, а чистый воздух.

Во время такта сжатия он сжимается и нагревается. В конце первого такта, когда поршень приближается к ВМТ, в цилиндр через специальное устройство — форсунку, ввернутую в верхнюю часть головки цилиндра, — под большим давлением впрыскивается дизельное топливо. Соприкасаясь с раскаленным воздухом, частицы топлива быстро сгорают.

При этом выделяется большое количество тепла и температура в цилиндре повышается до 1700–2000 °C, а давление — до 7–8 МПа.

Под действием давления газов поршень перемещается вниз, и происходит рабочий ход.

Такт выпуска дизельного двигателя аналогичен такту выпуска бензинового двигателя.

Вспомогательные такты (первый, второй и четвертый) совершаются за счет кинетической энергии тщательно сбалансированного массивного чугунного диска, закрепленного на валу двигателя — маховика, о котором также шла речь выше. Кроме обеспечения равномерного вращения коленчатого вала, маховик способствует преодолению сопротивления сжатия в цилиндрах двигателя при его пуске, а также позволяет ему преодолевать кратковременные перегрузки, например, при трогании автомобиля с места. На ободе маховика закреплен зубчатый венец для пуска двигателя стартером. Во время третьего такта (рабочего хода) поршень через шатун, кривошип и коленчатый вал передает запас инерции маховику. Инерция помогает ему осуществлять вспомогательные такты рабочего цикла двигателя. Из этого следует, что при тактах впуска, сжатия и выпуска поршень ходит в цилиндре именно за счет энергии, отдаваемой маховиком. В многоцилиндровом двигателе порядок работы цилиндров устанавливается таким образом, чтобы рабочий ход хотя бы одного поршня помогал осуществлять вспомогательные такты и плюс ко всему вращал маховик.

А теперь подведем итоги: совокупность последовательных процессов, периодически повторяющихся в каждом цилиндре двигателя и обеспечивающих его непрерывную работу, называется рабочим циклом. Рабочий цикл четырехтактного двигателя состоит из четырех тактов, каждый из которых происходит за один ход поршня или за пол-оборота коленчатого вала. Полный рабочий цикл осуществляется за два оборота коленчатого вала.

Порядок работы цилиндров четырехцилиндрового двигателя: 1-3-4-2. Пятицилиндрового, как правило, — 1-2-4-3-5.

Бензиновые и дизельные двигатели

По характеру рабочего процесса поршневые ДВС, устанавливаемые на большинстве автомобилей, делятся на двигатели с внешним смесеобразованием и воспламенением топливо-воздушной смеси от электрической искры и с внутренним смесеобразованием и воспламенением смеси от сжатия. Первые работают на бензине, вторые — на дизельном топливе.

Бензиновые двигатели работают на жидком топливе с принудительным зажиганием. Перед попаданием в цилиндры топливо в определенных пропорциях смешивается с воздухом — эту функцию выполняют карбюратор или инжектор, закрепляемые на двигателе снаружи. По-этому бензиновые двигатели называют также двигателями с внешним смесеобразованием.

Дизельные двигатели работают на жидком топливе (солярке) по принципу воспламенения от сжатия. Топливо подает в цилиндры форсунка, а уже внутри цилиндров оно смешивается с воздухом.

Есть еще один вид ДВС — газовые, работающие на метане или пропан-бутане. По принципу работы они практически не отличаются от бензиновых.

Кривошипно-шатунный механизм (КШМ)

Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня в цилиндре во вращательное движение коленчатого вала двигателя.

Ранее мы рассматривали устройство и работу одноцилиндрового двигателя. Но на большинстве современных легковых автомобилей установлены моторы с четырьмя и более цилиндрами. Такие моторы имеют либо обычное расположение цилиндров, либо V-образное.

В первом случае цилиндры расположены в одну линию, во втором — в два ряда с некоторым углом между ними. Эта информация нужна исключительно для общего развития, поскольку для успешной сдачи экзамена в ГИБДД необходимо знать устройство и работу лишь двух видов ДВС: с одним цилиндром и с четырьмя (причем на примере советских автомобилей).

У стандартного четырехцилиндрового двигателя кривошипно-шатунный механизм состоит из следующих элементов:

♦ блока цилиндров с картером;

♦ головки блока цилиндров;

♦ поддона картера двигателя;

♦ поршней в комплекте с поршневыми

♦ кольцами и пальцами;

♦ шатунов, на которых закреплены поршни (см. рис. 2.4);

♦ коленчатого вала (см. рис. 2.5);

♦ маховика.

В блоке цилиндров расположены поршни, шатуны и коленчатый вал, образующие шатунно-поршневую группу (рис. 2.10), а также другие системы двигателя.

Блок цилиндров — «сердце» ДВС. Кроме шатунно-поршневой группы, в нем предусмотрены литые и высверленные каналы и отверстия, а также места установки подшипников.

На подшипниках в блоке цилиндров вращается коленчатый вал (см. рис. 2.5). Во внутренних полостях блока, между его двойными стенками, циркулирует охлаждающая жидкость, там же проходят специальные каналы системы смазки двигателя, по которым циркулирует масло. Наружное оборудование двигателя монтируется преимущественно на блоке цилиндров и при работающем моторе составляет с ним единое целое. Нижняя часть блока называется картером и представляет собой поддон (резервуар) для масла.

Рис. 2.10. Детали шатунно-поршневой группы:

1 — маслосъемное поршневое кольцо; 2, 3 — компрессионные поршневые кольца; 4, 6 — поршни; 5 — поршневой палец; 7 — шатун; 8 — крышка шатуна; 9 — шатунный вкладыш; 10 — отверстие на шатуне для выхода масла; 11 — метка «П» на поршне

Верхняя часть двигателя — вторая по значимости и по величине его составляющая — называется головкой блока цилиндров. В ней расположены камеры сгорания, клапаны и свечи зажигания, а также распределительный вал (на большинстве двигателей легковых автомобилей). В головке, как и в блоке цилиндров, предусмотрены каналы и полости для циркуляции охлаждающей жидкости и масла. Головка крепится к блоку цилиндров с помощью резьбовых соединений, а сверху через прокладку закрывается штампованной крышкой.

ДВС работает в очень жестком режиме: коленчатый вал двигателя на холостом ходу совершает около 1000 оборотов в минуту, то есть за секунду — около 16 полных вращений.

При движении автомобиля количество оборотов возрастает в 2–5 раз, то есть всего лишь за одну секунду коленвал совершает до 80 оборотов. При этом коленвал связан с поршнями, причем всего за пол-оборота вала поршень проделывает весь путь в цилиндре сверху вниз или наоборот, а за полный оборот — совершает два хода, да еще с полной остановкой в верхней и нижней мертвых точках и последующим изменением направления движения на противоположное. При этом поршни перемещаются в цилиндрах при очень высоких температурах и давлении.

Газораспределительный механизм (ГРМ)

Газораспределительный механизм предназначен для своевременного впуска в цилиндры двигателя горючей смеси и выпуска отработавших газов. Также он обеспечивает надежную изоляцию камеры сгорания от окружающей среды во время тактов сжатия и рабочего хода.

ГРМ состоит из следующих основных элементов (рис. 2.11):

♦ распределительного вала;

♦ рычагов;

♦ ремня газораспределительного механизма (ремень ГРМ) или цепи;

♦ впускных и выпускных клапанов с мощными пружинами;

♦ впускных и выпускных каналов.

Рис. 2.11. Газораспределительный механизм:

1 — коленчатый вал; 2 — ведущая звездочка; 3 — звездочка натяжного устройства; 4 — двуплечий рычаг; 5 — пружина; 6 — регулировочный винт; 7 — коромысло; 8 — ось коромысла; 9 — наконечник регулировочного винта; 10 — опорная шайба пружины; 11 — наружная и внутренняя пружины; 12 — крепления опорной шайбы на клапане; 13, 16 — выпускной и впускной клапаны; 14 — кулачок; 15 — ведомая звездочка распределительного вала; 17 — упорный фланец

Распределительный вал в большинстве двигателей легковых автомобилей установлен на головке блока цилиндров. Его образуют кулачки (эксцентрики), количество которых соответствует числу клапанов двигателя, то есть каждый кулачок работает только со своим конкретным клапаном. При вращении распределительного вала его кулачки через рычаги воздействуют на клапаны. Этим обеспечивается своевременное открытие и закрытие впускных и выпускных клапанов. Иными словами, для открытия и закрытия клапанов должен повернуться распределительный (или кулачковый) вал.

В большинстве ДВС распредвал вращается от коленвала: с помощью или цепной передачи, или зубчатого ремня, натяжение которых регулируется специальными устройствами.

Ременный привод работает тише, прост в установке, не требует смазки, упрощает конструкцию двигателя и снижает его массу. Цепной привод имеет обратный эффект. Но если рвется ремень ГРМ, выходят из строя клапаны, если же повреждена цепь, то «страдает» фактически только она. Натяжение в цепном приводе регулируется подпружиненным плунжером, а ремня — роликом.

Большинство современных двигателей оснащено ременным приводом распредвала.

На примере одноцилиндрового ДВС рассмотрим работу газораспределительного механизма (см. рис. 2.7). Распредвал, получив вращение от коленвала, поворачивается. Его кулачок набегает на рычаг, который нажимает на стержень подпружиненного клапана и, преодолев сопротивление пружины, открывает его. Продолжая вращаться, кулачок сбегает с рычага (толкателя), и под воздействием пружины клапан закрывается. Дальше поршень через открытый впускной или выпускной клапан соответственно засасывает горючую смесь или выталкивает отработавшие газы.

Для лучшего наполнения цилиндров рабочей смесью впускной клапан открывается чуть раньше того момента, когда поршень достигает ВМТ, а выпускной (для лучшей очистки от отработавших газов) — несколько раньше, чем поршень доходит до НМТ. В результате впускной клапан начинает открываться в тот момент, когда выпускной клапан еще полностью не закрылся. Такое положение клапанов называется их перекрытием. Когда же оба клапана в одном цилиндре надежно закрыты, происходит такт сжатия или рабочий ход поршня.

Система питания карбюраторного двигателя

Система питания двигателя предназначена для хранения, очистки и подачи топлива, очистки воздуха, приготовления горючей смеси и по-дачи ее в цилиндры двигателя. Количество и качество этой смеси должно быть разным при различных режимах работы двигателя, что также находится «в компетенции» системы питания. Поскольку мы будем рассматривать работу бензиновых двигателей, топливом у нас всегда будет бензин.

В зависимости от вида устройства, осуществляющего подготовку топливо-воздушной смеси, двигатели могут быть инжекторными, карбюраторными или оборудованными моновпрыском.

Система питания состоит из следующих основных элементов (рис. 2.12):

♦ топливного бака;

♦ топливопроводов;

♦ фильтров очистки топлива;

♦ топливного насоса;

♦ воздушного фильтра;

♦ карбюратора или инжектора с электронной системой управления.

Топливный бак (или бензохранилище) — это специальная металлическая емкость вместимостью 40–80 литров, которая чаще всего устанавливается в задней (более безопасной) части легкового автомобиля. Топливо в бензобак заливают через горловину, в которой предусмотрена трубка для выхода воздуха при заправке. На некоторых машинах в самой нижней точке бензобака есть сливная пробка, позволяющая при необходимости полностью очистить бак от нежелательных составляющих бензина — воды и мусора.

Бензин, залитый в бак легкового автомобиля, предварительно очищается сетчатым фильтром, установленным внутри бака на топливозаборнике. В бензобаке также размещен датчик уровня топлива (поплавок с реостатом), показания которого выводятся на щиток приборов.

Из топливного бака бензин подается к карбюратору по топливопроводу, который проходит под днищем автомобиля. По пути топливо проходит через фильтр тонкой очистки. Бензин из бака отправляет «в дорогу» топливный насос. Топливные насосы бывают механические и электрические. Механические насосы используют для машин с карбюраторными двигателями. На автомобили, оборудованные электронным впрыском, устанавливают электрические насосы.

Рис. 2.12. Система питания автомобиля:

1 — топливный бак; 2 — датчик указателя уровня топлива; 3 — карбюратор; 4 — воздушный фильтр; 5 — топливный насос; 6 — шланг подвода нагретого воздуха; 7 — выпускной трубопровод; 8 — дополнительный глушитель; 9 — основной глушитель; 10 — труба глушителя; 11 — топливопровод

Поскольку сейчас мы рассматриваем систему питания карбюраторного двигателя, остановимся подробнее на механических насосах.

Механический насос (рис. 2.13) состоит из корпуса, подпружиненной диафрагмы с механизмом привода, впускного и нагнетательного (выпускного) клапанов, а также сетчатого фильтра. Топливный насос в зависимости от марки автомобиля приводится в действие либо эксцентриком (кулачком) распредели тельного вала, либо эксцентриком, размещенным на валу привода масляного насоса и прерывателя-распределителя. В обоих случаях вращающийся эксцентрик качает рычаг привода топливного насоса, прижатый к нему пружиной. Этот рычаг воздействует на шток с подпружиненной диафрагмой.

Когда рычаг тянет шток с диафрагмой вниз, пружина диафрагмы сжимается, и над ней создается разрежение, под действием которого впускной клапан, преодолев усилие своей пружины, открывается. Через этот клапан топливо из бака втягивается в пространство над диафрагмой. Когда рычаг освобождает шток диафрагмы (часть рычага, связанная со штоком, перемещается вверх), диафрагма под действием собственной пружины также перемещается вверх, впускной клапан закрывается, и бензин выдавливается через нагнетательный клапан к карбюратору. Этот процесс происходит при каждом повороте приводного вала с эксцентриком.

Рис. 2.13. Схема работы топливного насоса:

1 — фильтр; 2 — всасывающий клапан; 3 — нагнетательный клапан; 4 — подводная трубка; 5 — головка топливного насоса; 6 — штанга привода; 7 — тяга диафрагмы; 8 — рычаг привода топливного насоса; 9 — ось рычага привода

Бензин в карбюратор выталкивается только за счет усилия пружины диафрагмы при перемещении ее вверх. При заполнении карбюратора до необходимого уровня его специальный игольчатый клапан перекроет доступ бензина. Так как качать топливо будет некуда, диафрагма топливного насоса останется в нижнем положении: ее пружина будет не в силах преодолеть создавшееся сопротивление. И лишь когда двигатель израсходует часть топлива из карбюратора, его игольчатый клапан откроется и диафрагма под действием пружины сможет втолкнуть новую порцию топлива из бензонасоса в карбюратор.

Бензонасос имеет рычажок, выступающий из его корпуса наружу. Он предназначен для ручной подкачки топлива (например, при испарении бензина из карбюратора из-за длительного перерыва в эксплуатации).

Воздушный фильтр (рис. 2.14), расположенный сверху на карбюраторе, очищает воздух от пыли и других механических примесей перед поступлением его в карбюратор для последующего смешивания с бензином. В воздушный фильтр воздух поступает через трубу воздухозаборника, которая затем разделяется на две части. Через одну часть холодный воздух всасывается в теплую погоду (летом), через другую часть воздух, подогретый выпускным коллектором, всасывается в холодную погоду (зимой). Переход от «лета» к «зиме» и наоборот на разных автомобилях выполняется по-разному: либо с помощью специального рычажка-переключателя, либо поворотом корпуса воздушного фильтра, либо автоматически.

Рис. 2.14. Воздушный фильтр двигателя:

1 — гайка; 2 — шайба; 3 — уплотняющая прокладка; 4 — регулирующая перегородка; 5 — прокладка регулирующей перегородки; 6 — фильтрующий элемент приточной вентиляции картера; 7 — фильтрующий элемент воздуха; 8 — крышка; 9 — приемный патрубок подогретого воздуха; 10 — приемный патрубок холодного воздуха; 11 — корпус

Общее устройство карбюратора

Карбюратор предназначен для приготовления горючей смеси, разной по качеству (соотношению бензина и воздуха) и количеству в зависимости от режимов работы двигателя, и ее подачи в цилиндры двигателя.

Элементарный карбюратор состоит из следующих основных элементов (рис. 2.15):

♦ поплавковой камеры;

♦ поплавка с игольчатым запорным клапаном;

♦ распылителя;

♦ смесительной камеры;

♦ диффузора;

♦ воздушной и дроссельной заслонок;

♦ топливных и воздушных каналов с жиклерами.

Рис. 2.15. Схема карбюратора:

1 — рычаг ускорительного насоса; 2 — винт регулировки подачи топлива ускорительным насосом; 3 — топливный жиклер переходной системы второй камеры; 4 — воздушный жиклер эконостата; 5 — воздушный жиклер переходной системы; 6 — топливный жиклер эконостата; 7 — воздушный жиклер главной дозирующей системы второй камеры; 8 — эмульсионный жиклер эконостата; 9 — распылитель эконостата; 10 — распылитель главной дозирующей системы второй камеры; 11 — клапан распылителя ускорительного насоса; 12 — распылитель ускорительного насоса; 13 — воздушная заслонка; 14 — малый диффузор первой камеры; 15 — воздушный жиклер главной дозирующей системы первой камеры; 16 — воздушный жиклер пускового устройства; 17 — тяга; 18 — воздушный жиклер системы холостого хода; 19 — игольчатый клапан; 20 — топливный фильтр; 21 — электромагнитный клапан; 22 — топливный жиклер системы холостого хода; 23 — главный топливный жиклер первой камеры; 24 — корпус экономайзера; 25 — эмульсионный жиклер системы холостого хода; 26 — дроссельная заслонка первой камеры; 27 — распылитель главной дозирующей системы первой камеры; 28 — дроссельная заслонка второй камеры; 29 — главный топливный жиклер второй камеры

В поплавковой камере постоянный уровень топлива поддерживается поплавком, соединенным с игольчатым клапаном. По мере расходования топлива поплавок опускается, открывается игольчатый клапан и новая порция бензина вливается в топливную камеру. При достижении нормального уровня в поплавковой камере поплавок, всплывая, закрывает иглой входное отверстие и прекращает доступ бензина. По трубке распылителя бензин из поплавковой камеры попадает в смесительную камеру, где смешивается с поступающим из входного патрубка воздухом. Уровень топлива в поплавковой камере несколько ниже кромки выходного отверстия распылителя, поэтому при неработающем двигателе топливо из поплавковой камеры не вытекает даже при наклонном положении машины.

Для дозирования бензина в нижнюю часть трубки распылителя ввернут жиклер, представляющий собой пробку с калиброванным отверстием. Диффузор (суженный внутри короткий патрубок) служит для увеличения скорости воздушного потока в центре смесительной камеры и создания разрежения около конца распылителя (при работающем двигателе), что необходимо для высасывания топлива из топливной камеры и лучшего его распыления. Количество горючей смеси, подаваемой в цилиндры двигателя, регулируется дроссельной заслонкой, связанной с педалью газа. Эта заслонка изменяет площадь проходного сечения за смесительной камерой. Водитель управляет заслонкой с помощью педали газа, расположенной под его правой ногой.

Простейший карбюратор не способен приготовить оптимальную по составу горючую смесь во всех режимах работы двигателя.

При увеличении степени открытия дроссельной заслонки смесь будет обогащаться.

Оптимальное же изменение состава смеси должно быть другим.

Современные карбюраторы бензиновых двигателей значительно отличаются от элементарного карбюратора главным образом за счет наличия дополнительных вспомогательных устройств, позволяющих в тех или иных режимах работы двигателя в определенной степени обеднять или обогащать смесь. Различают карбюраторы с восходящим, горизонтальным и падающим потоком. Наиболее часто используют карбюраторы с падающим потоком, в которых смесь в смесительной камере движется сверху вниз. Карбюратор может иметь одну или две камеры. В последнем случае они могут устанавливаться последовательно или параллельно. Чаще всего используются двухкамерные карбюраторы с параллельным расположением камер.

В общем случае современный карбюратор состоит из следующих основных устройств: главного дозирующего устройства, пускового устройства, системы холостого хода, экономайзера, ускорительного насоса, балансировочного устройства и ограничителя частоты вращения коленчатого вала. Иногда в состав карбюратора входят также эконостат и система принудительного холостого хода.

Кроме того, обычно под панелью приборов или прямо на ней есть специальная рукоятка, которая управляет воздушной заслонкой карбюратора. В народе — попросту «подсос». Вытягивая ее, водитель прикрывает воздушную заслонку, ограничивая доступ воздуха и увеличивая разрежение в смесительной камере карбюратора. В результате бензин из поплавковой камеры высасывается более интенсивно и при недостатке воздуха готовит для мотора обогащенную горючую смесь, которая и необходима для пуска холодного двигателя.

Наиболее экономично карбюратор работает при средних нагрузках. Движение рывками (резкий разгон — торможение) увеличивает расход топлива, так как при резком нажатии на педаль газа двигателю для быстрого набора оборотов и исключения провалов в работе требуется обогащенная смесь.

Итак, подведем промежуточный итог: карбюратор — это сложное механическое устройство, смешивающее бензин с воздухом в определенных пропорциях и осуществляющее доставку подготовленной смеси к цилиндрам двигателя.

Простейший карбюратор доставляет топливо пропорционально количеству воздуха, проходящего через него.

Система питания двигателя с впрыском топлива

С середины 1980-х годов карбюраторы стали вытесняться более эффективными инжекторными системами. Главными их преимуществами являются лучшие пусковые свойства (они меньше зависят от окружающей температуры), надежность, экономичность, лучшие мощностные характеристики, а также меньшая токсичность выхлопа. Однако инжекторные системы более привередливы к качеству бензина. Так, не допускается работа двигателей с системой впрыска топлива на этилированном бензине. Это приводит к выходу из строя нейтрализатора и датчика концентрации кислорода.

Слово injector в переводе с английского означает «форсунка» (рис. 2.16). Первые системы питания, использовавшие принцип впрыска, появились в конце XIX века, однако из-за сложной конструкции и отсутствия должных систем управления не нашли широкого применения. Вновь о системах впрыска вспомнили в 1960-х годах. Тогда они были исключительно механическими, затем им на смену пришли современные системы впрыска с электронным управлением. Эти системы в зависимости от количества форсунок и места впрыска топлива делятся на одноточечные (моновпрысковые) (рис. 2.17, а) и многоточечные (в них каждый цилиндр имеет персональную форсунку, впрыскивающую топливо во впускной коллектор в непосредственной близости от впускного клапана конкретного цилиндра) (рис. 2.17, б).

Рис. 2.16. Электромагнитная форсунка

Моновпрыск направляет подготовленную смесь во впускной коллектор. В этом он схож с карбюратором. На современных транспортных средствах работой инжекторов и моновпрысков управляют электронные процессоры. Они контролируют работу каждого цилиндра.

Рассмотрим устройство простейшей инжекторной системы (рис. 2.18). Она включает в себя следующие элементы:

♦ электрический бензонасос;

♦ регулятор давления;

♦ электронный блок управления;

♦ датчики угла поворота дроссельной заслонки, температуры охлаждающей жидкости и количества оборотов коленчатого вала;

♦ инжектор.

Во впрысковой системе питания используют двухступенчатый неразборный электрический бензонасос роторно-роликового типа. Его устанавливают в топливном баке. Такой насос подает топливо под давлением свыше 280 кПа.

Регулятор давления поддерживает необходимую разницу давлений между топливом в форсунках и воздухом во впускном коллекторе. Он выполнен в виде мембранного клапана, установленного на топливной рампе. При повышении нагрузки двигателя этот регулятор увеличивает давление топлива, подаваемого к форсункам, а при снижении — уменьшает, возвращая избыток топлива по сливной магистрали в бак.

Рис. 2.17. Системы впрыска: а — одноточечная; б — многоточечная

Электронный блок управления (компьютер) — «мозг» системы впрыска топлива. Он обрабатывает информацию от датчиков и управляет всеми элементами системы питания. В него непрерывно поступают сведения о напряжении в бортовой сети автомобиля, его скорости, положении и количестве оборотов коленчатого вала, положении дроссельной заслонки, массовом расходе топлива, температуре охлаждающей жидкости, наличии детонации, содержании кислорода в выхлопе. Используя эту информацию, блок управляет подачей топлива, системой зажигания, регулятором холостого хода, вентилятором системы охлаждения, адсорбером системы улавливания паров бензина (в качестве адсорбера применяется активированный уголь), системой диагностики и т. д.

Рис. 2.18. Инжекторная система:

1 — топливный бак; 2 — электробензонасос; 3 — топливный фильтр; 4 — регулятор давления топлива; 5 — форсунка; 6 — электронный блок управления; 7 — датчик массового расхода воздуха; 8 — датчик положения дроссельной заслонки; 9 — датчик температуры ОЖ; 10 — регулятор ХХ; 11 — датчик положения коленвала; 12 — датчик кислорода; 13 — нейтрализатор; 14 — датчик детонации; 15 — клапан продувки адсорбера; 16 — адсорбер

При возникновении неполадок в системе электронный блок управления предупреждает о них водителя с помощью контрольной лампы Check Engine (этот индикатор может быть выполнен как в виде указанной надписи, так и в виде пиктограммы с изображением двигателя). В его оперативной памяти сохраняются диагностические коды, указывающие места возникновения неисправностей. Специалисты с помощью определенных манипуляций или специального считывающего устройства могут получить информацию об этих кодах и быстро обнаружить неполадки.

Датчик положения дроссельной заслонки размещен на дроссельном патрубке и связан с осью дроссельной заслонки. Он представляет собой потенциометр. При нажатии на педаль газа поворачивается дроссельная заслонка и увеличивается напряжение на выходе датчика.

Обрабатывая эту информацию, электронный блок управления корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (то есть в зависимости от того, насколько сильно вы нажмете на педаль газа).

Датчик температуры охлаждающей жидкости — это термистор, то есть резистор, сопротивление которого зависит от температуры: при низкой температуре он имеет высокое сопротивление, а при высокой температуре — низкое. Датчик расположен в потоке охлаждающей жидкости двигателя. Электронный блок управления измеряет падение напряжения на датчике и таким образом определяет температуру охлаждающей жидкости. Эту температуру он постоянно учитывает, управляя работой большинства систем.

Датчик положения коленвала (индуктивный) координирует работу форсунок. С его помощью блок управления, получив информацию о положении коленчатого вала и соответственно о тактах двигателя, дает сигнал на срабатывание конкретной форсунки, которая в нужный момент подает распыленное топливо к соответствующему цилиндру.

Системы впрыска современных автомобилей, в отличие от простейшего инжектора, оборудуют целым рядом дополнительных устройств и датчиков, улучшающих работу двигателя: лямбда-зондом, каталитическим нейтрализатором, датчиками детонации и температуры впускного воздуха и т. д.

Система выпуска отработавших газов

Система выпуска отработавших газов состоит из следующих элементов:

♦ выпускного клапана;

♦ выпускного канала;

♦ приемной трубы глушителя;

♦ дополнительного глушителя (резонатора);

♦ основного глушителя;

♦ соединительных хомутов.

Система выпуска предназначена для отвода отработавших газов от цилиндров двигателя, их охлаждения и уменьшения шума при выбросе в атмосферу.

Двигатель выбрасывает через выпускной канал цилиндра отработавшие газы в выпускной коллектор. С этого момента начинается их движение по системе выпуска.

Система выпуска отработавших газов отечественного легкового автомобиля представлена на рис. 2.19.

Продукты сгорания из выпускного коллектора направляются в приемную трубу резонатора (дополнительного глушителя), а потом и основного глушителя. Внутри обоих устройств установлены перегородки с большим количеством отверстий. Газы, с шумом попадающие в глушитель, вынуждены пройти длинный путь по его закоулкам. При этом звуковая волна существенно ослабевает, а газы охлаждаются.

На работу системы выпуска расходуется до 4 % мощности двигателя. Все соединения в системе выпуска отработавших газов должны быть герметичны. Выпускные элементы двигателя соединяются с помощью специальных жаростойких прокладок, трубы глушителя вдеваются друг в друга и стягиваются хомутами.

В отличие от большинства отечественных автомобилей, системы выпуска многих иномарок снабжены еще одним элементом — катализатором (каталитическим дожигателем) отработавших газов, где происходит нейтрализация вредных веществ. Поэтому такой катализатор еще называют нейтрализатором. В нем дожигаются несгоревшие остатки топлива и фильтруются газы перед выбросом в атмосферу. В нейтрализаторе основные токсичные компоненты отработавших газов — окись углерода (СО), углеводороды (СН) и окись азота (NO) — в результате химических реакций превращаются в нетоксичные газы. Катализаторы могут работать только с двигателями, потребляющими высококачественный неэтилированный бензин. В противном случае они тут же засоряются и выходят из строя.

Рис. 2.19. Схема работы глушителя двигателя:

1 — выпускная труба; 2 — перегородка; 3 — перфорированная труба; 4 — перфорированная перегородка; 5 — основной глушитель; 6 — дополнительный глушитель; 7 — газоприемник; 8 — приемные трубы глушителя

Система зажигания

Система зажигания, хотя и является составной частью электрооборудования автомобиля, заслуживает отдельного разговора.

Система зажигания обеспечивает работу двигателя. В самом конце такта сжатия рабочую смесь необходимо поджечь, за это и отвечает система зажигания, которая используется только в бензиновых и газовых ДВС.

С ее помощью топливовоздушная смесь, попавшая в цилиндры двигателя, поджигается в строго определенный момент. Воспламенение смеси внутри цилиндра происходит при образовании высоковольтной искры между электродами свечи зажигания при подаче к ней напряжения 18 000–20 000 В.

Известны три разновидности систем зажигания: контактная, бесконтактная и микропроцессорная.

Контактная система зажигания на современных автомобилях не применяется, однако ранее она была широко распространена. Она состоит из следующих основных элементов:

♦ катушки зажигания;

♦ прерывателя-распределителя;

♦ вакуумного и центробежного регуляторов опережения зажигания;

♦ свечей зажигания;

♦ включателя (замка) зажигания.

Ненамного опередила контактную бесконтактная система зажигания. Она отличается от контактной системы отсутствием прерывателя. Здесь его заменяет специальное устройство — бесконтактный электронный датчик, посылающий импульсы тока низкого напряжения и распределяющий ток высокого напряжения в соответствии с порядком работы цилиндров двигателя.

В современном автомотостроении широко применяется микропроцессорная система зажигания, входящая в систему управления инжекторными двигателями. Здесь полностью исключены механические приспособления.

Такая система зажигания состоит из модуля зажигания, высоковольтных проводов и свечей зажигания. Устройство управления системой впрыска представляет собой автономный микропроцессорный блок управления зажиганием или блок управления двигателем с подсистемой управления зажиганием.

Это устройство, пользуясь обратной связью, автоматически рассчитывает момент зажигания. При этом учитываются частота вращения коленвала двигателя и его положение, положение распредвала, нагрузка двигателя, определяемая по положению дроссельной заслонки, а также температура охлаждающей жидкости и данные датчика детонации. Регулировка опережения зажигания реализована программно в блоке управления.

Коммутаторы в микропроцессорных системах зажигания также называются воспламенителями. Электронный блок управления выполняет в микропроцессорной системе зажигания функции «головного мозга». Его работа состоит в сборе информации от датчиков. Для определения необходимого момента зажигания считывается информация с датчика положения коленчатого вала, датчика положения распределительного вала, датчика детонации и датчика угла открытия дроссельной заслонки. На основании полученной информации рассчитывается оптимальный момент зажигания, время зарядки катушки и через коммутатор выдаются команды управления первичной цепью катушки.

Блок управления системой зажигания часто объединяют с блоком управления впрыском топлива, устройство которого рассмотрено ранее.

Датчики положения коленчатого и распределительного валов дают информацию о текущих оборотах двигателя, а также о текущем положении распредвала. Датчик детонации во время работы двигателя генерирует сигнал с частотой и амплитудой, зависящей от частоты и амплитуды вибрации двигателя. Этот датчик устанавливают на блоке двигателя.

При возникновении детонации электронный блок управления корректирует угол опережения зажигания. Датчик положения дроссельной заслонки определяет нагрузку на двигатель.

Коммутатор (воспламенитель) — это транзисторные ключи, которые, в зависимости от сигнала с электронного блока управления, включают или отключают питание первичной обмотки катушки зажигания. Если в системе зажигания используется несколько катушек, то и коммутаторов может быть несколько.

Таким образом, ток высокого напряжения в нужный момент доставляется к конкретной свече зажигания. Устройство свечи зажигания показано на рис. 2.20.

Рис. 2.20. Устройство свечи зажигания:

1 — наконечник; 2 — керамический изолятор; 3 — металлический корпус; 4 — металлическое уплотнительное кольцо; 5 — внутреннее уплотнение; 6 — основание «пятиволнистого» изолятора (тепловой конус изолятора); 7 — технологическая фаска; 8 — боковой (заземляющий) электрод; 9 — воздушный зазор между керамическим изолятором и металлическим корпусом свечи; 10 — центральный электрод; 11 — специальное соединение из электропроводящей стекломассы; 12 — керамический корпус; 13 — токопроводящий стержень, запрессованный в токопроводящую стекломассу и связанный с центральным электродом

С помощью свечи зажигания образуется искровой разряд, необходимый для воспламенения рабочей смеси в цилиндрах двигателя.

Главными рабочими элементами свечи являются контактный стержень с центральным электродом, отделенный от «массы» изолятором, и боковой электрод, контактирующий с «массой» через металлический корпус свечи.

Свечи устанавливают (вворачивают) специальным свечным ключом в головку блока цилиндров. Для надежного уплотнения свечи с головкой блока цилиндров используется уплотнительное кольцо. Изоляторы свечей выполняют из материалов, выдерживающих напряжение не менее 30 кВ (уралит, борокорунд и т. п.). Свечи изготавливаются с различной тепловой характеристикой и характеризуются калильным числом. Калильное число определяется как величина, пропорциональная среднему давлению, при котором начинает появляться калильное зажигание, то есть неуправляемый процесс воспламенения рабочей смеси не только искровым разрядом, но и раскаленными элементами свечи или только ими (после выключения зажигания). Калильное зажигание возникает при достижении температуры свечей примерно 900 °C. Чем выше калильное число, тем надежнее работает свеча в двигателе с высокой степенью сжатия. Калильные числа свечей зажигания имеют следующие значения: 8, 11, 14, 17, 20, 23, 26.

Ресурс современных свечей зажигания составляет около 20 млн искр, что соответствует примерно 15 000 км пробега автомобиля. Поэтому заводы-изготовители предписывают замену свечей через 15 000–20 000 км пробега.

Система охлаждения

Система охлаждения предназначена для поддержания нормального теплового режима двигателя.

При сгорании топливовоздушной смеси выделяется значительное количество тепла, способного вывести из строя агрегаты двигателя.

При перегреве подвижные элементы расширятся, поршни заклинит в цилиндрах, а многие детали будут изогнуты или просто сломаны.

Для отвода избыточного тепла и предназначена система охлаждения. Она же поддерживает оптимальный тепловой режим работы двигателя. На автомобилях в подавляющем большинстве случаев применяется жидкостная система охлаждения.

Нормальная температура охлаждающей жидкости работающего двигателя составляет 80–95 °C. При пуске холодного двигателя система охлаждения помогает ему по возможности быстрее достичь рабочей температуры.

Жидкостная система охлаждения закрытого типа с принудительной циркуляцией и расширительным бачком состоит из следующих основных элементов (рис. 2.21):

♦ рубашки охлаждения (двойных стенок

♦ блока цилиндров и головок, пространство между которыми заполнено охлаждающей жидкостью);

♦ центробежного насоса, обеспечивающего циркуляцию охлаждающей жидкости в системе;

♦ термостата (автоматического клапана, открывающегося при достижении

♦ охлаждающей жидкостью температуры 90–102 °C);

♦ радиатора, выполняющего функцию теплообменника и состоящего из двух бачков, соединенных большим количеством трубок;

♦ вентилятора, обеспечивающего прокачку воздуха между трубками радиатора;

♦ расширительного бачка, поддерживающего постоянный объем циркулирующей жидкости и определенное давление в системе;

♦ соединительных трубопроводов.

Рис. 2.21. Система охлаждения двигателя:

1 — рукав подводящий правый; 2 — термостат; 3 — хомут; 4 — шланг перепускной; 5 — парубок рубашки охлаждения выпускной; 6 — рукав отводящий правый; 7 — шланг насоса охлаждающей жидкости подводящий; 8 — патрубок переходный; 9 — пробка выпуска воздуха; 10 — рукав отводящий левый; 11 — рукав подводящий левый; 12 — труба соединительная; 13 — датчик температуры воды; 14 — сливная пробка; 15 — датчик включения электровентилятора; 16 — радиатор отопителя салона; 17 — электровентилятор; 18 — радиатор; 19 — расширительный бачок; 20 — пробка расширительного бачка; 21 — рубашка охлаждающей жидкости двигателя; 22 — насос охлаждающей жидкости; 23 — термостат; 24 — впускная труба двигателя

В большинстве автомобилей в качестве охлаждающей жидкости применяют специальные составы с низкой температурой кристаллизации — антифризы (от англ. antifreeze — «незамерзающая жидкость»). Предприятия-изготовители присваивают антифризам фирменные названия (например, «Тосол», «Лена» и т. п.) и (или) указывают температуру их замерзания, точнее, кристаллизации (тосол А-40, ОЖ-40, ОЖ-65, где ОЖ — охлаждающая жидкость).

Охлаждающая жидкость циркулирует в системе по малому кругу — при прогреве двигателя и по большому кругу — при его охлаждении. Циркуляцию охлаждающей жидкости по полым зонам неподвижных частей двигателя (рубашке охлаждения) обеспечивает механический насос (водяная помпа). При движении по большому кругу тепло, образующееся при работе двигателя, поглощается циркулирующей жидкостью, а при прохождении последней через радиатор — воздухом. Радиатор отдает тепло воздуху, который обтекает трубки. Воздух проходит через радиатор под действием электрического вентилятора. Он включается при достижении определенной температуры охлаждающей жидкости. В остальное время охлаждение происходит воздухом, проходящим через радиатор за счет движения транспортного средства.

При пуске холодного двигателя, чтобы охлаждающая жидкость не мешала ему быстрее достичь оптимальной температуры, предусмотрен специальный клапан, перекрывающий ее доступ из рубашки охлаждения к радиатору. Этот клапан называется термостатом.

При пуске холодного двигателя термостат (рис. 2.22) остается закрытым и охлаждающая жидкость не может проходить через радиатор, она циркулирует только в головке блока и самом блоке цилиндров (движение жидкости по малому кругу). В результате двигатель быстро прогревается.

При достижении охлаждающей жидкостью установленной температуры термостат открывает ей доступ в радиатор для охлаждения (движение жидкости по большому кругу).

Если радиатор не справляется с охлаждением жидкости до необходимой температуры, в дело вступает электровентилятор.

Обогреватель салона (печка) также относится к системе охлаждения. Главный его элемент — радиатор. Но не тот, который расположен перед двигателем и спрятан за декоративной отделкой передней части автомобиля, а другой, меньших размеров, расположенный за двигателем. Включая обогреватель, водитель открывает кран, и горячий антифриз попадает в радиатор. Так нагревается воздух, поступающий в салон автомобиля. Включать печку следует при прогретом двигателе. Включение обогревателя при холодном двигателе лишь увеличит время прогрева мотора.

Если двигатель перегревается, то включение обогревателя позволит снизить температуру охлаждающей жидкости и отвести избыток тепла от двигателя.

Рис. 2.22. Циркуляция жидкости через термостат:

1 — патрубок нижний боковой; 2 — клапан основной; 3 — клапан перепускной; 4 — корпус термостата; 5 — патрубок вертикальный; 6 — патрубок боковой верхний; 7 — крышка термостата; 8 — стержень клапана термостата; 9 — пружина перепускного клапана; 10 — пружина основного клапана; 11 — стопорный винт; 12 — крышка корпуса насоса; 13 — валик насоса; 14 — корпус насоса; 15 — стакан термоэлемента; 16 — термочувствительный твердый наполнитель

Система смазки

Система смазки служит для подачи масла к трущимся деталям, а также частично для их охлаждения и удаления продуктов износа.

При работе двигателя множество деталей контактируют друг с другом, образуя пары трения. Чтобы уменьшить износ (его называют фрикционным износом), двигатель и оборудуют системой смазки. Резервуар с маслом находится в картере двигателя. Масляный насос обеспечивает поступление масла через масляный фильтр к движущимся частям.

В ДВС применяется система смазки комбинированного типа: часть деталей смазывается под давлением, часть — разбрызгиванием и окунанием, а часть — самотеком.

Кроме функций смазывания, масло может выполнять и функции охлаждения. Воздушный поток, проходящий под днищем движущегося автомобиля, обдувает картер двигателя, являющийся резервуаром для масла. Кроме того, на некоторых автомобилях и мотоциклах устанавливают специальные масляные радиаторы, призванные охлаждать масло. Это одновременно предохраняет масло от распада при высоких температурах.

Система смазки двигателя легкового автомобиля состоит из следующих основных элементов (рис. 2.23):

♦ поддона картера;

♦ масляного насоса с заборником;

♦ масляного фильтра;

♦ каналов и отверстий для подачи масла под давлением, просверленных в блоке цилиндров, в головке блока и в других деталях двигателя.

Поддон картера служит резервуаром для масла. Когда вы заливаете масло через маслозаливную горловину, оно проходит по пустотам внутри двигателя и опускается в поддон картера. Уровень масла в поддоне измеряется специальным масляным щупом, вставленным в отверстие в картере двигателя. По этому признаку систему смазки двигателей легковых автомобилей называют системой смазки с мокрым картером.

Рис. 2.23. Система смазки двигателя:

1 — масляный картер; 2 — коленчатый вал; 3 — масляный фильтр; 4 — фильтрующий элемент; 5 — масляный насос; 6–21 — каналы и отверстия

3. Источники и потребители электроэнергии

Любой современный автомобиль в обязательном порядке оснащен электрооборудованием — это и осветительные приборы, и система запуска двигателя, и охранная сигнализация и др. Разберемся, откуда берется и как используется электрическая энергия современной «легковушки».

Источники электрического тока

Источниками электрического тока в автомобиле являются аккумуляторная батарея (по-простому — аккумулятор) и генератор.

Аккумуляторная батарея (рис. 3.1) обеспечивает снабжение электрическим током его потребителей при неработающем двигателе, а также при его работе на небольших оборотах.

Для ее размещения в моторном отсеке предназначена специальная металлическая полка, на которой она стационарно устанавливается.

Рис. 3.1. Аккумуляторная батарея:

1 — положительная пластина; 2 — сепаратор; 3 — отрицательная пластина; 4 — корпус батареи; 5 — крышка секции батареи; 6 — пробка наливного отверстия; 7 — положительная выводная клемма; 8 — соединительный мостик; 9 — межэлементная перегородка; 10 — опорные пластины

Как и любая батарея, аккумулятор имеет «плюс» и «минус» на соответствующих полюсах. Минусовой полюс соединен с кузовом автомобиля и обеспечивает, как говорят водители, «выход на массу». Плюсовой полюс соединен с электрической цепью автомобиля, по которой ток передается потребителям с помощью системы проводов.

Аккумуляторная батарея состоит из шести отдельных аккумуляторов, которые находятся в одном корпусе и последовательно соединены между собой в единую электрическую сеть. В каждом аккумуляторе протекают электрохимические процессы, в результате которых получается ток напряжением 2 В.

В общей сложности на полюсах аккумуляторной батареи образуется постоянный ток напряжением 12 В.

Аккумуляторная батарея имеет маркировку установленного образца. Например, маркировку 6СТ-60А нужно понимать следующим образом:

♦ 6 — количество аккумуляторов в аккумуляторной батарее (для всех легковых автомобилей эта цифра неизменна);

♦ СТ — тип аккумуляторной батареи (в данном случае — стартерная, позволяющая запускать двигатель с помощью мощного потребителя электроэнергии (стартера));

♦ 60 — емкость аккумуляторной батареи, которая измеряется в ампер-часах (в рассматриваемом примере — 60 А·ч);

♦ А — обозначение материала, из которого изготовлен корпус аккумуляторной батареи (в рассматриваемом примере — полипропилен).

Чем больше мощности требуется для запуска двигателя, тем большей емкостью должна обладать аккумуляторная батарея. Для стандартных «Жигулей» использовались батареи емкостью 55 А·ч. А вот для запуска дизельных двигателей такого аккумулятора может не хватить — им необходимо хотя бы 60–65 А·ч.

ПРИМЕЧАНИЕ

Средний срок службы новой аккумуляторной батареи при стандартных условиях эксплуатации — 2–3 года. Обычный гарантийный срок производителя — 12 месяцев.

Генератор — это источник электрического тока, обеспечивающий им всех потребителей при работе двигателя на высоких и средних оборотах (рис. 3.2). Кроме того, функцией генератора является подзарядка аккумуляторной батареи (при работающем двигателе). Без генератора аккумулятор очень быстро разрядится.

Рис. 3.2. Генератор

В электрическую цепь автомобиля генератор подключается параллельно аккумуляторной батарее (рис. 3.3). Следовательно, снабжать потребителей электрическим током и заряжать аккумулятор он будет только тогда, когда вырабатываемое им напряжение будет больше напряжения, выдаваемого аккумулятором.

Рис. 3.3. Принципиальная электрическая схема генератора:

1 — диоды выпрямительных блоков; 2 — обмотки статоров; 3 — обмотка возбуждения ротора; 4 — вывод клеммы; 5 — конденсатор; 6 — интегральный регулятор; 7 — вывод к клемме «Ш»

Это происходит тогда, когда мотор автомобиля работает на оборотах выше холостых: напряжение электрического тока, который производится генератором, напрямую зависит от скорости вращения ротора генератора, имеющего привод от двигателя.

Иногда напряжение вырабатываемого генератором электрического тока может быть больше чем необходимо. Для предотвращения такой ситуации в автомобиле используется специальный прибор — регулятор напряжения. Он функционирует в паре с генератором, ограничивая напряжение производимого им тока в районе 13,6–14,2 В. Регулятор напряжения может быть вмонтирован в генератор или располагаться в моторном отсеке отдельно. На панели приборов любого автомобиля обязательно имеется красная лампочка заряда аккумуляторной батареи. Она всегда загорается при включении зажигания и гаснет после запуска двигателя.

Если же при работающем двигателе лампочка не погасла, это свидетельствует о проблемах в системе электропитания.

Потребители электрического тока

Потребителями электрического тока в автомобиле являются система пуска двигателя, система зажигания, система освещения и сигнализации, контрольно-измерительные приборы и дополнительное оборудование, которое может быть различным.

Система пуска двигателя

Система пуска в автомобиле предназначена для запуска двигателя и включает в себя следующие составные элементы:

♦ замок зажигания;

♦ стартер с тяговым реле;

♦ механизм привода стартера;

♦ реле включения стартера.

Непосредственно для запуска двигателя предназначен специальный прибор — стартер (от слова «старт») (рис. 3.4). Он представляет собой электрический двигатель постоянного тока. Когда водитель поворачивает в замке зажигания ключ в положение «Запуск», электрический ток через реле подается от аккумуляторной батареи на обмотки стартера.

Рис. 3.4. Стартер:

1 — коллектор; 2 — вал якоря стартера; 3 — траверса; 4 — обмотка якоря стартера; 5 — контакты реле; 6 — крышка реле; 7 — контактная пластина; 8 — стержень якоря; 9 — втягивающая обмотка; 10 — удерживающая обмотка; 11 — реле; 12 — якорь реле; 13 — рычаг включения зубчатого колеса привода; 14 — шлицевая втулка; 15 — ограничительное кольцо; 16 — муфта; 17 — центрирующий диск; 18 — бандажное кольцо; 19 — якорь стартера; 20 — катушка обмотки стартера; 21 — корпус статора

В результате срабатывает тяговое реле, специальная шестерня стартера входит в зацепление с маховиком двигателя и проворачивает его. Поскольку зажигание уже включено, двигатель заводится и начинает работать.

Стартер используется исключительно для запуска двигателя. Процесс работы стартера можно условно разделить на три ключевых этапа.

1. Сначала специальная шестерня, расположенная на валу якоря стартера, входит в зацепление с зубчатым венцом маховика двигателя (это возможно благодаря механизму привода).

2. Далее вал стартера вместе с шестерней, зацепившейся с маховиком, начинают вращаться, в результате чего маховик проворачивается, а следовательно, проворачивается и коленвал двигателя, после чего тот запускается.

3. Затем, когда водитель завел двигатель и отпустил ключ в замке зажигания, выключив стартер, шестерня стартера выходит из зацепления в сторону (зубья шестерни останутся на том же уровне, но только в стороне). В таком положении она находится все время, когда двигатель работает или выключен, и входит в зацепление с маховиком только тогда, когда водитель повернет ключ зажигания в положение «Запуск».

ВНИМАНИЕ

Сразу после запуска двигателя необходимо выключить стартер, отпустив ключ в замке зажигания. Принудительное удержание ключа при работающем двигателе в положении «Запуск» может вывести стартер из строя: тяжелый вращающийся венец маховика перемелет шестерню стартера. Не исключено, что стартер получит и другие повреждения (сгорит тяговое реле и др.). По этой же причине ни в коем случае нельзя включать стартер при работающем двигателе.

Система освещения и сигнализации

Характерной особенностью приборов освещения и сигнализации, которыми оснащается каждый современный автомобиль, является то, что постоянный ток напряжением 12 В подается к ним только при включении соответствующего тумблера или переключателя, расположенного в салоне автомобиля.

Главной задачей приборов освещения является обозначение габаритов автомобиля при движении в темное время суток и в условиях ограниченной видимости, а также освещение дороги и внутренних помещений автомобиля (салон, багажник и т. д.). К приборам освещения современного автомобиля относятся:

♦ фары или блок-фары;

♦ лампы освещения номерного знака;

♦ лампы освещения салона;

♦ лампа освещения багажника;

♦ лампа освещения подкапотного пространства;

♦ задние фонари.

Основными составными элементами блокфары являются корпус, рассеиватель и отражатель (рис. 3.5). Внутри корпуса в специально предназначенном разъеме (гнезде) содержится лампа, которая может работать в двух режимах: ближний свет фар и дальний свет фар. Выбор требуемого режима водитель осуществляет с помощью соответствующего переключателя, расположенного в салоне. Внутри блок-фары также имеется лампочка габаритного огня, которая предназначена для обозначения габаритов автомобиля. Габаритные огни водитель включает с помощью специального тумблера.

Рис. 3.5. Передняя блок-фара

Во многих моделях автомобилей в корпусе блок-фары находится также лампочка указателя поворота. Но не всегда: например, в «Жигулях» старых моделей (ВАЗ-2101, ВАЗ-2102, ВАЗ-21013), а также в некоторых современных иномарках эта лампочка монтируется отдельно от блок-фары.

Задние фонари в современных машинах также, как правило, выполняются в одном корпусе (рис. 3.6). Задний фонарь включает в себя:

♦ лампы стоп-сигналов (включаются автоматически при нажатии водителем педали тормоза и выключаются при отпускании педали);

♦ лампы заднего хода (загораются автоматически при включении водителем

♦ задней передачи и гаснут при ее выключении);

♦ указатели поворотов;

♦ габаритные огни.

Указатели поворотов водитель включает и выключает с помощью специального переключателя, который обычно расположен на рулевой колонке. Одновременно все указатели поворотов используются при включении водителем аварийной сигнализации (для этого предназначена специальная кнопка).

Рис. 3.6. Задний фонарь

Звуковой сигнал предназначен для звукового оповещения других участников дорожного движения о грозящей опасности. Он приводится в действие нажатием специальной кнопки или клавиши, расположенной обычно на рулевом колесе.

Контрольно-измерительные приборы современного автомобиля

Контрольно-измерительные приборы предназначены для оперативного информирования водителя о состоянии важных узлов и агрегатов автомобиля, текущем скоростном режиме, наличии топлива, пройденном пути и т. д.

Контрольно-измерительные приборы, как правило, находятся прямо перед водителем — на специально предназначенной панели приборов (приборном щитке), которая располагается сразу за рулем (рис. 3.7).

Рис. 3.7. Панель приборов

Панель приборов стандартного современного автомобиля включает в себя:

♦ контрольные лампы;

♦ счетчики пробега (отдельно — общий и суточный);

♦ датчик температуры охлаждающей жидкости в системе охлаждения автомобиля;

♦ спидометр;

♦ датчик уровня топлива;

♦ указатель оборотов работы двигателя.

ВНИМАНИЕ

Для всех без исключения контрольно-измерительных приборов действует одно важное правило: при работающем двигателе ни в коем случае не допускается свечение любой красной лампочки (индикатора) либо нахождение стрелки любого указателя в красном секторе. Это свидетельствует о наличии серьезных неполадок в соответствующем агрегате, и до их устранения ехать дальше (или начинать движение) категорически запрещается.

Контрольные лампы информируют водителя о состоянии узлов и агрегатов, а также о включении тех либо иных приборов и механизмов. Например, когда водитель включает зажигание, загораются красные лампы зарядки аккумуляторной батареи и давления масла в системе смазки двигателя, которые должны погаснуть после запуска мотора. Если автомобиль заблокирован стояночной тормозной системой, то на приборном щитке при включенном зажигании, а также при работающем моторе будет гореть соответствующая красная лампочка, которая погаснет только после снятия автомобиля с «ручника».

При включении ближнего или дальнего света фар на панели приборов загораются соответствующие лампы (для ближнего света — зеленого, а для дальнего — синего цвета). При включении указателей поворотов, а также аварийной световой сигнализации на приборном щитке начинает моргать соответствующая лампа, причем это сопровождается щелчками.

Счетчики пробега отображают количество пройденных автомобилем километров: общий счетчик показывает общий пробег за все время, а суточный — пробег только за определенное время. Показания общего счетчика вручную изменить невозможно, а показания суточного счетчика можно обнулить с помощью расположенной на нем кнопки.

СОВЕТ

Суточный счетчик удобно использовать для измерения конкретных расстояний (например, от дома до дачи), а также для контроля расхода топлива.

Датчик температуры охлаждающей жидкости показывает, нормально ли работает система охлаждения двигателя. Рабочая температура охлаждающей жидкости должна находиться в пределах 80–90 °C. Если стрелка датчика «заползла» в красную зону — значит, температура жидкости приближается к 100 °C либо уже достигла этой отметки; в этом случае необходимо срочно заглушить двигатель и дать ему остыть. При слишком холодном двигателе ехать также не рекомендуется.

Спидометр — это прибор, который информирует водителя о текущем скоростном режиме. Показания данного прибора важны для выбора правильной скорости.

Датчик уровня топлива информирует водителя о количестве топлива, имеющегося в топливном баке в данный момент. Когда топлива остается слишком мало, стрелка приближается к красному сектору, а во многих машинах при этом дополнительно загорается лампа.

Тахометр — прибор, который показывает, какое количество оборотов в минуту совершает коленвал двигателя при текущем режиме.

Дополнительное оборудование автомобиля

Дополнительное оборудование предназначено для повышения комфортности управления транспортным средством. В современных автомобилях используется следующее дополнительное оборудование:

♦ обогреватель салона;

♦ очистители и омыватели стекол и фар;

♦ аудиосистема (рис. 3.8);

♦ устройства обогрева стекол и зеркал;

♦ электрические стеклоподъемники;

♦ электрокорректор фар.

В зависимости от марки и модели автомобиля в нем могут использоваться и другие виды дополнительного оборудования: кондиционер, круиз-контроль, спутниковая сигнализация, электролюк, холодильник и др.

Рис. 3.8. Популярное дополнительное оборудование — автомагнитола

Все элементы дополнительного оборудования подключены в электрическую цепь машины путем параллельного соединения и начинают функционировать при нажатии соответствующего переключателя, кнопки или тумблера.

В российских климатических условиях обогреватель салона имеет очень большое значение: без использования печки в большинстве регионов можно ездить не более трех-четырех месяцев в году. Печка используется не только для обогрева салона, но и для обдува стекол, предотвращая их запотевание. При перегреве двигателя автомобиля может помочь включение печки на полную мощность.

Стеклоочистители и стеклоомыватели — приборы, которые обеспечивают видимость во время движения в дождь или снегопад, а также при езде по грязным дорогам. В соответствии с действующими ПДД запрещается эксплуатация автомобиля, если у него не работают предусмотренные конструкцией стеклоочистители и стеклоомыватели.

Очистители и омыватели фар не являются устройствами, которыми должен быть оборудован каждый современный автомобиль (в отличие от очистителей и омывателей лобового стекла). Однако при частой езде по грязным дорогам данное приспособление довольно удобно.

Среди прочих видов дополнительного оборудования автомобиля особым удобством отличается кондиционер. В жаркую погоду этот прибор способен превратить утомительную езду на машине под палящим солнцем в настоящее удовольствие.

Особенности эксплуатации электрического оборудования

Характерной особенностью электросистемы автомобиля является то, что иногда симптомы той или иной поломки бывают весьма устрашающими, но на самом деле неисправность совершенно пустяковая. Вот пример такой ситуации.

Человек садится утром в машину, вставляет ключ в замок зажигания, а машина не просто не заводится, а вообще не подает никаких признаков жизни: на панели приборов не загорается ни одна лампочка и т. п. Первая мысль, которая может возникнуть у новичка, — в электрическом хозяйстве сгорело все, что только могло. В реальности все проще: скорее всего, отошла клемма от аккумулятора или окислился контакт. Плотнее зажмите клеммы, предварительно зачистив контакты, — и, скорее всего, ваш автомобиль «оживет».

Вот еще один похожий пример. Человек заводит машину и через некоторое время обнаруживает, что многие электроприборы не функционируют: отказали электрические подъемники стекол, «дворники», обогреватель и т. д. Что может подумать новичок? Правильно — что у него очень серьезные проблемы с электрохозяйством. Но в большинстве случаев подобные проблемы возникают по достаточно банальной причине — из-за сгоревшего предохранителя.

Чтобы заменить предохранитель, достаточно одной минуты.

На современных автомобилях в большинстве случаев используются предохранители 8 и 16 А, однако могут встречаться и другие.

Блок предохранителей может находиться в салоне автомобиля или в подкапотном пространстве (либо и там и там — некоторые модели и марки автомобилей оснащены двумя или даже тремя блоками предохранителей).

ВНИМАНИЕ

Если вы обнаружили сгоревший предохранитель, помните: в современных автомобилях применение «жучков» и подобных приспособлений предельно опасно, по-этому используйте только предохранители, указанные в руководстве по эксплуатации автомобиля!

Автомобилистам с большим стажем наверняка знакома ситуация, когда стартер включается только после нескольких поворотов ключа зажигания. Такое явление обычно возникает на старых автомобилях.

Причиной неисправности может являться заклепка, которая соединяет наконечник провода, идущего от замка зажигания, с корпусом реле. Со временем она может окисляться, в результате чего прерывается электрическая цепь.

Если место контакта хорошенько прочистить и пропаять, то все будет в порядке. Для устранения неисправности не обязательно обращаться на СТО: процедура довольно проста и легко выполняется собственными силами.

Почему же шестерня стартера не выходит из зацепления с маховиком? Причины могут быть разными, но чаще всего одна из двух: либо не сработало тяговое реле, либо лопнула соответствующая пружина в стартере.

В таких ситуациях нужно заменить стартер (а возможно, дело ограничится заменой шестерни, бендикса или тягового реле). Шестерня стартера может не выйти из зацепления с маховиком в результате перекоса стартера. Такое бывает, когда ослаблены болты, которые крепят корпус стартера к двигателю.

Каждый водитель в обязательном порядке должен следить за состоянием аккумуляторной батареи. В частности, необходимо периодически проверять уровень электролита в ее банках (то есть в каждом отдельном аккумуляторе) и по мере надобности доливать в них дистиллированную воду. Уровень электролита считается недопустимо низким, когда пластины, вертикально стоящие в каждой банке, «выглядывают» из электролита или их края вот-вот появятся над поверхностью жидкости.

ПРИМЕЧАНИЕ

Следует учитывать, что, хотя вода испаряется быстрее кислоты и обычно доливать в аккумулятор нужно только воду, в некоторых случаях приходится доливать и кислоту. Поэтому прежде, чем заливать в аккумулятор хоть что-либо, следует проконтролировать плотность электролита ареометром, а уж затем с помощью воды или кислоты довести до требуемого не только уровень жидкости, но и состав.

Водитель должен следить за внешним состоянием аккумуляторной батареи и своевременно удалять с нее пыль, грязь и влагу. По грязи (особенно влажной) могут проходить небольшие разряды электрического тока, что существенно ускоряет разряд аккумулятора. Обязательно обращайте внимание на состояние выводных штырей и клемм — они часто окисляются. Эту окись необходимо вовремя удалять, поскольку она ограничивает поверхность контакта выводного штыря и клеммы. В результате возникают проблемы с запуском двигателя.

Также необходимо следить за состоянием генератора и ремня привода генератора. На отечественных машинах и на многих иномарках через каждые 60 000 км пробега необходимо зачищать контактные кольца генератора мелкозернистой наждачной бумагой или шлифовальной шкуркой, а также проверять степень износа щеток. Посмотрите, хорошо ли прилегают щетки к кольцам, а при необходимости замените щетки вместе с держателем. Щетки должны свободно перемещаться в держателе, и на них не должно быть сколов.

ВНИМАНИЕ

Перед тем как установить регулятор с новым щеткодержателем, не забудьте освободить гнездо щеткодержателя от угольной пыли.

Выполняя техническое обслуживание генератора переменного тока, следует строго соблюдать перечисленные ниже правила.

♦ Категорически запрещается отсоединять аккумуляторную батарею от сети при работающем двигателе и отключенных потребителях. При техническом обслуживании генератора необходимо проверять исправность цепи заряда аккумулятора.

♦ Нельзя даже на короткое время замыкать на корпус выводную клемму генератора.

♦ При подсоединении аккумуляторной батареи ни в коем случае нельзя путать ее полюсные штыри.

Пренебрежение хотя бы одним из этих правил приведет к тому, что выйдет из строя выпрямительный блок генератора.

Все контрольно-измерительные приборы обязательно должны быть в исправном состоянии.

Если количество, цвет, расположение, тип и режимы работы используемых на автомобиле внешних световых приборов не соответствуют его конструкции, то согласно ПДД эксплуатировать автомобиль запрещается.

Правилами допускается использование некоторого дополнительного светового оборудования по желанию владельца транспортного средства. В частности, на легковой автомобиль можно спереди установить две противотуманные фары, а сзади — один или два противотуманных фонаря.

ВНИМАНИЕ

Задние противотуманные фонари обязательно должны быть только красного цвета. И передние и задние противотуманные фары должны включаться только при горящих габаритных огнях и фонаре подсветки номерного знака. Это должно быть предусмотрено при подключении противотуманных фар в электрическую цепь автомобиля.

Регулировка фар автомобиля должна соответствовать требованиям действующего ГОСТа — в противном случае ПДД запрещают эксплуатацию транспортного средства. Дело в том, что неправильная регулировка фар подвергает опасности водителей других транспортных средств — как встречных, так и едущих впереди в попутном направлении (ослепление через зеркало заднего вида). Да и сам водитель не только испытывает дискомфорт (неотрегулированные фары плохо освещают дорогу), но и подвергается опасности, поскольку может вовремя не заметить изменения дорожной ситуации.

ПДД также запрещают эксплуатацию транспортных средств с сильно загрязненными внешними приборами и световозвращателями.

На фарах и задних фонарях любого автомобиля установлены специальные рассеиватели. Свет от фар и фонарей слишком яркий, и без таких рассеивателей другие участники дорожного движения будут испытывать существенный дискомфорт (многократно увеличивается вероятность ослепления). Рассеиватели в обязательном порядке должны соответствовать конструкции автомобиля — в противном случае действующими ПДД эксплуатация транспортного средства запрещается. Запрещено ездить на машине, у которой лампы не соответствуют типу светового прибора.

ВНИМАНИЕ

Спереди у любого легкового автомобиля не должно быть световых приборов красного цвета, а сзади — белого (за исключением фонарей заднего хода и освещения номерного знака). В противном случае водители других транспортных средств могут быть введены в заблуждение.

Как мы уже отмечали выше, при неработающих стеклоочистителях и стеклоомывателях эксплуатация транспортного средства также запрещена. Кроме того, запрещается эксплуатация автомобиля, у которого не работает звуковой сигнал.

4. Общее устройство и назначение трансмиссии

Трансмиссия предназначена для передачи крутящего момента от двигателя к ведущим колесам, а также для изменения крутящего момента в зависимости от текущих условий движения автомобиля. Составными частями трансмиссии являются коробка переключения передач, сцепление, карданная передача, главная передача, дифференциал и полуоси.

Сцепление автомобиля

Главная задача сцепления — кратковременное отключение двигателя от коробки переключения передач, а также плавное соединение этих агрегатов при работающем двигателе (рис. 4.1).

Рис. 4.1. Схема сцепления автомобиля:

1 — штуцер для прокачки; 2 — нажимная пружина; 3 — ступенчатая заклепка; 4 — нажимной диск; 5 — ведомый диск; 6 — маховик; 7 — картер сцепления; 8 — болт; 9 — первичный вал коробки передач; 10 — муфта подшипника выключения сцепления; 11 — вилка выключения сцепления; 12 — шаровая опора вилки; 13 — подшипник выключения сцепления; 14 — упорный фланец нажимной пружины; 15 — чехол вилки выключения сцепления; 16 — пружина; 17 — опорное кольцо нажимной пружины; 18 — кожух сцепления; 19 — толкатель вилки выключения сцепления; 20 — регулировочная гайка; 21 — контргайка; 22 — защитный колпачок; 23 — цилиндр привода сцепления; 24 — оттяжная пружина вилки; 25 — скоба пружины

Сцепление предотвращает резкое изменение нагрузки, обеспечивает плавное трогание с места и предохраняет детали трансмиссии автомобиля от перегрузок инерционным моментом, который создается вращающимся двигателем при резком замедлении вращения коленвала.

Водитель включает и выключает сцепление с помощью гидравлического привода (рис. 4.2), который состоит из следующих элементов:

♦ педали сцепления;

♦ главного цилиндра сцепления;

♦ рабочего цилиндра сцепления;

♦ вилки выключения (иногда ее называют

♦ приводной вилкой сцепления);

♦ выжимного подшипника;

♦ шлангов (трубопроводов), по которым течет жидкость сцепления.

Рис. 4.2. Гидропривод сцепления:

1 — бачок; 2, 5 — питательный и соединительный шланги; 3 — главный цилиндр; 4 — педаль; 6 — поршень главного цилиндра; 7 — манжета; 8 — отжимной рычажок сцепления; 9 — подшипник выключения сцепления; 10 — вилка; 11 — рабочий цилиндр; 12 — поршень; 13 — колпачок перепускного клапана

При нажатии на педаль сцепления приложенное усилие через специальный шток и поршень передается жидкости, которая передает давление дальше — от поршня главного цилиндра на поршень рабочего цилиндра сцепления. Далее шток рабочего цилиндра передает это усилие приводной вилке сцепления и выжимному подшипнику, которые, в свою очередь, передают его уже непосредственно на механизм сцепления.

Механизм сцепления — устройство, которое с помощью силы трения осуществляет передачу крутящего момента. Составные части механизма сцепления находятся в металлическом картере, связанном с картером двигателя. Основными элементами механизма сцепления являются:

♦ картер сцепления;

♦ кожух;

♦ ведущий диск (маховик коленчатого вала двигателя, от которого передается крутящий момент);

♦ нажимной диск с пружинами;

♦ ведомый диск с износостойкими фрикционными накладками.

Ведомый диск сцепления связан с первичным валом коробки передач (более подробно с коробкой передач мы познакомимся далее) и постоянно прижат к маховику нажимным диском с помощью мощных пружин. Между маховиком, нажимным диском и ведомым диском возникает очень большая сила трения, благодаря чему все эти детали при работе двигателя вращаются одновременно, словно единое целое. Но это происходит только при отпущенной педали сцепления.

Чтобы автомобиль начал движение, нужно прижать ведомый диск, который связан с ведущими колесами, к вращающемуся маховику (это называется включить сцепление). Это довольно сложно, ведь маховик вращается с угловой скоростью 20–25 оборотов в секунду, а колеса не вращаются совсем. Поэтому данный процесс выполняется в три этапа (педаль сцепления уже нажата, передача включена).

Сначала необходимо немного отпустить педаль сцепления, что позволит пружинам нажимного диска подвести к маховику двигателя ведомый диск сцепления так, чтобы они слегка соприкоснулись. Между диском и маховиком возникнет легкая сила трения, и диск начнет вращаться (а автомобиль — понемногу двигаться).

Далее следует еще отпустить педаль сцепления — примерно до середины — и буквально пару секунд подержать ее в данном положении, чтобы скорость вращения диска пришла в соответствие со скоростью вращения маховика.

Автомобиль при этом ускоряет свой ход.

После этого педаль сцепления следует полностью отпустить. В результате с одинаковой скоростью вращаются оба диска (нажимной и ведомый), представляя собой единое монолитное целое, а также маховик двигателя. При этом крутящий момент полностью передается на колеса автомобиля через коробку переключения передач и автомобиль двигается со скоростью, соответствующей включенной передаче.

Когда необходимо выключить сцепление (например, при переключении передач либо при движении автомобиля по инерции), водитель нажимает педаль сцепления. В результате нажимной диск отдаляется от маховика, освобождая при этом ведомый диск. Передача крутящего момента от двигателя к ведущим колесам (точнее — к коробке переключения передач) при этом прекращается и двигатель работает вхолостую.

Если вы обнаружили, что из системы гидравлического привода сцепления подтекает жидкость, проверьте состояние шлангов (трубопроводов).

Жидкость также может вытекать из главного или рабочего цилиндра. После устранения течи необходимо обязательно прокачать систему.

Уровень жидкости в системе следует проверять периодически — хотя бы раз в месяц.

Помните, что при отсутствии жидкости нажатие педали сцепления будет абсолютно бесполезным.

Бывают случаи, когда сцепление выключается не полностью. Одна из распространенных причин — слишком большой свободный ход педали сцепления, который необходимо отрегулировать. Иногда помогает прокачка гидравлического привода сцепления. Однако если вышли из строя диски, сломались пружины или приводная вилка, предстоит сложный и дорогой ремонт с заменой необходимых деталей.

Иногда сцепление «пробуксовывает»: двигатель работает на высоких оборотах, а крутящий момент передается слабо. Наиболее вероятная причина — износ фрикционных накладок ведомого диска (рис. 4.3). Причиной могут быть также лопнувшие пружины либо недостаточный свободный ход педали сцепления.

Иногда в работе сцепления появляется шум (больше похожий на шелест) в результате неисправности выжимного подшипника (при нажатой педали шелест исчезает). В данном случае нужно заменить подшипник.

Рис. 4.3. Изношенные диск и корзина сцепления

Коробка переключения передач (КПП)

Основное предназначение коробки переключения передач — изменение крутящего момента по величине и направлению и передача его от двигателя к ведущим колесам. Таким образом, с помощью КПП при постоянной мощности двигателя осуществляется изменение силы тяги на ведущих колесах автомобиля. Коробка передач позволяет включить движение задним ходом, а также обеспечить разъединение двигателя и ведущих колес автомобиля.

На современных автомобилях устанавливаются механические или автоматические КПП.

Основными составными элементами механической коробки передач являются (рис. 4.4):

♦ картер;

♦ первичный, вторичный и промежуточные валы с шестернями;

♦ дополнительный вал;

♦ шестерни заднего хода;

♦ синхронизаторы;

♦ механизм переключения передач;

♦ замковое устройство;

♦ блокировочное устройство;

♦ рычаг переключения передач.

Рис. 4.4. Коробка переключения передач с рычагом

Все содержимое КПП расположено в картере.

Он закреплен на картере сцепления. Половину объема картера коробки передач занимает специальное трансмиссионное масло: необходимость его обусловлена тем, что детали работают при больших нагрузках и должны хорошо смазываться. На некоторых автомобилях в коробку передач можно заливать обычное моторное масло. Как правило, замена масла в КПП производится редко, а во многих современных машинах масло, залитое при изготовлении автомобиля, используется на протяжении всего срока эксплуатации.

Для обеспечения бесшумного и плавного переключения передач используются специальные приборы, называемые синхронизаторами. Они уравнивают угловые скорости вращающихся шестерен.

Механизм переключения передач является основным узлом КПП и предназначается для смены передач. Данным механизмом управляют с помощью рычага переключения передач, установленного в салоне автомобиля между передними сиденьями. В некоторых автомобилях (например, «Волга» ГАЗ-21) рычаг переключения передач установлен на рулевой колонке.

Чтобы исключить возможность включения сразу двух передач (это чревато печальными последствиями), предусмотрено специальное замковое устройство. Для предотвращения самопроизвольного выключения передач в КПП используется блокировочное устройство.

Принцип работы коробки передач заключается в том, что на разных шестернях имеется разное количество зубьев. Например, коленвал двигателя вращается со скоростью 2000 оборотов в минуту и передает этот крутящий момент на первичный вал с шестерней, которая входит в зацепление с другой шестерней, большей по размеру и имеющей в два раза больше зубьев. Вал, на котором установлена эта вторая шестерня, будет вращаться с в два раза меньшей скоростью, то есть 1000 оборотов в минуту. При использовании разных сочетаний входящих в зацепление шестерен (установленных на разных валах) этот принцип позволяет получать и передавать на ведущие колеса разный крутящий момент. В результате при вращении коленвала со скоростью 2000 оборотов в минуту ведущие колеса при включении соответствующих передач могут вращаться, например, со скоростью 1000 или 500 оборотов в минуту и т. д.

Чтобы автомобиль мог двигаться задним ходом, предусмотрено использование задней передачи. При этом вторичный вал КПП вращается в обратную сторону, что достигается за счет использования нечетного количества входящих в зацепление шестерен (в этом случае направление крутящего момента меняется на противоположное). «Нечетная» шестерня установлена на дополнительном валу коробки передач.

Водитель автомобиля самостоятельно переключает передачи с помощью рычага, в зависимости от условий езды, режима работы двигателя, его возможностей, а также иных факторов. На современных легковых автомобилях чаще всего устанавливается пятиступенчатая КПП: это означает, что машина имеет пять передач для движения вперед и одну передачу для движения назад.

В каждом легковом автомобиле действует такой принцип: чем ниже передача, тем она мощнее, но в то же время медленнее. Поэтому самыми сильными передачами, предназначенными для трогания с места и движения на малой скорости, являются первая и задняя.

При их включении двигатель легко крутит колеса, однако с большой скоростью на них не поедешь: мотор будет работать на больших оборотах, громко реветь, но быстрее примерно 10–20 км/ч машина не поедет.

После того как автомобиль тронулся с места и немного разогнался, следует переключиться на вторую передачу — менее мощную, но зато более скоростную. На ней уже можно разогнать автомобиль еще больше, чтобы переключиться на третью передачу — еще более скоростную и менее мощную, и т. д.

На низких передачах двигатель потребляет больше топлива, чем на высоких. То есть чем выше передача, тем более экономичная езда.

В процессе езды водителю приходится не только повышать передачи, но и иногда переходить на пониженные. Например, при движении в гору мощности пятой или четвертой передачи может не хватить и необходимо перейти на более мощную пониженную передачу.

Коробка передач является довольно надежным агрегатом, исправно работающим на протяжении всего срока эксплуатации автомобиля.

Достаточно лишь следить за уровнем масла и подливать его либо менять. Чаще всего КПП выходит из строя по причине того, что водитель слишком неаккуратно пользуется рычагом переключения передач (резко дергает его, пытается переключить передачи при не полностью выключенном сцеплении и т. п.).

При переключении передач рычаг (рис. 4.5) должен двигаться плавно, без рывков и резких движений, причем при прохождении нейтральной позиции следует делать маленькие (в пределах секунды) паузы. Это позволит своевременно сработать синхронизаторам, призванным предотвратить поломку шестерен.

Рис. 4.5. Рычаг механической коробки передач

Что касается автоматической коробки передач, то она является более удобной для начинающих и малоопытных водителей, поскольку избавляет от необходимости выжимать сцепление, вручную переключать передачи и отпускать сцепление. Однако и у автоматической КПП имеется рычаг переключения, который называется рычагом селектора. У стандартного автомобиля он может принимать четыре основных положения: P, R, N и D.

♦ P — это режим парковки. Его можно включать только после того, как автомобиль полностью остановлен и поставлен на ручной тормоз. Заводить мотор при данном положении рычага разрешается.

♦ R — данное положение предназначено для движения задним ходом. Его можно включать только при нажатой педали тормоза и лишь после того, как автомобиль полностью остановился.

♦ N — это нейтральное положение, которое имеется и у механической коробки передач. В данном положении ведущие колеса отключены от двигателя, крутящий момент на них не передается, поэтому можно заводить мотор. Категорически запрещается устанавливать рычаг в данное положение во время движения, так как коробка передач выйдет из строя.

♦ D — это положение движения автомобиля. Именно при нем осуществляется езда в обычных условиях, причем в данном режиме без участия водителя происходит переключение еще нескольких передач (это можно почувствовать в процессе езды по едва заметным толчкам). Эти передачи переключаются автоматически, в зависимости от скоростного режима, условий езды и иных факторов.

На некоторых современных автомобилях с автоматической коробкой передач могут присутствовать дополнительные режимы разгона (нормальный, экономичный и спортивный), выбор которых осуществляется соответствующим положением рычага селектора (рис. 4.6).

Рис. 4.6. Рычаг автоматической коробки передач (рычаг селектора)

Карданная передача

С помощью карданной передачи на заднеприводных автомобилях осуществляется передача крутящего момента от вторичного вала КПП к главной передаче под изменяющимся углом. Иначе говоря, карданная передача предназначена для передачи крутящего момента между агрегатами, оси валов которых не совпадают и могут изменять свое положение относительно друг друга при движении автомобиля.

Карданная передача состоит из следующих основных элементов (рис. 4.7):

♦ переднего и заднего валов;

♦ промежуточной опоры с подшипником;

♦ шарниров с вилками;

♦ крестовин;

♦ шлицевого соединения;

♦ эластичной муфты.

Механизм шарниров с вилками и крестовинами обеспечивает передачу крутящего момента под изменяющимся углом.

У заднеприводного легкового автомобиля задний мост с установленными колесами связывается с кузовом не жестко. С другой стороны, к кузову очень прочно и неподвижно крепятся двигатель, коробка переключения передач, а также передний вал карданной передачи.

Если дорога ухабистая, то при движении автомобиль периодически подпрыгивает на неровностях. При этом кузов машины относительно заднего моста перемещается по вертикали — то вверх, то вниз, в результате чего постоянно изменяется угол между передним валом карданной передачи и главной передачей, которая расположена в заднем мосту автомобиля.

Однако крутящий момент передается именно в «играющее» место, и этот процесс должен быть постоянным и равномерным. Само собой, задний вал карданной передачи не может и не должен быть жестким. Именно поэтому он имеет два шарнира, с помощью которых крутящий момент ровно и спокойно передается от КПП к главной передаче даже тогда, когда автомобиль прыгает на ухабах.

С помощью шлицевого соединения осуществляется компенсирование линейного перемещения карданной передачи относительно кузова машины при каждом изменении угла передачи крутящего момента.

Рис. 4.7. Карданная передача:

1 — удлинитель картера коробки передач; 2 — вторичный вал коробки передач; 3, 6 — грязеотражатели; 4, 5 — резиновые сальники; 7 — скользящая вилка; 8 — балансировочная пластина; 9 — трубчатый карданный вал; 10 — вилка простого кардана; 11 — вилка с фланцем; 12 — соединительный болт; 13 — фланец ведущей шестерни главной передачи; 14 — пружинная шайба; 15 — гайка; 16 — картер главной передачи; 17 — предохранительный клапан крестовины кардана

Что касается эластичной муфты, то она компенсирует резкую и неаккуратную работу с педалью сцепления, поглощая проходящую по трансмиссии автомобиля ударную волну.

В переднеприводных автомобилях карданная передача в традиционном понимании этого слова отсутствует. Надобность в карданном вале, который у заднеприводных автомобилей идет вдоль днища кузова, отпадает, поскольку крутящий момент передается на передние колеса.

Для каждого колеса существует свой карданный вал и по два шаровых шарнира (каждое колесо ведущей оси имеет собственную карданную передачу). Этот механизм называется шарниром равных угловых скоростей (ШРУС).

Наиболее уязвимым местом ШРУС являются шарниры: при попадании на них пыли или грязи они быстро выходят из строя. Поэтому они надежно защищены резиновыми колпаками (пыльниками), за состоянием которых необходимо постоянно следить.

Если со стороны ШРУС доносятся шорох, хруст либо иные посторонние шумы, меняйте его, не откладывая. Эксплуатировать автомобиль с неисправным ШРУС предельно опасно.

Что касается карданной передачи для заднеприводных автомобилей, то о неисправностях могут свидетельствовать стук со стороны карданной передачи при резком разгоне и при трогании с места, повышенная вибрация (биение) карданного вала, шум со стороны карданного вала во время движения.

Как правило, стук при трогании автомобиля с места либо при резком разгоне вызван ослаблением болтов, которыми крепятся фланцы карданных шарниров, а также болтов крепления промежуточной опоры к поперечине.

ПРИМЕЧАНИЕ

Очень часто даже опытные водители, не говоря уже о новичках, списывают на карданный вал стуки и звуки, не имеющие к нему никакого отношения. Типичный пример — звуки, которые вызваны ослаблением крепления двигателя. Кстати, то же самое касается коробки передач и сцепления — при ослаблении крепления раздаются характерные звуки.

Износ или повреждение резиновых подушек, а также неправильная установка двигателя на подушках тоже может являться причиной стуков, которые водители ошибочно принимают за неисправность карданного вала.

Но даже если посторонние звуки вызваны работой карданного вала, это еще не свидетельствует о какой-то серьезной поломке. Например, если при движении слышен дребезжащий гул, а при трогании с места происходят рывки и удары, то вероятная причина подобных явлений — ослабление тех или иных креплений.

В первую очередь следует подтянуть болты крепления фланцевой вилки к фланцу ведущей шестерни моста, болты крепления эластичной промежуточной опоры и эластичной муфты к фланцу вала коробки передач: очень может быть, что пугающие симптомы исчезнут.

Многие начинающие автолюбители чуть ли не впадают в панику, услышав металлический стук или скрежет, который явно связан с карданным валом. Однако очень может быть, что поводов для испуга нет: возможно, причина подобных звуков — случайно намотавшаяся на карданный вал проволока (вероятно, она

просто валялась на дороге и автомобиль ее «удачно подобрал»).

Биение карданного вала может случаться из-за его деформации. Кроме того, причинами могут быть выход из строя подшипника промежуточной опоры или нарушение балансировки.

Шум при движении может также возникать по причине износа карданных шарниров, которые придется заменить.

На срок службы ШРУС, а также шарниров карданного вала заднеприводных автомобилей отрицательное влияние оказывают следующие факторы: неправильный выбор скоростного режима на ухабистых и разбитых дорогах, буксование в грязи, резкий разгон, резкий старт, езда по грунтовой дороге с глубокими колеями.

Главная передача

У заднеприводных и переднеприводных автомобилей устройство главной передачи различается. Сначала рассмотрим, как она функционирует на заднеприводных автомобилях.

Главная передача (рис. 4.8) предназначена для увеличения крутящего момента, для его передачи на полуоси колес под прямым углом, а также для уменьшения частоты вращения ведущих колес. Она состоит из пары шестерен — ведущей и ведомой, установленных под прямым углом по отношению друг к другу. Эти шестерни находятся в постоянном зацеплении друг с другом. Крутящий момент, возникающий в двигателе автомобиля, через коленвал, сцепление, коробку переключения передач и карданный вал передается на ведущую шестерню, а от нее под прямым углом — на ведомую шестерню, откуда, в свою очередь, передается на полуоси колес. Отметим, что размер ведущей шестерни значительно меньше ведомой.

Рис. 4.8. Главная передача и дифференциал заднеприводного автомобиля:

1 — картер; 2 — крышка; 3 — защитный чехол; 4 — стопорное кольцо; 5 — полуось; 6 — сальник подшипника; 7 — регулировочная гайка; 8 — стакан подшипника; 9 — полуосевая шестерня; 10 — крышка коробки дифференциала; 11 — ведомая шестерня главной передачи; 12 — стопорное кольцо пальца сателлитов; 13 — палец сателлитов; 14 — сателлит; 15 — коробка дифференциала

Однако существует важный нюанс: очевидно, что при повороте автомобиля ведущие колеса должны пройти разное расстояние: колесо внутри поворота — меньшее, а колесо снаружи поворота — большее. Но главная передача не обеспечивает такого эффекта, следовательно, поворот автомобиля, по идее, невозможен. За счет чего же решается эта проблема?

Данная проблема решается за счет специального устройства, которое называется дифференциалом. Оно предназначено специально для того, чтобы распределить крутящий момент между полуосями (а значит, между колесами) при выполнении поворотов, а также при движении по неровным дорогам. Иначе говоря, с помощью дифференциала колеса крутятся с разной угловой скоростью и проходят разное расстояние, не проскальзывая при этом по поверхности дороги.

Дифференциал состоит из двух шестерен полуосей и двух шестерен сателлитов и установлен вместе с главной передачей, образуя с ней единый механизм (рис. 4.9).

Рис. 4.9. Схема устройства и работы дифференциала:

а — автомобиль идет по прямой (сателлиты не вращаются, ведущие колеса вращаются с одинаковой скоростью); б — автомобиль движется по закруглению (скорости ведущих колес разные, сателлиты вращаются вокруг своих осей); 1 — ведомая шестерня; 2 — ведущая шестерня; 3 — сателлит; 4 — полуосевая шестерня; 5 — полуось

Наверняка многим доводилось видеть, как автомобиль, застряв в грязи или в снегу, буксует только одним колесом, а второе колесо этой же оси стоит неподвижно, поскольку сильно увязло. Это наглядная демонстрация работы дифференциала: в данном случае крутящий момент полностью передается только на одно колесо — то, которое крутится; правда, это как раз недостаток дифференциала.

Но его достоинства с лихвой перекрывают этот недостаток: благодаря дифференциалу автомобиль имеет возможность нормально поворачивать и без него резину на колесах пришлось бы менять в несколько раз чаще.

Что касается переднеприводных автомобилей, то в силу конструктивных особенностей у них устройство главной передачи и дифференциала несколько иное (рис. 4.10). Дело в том, что у переднеприводных автомобилей двигатель установлен поперек направления движения, следовательно, нет необходимости передавать крутящий момент под прямым углом, поскольку он и так передается в плоскости, соответствующей движению колес.

Рис. 4.10. Главная передача и дифференциал переднеприводного автомобиля:

1 — фланец полуоси; 2 — штифт пальца сателлитов; 3 — стопорный винт; 4 — картер главной передачи; 5 — первичный вал; 6 — венец передачи заднего хода первичного вала; 7 — роликовый подшипник; 8 — болт крепления стопора; 9 — ось промежуточного зубчатого колеса передачи заднего хода; 10 — промежуточное зубчатое колесо передачи заднего хода; 11 — вилка включения передачи заднего хода; 12 — ведущее зубчатое колесо главной передачи (вторичный вал); 13 — сателлит; 14 — ведомое зубчатое колесо главной передачи; 15 — картер сцепления; 16 — коробка дифференциала; 17 — палец сателлитов; 18 — зубчатое колесо полуоси; 19 — шайба маслонаправляющая; 20 — прокладка картера; 21 — подшипник дифференциала; 22 — регулировочная гайка; 23 — манжета фланца полуоси

У переднеприводных машин главная передача и дифференциал расположены непосредственно в коробке переключения передач.

Чтобы механизмы главной передачи и дифференциала преждевременно не изнашивались, у заднеприводных автомобилей заливается трансмиссионное масло в картер заднего моста. Визуально он выглядит как характерное утолщение в центральной части заднего моста. У переднеприводных автомобилей масло заливается в коробку передач.

Уровень масла необходимо контролировать, при необходимости доливать его, а также своевременно менять износившиеся сальники, которые должны предотвращать утечку масла.

Любой стук или звон, который доносится из района заднего моста, заставляет нервничать любого автолюбителя. Однако раньше времени паниковать не стоит: ведь причины возникновения подобных звуков могут быть совсем безобидными. В частности, причиной их появления может быть, например, то, что глушитель задевает балку заднего моста.

5. Кузов и ходовая часть

Назначение и устройство кузова

Помимо того что кузов предназначен для размещения водителей, пассажиров и грузов, он является несущим элементом любого современного легкового автомобиля (рис. 5.1).

В нем находится салон, к нему крепятся все агрегаты трансмиссии, ходовой части, двигатель внутреннего сгорания, механизмы управления, а также все дополнительное оборудование. Кроме того, на кузов замыкается «минус» электрической цепи автомобиля.

Рис. 5.1. Кузов — первое, что мы видим у автомобиля

В основном кузов современного автомобиля состоит из металла и стекла, но используются и другие материалы (краска, грунтовка, резиновые прокладки на дверях и стеклах, дерматин, утеплитель и т. д.). Существуют модели автомобилей, у которых кузова делают из специального крепкого пластика.

Металлическая часть кузова включает в себя следующие основные компоненты: днище, крышу, крылья, панели, двери, капот и крышку багажника. Кроме них, каждый кузов включает в себя ряд более мелких металлических деталей и элементов. Лобовое и заднее стекла вставляются в специальные проемы соответственно в передней и задней частях кузова; боковые стекла устанавливаются в дверях, которые навешиваются на петли.

Двери кузова крепятся к соответствующим стойкам петлями, которые держатся на винтах. При этом имеется возможность регулирования дверей по вертикали и по горизонтали относительно оси кузова. Это бывает необходимо, в частности, после ДТП или для обеспечения герметичности салона.

ВНИМАНИЕ

Помните, что неотрегулированные двери приводят к преждевременному износу замков, а также к порче кузова.

Замки как передних, так и задних дверей автомобиля имеют специальную конструкцию, которая полностью соответствует установленным требованиям безопасности. В частности, фиксаторы замков сконструированы таким образом, что самопроизвольное открывание дверей при столкновении автомобиля с каким-то препятствием практически полностью исключается.

Каждая дверь имеет специальный ограничитель, который не позволяет ей упираться в кузов автомобиля внешней стороной при открывании. Такая конструкция приобретает особую важность в ветреную погоду: часто приоткрытую дверь сильным порывом ветра вырывает из рук и распахивает настежь, и в это время ограничитель предотвращает выламывание двери и соприкосновение ее с кузовом.

Внутри дверей имеются стеклоподъемники, предназначенные для открывания и закрывания боковых стекол. Стеклоподъемники бывают двух типов: ручные и электрические.

Лобовое (иногда его называют ветровым) и заднее стекла являются панорамными (за исключением задних стекол кузовов хетчбэк и универсал). Лобовое стекло является трехслойным, а заднее и боковые стекла — закаленными. Поэтому лобовое стекло при ударе может лишь потрескаться, а все остальные стекла рассыпаются на мелкие кусочки.

Спереди и сзади кузова установлены бамперы.

На старых машинах они были металлическими с резиновыми накладками. На современных автомобилях, как правило, устанавливаются бамперы, изготовленные из пластмассы или других материалов (пенополиуретан с добавкой стекловолокна и др.). В случае дорожно-транспортного происшествия при столкновении спереди или сзади именно бампер первым принимает на себя силу удара.

Водитель и пассажиры автомобиля размещаются в салоне на специально предназначенных сиденьях (рис. 5.2). Большинство современных легковых автомобилей предусматривает перевозку людей в количестве не более пяти человек, включая водителя.

Рис. 5.2. Салон автомобиля

Передние сиденья автомобиля раздельные (за исключением некоторых старых автомобилей, например «Волга» ГАЗ-21) и установлены на специальных салазках, по которым их можно передвигать в продольном направлении в зависимости от роста водителя и пассажира. Спинки передних сидений можно наклонять как вперед, так и назад, вплоть до полного откидывания спинки для организации спального места.

В трех— и двухдверных автомобилях спинки передних сидений откидываются вперед, чтобы открыть пассажирам доступ к заднему сиденью.

Днище кузова, а также внутренние поверхности крыльев покрыты специальным средством для защиты от коррозии и улучшения шумоизоляции.

Внутри салона располагаются все органы управления автомобилем, а также множество устройств и приспособлений, призванных обеспечить комфорт, безопасность и удобство во время движения. К ним, в частности, относятся подлокотники сидений, подголовники, ремни безопасности и т. д.

Рис. 5.3. Кузова после грунтовки

Снаружи кузов автомобиля окрашен на заводе-изготовителе, причем краска кладется не на голый металл. Процесс покраски современного автомобиля довольно сложен и состоит из нескольких этапов: подготовки поверхности кузова к покраске, грунтовки (рис. 5.3), сушки, нанесения основного слоя (рис. 5.4) и т. д. Это обусловлено тем, что автомобили эксплуатируются в сложных условиях (жара, дождь, снег, химические реагенты на дорогах и др.), что подразумевает необходимость высокой антикоррозийной стойкости кузова и надежности всех слоев краски.

Рис. 5.4. Кузов в покрасочной камере

На многих современных машинах используются оцинкованные кузова, благодаря чему заводы-изготовители смело дают гарантию на кузов 8–10 лет.

Особенности эксплуатации кузова и ухода за ним

Кузов современного автомобиля является важным и самым дорогим элементом, поэтому его сохранности следует уделять должное внимание. В процессе эксплуатации автомобиля нарушается его лакокрасочное покрытие, а также периодически появляются небольшие повреждения днища, несущих деталей, панелей, стекол и т. д. Поэтому каждый автомобилист должен знать и понимать, что соблюдение правил эксплуатации кузова и правильный уход за ним являются гарантией многолетней надежной службы.

Среди факторов, оказывающих наиболее вредное воздействие на кузов автомобиля, можно отметить следующие:

♦ дневной свет и солнечные лучи;

♦ продукты сгорания топлива;

♦ соль, хлориды и прочие активные и вредные реагенты, которыми любят посыпать дороги в зимнее время;

♦ влажный воздух в атмосфере;

♦ механические повреждения в результате ударов и ДТП;

♦ резкие колебания температуры (никогда не мойте машину теплой водой в холодное время года!).

Чтобы не допустить появления царапин на кузове, не следует удалять пыль и грязь сухими протирочными материалами (губками, тряпками и т. п.). Желательно мыть кузов до высыхания на нем грязи; если такой возможности нет, следует предварительно намочить кузов, чтобы грязь размокла. Перед мойкой машины желательно прочистить дренажные отверстия передних крыльев, порогов и дверей. По окончании мойки машину нужно вытереть насухо или просушить.

СОВЕТ

Не рекомендуется мыть машину в морозную погоду, поскольку вода, попавшая на уплотнители дверей, быстро замерзнет и открыть двери будет очень трудно, а иногда и невозможно.

Если вы моете машину не самостоятельно, а пользуетесь услугами автоматических моек (рис. 5.5), то заказывайте мойку с активной пеной (при сильном загрязнении — с двойной активной пеной), воскованием и последующей сушкой. Покрытие кузова воском дополнительно защищает его от вредного воздействия окружающей среды, а следовательно, от коррозии.

Рис. 5.5. Мойка автомобиля

Для ухода за кузовом автомобиля существует специальная автомобильная косметика (рис. 5.6), представленная в широком ассортименте в магазинах автозапчастей и на автомобильных рынках. Это различные полироли, натирки и т. п.

Через каждые 10 000–15 000 км пробега рекомендуется смазывать специальными средствами следующие механизмы и узлы:

♦ замочные скважины дверей и крышки багажника;

♦ тягу привода замка капота;

♦ дверные петли;

♦ шарниры спинок передних сидений;

♦ торсионы крышки багажника;

♦ ограничители открывания дверей;

♦ шарниры и проушины люка топливного бака;

♦ салазки передних сидений;

♦ детали фиксатора замка.

Рис. 5.6. Средства защиты кузова от песка и гравия

Желательно через каждые 20 000–30 000 км пробега проверять и при необходимости подтягивать крепления узлов и агрегатов к кузову автомобиля, а также прочищать дренажные отверстия дверей и порогов.

Если вы хотите продлить срок службы кузова, не поленитесь сделать полную антикоррозийную обработку (рис. 5.7). Это защищает от коррозии днище кузова и его скрытые полости. Многие наши соотечественники самостоятельно покрывают днище мастикой и выполняют иные антикоррозийные процедуры, однако целесообразнее все же обратиться на специализированную станцию технического обслуживания.

Рис. 5.7. Средства для антикоррозийной обработки кузова

СОВЕТ

Не жалейте денег и поставьте на свой автомобиль подкрылки. Это защитит внутреннюю поверхность крыльев от негативного воздействия окружающей среды.

Не секрет, что наряду с днищем именно эти части кузова наиболее сильно подвергаются загрязнению, влаге, воздействию соли и прочих реагентов. Подкрылки обеспечивают надежную защиту.

Каждый водитель должен следить за герметичностью салона. На автомобиле могут порваться или помяться резиновые уплотнители дверей, что приводит, во-первых, к проникновению под них влаги и связанной с этим коррозии, а во-вторых — к попаданию в салон выхлопных газов.

Кузов автомобиля должен соответствовать конструкции, установленной заводом-изготовителем, и включать в себя все необходимые элементы. В частности, действующими ПДД запрещается эксплуатация автомобиля, на кузове которого отсутствуют конструктивно предусмотренные зеркала заднего вида, а также стекла.

Также ПДД запрещают установку дополнительных предметов и нанесение покрытий, которые затрудняют обзор с места водителя и могут травмировать других участников дорожного движения.

В соответствии с действующими ПДД запрещается эксплуатация транспортных средств, у которых не работают или отсутствуют следующие конструктивно предусмотренные элементы:

♦ замки дверей кузова;

♦ пробка топливного бака;

♦ механизм регулирования сиденья водителя;

♦ спидометр;

♦ противоугонное устройство;

♦ устройства обдува и обогрева стекол.

Под штатным противоугонным устройством обычно понимается всем известный блокиратор руля (чтобы он сработал, нужно вынуть ключ из замка зажигания и повернуть руль в одну или другую сторону). Если это устройство неисправно, у вас может заклинить руль во время движения, что чревато крупными неприятностями не только для вас, но и для других ни в чем не повинных участников дорожного движения.

В соответствии с действующими ПДД в каждом автомобиле обязательно должны быть аптечка, знак аварийной остановки и огнетушитель.

VIN-код автомобиля

Возможно, у вас возникнет вопрос: почему в разделе, посвященном кузову автомобиля, идет речь о его VIN-коде? Дело в том, что VINкод (Vehicle Identifi cation Number) указывается именно на кузове автомобиля, являясь при этом важнейшим средством идентификации машины (рис. 5.8).

Рис. 5.8. VIN-код расположен под лобовым стеклом автомобиля (а) и внизу арки водительской двери (б)

Он имеется у всех машин, которые сходили с конвейера начиная примерно с 1980 года.

Структура VIN-кода детально рассмотрена в стандарте ISO 3779, принятом в США и Канаде в 1977 году. В соответствии с этим стандартом работают практически все автопроизводители Европы.

Почти всегда VIN-код включает в себя 17 символов, среди которых нельзя применять латинские буквы I, O и Q (они очень похожи на цифры 1 и 0).

Каждый знак (или набор знаков) VIN-кода содержит те либо иные сведения. Дадим пояснение к символам VIN-кода, применяемым большинством заводов-изготовителей. Отметим, что у некоторых из них возможны небольшие различия (в частности, год выпуска может быть указан не в десятом, а в одиннадцатом знаке).

В начале VIN-кода следуют три знака, содержащие информацию об индексе производителя машины. Первый знак означает государство, в котором был изготовлен автомобиль, второй характеризует производителя, а третий указывает тип, к которому относится данный автомобиль (легковой, грузовик и т. д.).

Знаки с четвертого по восьмой содержат сведения об основных технических характеристиках автомобиля: о модели, типе двигателя, типе кузова и др.

Девятый символ — это контрольная цифра, предназначенная для определения достоверности VIN-кода. По нему можно узнать, не была ли эта машина угнана.

Наибольший интерес у автомобилистов вызывает десятый знак, указывающий год выпуска автомобиля.

Знаки VIN-кода с двенадцатого по семнадцатый содержат информацию о движении автомобиля по конвейеру на заводе-производителе и все вместе являются не чем иным, как номером кузова транспортного средства.

В настоящее время существует возможность проверки VIN-кода машины, что позволяет удостовериться в ее «незапятнанной» истории. Для этого в Интернете существуют специальные веб-страницы (в частности, ). Вы можете заказать как бесплатный сжатый, так и платный детальный отчет. Цена платного отчета варьируется в диапазоне от 700 до 3000 рублей. Кроме того, проверку VIN-кода можно выполнить на сайте завода-изготовителя.

Ходовая часть автомобиля

С помощью деталей и механизмов, включенных в ходовую часть, колеса автомобиля связываются с его кузовом, при этом гасятся возникающие в процессе езды колебания, что обеспечивает комфортность поездки.

Основными составными элементами ходовой части автомобиля являются подвеска передних и задних колес и сами колеса с шинами.

Подвеска современного автомобиля

Для устранения колебаний и вибраций, которые при езде по неровной дороге передаются на кузов автомобиля, предназначена подвеска.

Характерной особенностью подвески автомобиля является то, что колеса к кузову крепятся не жестко. В этом можно убедиться, подняв машину на подъемнике или приподняв ее возле любого колеса с помощью домкрата: расстояние от колес до кузова увеличится и они будут висеть свободно, держась на пружинах, рычагах и иных непонятных для новичка деталях. Вот эти самые пружины, рычаги и иные детали и представляют собой подвеску автомобиля (рис. 5.9).

Рис. 5.9. Передняя подвеска: вид снизу

Смысл такого свободного крепления колес к кузову заключается в том, чтобы кузов машины во время езды мог перемещаться относительно колес. При этом он гасит вертикальные, поперечно-угловые и иные колебания, благодаря чему достигается мягкость и плавность хода автомобиля.

Существуют два вида автомобильных подвесок: зависимая и независимая. Отметим, что на большинстве современных автомобилей используется независимая подвеска.

На автомобиле с зависимой подвеской колеса, расположенные на одной оси, связаны между собой жесткой и негнущейся балкой.

Поэтому, когда одно из этих колес наезжает на яму, выбоину, неровность и т. п. и по этой причине наклоняется на определенный угол, связанное с ним колесо тоже вынужденно наклоняется на такой же угол.

Что касается независимой подвески, то у нее колеса, расположенные на одной оси автомобиля, не связаны жесткой балкой. Поэтому при наезде на какое-либо препятствие одно колесо изменяет свое положение, а второе — нет.

Каждая подвеска включает в себя упругие элементы, называемые рессорами. Главной задачей рессор является смягчение колебаний и ударов, которые передаются от неровностей дороги кузову автомобиля. На современных автомобилях используются два типа рессор: пружинные и пластинчатые.

Внешне пружинная рессора представляет собой обыкновенную мощную пружину с высокой степенью сопротивляемости (рис. 5.10).

Рис. 5.10. Пружинные рессоры

Пластинчатая рессора состоит из нескольких рядов продольных металлических пластин. Они наложены друг на друга таким образом, что внизу оказывается самая длинная пластина, на ней — чуть покороче, далее — еще короче и наверху — самая короткая. Такая конструкция, выполненная из прочного металла, обеспечивает мощное сопротивление и необходимую упругость.

Подвеска автомобиля также включает в себя гасящие элементы, которые называются амортизаторами (рис. 5.11). Задача амортизатора — гашение колебаний и раскачиваний кузова автомобиля. Это осуществляется за счет сопротивления, которое возникает при перетекании жидкости через калиброванные отверстия из одной емкости в другую и обратно. В некоторых видах амортизаторов вместо жидкости может применяться газ. Соответственно одни амортизаторы называются гидравлическими, другие — газовыми.

Рис. 5.11. Амортизаторы

Амортизатор устанавливается между кузовом автомобиля и колесной осью (балкой).

Основными элементами амортизатора являются:

♦ верхняя и нижняя проушина (предназначены для крепления амортизатора соответственно к кузову и колесной оси);

♦ защитный кожух (накрывает верхнюю половину амортизатора);

♦ шток;

♦ цилиндр;

♦ поршень с клапанами.

В состав подвески автомобиля входит также стабилизатор поперечной устойчивости. Его функциональное назначение — уменьшение наклона автомобиля при движении на поворотах, а также повышение его устойчивости и управляемости.

Принцип действия данного устройства следующий: когда автомобиль выполняет поворот, его кузов с внутренней стороны поворота приподнимается от поверхности дороги, а с внешней стороны, наоборот, прижимается к ней, что создает опасность опрокидывания автомобиля. Но этому препятствует стабилизатор, который, прижавшись к поверхности вместе с автомобилем с одной его стороны, одновременно прижимает и другую его сторону. Когда же какое-либо из колес автомобиля наезжает на неровность на дороге, стабилизатор стремится быстрее вернуть его в первоначальное положение.

Развал и схождение колес

Устойчивость и управляемость автомобиля во многом зависит от правильно выставленных углов передних колес. Ни в одном автомобиле передние колеса не установлены строго параллельно друг другу и строго перпендикулярно дороге. Во-первых, они немного повернуты друг к другу, во-вторых, относительно вертикальной оси колеса немного как бы «развалены» в стороны. Первое явление называется схождением колес, второе — развалом колес, а в комплексе — углами расстановки передних колес.

Развал и схождение колес устанавливаются на заводе-изготовителе и при необходимости корректируются в процессе эксплуатации автомобиля.

Функции развала и схождения колес можно сформулировать следующим образом:

♦ равномерное качение на поворотах передних колес, без проскальзывания;

♦ обеспечение устойчивости прямолинейного движения машины;

♦ самостоятельный возврат передних колес в прямолинейное положение по завершении поворота;

♦ уменьшение усилий, которые необходимо прилагать к рулевому колесу при выполнении поворотов;

♦ компенсирование лишних нагрузок на важные детали подвески и подшипники;

♦ частичное поглощение ударов по подвеске от ям, выбоин, иных неровностей дороги.

Правильность выставления развала и схождения колес имеет большое значение. Если углы расстановки колес не отрегулированы, машину будет вести в ту или другую сторону. Кроме того, колеса автомобиля будут изнашиваться неравномерно и как бы срезаться вдоль одной кромки.

ПРИМЕЧАНИЕ

Машину может также тянуть в сторону, если на ней установлены покрышки с разным рисунком протектора на одной оси, что совершенно недопустимо и запрещено ПДД.

Ну а самая распространенная причина того, что машину тянет в сторону, — это снижение давления в колесе (колесах). Проверьте давление в шинах, при необходимости подкачайте их — и очень может быть, что проблема исчезнет.

Назначение и устройство колес

Колесо современного автомобиля представляет собой устройство, на которое в конечном итоге поступает крутящий момент, вырабатываемый ДВС. За счет принимаемого крутящего момента и сцепления с поверхностью дороги колеса обеспечивают движение автомобиля, попутно воспринимая и частично компенсируя толчки, передаваемые на кузов от неровностей дороги. Колеса самым непосредственным образом влияют на мягкость и плавность хода автомобиля, его устойчивость и управляемость, способность разгоняться и тормозить, а также на безопасность движения.

Автомобильное колесо состоит из двух основных компонентов: резиновой шины и металлического диска, на который надевается шина.

Колесные шины бывают двух видов: камерные и бескамерные. Камерная шина состоит из двух частей: резиновой камеры, которая наполняется воздухом, и покрышки, внутри которой находится камера.

На современных автомобилях используются бескамерные шины: в них нет камеры и воздух накачивается в пространство между покрышкой и колесным диском. Бескамерные шины считаются намного более удобными и надежными в эксплуатации.

Покрышка включает в себя следующие составные элементы:

♦ металлический каркас — корд;

♦ протектор;

♦ боковины;

♦ борта.

Несущей частью покрышки и ее силовой основой является корд, который внешне представляет собой нечто вроде металлической сетки, сплетенной из тонкой проволоки. Корд принимает на себя давление как изнутри покрышки, производимое сжатым воздухом, так и снаружи, со стороны дороги.

В современных колесах используются каркасы (корды) двух видов: с диагональным и радиальным расположением нитей.

В покрышках с диагональными нитями они располагаются перекрестно по отношению друг к другу под углом примерно 35–45°. В результате боковины покрышки соединяются по диагоналям. Такие шины отличаются высокой надежностью и хорошей сопротивляемостью при наезде на препятствия (бордюры, камни и т. п.). Однако они не столь эластичны, как радиальные.

В покрышках с радиальными нитями они располагаются почти перпендикулярно по отношению к бортам. Среди достоинств таких шин в первую очередь следует отметить относительно небольшое сопротивление качению и обеспечение хорошего сцепления с поверхностью дорожного покрытия. По сравнению с диагональными покрышками радиальные являются более мягкими и эластичными. Однако данное свойство имеет и обратный эффект: покрышки с радиальными нитями чувствительны к резким наездам на препятствия, поэтому уже после первого попадания в выбоину на дороге или наезда на камень либо бордюр на вашем колесе может появиться заметная «шишка».

ПРИМЕЧАНИЕ

«Шишками» водители называют выступы на покрышке, которые появляются в результате неаккуратной езды или высокого износа. Эксплуатировать автомобиль, имеющий «шишку» хотя бы на одном колесе, предельно опасно: в частности, это колесо может лопнуть во время движения, что приведет к ДТП.

В соответствии с действующими ПДД запрещается эксплуатация автомобиля, шины которого имеют порезы, разрывы и иные местные повреждения, которые обнажают корд покрышки. Кроме того, нельзя ехать на машине, если у покрышки имеются расслоения корда, а также отслоения протектора и боковины. Запрещается установка на одну ось автомобиля радиальных шин совместно с диагональными, а также шин с разным рисунком протектора.

ПРИМЕЧАНИЕ

Однако ПДД разрешают, чтобы рисунок протектора пары передних колес отличался от рисунка протектора пары зад них колес.

Протектором называется верхняя часть покрышки, которая непосредственно соприкасается с поверхностью дороги и обеспечивает должное сцепление с ней. По своей конструкции протектор представляет собой толстый слой плотной резины, на который нанесен рисунок (рис. 5.12).

Рис. 5.12. Колесо с новым протектором

Рисунок протектора состоит из набора борозд, канавок и выступов и представляет собой сложный рельеф. Это необходимо для обеспечения хорошего и надежного сцепления автомобиля с поверхностью дорожного полотна во избежание заносов. По мере эксплуатации автомобиля шина изнашивается и рисунок протектора стирается.

ВНИМАНИЕ

Эксплуатация автомобиля с изношенными колесами запрещена ПДД. Изношенными признаются покрышки, у которых остаточная высота рисунка протектора составляет менее 1,6 мм (имеются в виду легковые автомобили; для автобусов, грузовиков, мотоциклов и мопедов иные нормы допуска).

В настоящее время существуют покрышки с разным рисунком протектора: дорожным, специальным, универсальным и др. В зависимости от рисунка протектора все покрышки можно разделить на две категории: зимние и летние. Зимняя резина отличается более глубоким и рельефным рисунком протектора, что обеспечивает хорошее сцепление даже на обледенелой дороге и предотвращает пробуксовку колес при движении по сугробам.

Отметим, что многие зимние покрышки имеют направленный рисунок протектора. Это означает, что при их установке следует соблюдать направление рисунка, которое должно со ответствовать имеющейся на покрышке стрелке: колесо должно вращаться именно в эту сторону. Следовательно, каждая покрышка может устанавливаться только на одну сторону автомобиля.

Шина колеса надевается на металлический колесный диск. Диск крепится болтами непосредственно либо к ступице колеса, либо к полуоси. Именно на колесный диск в конечном итоге поступает крутящий момент от двигателя внутреннего сгорания.

У большинства легковых автомобилей диск крепится четырьмя болтами. Однако на небольших машинах предусмотрено крепление диска тремя болтами, а на больших — пятью.

ПДД запрещают эксплуатацию автомобиля, у которого хотя бы на одном колесе отсутствует хотя бы один болт, а также имеются трещины колесного диска или ободьев.

Каждому водителю рано или поздно придется самостоятельно менять колесо. Помните: болты следует закручивать не по порядку, а по диагонали, чтобы предотвратить перекос колеса. И затягивать их следует не сразу, а постепенно: сначала нужно «наживить» все болты, чтобы они немного касались своими головками поверхности диска, а затем поочередно и постепенно закручивать их.

Пока машина стоит на домкрате, следует хорошо затянуть все болты. Однако окончательную подтяжку нужно делать, когда уже домкрат снят и машина стоит на колесе.

Все шины в обязательном порядке имеют маркировку, которая содержит информацию об их основных характеристиках. Эта маркировка имеет четыре реквизита, таких как:

♦ ширина профиля покрышки, выраженная в миллиметрах;

♦ отношение высоты профиля покрышки к ее ширине в процентном выражении;

♦ вид покрышки — с диагональным или радиальным расположением нитей корда;

♦ посадочный диаметр шины, выраженный в дюймах.

Вот пример маркировки шины: 185/75R14. Это означает, что ширина профиля данной шины составляет 185 мм, соотношение высоты профиля и ширины — 75 %, расположение нитей корда — радиальное (R), а посадочный диаметр шины равен 14 дюймам (1 дюйм — 2,54 см).

В инструкции по эксплуатации каждого автомобиля указывается, какие именно шины должны быть установлены. В соответствии с ПДД запрещается эксплуатация транспортного средства, шины которого не соответствуют характеристикам, установленным для данного автомобиля заводомизготовителем.

Каждое колесо автомобиля должно быть отбалансировано. С этой целью на колесный диск крепятся специальные металлические грузики (это делается на СТО или на шиномонтаже). На неотбалансированных колесах вы сможете ехать только очень медленно: при движении по трассе с большой скоростью такие колеса будут вибрировать.

Учтите, что нарушенная балансировка колес или ее отсутствие приводит к преждевременному износу не только шин, но и элементов подвески автомобиля, рулевого механизма, тормозной системы и трансмиссии.

Во всех колесах автомобиля (включая «запаску») должно поддерживаться одинаковое давление воздуха. Для большинства современных легковых машин оптимальным является давление 2 атм. Для измерения давления в шинах предназначен специальный прибор — манометр.

Чтобы измерить давление, снимите колпачок с ниппеля колеса, поставьте на это место приемник-насадку манометра, сильно нажмите до упора и снимите манометр: в результате этих действий стрелка покажет давление.

При необходимости колеса нужно подкачать.

Однако излишнее давление тоже вредно, по-этому в таких случаях необходимо выпустить лишний воздух.

СОВЕТ

Помните, что проверять давление в шинах нужно хотя бы раз в две-три недели. Езда на автомобиле с разным давлением в шинах приводит к их преждевременному износу, а также к неустойчивому поведению машины на дороге.

6. Тормозная система

Тормозная система любого современного автомобиля состоит из рабочей и стояночной тормозных систем (рис. 6.1).

Рис. 6.1. Тормозная система:

1 — гибкий шланг; 2 — бачок для тормозной жидкости; 3 — вакуумный усилитель; 4 — комбинация приборов; 5 — рукоятка рычага ручного тормоза; 6 — задний тормозной механизм; 7 — гибкий шланг; 8 — регулятор давления; 9 — тройник; 10 — колесный цилиндр заднего тормозного механизма; 11 — колодка заднего тормозного механизма; 12 — задний трос ручного привода стояночного тормоза; 13 — выключатель контрольной лампы; 14 — сигнальное устройство; 15 — тормозная педаль; 16 — колодки переднего тормозного механизма; 17 — тормозной диск; 18 — скоба переднего тормозного механизма; 19 — цилиндры переднего тормозного механизма; 20 — главный тормозной цилиндр

Рабочая тормозная система предназначена для уменьшения скорости движения автомобиля и для его остановки (то есть для преднамеренного прекращения движения). Она приводится в действие нажатием специальной педали, расположенной в салоне автомобиля.

Когда водитель нажимает на педаль тормоза, это усилие через гидравлический тормозной привод передается на тормозные механизмы всех четырех колес машины.

Стояночная тормозная система обеспечивает удержание автомобиля от произвольного движения во время его стоянки. Кроме того, она используется для удержания автомобиля от скатывания назад при трогании с места на подъеме, а также для ручного управления тормозными механизмами задних колес с помощью рычага стояночного тормоза (на водительском сленге — «ручник»), расположенного в большинстве случаев между передними сиденьями автомобиля.

Чтобы привести в действие стояночный тормоз, необходимо поднять «ручник» в верхнее положение. Это необходимо для натяжения двух металлических тросов, последний из которых заставляет тормозные колодки задних колес прижаться к тормозным барабанам или тормозным дискам — в зависимости от типа используемых тормозов (барабанные или дисковые). Колеса блокируются, что обеспечивает неподвижность автомобиля.

Когда «ручник» установлен в верхнее положение, для предотвращения самопроизвольного снятия он блокируется защелкой. Поэтому, чтобы опустить рычаг, водитель должен нажать специальную кнопку, расположенную на конце рычага (рис. 6.2).

Рис. 6.2. Кнопка на рычаге стояночного тормоза

Рабочая тормозная система автомобиля включает в себя тормозной привод и тормозные механизмы колес.

Принцип работы тормозного привода

Главной задачей тормозного привода является передача усилия, прилагаемого водителем к тормозной педали, на тормозные механизмы всех колес автомобиля. На современных автомобилях используются гидравлические тормозные приводы, в которых в качестве рабочего элемента используется специальная тормозная жидкость.

Гидравлический привод тормозной системы включает в себя следующие составные элементы (рис. 6.3):

♦ педаль тормоза;

♦ рабочие тормозные цилиндры;

♦ главный тормозной цилиндр;

♦ тормозные трубки (шланги);

♦ вакуумный усилитель тормозов.

Рис. 6.3. Гидравлический привод тормозной системы:

1 — педаль тормоза; 2 — главный тормозной цилиндр; 3 — тормозная трубка; 4 — питающий бачок; 5 — грязезащитный чехол

Когда необходимо снизить скорость, в том числе до полной остановки, водитель нажимает ногой на педаль тормоза, которая расположена в салоне автомобиля между педалями газа и сцепления. Приложенное усилие передается через специальный шток на поршень главного тормозного цилиндра. Этот поршень, в свою очередь, давит на залитую в системе тормозную жидкость, от которой усилие через топливные трубки и шланги передается на тормозные цилиндры колес.

При этом у тормозных цилиндров выдвигаются поршни, которые давят на тормозные колодки, прижимая их либо к тормозным дискам, либо к тормозным барабанам (в зависимости от используемой конструкции тормозов). Диск или барабан имеется у каждого колеса и непосредственно связан с ним, по-этому, когда колодки давят на вращающийся вместе с колесом диск (барабан), вращение колеса замедляется и в конечном итоге прекращается.

На современных автомобилях используются гидравлические тормозные приводы, которые состоят из двух независимых контуров, отдельно для каждой пары колес. Причем эти контуры не обязательно связывают колеса одной оси. Если по каким-то причинам отказывает один контур, то срабатывает второй.

Для повышения эффективности работы тормозной системы, а также для уменьшения усилия, которое должен приложить водитель при нажатии на педаль, предназначен специальный прибор — вакуумный усилитель тормозов. Он непосредственно связан с главным тормозным цилиндром. Основным элементом усилителя является камера, которая разделена на две части резиновой диафрагмой. Одна часть камеры связана с впускным трубопроводом двигателя, в котором создается разряжение, а вторая — с атмосферой. В разряженном пространстве давление на 20 % меньше атмосферного, и благодаря этому перепаду давлений, а также большой площади резиновой диафрагмы создается эффект, позволяющий заметно уменьшить усилие при нажатии на педаль тормоза.

Колесные тормозные механизмы

Задачей колесного тормозного механизма является уменьшение скорости вращения колеса вплоть до полной остановки за счет силы трения, которая возникает между тормозными колодками (вернее — их накладками) и тормозным диском либо барабаном, к которому они прижимаются.

Как мы уже неоднократно отмечали выше, в современных автомобилях могут использоваться тормозные системы двух видов: дисковые или барабанные. При этом на одном автомобиле могут применяться тормоза как одного, так и одновременно двух видов.

Барабанный тормозной механизм состоит из следующих основных компонентов (рис. 6.4):

♦ тормозного барабана;

♦ тормозного цилиндра;

♦ тормозного щита;

♦ тормозных колодок (в количестве двух штук);

♦ стяжных пружин.

Рис. 6.4. Барабанный тормозной механизм:

1 — тормозной барабан; 2 — тормозная колодка; 3 — прижимная пружина; 4 — стяжная пружина (длинная); 5 — цилиндр; 6 — поршень; 7 — упорное кольцо; 8 — пружина троса; 9 — трос; 10 — стяжная пружина (короткая)

Тормозной щит жестким креплением монтируется на колесной балке; на щите закреплен рабочий тормозной цилиндр. Когда водитель давит на педаль тормоза, поршни в тормозном цилиндре расходятся в стороны и давят на тормозные колодки, которые имеют форму полуколец. В результате колодки прижимаются к внутренней поверхности вращающегося вместе с колесом тормозного барабана (колесо надето на этот барабан), замедляя его вращение вплоть до полной остановки.

При использовании барабанного тормозного механизма торможение автомобиля является следствием силы трения между тормозным барабаном и прижимающимися к нему тормозными колодками.

Чтобы прекратить торможение, водитель отпускает педаль тормоза. Давление на тормозные колодки прекращается, и специально предназначенные стяжные пружины возвращают их на исходные позиции. Соприкосновение и трение между колодками и тормозным барабаном прекращается, и ничто не мешает колесу свободно вращаться.

Несколько иную конструкцию имеет дисковый тормозной механизм. Он включает в себя следующие компоненты (рис. 6.5):

♦ тормозной диск;

♦ тормозной суппорт;

♦ тормозной цилиндр (может использоваться один или два);

♦ тормозные колодки (в количестве двух штук).

Рис. 6.5. Дисковый тормозной механизм:

1 — рама; 2 — суппорт; 3 — диск; 4 — колодка тормоза; 5 — корпус цилиндра; 6 — фиксатор; 7 — палец; 8 — поворотный кулак; 9 — пружина; 10 — щит; 11 — ступица колеса

При использовании дисковых тормозов на передних колесах суппорт устанавливается на поворотном кулаке колеса. Внутри суппорта находится тормозной цилиндр (один или два — в зависимости от конструкции конкретной тормозной системы), а также две тормозные колодки. Колодки установлены напротив друг друга таким образом, что располагаются по разные стороны тормозного диска (иначе говоря, тормозной диск находится между тормозными колодками). Диск вращается вместе с колесом, с которым жестко связан (рис. 6.6).

Рис. 6.6. Передние дисковые тормоза

Когда водитель нажимает на педаль тормоза, из рабочих тормозных цилиндров выходят поршни и давят на тормозные колодки, которые с двух сторон начинают прижиматься к тормозному диску, как бы обхватывая его (рис. 6.7). Под действием силы трения диск, а соответственно и колесо, замедляет вращение, и автомобиль останавливается. Если необходимо прекратить торможение, не дожидаясь полной остановки транспортного средства, то водитель отпускает педаль тормоза: поршни тормозного цилиндра возвращаются в исходное положение и прекращают давление на тормозные колодки, в результате чего те отпускают тормозной диск и колесо получает возможность свободного вращения.

Тормозные колодки являются расходной деталью: из-за постоянного трения стираются их накладки, и колодки приходится менять.

Новых тормозных колодок для дискового механизма хватает на 15 000–20 000 км пробега, а барабанные тормозные колодки исправно служат как минимум 50 000–60 000 км. Иногда приходится менять тормозные диски: со временем они могут истончиться, что приводит к поломке диска.

Рис. 6.7. Тормозные колодки с диском

Особенности эксплуатации и технического обслуживания тормозной системы

Каждый водитель должен внимательно следить за состоянием тормозных шлангов. При появлении трещин либо иных механических повреждений их следует немедленно заменить.

Ведь если лопается тормозной шланг, вытекает тормозная жидкость и тормозная система становится неработоспособной.

При техническом обслуживании деталей, узлов и механизмов тормозной системы нельзя использовать органические растворители (керосин, бензин, уайт-спирит и т. п.), поскольку они разъедают резину. Также не допускается применение острых и твердых инструментов.

В случае необходимости пользуйтесь маленьким деревянным бруском и чистым куском материи, предварительно смочив ее в тормозной жидкости или в спирте.

Обязательно обращайте внимание на то, как ведет себя автомобиль при торможении. В частности, если при нажатой педали тормоза слышен шум, вероятно, износились тормозные колодки и их пора заменить. Если ощущается вибрация, возможно, загрязнились тормозные механизмы, неравномерно износились тормозные диски (барабаны) либо лопнула одна или несколько стяжных пружин барабанных тормозных колодок.

Иногда при торможении автомобиль немного ведет в какую-то сторону. В таком случае проверьте состояние тормозных цилиндров и колодок: возможно, на каком-то колесе вышел из строя цилиндр (заклинило поршень и др.) либо тормозные колодки износились больше, чем на других колесах. Также может быть, что на каком-либо колесе тормозные колодки просто замаслились — в этом случае их необходимо промыть.

Если тормозная педаль слишком «мягкая» (то есть при нажатии оказывает слабое сопротивление, иногда даже может упираться в пол), видимо, в систему попал воздух или наблюдается утечка тормозной жидкости (нередко эти явления происходят одновременно). Проверьте состояние тормозных шлангов и цилиндров, найдите место утечки, замените неисправные детали и обязательно прокачайте тормоза. Если утечки нет и воздух попал в систему каким-то другим образом, тоже необходимо прокачать тормоза. Также может быть, что слишком сильно износились тормозные колодки (вернее, их накладки) — в таком случае их следует заменить.

Тормоза нужно прокачивать и в том случае, если изначально «мягкая» тормозная педаль «твердеет» после нажатия на нее несколько раз подряд.

ВНИМАНИЕ

Полное торможение автомобиля должно совершаться после того, как водитель один раз нажмет на педаль тормоза примерно на половину ее хода. При этом должно чувствоваться заметное сопротивление педали к концу хода.

Полное растормаживание автомобиля после того, как водитель отпустил педаль тормоза, должно происходить очень быстро. Это можно определить по тому, насколько хорошо и свободно автомобиль идет «накатом» после того, как педаль тормоза отпущена.

Иногда бывает так, что тормозная педаль внезапно становится слишком тугой. Это нормальное явление при неработающем двигателе, поскольку вакуумный усилитель тормозов без него тоже работать не будет. По этой причине следует соблюдать предельную осторожность при буксировке автомобиля с неработающим двигателем. Если подобное явление наблюдается при работающем двигателе, значит, вышел из строя вакуумный усилитель тормозов.

При любых неисправностях тормозной системы («мягкая» педаль тормоза, подтекание тормозной жидкости, потрескавшиеся тормозные шланги, заклинивание тормозных цилиндров и др.) следует немедленно выполнять необходимый ремонт. ПДД запрещает движение на автомобиле с неисправной тормозной системой. Категорически запрещается эксплуатировать автомобиль при нарушении герметичности системы гидравлического привода тормозов.

Даже минимальное подтекание может стать причиной лопнувшего шланга (например, при сильном и резком нажатии на педаль тормоза). В этом случае тормозная жидкость моментально выльется из системы и остановить автомобиль будет очень сложно.

Есть определенные требования и к стояночной системе автомобиля, при несоблюдении которых запрещается его эксплуатация. В частности, стояночная система должна обеспечивать неподвижное состояние транспортного средства с полной нагрузкой на уклоне до 16 % включительно, а легкового автомобиля в снаряженном состоянии — на уклоне до 23 % включительно. Автомобиль в снаряженном состоянии полностью заправлен эксплуатационными жидкостями и материалами, укомплектован штатным инструментом и запасным колесом, в салоне находится только водитель. Автомобиль с полной нагрузкой — это снаряженный автомобиль, в котором находятся водитель и все пассажиры в соответствии с конструктивно предусмотренным количеством мест, а в багажнике — 50 кг груза.

При выходе из строя тормозной системы автомобиля дальнейшее движение категорически запрещается. Для транспортировки такого автомобиля придется прибегнуть к буксировке с помощью эвакуатора.

7. Рулевое управление

Для обеспечения движения автомобиля в заданном направлении предназначено рулевое управление (рис. 7.1). Оно состоит из двух компонентов: рулевого механизма и рулевого привода.

Рис. 7.1. Рулевое управление:

1 — сошка; 2 — маятниковый рычаг; 3 — регулировочная муфта; 4 — ось маятникового рычага; 5 — картер рулевого механизма; 6 — вал червяка; 7 — карданный шарнир; 8 — промежуточный вал рулевого управления; 9 — рычаг переключателя стеклоочистителя и омывателя ветрового стекла и блока фары; 10 — рычаг переключателя света фар; 11 — рычаг переключателя указателей поворота; 12 — лонжерон кузова

С помощью рулевого механизма водитель передает на рулевой привод усилие, которое он прилагает к рулевому колесу, расположенному в салоне автомобиля. На легковых автомобилях могут использоваться рулевые механизмы двух типов: червячный и реечный.

Червячный механизм включает в себя следующие составные элементы (рис. 7.2):

♦ рулевое колесо (по-простому — руль);

♦ вал рулевого колеса;

♦ червячную пару, состоящую из червяка и ролика;

♦ картер червячной пары;

♦ рулевую сошку.

Рис. 7.2. Рулевой механизм:

1 — регулировочный винт; 2 — контргайка; 3 — пробка; 4 — червяк; 5 — картер рулевого механизма; 6 — сошка; 7 — пружинная шайба; 8 — втулка; 9 — вал сошки; 10 — ролик вала сошки; 11 — вал червяка; 12, 13 — подшипники червяка; 14 — нижняя крышка картера; 15 — ось ролика; 16 — подшипник ролика; 17 — сальник вала червяка

ВНИМАНИЕ

Поскольку червяк и ролик представляют собой зубчатое соединение, они постоянно должны быть смазаны маслом.

Главной и единственной задачей червячной пары является преобразование вращения руля в поворот рулевой сошки в соответствующем направлении. После этого усилие передается на рулевой привод, а далее — непосредственно на передние колеса автомобиля.

Что касается рулевого механизма реечного типа, то его принципиальным отличием является то, что вместо червячной пары в нем используется пара «шестерня — рейка». Когда водитель поворачивает руль в ту или иную сторону, вращается шестерня, которая соответствующим образом поворачивает находящуюся с ней в зацеплении рейку. Рейка передает это усилие на рулевой привод, а далее — на передние колеса.

Для передачи усилия, прилагаемого водителем при повороте руля, от рулевого механизма к передним колесам предназначен рулевой привод. При этом он обеспечивает поворот колес на разные углы, в зависимости от выбранного водителем направления.

Совместно с рулевым механизмом червячного типа используется рулевой привод, включающий в себя следующие элементы:

♦ среднюю рулевую тягу;

♦ правую и левую рулевые тяги;

♦ маятниковый рычаг;

♦ правый и левый поворотные рычаги колес.

Рулевой привод для рулевого механизма реечного типа выглядит несколько проще и имеет только две рулевые тяги, предназначенные для передачи усилия на поворотные рычаги, в результате чего колеса автомобиля поворачиваются в требуемом направлении.

Практически все современные автомобили оснащаются гидравлическим усилителем рулевого управления, который предназначен для снижения усилия, прилагаемого водителем при манипуляциях рулевым колесом. Основными составными элементами гидроусилителя являются насос, распределительное устройство и гидравлический цилиндр.

Когда водитель поворачивает руль, специальное распределительное устройство под давлением направляет жидкость в одну из полостей гидравлического цилиндра, благодаря чему и достигается существенное снижение прилагаемого водителем усилия.

ПРИМЕЧАНИЕ

Гидравлический усилитель рулевого управления функционирует только при работающем двигателе.

Иногда ощущается слишком тугое вращение рулевого колеса или даже заедание рулевого механизма. Причиной может быть не только вышедший из строя гидравлический усилитель, но и повреждение подшипников червяка, повышенный износ любого компонента червячной пары, рулевых наконечников (рис. 7.3), погнутость рулевых тяг, недостаточное количество масла в картере рулевого механизма.

Рис. 7.3. Новые рулевые наконечники

Распространенной неисправностью рулевого управления является слишком большой свободный ход рулевого колеса (или люфт).

ПДД запрещают эксплуатацию транспортных средств, у которых:

♦ суммарный люфт в рулевом управлении превышает 10°;

♦ в рулевом управлении имеются не предусмотренные конструкцией перемещения деталей и узлов;

♦ в рулевом управлении резьбовые соединения не затянуты или не зафиксированы;

♦ отсутствует или неисправен усилитель рулевого управления (если он предусмотрен конструкцией автомобиля).

Учтите, что движение автомобиля категорически запрещается при любых неисправностях рулевого управления.

8. Системы активной и пассивной безопасности

Научиться управлять автомобилем просто. Фокус в том, чтобы научиться безопасному вождению. Но современные автомобили не рассчитывают только на мастерство водителя, они имеют собственные системы безопасности, которые дополняют, а иногда и заменяют контраварийные действия водителя.

Автомобиль снабжен двумя типами систем безопасности: активной и пассивной.

Активные системы безопасности призваны помочь водителю избежать аварийной ситуации, то есть это как раз те системы, которые помогают повысить мастерство вождения.

Пассивные системы безопасности призваны смягчить тяжесть уже совершившегося ДТП, обеспечить максимальную безопасность водителя и пассажиров во время ДТП, а в некоторых моделях автомобилей — даже и безопасность пешеходов.

В старых моделях автомобилей имеется минимальный набор активных систем безопасности: хорошая обзорность дороги (зеркала, площадь заднего стекла), видимость при любых погодных условиях (очистка лобового стекла, вентиляция, предотвращающая запотевание стекол), защита водителя от ослепления солнечными лучами и светом фар идущего сзади автомобиля в темное время суток, термоизоляция кузова, создание микроклимата внутри салона (печка, вентиляторы, кондиционер), регулируемое водительское сиденье (обеспечивает оптимальное положение за рулем, предотвращающее повышенную утомляемость и позволяющее оперативно манипулировать средствами управления автомобилем).

Современные модели автомобилей оснащены дополнительным набором средств активной безопасности, которые компенсируют в некоторых ситуациях недостаток водительского мастерства:

♦ ABS — антиблокировочная система тормозов, предотвращающая блокировку колес при торможении. Она особенно актуальна при недостаточном сцеплении колес с дорожным полотном;

♦ TC (Traction Control) — антипробуксовочная система, препятствующая пробуксовке ведущих колес;

♦ EPS — система стабилизации и (или) курсовой устойчивости. Включает в себя ABS и TC, очень актуальна при неправильном прохождении поворотов (слишком высокая скорость при вхождении в поворот, попытка снижения скорости на дуге поворота и т. д.);

♦ активный (радарный) круиз-контроль — оценивает расстояние до впередиидущих автомобилей, скорость, ускорение и т. д., самостоятельно производит снижение скорости, если движение с подобной скоростью может привести к столкновению.

К пассивным средствам безопасности в первую очередь относятся деформируемые зоны кузова автомобиля. Каркас салона делается жестким, чтобы в последнюю очередь деформироваться от удара — сверхпрочная сталь, мощные брусья в дверях, а в кузове предусмотрены специальные зоны, предназначенные именно для деформации, — за счет этого гасится скорость. Такая конструкция предназначена для того, чтобы при ДТП сохранить салон автомобиля, все остальное можно назвать зонами деформации.

Также к пассивным средствам безопасности относятся ремни безопасности, подголовники сидений, подушки безопасности. Подобные пассивные средства безопасности наиболее эффективны в комплексе с точки зрения уменьшения последствий ДТП (рис. 8.1).

Рис. 8.1. Сочетание ремня и подушки безопасности весьма эффективно

9. Техническое обслуживание автомобиля

Выше мы уже неоднократно отмечали тот факт, что каждый автомобиль требует периодического технического обслуживания. Из данного раздела вы узнаете, какие виды технического обслуживания автомобилей существуют и как часто они должны выполняться. Отдельно познакомимся с видами дефектов и износа деталей автомобиля.

Виды технического обслуживания автомобилей

Основной задачей технического обслуживания автомобиля является поддержание его в надлежащем внешнем виде и технически исправном состоянии (рис. 9.1). Основным отличием технического обслуживания от ремонта является то, что оно является профилактическим мероприятием.

Техническое обслуживание включает в себя следующие виды работ:

♦ смазочные;

♦ регулировочные;

♦ контрольно-диагностические;

♦ крепежные;

♦ заправочные;

♦ электротехнические.

В зависимости от периодичности выполнения работ, их количества, сложности и трудоемкости, существуют следующие виды технического обслуживания автомобилей:

♦ ежедневное (ТО);

♦ первое (ТО-1);

♦ второе (ТО-2);

♦ сезонное (СО).

Задача ежедневного ТО заключается в том, чтобы поддерживать надлежащий внешний вид автомобиля, отслеживать его заправку топливом, маслом, иными расходными материалами, а также контролировать обеспечение безопасности дорожного движения.

Каждый раз перед поездкой водитель должен проверить:

♦ комплектность автомобиля;

♦ состояние его кузова;

♦ наличие и регулировку зеркал заднего вида;

♦ наличие и читаемость государственных регистрационных номерных знаков;

♦ исправность дверных замков, а также замков капота и багажника;

♦ исправность электрооборудования (приборы освещения и сигнализации, «дворники»);

♦ герметичность систем питания, смазки и охлаждения и наличие соответствующих расходных жидкостей;

♦ герметичность гидравлического привода тормозной системы;

♦ свободный ход рулевого колеса;

♦ работу контрольно-измерительных приборов.

Рис. 9.1. Техобслуживание автомобиля

Если ваш автомобиль попал в дорожно-транспортное происшествие, например, по причине нарушения герметичности гидравлического привода тормозов либо иной неисправности, которая должна быть обнаружена при проверке перед поездкой, вы однозначно будете признаны виновником ДТП.

ТО-1 и ТО-2 подразумевают выполнение крепежных, очистительных, смазочных, контрольно-диагностических и регулировочных работ. Их необходимо выполнять после определенного пробега автомобиля в соответствии с указаниями, имеющимися в руководстве по эксплуатации. На периодичность выполнения ТО-1 и ТО-2 влияют условия эксплуатации автомобиля.

Сезонное техническое обслуживание выполняется два раза в гоюд — для подготовки автомобиля к эксплуатации в холодное и в теплое время года (замена резины, масла, антикоррозийная обработка и т. д.).

Дефекты и износ деталей

Все дефекты автомобильных деталей можно разделить на три группы: конструктивные, производственные и эксплуатационные. К конструктивным дефектам относятся те, которые являются следствием ошибок, допущенных на этапе конструирования автомобиля. Производственные — это дефекты, возникшие в результате ошибок при изготовлении или ремонте транспортного средства. Эксплуатационные дефекты возникают либо по причине неправильного технического обслуживания автомобиля, либо из-за естественного износа деталей.

Естественный износ подразделяется на три вида: механический, молекулярно-механический и коррозионно-механический.

В свою очередь, механический износ включает в себя следующие разновидности.

Хрупкое разрушение — свойственно тем деталям, которые в процессе эксплуатации транспортного средства испытывают на себе ударные нагрузки (например, головки клапанов).

Пластическая деформация — возникает из-за действия на детали существенных нагрузок. Проявлением пластической деформации является то, что размер детали изменяется, а ее вес остается прежним.

Абразивный износ — появляется из-за царапающего или срезающего воздействия твердых посторонних частиц (пыли, грязи, мельчайших опилок, стружки и т. п.) на соприкасающиеся и трущиеся поверхности. Наиболее характерный пример — износ поршней, цилиндров и деталей поршневой группы.

Усталостный износ — возникает при длительной и сильной нагрузке на металл. Часто ему подвержены зубья шестерен и рабочие поверхности подшипников качения.

Что касается молекулярно-механического износа, то он возникает по причине молекулярного сцепления материалов, из которых изготовлены трущиеся поверхности соприкасающихся деталей. Следствием такого износа может являться заедание деталей и механизмов.

Название коррозионно-механического износа говорит само за себя: он подразумевает комбинацию механического износа и коррозии металла. Проявлением коррозионно-механического износа являются отслаивание поверхности металла, а также различные виды и степени его окисления.

Изнашиваться детали начинают сразу после начала эксплуатации нового автомобиля, по-этому уже через небольшой пробег они имеют какой-то износ. Однако это не значит, что их нужно сразу менять: периодичность замены изношенных деталей и допустимая степень износа регламентируется заводом-изготовителем. Износ деталей, который не требует их немедленной замены, называется допустимым.

Рекомендуется менять деталь не тогда, когда она достигла максимально допустимой степени износа, а немного раньше.

Если же деталь изношена настолько сильно, что нарушены нормальные условия работы узлов, агрегатов и механизмов автомобиля, то такой износ называется предельным. В этом случае эксплуатировать автомобиль запрещается до полной замены всех изношенных деталей.

Оглавление

  •   Введение
  •   1. Общее устройство автомобиля
  •     Классификация по типу кузова
  •     Классификация по типу и рабочему объему двигателя
  •     Классификация по типу привода колес
  •     Классификация по габаритным размерам
  •   2. Двигатель внутреннего сгорания (ДВС)
  •     Общее устройство и работа ДВС
  •     Бензиновые и дизельные двигатели
  •     Кривошипно-шатунный механизм (КШМ)
  •     Газораспределительный механизм (ГРМ)
  •     Система питания карбюраторного двигателя
  •     Общее устройство карбюратора
  •     Система питания двигателя с впрыском топлива
  •     Система выпуска отработавших газов
  •     Система зажигания
  •     Система охлаждения
  •     Система смазки
  •   3. Источники и потребители электроэнергии
  •     Источники электрического тока
  •     Потребители электрического тока
  •     Особенности эксплуатации электрического оборудования
  •   4. Общее устройство и назначение трансмиссии
  •     Сцепление автомобиля
  •     Коробка переключения передач (КПП)
  •     Карданная передача
  •     Главная передача
  •   5. Кузов и ходовая часть
  •     Назначение и устройство кузова
  •     Особенности эксплуатации кузова и ухода за ним
  •     VIN-код автомобиля
  •     Ходовая часть автомобиля
  •   6. Тормозная система
  •     Принцип работы тормозного привода
  •     Колесные тормозные механизмы
  •     Особенности эксплуатации и технического обслуживания тормозной системы
  •   7. Рулевое управление
  •   8. Системы активной и пассивной безопасности
  •   9. Техническое обслуживание автомобиля
  •     Виды технического обслуживания автомобилей
  •     Дефекты и износ деталей

    Fueled by Johannes Gensfleisch zur Laden zum Gutenberg

  • Устройство автомобиля для учеников автошкол (пошагово)

    Шаг 1. Согласно принятой классификации базовым моделям легковых автомобилей присваивается четырехзначный индекс, в котором первые две цифры обозначают класс автомобиля, а две следующие его модель. Например, ВАЗ-2110, где 21 указывает, что это автомобиль малого класса второй группы. Для обозначения изменений базовых моделей автомобилей указывают дополнительные цифры.

    Шаг 2. По количеству ведущих колес автомобили делятся на следующие типы привода: полноприводные, переднеприводные и заднеприводные автомобили.

    Полноприводные автомобили – это такие автомобили, у которых все мосты являются ведущими. То есть 4 колеса и все ведущие, пример – Нива.

    Переднеприводные автомобили это автомобили, у которых передний мост является ведущим, соответственно заднеприводные наоборот.

    Шаг 3. Легковой автомобиль состоит из агрегатов, систем и механизмов, улов и деталей, которые делятся на три основные части: двигатель, шасси и кузов.

    Двигатель автомобиля – силовой агрегат, который служит для преобразования тепловой энергии в механическую работу при помощи процесса сгорания топлива. Образованный в результате крутящий момент коленчатого вала используется для движения автомобиля.

    Шасси включает в себя трансмиссию, ходовую часть и механизмы управления.

    Устройство автомобиля для учеников автошкол

    Трансмиссия изменяет величину и направление крутящего момента и передает его от двигателя к ведущим колесам автомобиля.

    Трансмиссия состоит из: сцепления, коробки передач, главной передачи, дифференциала, приводных валов, карданной передачи и полуосей.

    Ходовая часть автомобиля состоит из рамы, передней и задней подвесок, колес с шинами. Подвески автомобиля соединяют колеса с кузовом и воспринимают нагрузки, которые действуют на колеса, уменьшая их воздействие на кузов и снижая колебания кузова во время движения. Подвески состоят из пружин, рессор и амортизирующих элементов (амортизаторов). Агрегаты ходовой части вместе с кузовом являются несущей системой автомобиля.

    Механизмы управления состоят из рулевого управления (служит для изменения направления движения) и тормозной системы (обеспечивает уменьшение скорости движения автомобиля, удержание автомобиля на месте и полную остановку).

    Кузов автомобиля предназначен для размещения водителя, пассажиров и багажа. В легковых автомобилях кузов является несущим элементом, к которому крепятся все агрегаты, узлы и механизмы автомобиля включая дополнительное оборудование.

    Весной прошлого года ввели новые правила получения водительских прав.

    Вместо площадки и города, как раньше, будущие водители теперь демонстрируют все навыки вождения на едином экзамене. Читатели Тинькофф Журнала, которые уже пытались получить права по новым правилам, считают, что сделать это стало сложнее, и дали советы тем, кто только собирается на экзамен.

    Это истории читателей из Сообщества. Собраны в один материал, бережно отредактированы и оформлены по стандартам редакции.

    Совет 1

    Найти хорошую автошколу

    Сдала с первого раза. Секрет в очень жесткой автошколе в маленьком закрытом городе. Школа была единственная. Ее начальник всегда говорил: «Вы будете ездить по улицам, где ходят мои дети, я вас без твердых знаний отсюда не выпущу». Экзамен в автошколе был в разы страшнее экзамена в ГАИ.

    Совет 2

    Обучаться у опытного инструктора

    Получается, я вошла в те самые 13% счастливчиков, кто сдал экзамен в ГИБДД по новым правилам с первого раза. Правда, дело происходило не в мегаполисе, а в небольшом областном городке.

    Мне очень повезло с инструктором — вернее, с инструкторами в автошколе: у меня их было двое. У первого была четкая программа, которая включала все, что проверяется на экзамене: отработку упражнений на автодроме, поворотов налево и направо в городе, разворота, в том числе в ограниченном пространстве. При этом он устраивал мне промежуточные «зачеты»: например, на одном занятии отрабатываем параллельную парковку и парковку задним ходом, на следующем он у меня их принимает, как на экзамене. Сдала — изучаем что-то новое, не сдала — тренируемся еще. В город мы поехали на шестом занятии, когда я безошибочно выполнила все упражнения на автодроме, — это было до того, как ввели новые правила.

    Потом я брала дополнительные уроки вождения — когда 25 занятий, которые входили в оплаченный «пакет», уже кончились. Сначала занималась со своим инструктором, потом еще с одним, более опытным. Он рассказал мне много всяких фишечек, учил обращать внимание на мелочи, объяснял, на чем подлавливают инспекторы, и много гонял по предполагаемым маршрутам: на тот момент сдавали уже по новым правилам и старые маршруты отменили, но в маленьком городе особо выбора у инспектора и не было. А еще я с ним впервые прокатилась по трассе со скоростью 120 км/ч.

    На самом экзамене я волновалась, а вот инспектор — повезло! — был настроен благодушно. В итоге я набрала четыре штрафных балла, но этого хватило, чтобы сдать экзамен с первого раза.

    Совет 3

    Сдавать экзамен с автошколой

    Я отучился в автошколе летом 2020 года, в сентябре первый раз пришел на экзамен. Сдал теорию без ошибок, на площадке задел конус при въезде в бокс. Отправился в автошколу записываться на следующий раз, но оказалось, что там всегда сдают в четверг. Меня это не устраивало из-за расписания учебы. Я решил забрать документы и самостоятельно записаться в ГАИ. Это была фатальная ошибка.

    Я учился на автомате с расчетом на то, что сдать экзамен будет проще. До автошколы у меня не было никакого опыта вождения, а механику я все равно водить не буду. Но оказалось, что в московской ГИБДД нет ни одной машины на автомате, поэтому записаться на экзамен невозможно. Выяснял это я около трех месяцев, так как телефоны в большинстве отделений не работают и приходилось их объезжать, а на официальное письмо отписались, что все работает штатно.

    Когда пришел записываться на экзамен, выяснилось, что в нашем отделении ГИБДД все заразились ковидом. Открылись они только через месяц. В самом конце декабря я сдал площадку и завалил город. Это было ожидаемо, так как я уже давно не тренировался. Перед следующим разом я подготовился, но экзамен все равно не сдал.

    Затем я еще много раз пытался сделать это, но валился в основном на том, что создавал помеху другим участникам движения. А потом снова сдавал еще и теорию, так как с прошлого экзамена прошло больше полугода. Оба раза инспектор говорил мне, что вожу хорошо, но допускаю обидные ошибки.

    Потом переоформлял медицинскую справку, но ее «не внесли в базу», поэтому не успел сдать до поездки. Множество потраченных нервов и сил, а также полное нежелание управлять машиной — вот что я получил от этого.

    Совет 4

    Учиться водить на разных автомобилях

    Теорию и площадку сдал с первого раза, а в городе начались проблемы. Сдал с пятого раза, в Москве.

    Попытка 1: попался на знаке «Остановка по четным дням запрещена». Сдавал 12-го числа, думал, что 11-го. Был Рено Логан, на котором учился водить.

    Попытка 2: накопил штрафных баллов за поворотники и что-то еще. Была Дэу Нексия — жесть.

    Попытка 3: завалился в конце — не включил поворотник, когда экзаменатор сказал: «Останавливаемся у бордюра», — а потом еще не затянул ручник. Был Хендай Акцент.

    Попытка 4: на узкой дороге переехал сплошную. Сдавал на Тойоте Рав 4. Она была на механике и свежая, с пробегом 30 тысяч километров.

    Попытка 5: сдал без ошибок на свежей Киа Рио.

    На все ушел, кажется, год вместе с обучением, перерывами между экзаменами и получением прав. Мне понравилось: покатался на куче разных машин, привык к гаишникам, посмотрел неприятные районы Москвы. О потраченном времени не жалею.

    Кстати, площадку сдавал тоже на Тойоте Рав 4. Из группы 20 человек сдало только семеро. Многие жаловались, что не видно линии остановки на эстакаде: машина высокая. Многие вначале не понимали, как включить заднюю: там нужно тянуть колечко на рычаге КПП в сторону первой передачи.

    Совет 5

    Сдавать экзамен сразу на АКПП, если не собираетесь ездить на механике

    Сдал площадку на механике с третьего раза. Валился на эстакаде, как и полгруппы. Город — с первого: пока готовился к пересдаче площадки, маршрут уже наизусть наездил.

    В тот же день купил авто, кроссовер, и поехал на нем в узкий дворик на работе. Первый день был тяжелым, первые пару месяцев тоже, конечно, нервными.

    Когда только это все прошел, был готов многим поделиться с теми, кто учится. А сейчас уже процесс овладевания навыком вождения стерся из головы. Ну, берешь и едешь, чего там. Могу лишь посоветовать пощадить себя и учиться на АКПП, если не собираетесь на механике ездить. Не нужна вам эта галочка, нет никакого «а вот если мне однажды очень понадобится». Я с тех пор «палку» водил всего пару раз, если придется — доеду, но заглохну не единожды.

    Совет 6

    Принимать решения без подсказок

    Проблема в том, что большинство привыкает, что им всегда диктуют, куда ехать и когда перестроиться. А потом человек садится за руль и понимает, что никогда сам не принимал решения, как ему ехать. А тут еще и на ходу это делать. Если на пути закрыт перекресток и надо сменить маршрут, то вообще ступор.

    В общем, в школе учат управлять машиной, но не всегда учат находиться в потоке и параллельно принимать решения. Еще редко объясняют, на каких оборотах двигаться в зависимости от ситуации. Поэтому у многих складывается впечатление, что нельзя давать больше 3000 оборотов и что на низких оборотах ехать экономичнее.

    Совет 7

    Внимательно следить, на чем чаще всего подлавливают

    С теорией, кажется, у меня было две-три попытки. Основная проблема заключалась в том, что сдавать ее нужно было в центральном управлении ГИБДД, у черта на куличках. А экзамен начинался строго в восемь утра. То есть для сдачи мне нужно было встать в шесть — при условии, что я всегда был совой и ложился в два-три часа ночи. В итоге на экзамен я неизменно приезжал с квадратной головой и не то что билеты — свое имя и дату рождения вспоминал с большим трудом. Но перед одной из попыток таки удалось выспаться.

    А вот с практикой не было никаких проблем. Водить я уже умел, уверенно ездил по проселочным дорогам на даче. С инструктором автошколы с первого же занятия ездили по его личным делам: забрать детей из школы, продлить ОСАГО или отвезти его подшофе к любовнице на другой конец города.

    Помню, что на сдаче гаишник всех пытался подловить на мелочах: вытянутом ручнике, непристегнутом ремне, включенной аварийке, неотрегулированных зеркалах, выключенных фарах. Все сдающие ехали в одной машине и менялись по очереди. Гаишник включал и отключал, что не положено, в момент пересменки сдающих, пока они обходили машину, и безжалостно срубал за это баллы. Я был последним в очереди, успел проанализировать всю его коллекцию подлянок и не допустил ни одной ошибки.

    Совет 8

    Рассчитывать только на себя

    Я пришла в автошколу «нулевой» и сдала экзамен с пятого раза. Если бы не сдала, пришлось бы заново идти на экзамен по теории, а потом — на экзамен по новым правилам. Так что я очень рада, что мне повезло.

    Могла бы сдать и с третьего раза: хорошо проехала по городу, но в конце запарковалась на месте для инвалидов. Все остальные разы я на сдаче психовала и что-нибудь исполняла на разворотах из-за нервов. Но я сразу была настроена сдавать сама. Взятку даешь один раз, а помнишь о ней всю жизнь.

    Совет 9

    Заручиться моральной поддержкой

    Мне удалось сдать с первого раза в 2008 году. Как? Да очень просто: я сильно волновалась и все время молилась. Теорию сдала без единой ошибки, а на автодром приехал папа и меня морально поддерживал. Это мне очень психологически помогло, и я ему до сих пор за это благодарна.

    Гаишник влепил мне один штрафной балл — даже не помню, за что. Видимо, чтобы придраться, ведь так не бывает, чтобы ошибок не было совсем. А у меня действительно не было ошибок.

    Совет 10

    Быть готовым к тому, что с первой попытки ничего не получится

    У меня 15 лет назад было так: мы, трое сдающих, сели в машину. Первого выслали после первого поворота, меня — после второго. Через неделю на пересдаче все трое встретились. Третий сказал, что доехал до ГАИ и там ему объявили: не сдал. Все дружно посмеялись и пошли на пересдачу.

    Сели к тому же гаишнику, который в первый раз всех послал. В итоге все сдали. Увидели его уже после получения прав в курилке, когда обсуждали всю эту ситуацию. Я спросил, почему в прошлый раз такая фигня была, ведь за неделю ничего не изменилось. Ответ порадовал: «Ну ты пойми, у нас же план. Тебе чего, влом второй раз прийти?»

    Совет 11

    Подавать апелляцию, если заваливают

    Сдала сама год назад, в Москве. Автошкола «продавала экзамены», пыталась уменьшить количество практических занятий — я много скандалила с ними. Брала много индивидуальных инструкторов, они учат лучше.

    На экзамене с первого раза не сдала площадку. Потом пять раз пыталась сдать город, валили дважды. Во второй раз экзамен длился 50 минут, завалили на ровном месте. Написала заявление в главное управление ГИБДД на апелляцию экзамена. На месте сдачи мне предложили сделку: я забираю заявление и меня на следующей пересдаче не валят. На последнем экзамене меня повезли по легкому «платному» маршруту: два перекрестка, разворот и парковка. Не прокатались и десяти минут. Сдала.

    Совет 12

    Видеть плюсы даже в пересдаче

    «Долгосдающие» о своих попытках не особо любят говорить. Я вот уже пять раз сдавала. Временами отчаяние накатывало, особенно после четвертого раза, когда была истерика, а потом как отрезало: стало абсолютно пофиг, сдам или не сдам.

    Кстати, последние разы мне уже не ставили «неуверенное вождение», так что навык растет. Рано или поздно все получится, не с седьмой, так с десятой попытки, какая разница? Представьте, что каждая пересдача — это новый навык, опыт, тренировка. Ведь все равно в процессе вы чему-то новому учитесь, исправляете ошибки.

    Совет 13

    Перестать считать попытки

    Количество попыток сдать на права уже не считаю. Застала сдачу и по старым правилам, и по новым. Теорию сдала с первого раза, а вот площадка так и не покорилась мне до самой ее отмены. То ручник недожала и скатилась, то на заледеневшей эстакаде повело и чуть с нее не свалилась, то не доехала до стоп-линии, то переехала.

    Отмена площадки помогла не сильно: на очередном экзамене я узнала, что в гараж теперь заезжаем не под 45°, как меня учили, а под 90°. Парковаться училась прямо на экзамене, с третьего раза получилось. Но тогда завалила уже параллельную парковку — давно не повторяла. Были завалы из-за невключенных поворотников, причем не только у меня: раньше на площадке они не требовались, поэтому привычка не сформировалась.

    Отдельно стоит упомянуть машины, которые автошкола предоставляет на экзамен. У одной из них сцепление схватывается настолько плохо, что заехать на ней на эстакаду — уже чудо. Эта машина как-то сломалась посреди экзамена, отправив на пересдачу всех, кто был записан на нее.

    Знаю как минимум одного человека из группы, кто получил права за деньги. Несколько человек сдали вроде как сами. А кто-то до сих пор ходит, теорию сдать не может. И вот сложно сказать, почему так происходит: экзаменаторы вроде прямо специально не валят. Тут то ли с подготовкой что-то не то, то ли с самим экзаменом.

    Понравилась статья? Поделить с друзьями:
  • Как сдать экзамен по устному русскому 9 класс
  • Как сдать экзамен по упп
  • Как сдать экзамен по уголовному праву особенная часть
  • Как сдать экзамен по топке
  • Как сдать экзамен по товароведению