На ЕГЭ по профильной математике с собой можно взять только черные гелевые ручки и линейку. На экзамене профильного уровня, в отличие от базового, не выдаются справочные материалы – выпускникам не предоставляются формулы, необходимые для решения задач. Исключение составляют лишь 5 формул по тригонометрии, но, естественно, они не помогут набрать максимальные баллы, если экзаменуемые не будут знать об остальных важных сведениях и математических свойствах.
Содержание
Формулы для ЕГЭ по профильной математике. Алгебра
Формулы сокращенного умножения
Квадрат суммы: (a + b)² = a² + 2ab + b²
Квадрат разности: (a – b)² = a² – 2ab + b²
Разность квадратов: a² – b² = (a + b)(a – b)
Сумма кубов: a³ + b³ = (a + b)(a² – ab + b²)
Разность кубов: a³ – b³ = (a – b)(a² + ab + b²)
Прогрессия
Арифметическая
Геометрическая
Таблица степеней
Свойства степеней
Таблица квадратов
Интенсивы по подготовке к региональному этапу ВсОШ
Все, что нужно знать
для победы, за 7 дней!
Свойства корней
Тригонометрия
Таблица значений тригонометрических функций
Тригонометрическая окружность
Тригонометрические формулы
Обратные тригонометрические функции
Преобразование суммы и разности в произведение
Регулярные курсы по подготовке к олимпиадам и ЕГЭ
Поступаем в вуз мечты без проблем!
Вероятность
Вероятность события А: m – благоприятные, n – общее число событий
P(A) = m/n
События А и В происходят одновременно: A · B
Независимые события: P(A · B) = P(A) · P(B)
Зависимые события: P(A · B) = P(A) · P(B | A)
Происходит или А, или В: A + B
Несовместные события: P(A + B) = P(A) + P(B)
Совместные события: P(A + B) = P(A) + P(B) – P(A · B)
Свойства модуля
Производные
Основные правила дифференцирования
Таблица производных
Первообразные
Логарифмы
Квадратные уравнения
Дискриминант
Теорема Виета
Разложение на множители
Формулы для ЕГЭ по профильной математике. Геометрия
Планиметрия
Треугольник
Следствие из теоремы косинусов:
Длина биссектрисы (через угол):
Длина биссектрисы (через отрезки):
Прямоугольный треугольник
24 декабря – 20 января
5-11 классы
Онлайн-олимпиада Коалиции
Равносторонний треугольник
Аргументы для итогового сочинения
Подборка лучших аргументов
Равносторонний шестиугольник
Площадь внутреннего треугольника:
Площадь внутреннего прямоугольника:
Ромб
Трапеция
Произвольный четырёхугольник
Окружность
Стереометрия
Выводы
Не заучивайте формулы без осознания того, откуда берутся числа. Как можно чаще применяйте формулы при решении задач, тренируйте гибкость мышления, чтобы на ЕГЭ по профильной математике справиться со всеми заданиями.
А чтобы в разы повысить шансы на успех и разобраться в тонкостях непростой науки, можно обратиться за помощью к преподавателю онлайн-курса по подготовке к ЕГЭ.
Поделиться в социальных сетях
Какими формулами вам приходится пользоваться чаще всего?
Межтекстовые Отзывы
Посмотреть все комментарии
Читайте также
- Треугольник
- Четырехугольники
- Окружность и круг
- Призма
- Пирамида
- Усеченная пирамида
- Цилиндр
- Конус
- Усеченный конус
- Сфера и шар
1. Формулы сокращённого умножения
Наверх
2. Модуль числа
Определение:
Основные свойства модуля:
Наверх
3. Степень с действительным показателем
Свойства степени с действительным показателем
Пусть Тогда верны следующие соотношения:
Наверх
4. Корень n-ой степени из числа
Корнем n-ой степени из числа a называется число, n-ая степень которого равна a.
Арифметическим корнем четной степени n из неотрицательного числа a называется неотрицательное число, n-ая степень которого равна a.
Основные свойства арифметического корня:
Наверх
5. Логарифмы
Определение логарифма:
Основное логарифмическое тождество:
Основные свойства логарифмов
Пусть Тогда верны следующие соотношения:
Наверх
6. Арифметическая прогрессия
Формула n-го члена арифметической прогрессии:
Характеристическое свойство арифметической прогрессии:
Сумма n первых членов арифметической прогрессии:
При решении задач, связанных с арифметической прогрессией, могут оказаться полезными также следующие формулы:
Наверх
7. Геометрическая прогрессия
Формула n-го члена геометрической прогрессии:
Характеристическое свойство геометрической прогрессии:
Сумма n первых членов геометрической прогрессии:
При решении задач, связанных с геометрической прогрессией, могут оказаться полезными также следующие формулы:
Наверх
8. Бесконечно убывающая геометрическая прогрессия
Сумма бесконечно убывающей геометрической прогрессии:
Наверх
9. Основные формулы тригонометрии
Зависимость между тригонометрическими функциями одного аргумента:
Формулы сложения:
Формулы тригонометрических функций двойного аргумента:
Формулы понижения степени:
Формулы приведения
Все формулы приведения получаются из соответствующих формул сложения. Например:
Применение формул приведения укладывается в следующую схему:
— определяется координатная четверть, в которой лежит аргумент приводимой функции, считая, что ;
— определяется знак приводимой функции;
— определяется название приведенной функции по следующему правилу: если аргумент приводимой функции имеет вид или , то функция меняется на сходственную функцию, если аргумент приводимой функции имеет вид , то функция названия не меняет.
Например, получим формулу :
— — IV четверть;
— в IV четверти тангенс отрицательный;
— аргумент приводимой функции имеет вид , следовательно, название функции меняется. Таким образом,
Формулы преобразования суммы тригонометрических функций в произведение:
Формулы преобразования произведения тригонометрических функций в сумму:
Наверх
10. Производная и интеграл
Таблица производных некоторых элементарных функций
Правила дифференцирования:
1.
2.
3.
4.
5.
Уравнение касательной к графику функции в его точке :
Таблица первообразных для некоторых элементарных функций
Правила нахождения первообразных
Пусть ― первообразные для функций и соответственно, a, b, k ― постоянные, Тогда:
— ― первообразная для функции
— ― первообразная для функции
— ― первообразная для функции
— Формула Ньютона-Лейбница:
1. Треугольник
Пусть ― длины сторон BC, AC, AB треугольника ABC соответственно; ― полупериметр треугольника ABC; A, B, C ― величины углов BAC, ABC, ACB треугольника ABC соответственно; ― длины высот AA2, BB2, CC2 треугольника ABC соответственно; R ― радиус окружности, описанной около треугольника ABC; r — радиус окружности, вписанной в треугольник ABC; ― площадь треугольника ABC. Тогда имеют место следующие соотношения:
(теорема синусов);
(теорема косинусов);
Наверх
2. Четырёхугольники
Параллелограмм
Параллелограммом называется четырехугольник, противоположные стороны которого попарно параллельны.
Прямоугольником называется параллелограмм, у которого все углы прямые.
Ромбом называется параллелограмм, все стороны которого равны.
Квадратом называется прямоугольник, все стороны которого равны. Из определения следует, что квадрат является ромбом, следовательно, он обладает всеми свойствами прямоугольника и ромба.
Трапецией называется четырехугольник, две стороны которого параллельны, а две другие не параллельны.
Площадь четырехугольника
Площадь параллелограмма равна произведению его основания на высоту.
Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними.
Площадь трапеции равна произведению полусуммы ее оснований на высоту.
Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Наверх
3. Окружность и круг
Соотношения между элементами окружности и круга
Пусть r — радиус окружности, d — ее диаметр, C — длина окружности, S — площадь круга, — длина дуги в градусов, — длина дуги в радиан, — площадь сектора, ограниченного дугой в n градусов, — площадь сектора, ограниченного дугой в радиан. Тогда имеют место следующие соотношения:
Вписанный угол
Вписанный угол измеряется половиной дуги, на которую он опирается.
Вписанные углы, опирающиеся на одну и ту же дугу, равны.
Вписанный угол, опирающийся на полуокружность, — прямой.
Вписанная окружность
Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех сторон этого многоугольника, ― точка пересечения биссектрис углов этого многоугольника. Таким образом, в многоугольник можно вписать окружность, и притом только одну, тогда и только тогда, когда биссектрисы его углов пересекаются в одной точке.
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.
Описанная окружность
Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех вершин этого многоугольника, ― точка пересечения серединных перпендикуляров к сторонам этого многоугольника. Таким образом, около многоугольника можно описать окружность, и притом только одну, тогда и только тогда, когда серединные перпендикуляры к сторонам этого многоугольника пересекаются в одной точке.
Около четырехугольника можно описать окружность тогда и только тогда, когда суммы его противоположных углов равны
Наверх
4. Призма
Пусть H ― высота призмы, AA1 ― боковое ребро призмы, ― периметр основания призмы, ― площадь основания призмы, ― площадь боковой поверхности призмы, ― площадь полной поверхности призмы, V ― объем призмы, ― периметр перпендикулярного сечения призмы, ― площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:
Свойства параллелепипеда:
— противоположные грани параллелепипеда равны и параллельны;
— диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам;
— квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
Наверх
5. Пирамида
Пусть H ― высота пирамиды, ― периметр основания пирамиды, ― площадь основания пирамиды, ― площадь боковой поверхности пирамиды, ― площадь полной поверхности пирамиды, V ― объем пирамиды. Тогда имеют место следующие соотношения:
;
.
Замечание. Если все двугранные углы при основании пирамиды равны , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны , то
Наверх
6. Усечённая пирамида
Пусть H ― высота усеченной пирамиды, и ― периметры оснований усеченной пирамиды, и ― площади оснований усеченной пирамиды, ― площадь боковой поверхности усеченной пирамиды, ― площадь полной поверхности усеченной пирамиды, V ― объем усеченной пирамиды.
Тогда имеют место следующие соотношения:
Замечание. Если все двугранные углы при основании пирамиды равны , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны , то:
Наверх
7. Цилиндр
Пусть h ― высота цилиндра, r ― радиус цилиндра, ― площадь боковой поверхности цилиндра, ― площадь полной поверхности цилиндра, V ― объем цилиндра.
Тогда имеют место следующие соотношения:
Наверх
8. Конус
Пусть h ― высота конуса, r ― радиус основания конуса, l ― образующая конуса, ― площадь боковой поверхности конуса, ― площадь полной поверхности конуса, V ― объем конуса.
Тогда имеют место следующие соотношения:
Наверх
9. Усечённый конус
Пусть h ― высота усеченного конуса, r и ― радиусы основания усеченного конуса, l ― образующая усеченного конуса, ― площадь боковой поверхности усеченного конуса, V ― объем усеченного конуса. Тогда имеют место следующие соотношения:
Наверх
10. Сфера и шар
Пусть R ― радиус шара, D ― его диаметр, S ― площадь ограничивающей шар сферы, ― площадь сферической поверхности шарового сегмента (шарового слоя), высота которого равна h, V ― объем шара, ― объем сегмента, высота которого равна h, ― объем сектора, ограниченного сегментом, высота которого равна h. Тогда имеют место следующие соотношения:
Наверх
Формулы для профильного ЕГЭ-2022 по математике
Формулы сокращённого умножения
Арифметическая и геометрическая прогрессии
Вероятность
Свойства степеней
Свойства логарифмов
Тригонометрия
Производные
Первообразные
Геометрия
Формулы сокращённого умножения
`(a + b)^2=a^2 + 2ab + b^2` | |
`(a − b)^2=a^2 − 2ab + b^2` | |
`a^2 − b^2=(a + b)(a − b)` | |
`a^3 + b^3=(a + b)(a^2 − ab + b^2)` | |
`a^3 − b^3=(a − b)(a^2 + ab + b^2)` | |
`(a + b)^3=a^3 + 3a^2b + 3ab^2 + b^3` | |
`(a − b)^3=a^3 − 3a^2b + 3ab^2 − b^3` |
Прогрессии
Арифметическая прогрессия:
`a_n=a_(n-1)+d` |
`a_n=a_1+(n-1)*d` |
`S_n=((a_1+a_n)*n)/2` |
Геометрическая прогрессия:
`b_n=b_(n-1)*q` |
`b_n=b_1*q^(n-1)` |
`S_n=((q^n-1)*b_1)/(q-1)` |
Бесконечно убывающая: `S=b_1/(1-q)` |
Вероятность
Вероятность события A: | `P(A)=m/n` | |
События происходят A и B происходят одновременно | `A*B` | |
Независимые события: | `P(A*B)=P(A)*P(B)` | |
Зависимые события: | `P(A*B)=P(A)*P(B|A)` | |
Происходит или событие A, или B | `A+B` | |
Несовместные события: | `P(A+B)=P(A)+P(B)` | |
Совместные события: | `P(A+B)=P(A)+P(B)-P(A*B)` |
Свойства степеней
`a^0=1` | `a^1=a` |
`a^(-1)=1/a` | `a^(-n)=1/a^n` |
`a^(1/2)=sqrt(a)` | `a^(1/n)=root(n)(a)` |
`a^m*a^n=a^(m+n)` | `a^m/a^n=a^(m-n)` |
`(a*b)^n=a^n*b^n` | `(a/b)^n=a^n/b^n` |
`(a^m)^n=a^(m*n)` | `a^(m/n)=root(n)(a^m)` |
Свойства логарифмов
`log_ab=c``a^c=b` | |
`log_a1=0` | |
`log_aa=1` | |
`log_a(b*c)=log_ab+log_ac` | |
`log_a(b/c)=log_ab-log_ac` | |
`log_ab^n=n*log_ab` | |
`log_(a^m)b=1/m*log_ab` | |
`log_ab=1/(log_ba)` | |
`log_ab=(log_cb)/(log_ca)` | |
`a^(log_cb)=b^(log_ca)` | |
`a^(log_ab)=b` |
Тригонометрия
`alpha` | `0` | `pi/6` | `pi/4` | `pi/3` | `pi/2` | `pi` | `(3pi)/2` | `2pi` |
---|---|---|---|---|---|---|---|---|
`0^circ` | `30^circ` | `45^circ` | `60^circ` | `90^circ` | `180^circ` | `270^circ` | `360^circ` | |
`sinalpha` | `0` | `1/2` | `sqrt(2)/2` | `sqrt(3)/2` | `1` | `0` | `-1` | `0` |
`cosalpha` | `1` | `sqrt(3)/2` | `sqrt(2)/2` | `1/2` | `0` | `-1` | `0` | `1` |
`text(tg)alpha` | `0` | `sqrt(3)/3` | `1` | `sqrt(3)` | `infty` | `0` | `infty` | `0` |
`text(ctg)alpha` | `infty` | `sqrt(3)` | `1` | `sqrt(3)/3` | `0` | `infty` | `0` | `infty` |
Основные соотношения
`sin^2alpha+cos^2alpha=1` | |
`text(tg)alpha=sinalpha/cosalpha=1/(text(ctg)alpha)` |
Формулы двойного угла
`cos2alpha={(cos^2alpha-sin^2alpha),(1-2sin^2alpha),(2cos^2alpha-1):}` | |
`sin2alpha=2sinalphacosalpha` | |
`text(tg)2alpha=(2text(tg)alpha)/(1-text(tg)^2alpha)` |
Формулы суммы и разности аргументов
`sin(alpha+-beta)=sinalphacosbeta+-cosalphasinbeta` |
`cos(alpha+-beta)=cosalphacosbeta∓sinalphasinbeta` |
`text(tg)(alpha+-beta)=(text(tg)alpha+-text(tg)beta)/(1∓text(tg)alpha*text(tg)beta)` |
Преобразование суммы и разности в произведение
`sinalpha+-sinbeta=2sin((alpha+-beta)/2)cos((alpha∓beta)/2)` |
`cosalpha+cosbeta=2cos((alpha+beta)/2)cos((alpha-beta)/2)` |
`cosalpha-cosbeta=-2sin((alpha+beta)/2)sin((alpha-beta)/2)` |
Формулы половинного аргумента
`sin(alpha/2)=+-sqrt((1-cosalpha)/2)` | |
`cos(alpha/2)=+-sqrt((1+cosalpha)/2)` | |
`text(tg)(alpha/2)=+-sqrt((1-cosalpha)/(1+cosalpha))=(1-cosalpha)/sinalpha=sinalpha/(1+cosalpha)` |
Обратные тригонометрические функции
`sinx=A` | `x=(-1)^k*arcsinA + pik` или `{(x=arcsinA + 2pik),(x=pi-arcsinA+2pik):}` |
`kinZZ` |
`cosx=A` | `x=±arccosA + 2pik` | `kinZZ` |
`tg x=A` | `x=text(arctg) A + pik` | `kinZZ` |
`ctg x=A` | `x=text(arcctg) A + pik` | `kinZZ` |
Также некоторые тригонометрические соотношения смотрите в разделе Геометрия.
Производные
Основные правила дифференцирования
`(u+-v)’=u’+-v’` | |
`(u*v)’=u’*v+u*v’` | |
`(u/v)^’=(u’*v-u*v’)/v^2` | |
`[f(g(x))]’=f'(g(x))*g'(x)` |
Уравнение касательной
`y=f(x_0)+f'(x_0)*(x-x_0)` |
Производные элементарных функций
`C’=0` | `(C*x)’=C` | |
`(x^m)’=mx^(m-1)` | `(sqrtx)’=1/(2sqrtx)` | |
`(1/x)^’=-1/x^2` | ||
`(e^x)’=e^x` | `(lnx)’=1/x` | |
`(a^x)’=a^x*lna` | `(log_ax)’=1/(xlna)` | |
`(sinx)’=cosx` | `(cosx)’=-sinx` | |
`(text(tg)x)’=1/cos^2x` | `(text(ctg)x)’=-1/sin^2x` | |
`(arcsinx)’=1/sqrt(1-x^2)` | `(arccosx)’=-1/sqrt(1-x^2)` | |
`(text(arctg))=1/(1+x^2)’` | `(text(arcctg))’=-1/(1+x^2)` |
Также некоторые сведения про производные смотрите в описании задач
№14 (база), №7 (профиль), №12 (профиль).
Первообразные
Первообразная: | `F'(x)=f(x)` | |||
Неопределённый интеграл: | `intf(x)dx=F(x)+C` | |||
Определённый интеграл (формула Ньютона-Лейбница): | `int_a^bf(x)dx=F(b)-F(a)` |
Таблица первообразных
`f(x)` | `F(x)` | `f(x)` | `F(x)` | |
---|---|---|---|---|
`a` | `ax` | |||
`x^n` | `x^(n+1)/(n+1)` | `1/x` | `lnx` | |
`e^x` | `e^x` | `a^x` | `a^x/lna` | |
`sinx` | `-cosx` | `cosx` | `sinx` | |
`1/cos^2x` | `text(tg)x` | `1/sin^2x` | `-text(ctg)x` | |
`1/(x^2+a^2)` | `1/atext(arctg)x/a` | `1/(x^2-a^2)` | `1/(2a)ln|(x-a)/(x+a)|` | |
`1/sqrt(a^2-x^2)` | `text(arcsin)x/a` | `1/sqrt(x^2+a)` | `ln|x+sqrt(x^2+a)|` |
Геометрия
Планиметрия (2D)
Площади фигур:
Окружность: | `S=pir^2` | |
Треугольник: | `S=1/2ah` | |
Параллелограмм: | `S=ah` | |
Четырёхугольник: | `S=1/2d_1d_2sinvarphi` | |
Трапеция: | `S=(a+b)/2*h` |
Стереометрия (3D)
Призма: | `V=S_(осн)h` | |
Пирамида: | `V=1/3S_(осн)h` | |
Конус: | `V=1/3S_(осн)h` | |
`S_(бок)=pirl` | ||
Цилиндр: | `V=pir^2h` | |
`S_(бок)=2pirh` | ||
Шар: | `V=4/3pir^3` | |
`S=4pir^2` |
Математика – обязательный предмет на ЕГЭ, ее придется сдавать всем выпускникам – по базовому или профильному уровню. Какие требования предъявляются к школьнику на ЕГЭ по математике, что можно и что нельзя с собой брать на экзамен: разъяснения Рособрнадзора.
Выпускники российских школ в среду, 29 мая будут сдавать ЕГЭ по математике. Минпросвещения в 2019 году изменило порядок проведения этого экзамена: если раньше школьник мог выбрать для сдачи и базовый, и профильный уровень, то сейчас такой возможности нет. Эксперты решили, что проходить тестирование сразу по двум уровням не имеет смысла: те, кто выбирает профиль, легко выполнит и базу, и наоборот – выбравшие базовый уровень с профильным просто не справятся.
Изменения в правилах проведения ЕГЭ по математике вызывают вопросы у школьников и родителей: что можно с собой брать на экзамен того или другого уровня, и есть ли какие-либо отличия в правилах проведения экзамена.
Предметы, разрешенные на ЕГЭ по профильной математике
Перечень того, что допускается проносить на ЕГЭ, ежегодно устанавливается Рособрнадзором и Минпросом. В 2019 году список совсем небольшой, с собой можно взять только ручку (гелевую, черную) и линейку. Справочники, которым разрешено пользоваться, выпускники могут попросить непосредственно на экзамене.
Категорически не разрешается проносить:
- смартфоны;
- планшеты;
- калькуляторы;
- справочные материалы.
Нарушение установленных правил может привести к тому, что ученика выгонят.
Задания ЕГЭ по математике профильного уровня
Выпускники, выбравшие профиль, должны будут выполнить 19 заданий разного уровня сложности, самые сложные помечаются звездочкой. Эксперты отмечают, что в 2019 году задания стали сложнее, особенно во второй части (с 13 по 19 пункты). Так, 14-я задача сформулирована таким образом, что школьнику потребуется произвести дополнительные построения, подразумевающие хорошее пространственное воображение и безусловное понимание материала. 17-я и 18-я задачи также требует уверенного владения предметом и способностью видеть, какие графические процессы скрываются за формулами: просто подставить данные под какую-либо формулу не получится.
Разработчики заданий для ЕГЭ по математике профильного уровня подчеркивают, что с каждым годом они изменяются таким образом, чтобы как можно точнее выявить способность учеников к самостоятельному мышлению и нестандартным решениям.
Экзамен по профильной математике продлится 253 минуты.
Полный сборник красиво оформленных школьных формул по алгебре и геометрии.
В пособии содержатся все разделы школьной математики, все формулы и даны подробные описания к каждому из них.
Смотреть в PDF: Скачайте pdf файл.
Можете записаться на занятия к репетитору математики, если что-то не понятно.
По разделам:
Степени и корни:
Сокращенное умножение
:
Квадратный трехчлен: квадратное уравнение, формулы Виета, разложение на множители:
Логарифмы:
Формулы тригонометрии, тождества:
Тригонометрические уравнения:
Значения тригонометрических функций:
Формулы приведения:
Сумма и разность углов:
Формулы двойного и тройного аргумента:
Формулы половинного аргумента:
Сумма и разность тригонометрических функций:
Произведение тригонометрических функций:
Производная: признаки возрастания, убывания, минимума функции:
Дифференциальное исчисление:
Геометрия: формулы площадей. Прямоугольники, окружности, трапеции:
Стереометрия: объёмы, площади поверхностей:
Обратиться к репетитору по математике.
На ЕГЭ формулами пользоваться нельзя, нужно их помнить!
В этой подборке формул использованы 3 основных принципа, для упрощения запоминания:
- Выбраны только те формулы, которые могут встретиться на ЕГЭ по математике (это лишь часть того, что изучено в школе);
- Формулы разобраны на тематические блоки;
- Блоки формул выделены цветовым фоном, который позволяет, всего после нескольких обращений, вспоминать картинку и буквально читать с нее нужную формулу.
Как легко запомнить именно нужные формулы из всего курса математики?
Для подготовки нужно выбрать такое оформление математических формул, чтобы они отложились в памятки наиболее эффективно.
Обобщающий тест по русскому языку
Рейтинговый контроль по русскому языку (10-11 классы).
Минпросвещения вводит исполнение гимна России во всех школах с 1 сентября
Образование | Сегодня, 15:00
Исполнение гимна РФ и поднятие государственного флага в начале учебной недели будут проводиться в каждой школе с 1 сентября следующего учебного года, заявил во вторник глава министерства просвещения Сергей Кравцов на первом всероссийском школьном историческом форуме «Сила в правде!» в Музее Победы.
Консультация по биологии
Биология | Сегодня, 14:58
Разработчики экзаменационных материалов, учителя и выпускники, расскажут, как подготовиться к экзамену, об особенностях заданий в ЕГЭ и ответят на вопросы старшеклассников.
Ученики, сдающие базовую математику, почти не тратят времени на подготовку к ней, ведь в экзамене нужно решить лишь задания, которые требуют самых основ. Тем же выпускникам, которые хотят поступать в технические вузы, предстоит готовиться не только к предметам по выбору, но и к профилю. В этой статье мы расскажем, какие формулы для ЕГЭ по математике (профильный уровень) сделают подготовку легче, а баллы на экзамене — выше.
Какие формулы необходимы для сдачи ЕГЭ по профильной математике?
Помимо очевидного, что для сдачи профиля нужно уметь складывать, вычитать и умножать, необходимы еще некоторые знания. Все это проходится в течение школы, но повторить или заполнить пробелы перед экзаменом нужно обязательно. Вот, что пригодится:
- Формулы сокращенного умножения;
- Арифметическая и геометрическая прогрессии;
- Вероятность;
- Свойства степеней;
- Свойства логарифмов;
- Тригонометрия;
- Производные;
- Первообразные.
Список внушительный, но вполне реальный, чтобы его выучить. Для того, чтобы лишний раз не гуглить в интернете «формулы для ЕГЭ по математике профильный уровень», приложим их ниже. А начнем по порядку из списка выше.
Формулы сокращённого умножения
Первые в нашем списке – формулы сокращенного умножения – нужны для решения задания №9 из профильного уровня. Вам встретятся задачи на преобразование выражений, поэтому умение это делать будет вознаграждено баллами.
Вот то, что будет вашим спасательным кругом:
Есть те, которые знать не обязательно. Но чем большими знаниями вы будете обладать, тем легче вам будет на экзамене. Вот они:
Умея применять эти формулы для ЕГЭ по математике, профильный уровень вам уже будет решить легче. Но это далеко не все, что нужно знать, чтобы получить сто баллов за ЕГЭ.
Арифметическая и геометрическая прогрессии
Для задания №19 нужно знание арифметической и геометрической прогрессии. Прикладываем формулы для ЕГЭ по математике, профильный уровень которой невозможен без их знания:
Вероятность
Вероятность встречается в задании №4, а ведь в самом начале обычно ставят легкие задания. Тем не менее, придется применять знания, которые представлены ниже:
Перейдем к свойствам степеней, ведь в них тоже есть, что запомнить.
Свойства степеней
Эти свойства нужно знать и для того, чтобы решить «базу», так что гуманитарии тоже могут обратить внимание на это:
Как вы видите, запоминать не очень много, зато формулы не самые простые. Но есть еще сложнее, и сейчас узнаем, какие они.
Свойства логарифмов
Формулы логарифмов лучше всего начать с их определения:
Теперь перейдем к более сложному:
Тригонометрия
Тригонометрические уравнения встречаются в задании №13. Для того, чтобы заработать баллы, нужно знать это:
Но это еще не все. Есть такая вещь, как основное тригонометрическое тождество. Вот оно:
Формулы двойного угла:
Формулы суммы и разности аргументов:
Преобразование суммы и разности в произведение:
Формулы половинного аргумента:
На этом с тригонометрией все.
Производные
Начнем с основных правил дифференцирования:
Уравнение касательной:
Производные элементарных функций:
Закончим эту статью первообразными.
Первообразные
Она выглядит так:
Таблица первообразных:
Итог
То, что работа предстоит колоссальная — и правда, и нет. Да, придется хорошо постараться, чтобы набрать высокие баллы, так как составители ЕГЭ все больше усложняют экзамен. С другой стороны, хотя бы часть формул, описанных выше, вы уже знаете. А значит, работы хоть на немного, но меньше. А это ли не счастье в такие тяжелые времена подготовки?
Шпаргалка по математике — алгебра и геометрия
Для профильной математики на ЕГЭ в компактном виде для распечатки на принтере.
Включены основные формулы:
— по алгебре (Формулы сокращенного умножения, Арифметическая прогрессия, Делимость натуральных чисел, Правила вычисления первообразной функции и т.д.)
— основные тригонометрические формулы (Формулы суммы функций, Формулы суммы аргументов, Формулы произведения функций, Формулы половинного аргумента и т.д.)
— по геометрии (Теорема косинусов, синусов; Конус; Длина окружности, площадь; Основные соотношения в треугольнике и т.д.)
Тригонометрия на ЕГЭ: 5 формул для базы и профиля
Чуть больше 30% выпускников справляется с тригонометрией на ЕГЭ по математике. И неудивительно: для решения заданий из базы и профиля надо знать очень много формул, которые сложно освоить за 1-2 года. На самом деле, это миф! Чтобы решить задания по тригонометрии, нужно знать всего 5 формул — и просто уметь ими пользоваться.
Тригонометрия на ЕГЭ: основные проблемы темы
Чаще всего тригонометрию начинают изучать в 10 классе — но в некоторых школах оставляют до 11. В первом случае у учеников есть 2 года, чтобы освоить новую тему. А во втором, к сожалению, всего год. И это проблема. Дело в том, что в тригонометрии очень много формул, которые нужно знать, чтобы успешно решать задания. Если за 2 года их можно успеть выучить, то за год это будет сделать проблематично.
Ситуация осложняется ещё двумя факторами. Во-первых, в самой математике много формул, признаков, теорем и т.д. Во-вторых, кроме математики есть и другие экзамены, для которых нужно выучить большой объём информации.
Именно поэтому я всегда советую своим ученикам не учить формулы для тригонометрии на ЕГЭ, а выводить! Но об этом мы поговорим чуть позже, а сейчас давайте обсудим, почему тригонометрия так важна и где в ЕГЭ ее можно встретить.
Задания по тригонометрии в базе и профиле на ЕГЭ
Так как ЕГЭ по математике делится на базовый и профильный, а тригонометрия встречается в обоих, то давайте рассмотрим оба уровня экзамена.
Тригонометрия в базе
Что касается Базового уровня, то в нём всего 3 задания, в которых можно столкнуться с тригонометрией:
В № 7 в виде простейшего выражения
Как правило, для успешного решения таких заданий достаточно воспользоваться формулами из справочного материала.
В № 8 в виде формулы прикладной задачи
Стоит отметить, что в базовом ЕГЭ в прикладных задачах тригонометрия попадается редко, но нужно быть готовыми.
В № 15 как тригонометрия в геометрии
В справочном материале есть вся необходимая информация для успешного решения данного задания, а именно определение всех тригофункций в прямоугольном треугольнике.
Тригонометрия в профиле
Базовый уровень мы рассмотрели, теперь перейдём к профильному. Здесь уже больше вариантов, в которых можно встретиться с тригонометрией. Давайте посмотрим на Части 1 и 2.
В № 3 как тригонометрия в геометрии (Часть 1)
То же самое задание, как в базовом ЕГЭ, вот только в справочном материале уже нет необходимой информации.
В № 4 в виде выражения (Часть 1)
То же самое задание, как в базовом ЕГЭ.
В № 7 в виде формулы прикладной задачи (Часть 1)
То же самое задание, как в базовом ЕГЭ. Для успешного решения подойдут базовые навыки работы с тригонометрией.
В № 11 как часть функции (Часть 1)
Функцию нужно проанализировать для поиска наибольшего/наименьшего значения или точек максимума/минимума.
Если с Частью 1 профиля всё более-менее очевидно, то во второй части бывают сюрпризы, о которых ученики даже не подозревают. Да-да, тригонометрия на ЕГЭ умеет прятаться и в Части 2. Давайте посмотрим на эти задания.
В № 12 (Часть 2)
Тут сюрпризов нет. Это уравнение второй части, в котором ученики как раз ожидают увидеть тригонометрию, хотя она там бывает не всегда!
В № 13 — стереометрия (Часть 2)
Да, тригонометрия может встретиться здесь в виде теоремы синусов или теоремы косинусов, а ещё в виде формул в методе координат (для любителей решать этим методом).
В № 16 — планиметрия (Часть 2)
Здесь всё аналогично стереометрии: есть геометрические формулы, в которых прячется тригонометрия. Ведь, как я и сказала выше, в геометрии она тоже бывает!
5 формул тригонометрии: теория для ЕГЭ
А теперь предлагаю перейти к самому интересному — а именно к формулам. К сожалению, их действительно много. А ещё они похожи, и если их просто учить (или бездумно зубрить), то велик риск перепутать «+» с «–» или забыть какую-нибудь единичку.
Именно поэтому я рекомендую не учить формулы, а выводить. Это очень удобно тем более, что в профильном ЕГЭ по математике весь справочный материал состоит из 5-ти формул тригонометрии, из которых очень легко выводятся все остальные.
Но прежде чем я расскажу вам, как выводятся тригонометрические формулы, пообещайте, что обязательно отработаете все правила выведения! Для этого нужно будет регулярно выводить формулы по указанным ниже схемам.
Вот формулы, которые будут у вас в справочном материале:
Формула № 1 и как она пригодится в поиске котангенса и тангенса
Первая формула — основное тригонометрическое тождество (ОТТ):
Обычно ученики знают ее очень хорошо. Она связывает синус и косинус и помогает найти одну функцию через другую.
С этой формулой косвенно связана другая (ее нет в справочном материале), которая тоже легко дается школьникам:
Эту формулу очень легко запомнить, если знать, как можно расписать тангенс и котангенс через синус и косинус:
Эти 2 формулы связывают по отдельности синус с косинусом и тангенс с котангенсом. Но иногда требуется, чтобы были связаны все 4 функции, и здесь на помощь приходят следствия из ОТТ (как раз та самая формула № 1).
Чтобы вывести следствия нужно всего лишь разделить ОТТ на sin 2 и cos 2 :
Теперь можно легко найти:
- котангенс, зная синус,
- или тангенс, зная косинус.
Формула № 2 и что из нее можно вывести
С тождествами разобрались, давайте перейдём к формулам двойного угла. Что касается синуса двойного угла (вторая формула в справочном материале):
Здесь всё просто, берёте и применяете формулу, если видите, что она нужна для задания.
Формула № 3 и что из нее можно вывести
А вот с косинусом двойного угла (третья формула в справочном материале) всё интереснее. Безусловно, косинус двойного угла:
в чистом виде встречается, и тогда вы делаете всё тоже самое, что с синусом. Но на самом деле есть ещё 2 формулы, которые очень просто вывести, используя ОТТ (формулу № 1). Для начала нужно выразить квадрат синуса и квадрат косинуса из ОТТ (Шаг 1):
А потом нужно подставить эти значения в формулу (6, или третья формула справочного материала) (Шаг 2):
Вот мы вывели ещё 2 формулы! А сейчас я покажу вам как практически ничего не делая получить ещё 2. Мы будем выводить формулы понижения степени из формул двойного угла. Смотрите, нужно всего лишь выразить одно из другого:
Формулы № 4 и 5 и что из них можно вывести
Давайте посмотрим на справочный материал, у нас там ещё целых 2 формулы, из которых мы получим конечно же ещё 2! Сейчас вообще ничего удивительного не будет. Вот формулы, которые уже даны:
Как вы заметили, они для суммы углов, а чтобы получить формулы для разности углов, нам нужно всего лишь поменять знаки в формуле на противоположные (разумеется, я говорю про «+» и «–»):
Вот так при помощи нехитрых преобразований из 5-ти формул справочного материала мы получили целых 14!
Все скриншоты взяты из открытого банка заданий ФИПИ или из демоверсий ЕГЭ по математике 2022.
Что еще пригодится вам для тригонометрии на ЕГЭ
Скажу по секрету, что это далеко не все формулы тригонометрии, которые существуют. Есть и другие:
- некоторые можно вывести из вышеуказанных,
- некоторые можно обобщить и вместо огромного количества формул использовать короткое правило.
Но мне кажется, что пока этого и так много!
Советую сначала хорошо отработать формулы, которые я перечислила в этой статье, и только потом браться за другие. Так вы не загрузите свою память и будете быстрее решать сложные задания по тригонометрии из ЕГЭ. Это, кстати, касается любой темы на экзамене по математике: а в ЕГЭ их очень много. Поэтому чтобы получить высокий балл, надо правильно и системно отработать их все.
Именно так я и строю подготовку к ЕГЭ по математике вместе со своими учениками: строгая система подготовки — ключ к успеху на экзамене. Сначала мы разбираем простые темы и задания и учимся решать их самыми удобными способами — почти на автомате. А после я добавляю более хитрые и сложные задания. В итоге ребята и имеют хорошую базу знаний по математике, и умеют решать самые разные типы задач. Так что если вы хотите по-настоящему знать математику, а не зазубривать формулы, приходите на мои уроки!
А чтобы отрабатывать выведение было не так скучно, держите моего котика, который любезно согласился позировать в позе котангенса:
Формулы по математике для ЕГЭ и ОГЭ
Как быстро выучить
В приложенном файле формулы по математике для ЕГЭ и ОГЭ большого друга нашего сайта — отличного математика, отличника образования, учителя высшей категории по математике — Андрющенко Татьяны Яковлевны.
Скачать их можно по ссылке. Для того, чтобы скачать формулы в подарок — подпишитесь на наш сайт — вверху страницы.
Все формулы по математике с 5 класса по 11 класс, подходит для любой программы.
- Формулы сокращенного умножения
- Степени и корни
- Бином Ньютона
- Комбинаторика: факторил, перестановки, перемещения, сочетания, свойства сочетаний.
- Решение полных квадратных уравнений
- Метод разложения на множители
- Теорема Виета для полного квадратного уравнения.
- Теорема Виета для приведенного квадратного уравнения.
- Квадратичная функция — график, как найти вершины параболы.
- Прогрессии: арифметическая прогрессия, геометрическая прогрессия.
- Перевод бесконечной периодической десятичной дроби в обыкновенную дробь.
- Синус, косинус, тангенс и котангенс острого угла прямоугольного треугольника.
- Основные тригонометрические тождества.
- Формулы двойного аргумента.
- Формулы тройного аргумента.
- Синус и косинус любого угла.
- Знаки тригонометрических функций по координатным четвертям.
- Значения тригонометрических функций некоторых углов.
- Перевод градусной меры угла в радианную.
- Перевод радианной меры угла в градусную.
- Формулы приведения.
- Формулы преобразования суммы (разности) в произведение.
- Формулы преобразования произведения в сумму (разность).
- Обратные тригонометрические функции.
- Решение простейших тригонометрических уравнений.
- Решение простейших тригонометрических неравенств.
- Прямая на плоскости.
- Уравнение окружности.
- Векторы в пространстве.
- Пределы.
- Производная. Определение производной. Геометрический смысл производной. Уравнение касательной. Физический смысл производной.
- Основные правила дифференцирования.
- Функция.
- Областью определения функции.
- Областью значений функции.
- Функция f называется четной…
- Функция f называется нечетной…
- Функцию f называют периодической…
- Определение периода функции…
- Нахождение функции, обратной данной.
- Критические точки функции.
- Возрастание, убывание и экстремумы функции.
- Чтобы найти наибольшее и наименьшее значения функции… (алгоритм).
- Корень n-й степени.
- Показательная и логарифмическая функции.
- Свойства логарифмов.
- Степени некоторых простых чисел.
- Первообразная и интеграл.
- Основные свойства неопределенного интеграла.
- Таблица интегралов.
- Площадь криволинейной трапеции.
- Треугольники.
- Теорема Пифагора.
- Пропорциональные отрезки в прямоугольном треугольнике.
- Теорема синусов.
- Свойства равнобедренного треугольника.
- Площадь треугольника.
- Средняя линия в треугольнике.
- Формула Герона.
- Сумма внутренних углов любого треугольника.
- Центр тяжести треугольника.
- Свойства медиан в треугольнике.
- Биссектриса угла.
- Центр окружности, вписанной в треугольник.
- Центр окружности, описанной около треугольника.
- Формулы для радиусов вписанных и описанных окружностей правильных многоугольников.
- Сумма внутренних углов любого выпуклого n-угольника.
- Сумма внешних углов любого выпуклого n-угольника.
- Четырехугольники.
- Прямоугольник.
- Параллелограмм.
- Ромб.
- Квадрат.
- Трапеция.
- Вписанные и описанные четырехугольники.
- Углы в круге. Измерение углов в круге.
- Прямоугольный параллелепипед.
- Прямой параллелепипед. Объем. Площадь поверхности.
- Наклонный параллелепипед. Объем. Площадь поверхности.
- Прямая призма.
- Наклонная призма.
- Пирамида.
- Теорема о трех перпендикулярах (ТТП).
- Площади двух подобных фигур.
- Объемы двух подобных тел.
- Усечённая пирамида.
- Цилиндр.
- Конус. .
- Шаровой сектор.
- Шаровой сегмент.
- Усечённый конус.
Здесь только неполный перечень того, что есть в этом сборнике формул. Всего в сборнике 431 формула.