Какие шпаргалки взять на егэ по химии

09.09.2012

Подрборка шпаргалок по ХИМИИ.

Дата обновления: 01.11.2022

Полный набор теоретического материала для подготовки к ЕГЭ. Таблицы, схемы, формулы, теория. Всё, что необходимо для самостоятельной работы по химии.

  • Тренировочные варианты ЕГЭ по химии

Что содержите в себе сборник шпаргалок по химии

  • Все темы по химии в таблицах и схемах
  • Полезности для ЕГЭ по химии
  • Вся химия на 3 листах — краткий курс
  • Теория по химии в картинках
  • Шпаргалки по химииОгромная шпаргалка по химии

Для чтения шпаргалок необходимы бесплатные программы: WinDJView и Adobe Reader

СКАЧАТЬ

https://down.ctege.info/ege/obshee/shpory/himiya-ege-shpora.zip

Главные шпаргалки для экзамена | Химия ЕГЭ 2022 | Parta

Смотреть видео:

#химия #химияпросто #неорганика #егэпохимии #химияогэ #химик #егэхимия #химияегэ #репетиторпохимии

Свежая информация для ЕГЭ и ОГЭ по Химии (листай):

С этим видео ученики смотрят следующие ролики:

Главные шпаргалки для экзамена | Химия ЕГЭ | Parta

Главные шпаргалки для экзамена | Химия ЕГЭ | Parta

Parta химия ЕГЭ

Главные шпаргалки для экзамена | Химия ЕГЭ 2023 | Parta

Главные шпаргалки для экзамена | Химия ЕГЭ 2023 | Parta

Parta химия ЕГЭ

Главные шпаргалки для экзамена | Химия ЕГЭ 2023 | Parta

Главные шпаргалки для экзамена | Химия ЕГЭ 2023 | Parta

Parta химия ЕГЭ

ОФИЦИАЛЬНЫЕ ШПАРГАЛКИ ЕГЭ | PARTA ХИМИЯ ЕГЭ

ОФИЦИАЛЬНЫЕ ШПАРГАЛКИ ЕГЭ | PARTA ХИМИЯ ЕГЭ

Parta химия ЕГЭ

Облегчи жизнь другим ученикам — поделись! (плюс тебе в карму):

17.08.2021

“Что нужно знать для ЕГЭ по химии?” — вопрос, который мучает всех выпускников в начале подготовки. На самом деле, для набора средних баллов нужно не так уж и много. В рамках неорганической химии школьник обязан разбираться во всех основных классах соединений: оксидах, кислотах, основаниях, солях. Чтобы быстро выучить их классификацию, получение и свойства, изучите нашу шпаргалку по химии для ЕГЭ. Конечно, если вы хотите получить высокие баллы, базовых знаний может быть недостаточно. В таком случае, стоит подумать о занятиях с репетитором или курсах, на которых разбираются более редкие реакции и особенности тех или иных веществ.

Оксиды

Оксиды — бинарные соединения, в состав которых входит кислород в степени окисления +2. В образовании этих веществ участвуют практически все химические элементы, даже некоторые благородные газы, которые считаются инертными в школьной химии. Свойства оксидов зависят от того, к какому типу они относятся. Несолеобразующие (NO, N2O, CO) вступают в небольшое количество реакций, не реагируют с кислотами и щелочами. В заданиях базового уровня они встречаются редко, поэтому при подготовке к ЕГЭ их часто упускают. Солеобразующие оксиды могут быть кислотными (образованы неметаллами и металлами в высших степенях окисления), основными (образованы металлами со степенями окисления +1 и +2) и амфотерными (образованы металлами в промежуточных степенях окисления). 

Способы получения оксидов: 

  • горение металлов (кроме калия, натрия, цезия, рубидия): 4Al + 3O2 → 2Al2O3

  • горение неметаллов: S + O2 → SO2

  • окисление других бинарных соединений (например, сульфидов, фосфидов): 4FeS2 + 11O2 → 2Fe2O3 + 8SO2

  • разложение неустойчивых и нерастворимых (при температуре) гидроксидов: H2SiO3 → H2O + SiO2

  • разложение солей (соли, образованные кислотами-окислителями разлагаются с увеличением степени окисления): Li2CO3 → CO2 + Li2O

Свойства оксидов в химии

  • с водой (в случае получения растворимых гидроксидов): CaO + H2O → Ca(OH)2

  • основные оксиды с кислотами: CuO + H2SO4 → CuSO4 + H2

  • основные оксиды с кислотными оксидами: MgO + CO2 → MgCO3 

  • кислотные оксиды с основаниями: SO2 + 2NaOH → Na2SO3 + H2

  • амфотерные оксиды с кислотами: ZnO + 2HCl → ZnCl2 + H2

  • амфотерные оксиды с щелочами: Al2O3 + 2KOH → 2KAlO2 + H2O

Соли

Соли в химии — вещества, состоящие из катиона металла (или катиона аммония NH4+) и аниона кислотного остатка. Вы наверняка знакомы со средними солями (NaCl, CuSO4), которым при подготовке к ЕГЭ уделяется больше всего внимания. Однако в заданиях встречаются и другие типы. Кислые соли представляют собой результат неполного замещения атомов водорода в кислоте на металл (NaHCO3), а основные — результат неполного замещения OH-группы в щелочах (FeOHCl2). Существуют также комплексные (K[Al(OH)4]), смешанные (CaClBr) и двойные соли (K2NaPO4). 

Способы получения солей в химии

  • кислота + металл (металл должен стоять до водорода в ряду активности): 2HCl + Zn → ZnCl2 + H2

  • кислота + основный оксид: 2HCl + CaO → CaCl2 + H2O

  • кислота + щелочь: HCl + NaOH → NaCl + H2O

  • кислота + соль: 3CaCO3 + 2HCl → CaCl2 + H2O + CO2

  • основание + неметалл: 6KOH + 3S → K2SO3 + 2K2S + 3H2O

  • основание + кислотный оксид: CO2 + Ca(OH)2 → CaCO3 + H2O

  • основание + соль (если выпадает осадок или выделяется газ): 2KOH + FeCl2 → Fe(OH)2 + 2KCl

  • соль + соль (если выпадает осадок): CuCl2 + Na2S → 2NaCl + CuS↓

  • металл + неметалл: Fe + S → FeS

  • кислотный оксид + основный оксид: SO3 + Na2O → Na2SO4

  • соль + металл (свободный металл должен быть активнее металла в соли, то есть стоять правее в ряду напряжения): Fe + CuSO4 → FeSO4 + Cu

Свойства солей в химии

  • диссоциация на ионы: CaCl2  →  Ca2+  +  2Cl

  • с кислотными оксидами: K2CO3 + SiO2 → CuSiO3 + CO2

  • с амфотерными оксидами: K2CO3 + Al2O3 → 2KAlO2 + CO2

  • с кислотами: Na2CO3 + 2HCl → 2NaCl + CO2 + H2O

  • с щелочами: (NH4)2SO4 + 2KOH → 2NH3↑ + 2H2O + K2SO4

  • кислые соли реагируют с щелочами с образованием средних солей: KHCO3 + KOH → K3CO3 + H2O

  • с солями: CuSO4 + BaCl2 → BaSO4↓ + CuCl2

  • с металлами, более активными чем металл самой соли: CuSO4 + Fe FeSO4 + Cu

  • разложение: (NH4)2Cr2O7 → N2 + 4H2O + Cr2O3

Кислоты

Кислоты в химии — вещества, образованные одним или несколькими атомами водорода и кислотным остатком. Некоторые кислотные остатки имеют в своем составе кислород, они называются кислородсодержащими (H2SO4). Кислоты, не содержащие кислород, называются бескислородными (HCl). Количество атомов водорода указывает на основность. В соответствии с этой классификацией кислоты могут быть одно-, двух- и трехосновными. Кроме того, эти вещества различаются по силе. Сильные кислоты диссоциируют на ионы полностью, в водных растворах очень активны, их реакции протекают быстро. Это серная, азотная, марганцовая, все галогеноводороды кроме HF. Слабые кислоты плохо диссоциируют на ионы, реагируют медленнее. Пример — азотистая, сернистая, плавиковая. Кремниевая кислота относится к нерастворимым, а сероводородная — к летучим. 

Кислоты в химии можно получить следующим образом: 

  • кислотный оксид + вода (только в случае с растворимыми кислотами): SO3 +  H2O → H2SO4

  • неметалл + водород: H2 + Cl2 2HCl

  • электролиз растворов солей: 2CuSO4 + 2H2O  →  2Cu + 2H2SO4  +  O2

  • кислота + соль: CaCO3 + H2SO4 → CaSO4 + 2H2O + CO2 (в данном случае нестабильная угольная кислота распадается на оксид и воду)

  •  окисление неметаллов и их оксидов: P + 5HNO3 → H3PO4  + 5NO2 + H2O

Свойства кислот в химии: 

  •  диссоциация в растворе: HCl  →  H+  +  Cl

  • с основными оксидами: 2HCl + Li2O → 2LiCl + H2O

  • с основаниями: Cu(OH)2 + 2HBr  →  CuBr2 + 2H2O

  • с солями: CaCO3 + 2HCl → CaCl2 + H2O  + CO2

  • с металлами: Fe + 2HCl  →  FeCl2 + H2

  • разложение при нагревании: H2CO3  →   H2O + CO2

Основания

Основания в химии — вещества, состоящие из катиона металла (или катиона аммония) и гидроксильной группы -OH. Как и кислоты, основания могут быть растворимыми и нерастворимыми, сильными и слабыми. Сильными основаниями являются щелочи (гидроксиды щелочных и щелочноземельных металлов), а слабыми — все нерастворимые и гидроксид аммония. Количество гидроксильных групп определяет кислотность. Основание может быть однокислотным и многокислотным. 

Способы получения оснований в химии

  • основный оксид + вода (только для получения щелочей): Na2O + H2O → 2NaOH

  • металл + вода: 2K + 2H2O →  2KOH + H2

  • электролиз растворов солей: 2NaCl + 2H2O → 2NaOH + H2↑ + Cl2

  • щелочь + соль: K2CO3 + Ca(OH)2 → CaCO3↓ + 2KOH

Свойства оснований в химии

  • с кислотами:  Cu(OH)2 + 2HCl → CuCl2 + 2H2O

  • разложение (для нерастворимых): Cu(OH)2 + 2HCl → CuCl2 + 2H2O

  • с амфотерными оксидами и гидроксидами (только щелочи): NaOH + Al(OH)3 → Na[Al(OH)4]

  • с кислотными оксидами (для щелочей): 2NaOH + CO2 → Na2CO3 + H2O

  • с солями: ZnSO4 + 2KOH → Zn(OH)2↓ + K2SO4

  • с кислыми солями (только щелочи): KHSO3 + KOH → K2SO3 + H2O

  • с неметаллами (только щелочи): 2NaOH + Cl2 → NaCl + NaClO + H2O

Электролитическая диссоциация

Все вещества можно разделить на электролиты и неэлектролиты. Электролиты — соединения, расплавы и растворы которых способны проводить электрический ток. К ним относятся кислоты, основания, соли. При плавлении или растворении в воде электролиты распадаются на ионы. Этот процесс и называется электролитической диссоциацией веществ. В процессе диссоциации ионы реагируют с молекулами воды. Они буквально окружают ион, создавая гидратную оболочку. Какие-то электролиты реагируют более активно, какие-то — менее активно. Это определяется степенью диссоциации: отношением количества продиссоциировавших молекул к общему числу частиц. У сильных электролитов степень диссоциации близка к 100%. Они распадаются полностью, необратимо и в одну ступень: Na3PO4 → 3Na+ +PO43—. Слабые электролиты, а также кислые и основные соли диссоциируют по ступеням. Электролитическая диссоциация кислоты (слабой):

  1. H2CO3 ↔ H+ + HCO3

  2. HCO3 ↔ H+ + CO32–

Еще одна важная характеристика электролита — константа диссоциации, которая вычисляется по формуле Kд = [A]x [K]y / [AxKy]. Константа диссоциации воды равна 10-14. Обратный десятичный логарифм от концентрации ионов водорода в растворе называют водородным показателем (pH), он отражает среду: 

  • pH < 7 — кислая.

  • pH = 7 — нейтральная.

  • pH > 7 — щелочная. 

Теперь вы знаете основы такого процесса, как электролитическая диссоциация, а еще классы веществ в неорганической химии. Шпаргалка, составленная нами, должна помочь вам в подготовке к ЕГЭ, однако не забывайте, что в ней отражены лишь базовые моменты. Исключения из правил и особенности некоторых веществ можно выучить только в учебниках профильного уровня или на специальных курсах. А мы желаем вам удачи в сдаче такого увлекательного предмета, как химия. 

Чек-лист к ЕГЭ по химии

Благодаря этому чек-листу вы сможете ознакомиться со всеми темами, которые могут встретиться вам в…

Способы разделения смесей

🔸 ИСПОЛЬЗОВАНИЕ МАГНИТА
Применяется для разделения смеси, в которой есть частицы, притягивающиеся…

Синтез серной кислоты

Существует несколько способов получения серной кислоты, самые известные — нитрозный и контактный….

Синтез метанола

Синтез метанола очень похож на синтез аммиака 🤓

Реакция протекает по следующему уравнению:
CO +…

Синтез аммиака

Сильно погружаться в тонкости химического производства мы не будем, тем более что половина…

Волокна

Волокно — это тонкая нить. Она может быть натуральной, искусственной или минеральной. Разберёмся,…

Полимеры

Полимеризация — это процесс многократного присоединения молекул мономера друг другу с образованием…

Шпаргалки для ЕГЭ по химии 2020 по заданиям

Единый Государственный Экзамен на 2019 — 2020 учебный год. Официальный сайт. КИМ. Открытый банк заданий. СТАТГРАД. ФИПИ. ФГОС. ОРКСЭ. МЦКО. ФИОКО. Школа России. 21 век

Подборка новых шпаргалок по химии по всем заданиям в таблицах

Полный набор теоретического материала для подготовки к ЕГЭ-2020. Таблицы, схемы, формулы, теория. Всё, что необходимо для самостоятельной работы для подготовки к ЕГЭ

Шпаргалки для ЕГЭ по химии 2020 по заданиям скачать бесплатно


Смотрите и скачивайте шпаргалки по другим предметам

Понравилась статья? Поделить с друзьями:
  • Какие шпаргалки взять на егэ по русскому языку
  • Какие шпаргалки взять на егэ по математике профильный уровень
  • Какие шпаргалки взять на егэ по биологии
  • Какие шпаргалки брать на егэ по английскому
  • Какие шкалы применяют при оценивании результатов единого государственного экзамена