Клонирование егэ биология

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 90    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Направление биотехнологии, в котором используются микроорганизмы для получения антибиотиков, витаминов, называют

1) биохимическим синтезом

4) микробиологическим синтезом


Установите соответствие между приёмами и методами биотехнологии: для этого к каждому элементу первого столбца подберите соответствующий элемент из второго столбца.

ПРИЁМЫ

А)  работа с каллусной тканью

Б)  введение плазмид в бактериальные

клетки

В)  гибридизация соматических клеток

Г)  трансплантация ядер клеток

Д)  получение рекомбинантной ДНК и РНК

МЕТОДЫ

1)  клеточная инженерия

2)  генная инженерия

Запишите в таблицу выбранные цифры под соответствующими буквами:

А Б В Г Д

Направление биотехнологии, в котором используются микроорганизмы для получения антибиотиков, витаминов, назы вают

1) биохимическим синтезом

2) инженерией малых размеров

4) микробиологическим синтезом


Производство гормона инсулина с помощью бактерий стало возможно благодаря


Все приведённые ниже характеристики, кроме трёх, используются для описания методов клеточной инженерии. Определите три характеристики, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1)  получение рекомбинантной ДНК

2)  гибридизация клеток

3)  клонирование переносом ядра из соматической клетки в половую

4)  создание генно-модифицированного организма путём редактирования генома

5)  введение рекомбинантной плазмиды в клетку

6)  выращивание растений из культуры клеток


Задания Д1 № 305

Генная инженерия, в отличие от клеточной, включает исследования, связанные с

1)  культивированием клеток высших организмов

3)  пересадкой генов

2)  гибридизацией соматических клеток

4)  пересадкой ядра из одной клетки в другую


В клеточной инженерии проводят исследования, связанные с

1) пересадкой ядер из одних клеток в другие

2) введением генов человека в клетки бактерий

3) перестройкой генотипа организма

4) пересадкой генов от бактерий в клетки злаковых

Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Центр, Урал. Вариант 2.


Использование микроорганизмов для получения кормов относится к

1)  селекции

2)  биотехнологии

3)  генной инженерии

4)  клеточной инженерии

Источник: Диагностическая работа по биологии 06.04.2011 Вариант 1.


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Генная инженерия, в отличие от клеточной, включает исследования, связанные с

1)  культивированием клеток высших организмов

2)  гибридизацией соматических клеток

3)  пересадкой генов

4)  пересадкой ядра из одной клетки в другую

5)  получение рекомбинантных (модифицированных) молекул РНК и ДНК


Все приведённые ниже характеристики, кроме двух, используют для описания клеточной инженерии. Определите две характеристики, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1)  отбор родителей для скрещивания

2)  гибридизация клеток

3)  гетерозис у гибридных клеток

4)  внедрение плазмиды в клетку эукариот

5)  перенос ядра из соматической клетки в яйцеклетку

Раздел: Основы селекции и биотехнологии


Установите соответствие между методами и областями науки и производства, в которых эти методы используются: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

МЕТОДЫ

А)  получение полиплоидов

Б)  метод культуры клеток и тканей

В)  использование дрожжей для производства белков и витаминов

Г)  метод рекомбинантных плазмид

Д)  испытание по потомству

Е)  гетерозис

ОТРАСЛИ

1)  селекция

2)  биотехнология

Запишите в таблицу выбранные цифры под соответствующими буквами.

A Б В Г Д Е

Получением антибиотиков путем пересадки гена в геном бактерий занимается


Получение точных копий материнского организма стало возможно благодаря


Клеточная инженерия занимается

1) созданием чистых линий

2) пересадкой ядер соматических клеток в яйцеклетки

3) получением гетерозисных организмов

4) синтезом новых генов и внедрением их в клетки бактерий

Источник: ЕГЭ по биологии 05.05.2014. Досрочная волна. Вариант 1.


С какой целью в генной инженерии применяется метод введения генов высших организмов в геном бактерий?

1)  для изучения генома бактерий

2)  для получения необходимых белков – гормонов, ферментов

3)  для выращивания колонии бактерий

4)  для клонирования организмов


Создание рекомбинантного инсулина, производимого бактериями, стало возможно благодаря развитию


К биотехнологии относят процессы

1) получения лекарств с помощью бактериальных ферментов

2) выведения новых пород животных

3) получения искусственных мутаций

4) пересадки ядер из клетки в клетку


Введение в геном кишечной палочки гена, контролирующего синтез человеческого инсулина – это пример применения методов

1)  генной инженерии

2)  цитологии

3)  селекции

4)  биохимии

Источник: Диагностическая работа по биологии 06.04.2011 Вариант 2.


Все перечисленные ниже термины и приёмы, кроме двух, используются для описания методов генной инженерии. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1)  построение графического изображения кариотипа

2)  конструирование рекомбинантной плазмиды

3)  гибридизация нуклеиновых кислот

4)  введение рекомбинантной ДНК в клетку

5)  микроклональное размножение клеток на питательных средах

Раздел: Основы селекции и биотехнологии

Источник: СтатГрад биология. 30.11.2018. Вариант БИ10202


Все приведённые ниже методы, кроме двух, относят к методам биотехнологии. Определите два метода, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1)  создание генно-инженерных конструкций

2)  изучение родословной породистых собак

3)  проведение полимеразной цепной реакции

4)  гибридизация клеток в культуре

5)  оценка биоразнообразия экосистемы

Всего: 90    1–20 | 21–40 | 41–60 | 61–80 …

Размножение — присущее всему живому свойство воспроизведения себе подобных. Размножение обеспечивает
преемственность и непрерывность жизни.

Размножение

Выделяют две основные формы размножения: бесполое и половое.

Бесполое размножение

Бесполое размножение осуществляется только одной родительской особью без участия половых клеток. Появление
дочернего организма происходит из соматических клеток.

Важно заметить, что обычно потомству передаются только мутации, которые происходят в половых клетках (гаплоидных — n). Однако в
случае бесполого размножения потомству передаются мутации в соматических клетках (диплоидных — 2n).

Наиболее распространено бесполое размножение у бактерий, грибов и растений, встречается и у животных. Существует несколько способов бесполого
размножения:

  • Деление
  • Делением материнской клетки на дочерние размножаются все бактерии и простейшие (амеба, эвглена зеленая, инфузории, водоросли).

    Обратите внимание, что у ядерных организмов (эукариот) деление клетки подразумевает митоз, а у доядерных (прокариот)
    — простое бинарное деление (такая разница связана с отсутствием у прокариот ядра).

    Митоз и простое бинарное деление

    Часто бесполое размножение помогает быстро увеличить численность вида, оно активируется при благоприятных условиях среды. Осенью,
    при наступлении неблагоприятных условий становится активно половое размножение.

  • Споруляция (греч. spora — посев)
  • Споруляция подразумевает размножение с помощью специализированных клеток — спор. Эта форма размножения распространена у растений
    (водорослей, мхов, папоротников, хвощей и плаунов), грибов и некоторых простейших (споровики — малярийный плазмодий).

    У одноклеточной зеленой водоросли — хламидомонады, споры имеют жгутики, вследствие чего называются зооспорами. У растений
    процесс образования спор происходит в обособленных мешковидных образованиях — спорангиях. Споры покрыты защитной
    оболочкой, служат для размножения и расселения растений и грибов.

    Сорусы папортника

    Помимо этого, споры грибов и простейших помогают им пережить влияние неблагоприятных факторов внешней среды, например пересыхание
    водоема. При наступлении благоприятных условий грибы и простейшие освобождаются от спор и продолжают рост и развитие.

    Споры гриба

  • Вегетативное размножение — развито у растений
  • Вариантов вегетативного размножения у растений — масса, им посвящена отдельная статья. Растения размножают
    с помощью клубнелуковиц, клубней, корнеплодов, корневищ, усов, отводок, черенков, луковиц, делением кустов. Прививка — также
    является вариантом вегетативного размножения.

    В случае вегетативного размножения дочерний организм представляет собой генетическую копию материнского организма, а также имеет шанс унаследовать мутации в соматических клетках.

    Вегетативное размножение растений

  • Почкование
  • У некоторых животных дочерние организмы могут появляться из группы клеток — прямо на теле родительской особи. В этом случае небольшой
    участок тела отделяется от родительского организма и развивается самостоятельно.

    Почкованием размножаются многие кишечнополостные, например — пресноводный полип — гидра.

    Вегетативное размножение растений

  • Фрагментация
  • Некоторые живые существа в ходе эволюции развили поразительную способность к регенерации (лат. re — вновь и genus — поколение) — замещению
    утраченной части организма.

    У молочной планарии способность к регенерации развита настолько, что, если разделить ее на несколько частей, то из каждой части
    восстановится полноценный организм.

    Фрагментация у планарии

  • Клонирование
  • Является искусственным методом размножения, которым занимается отдельное направление биологии — биотехнология. Клоном называют дочернюю особь,
    идентичную в генетическом отношении родительской особи.

    На настоящий момент бурно развивается направление выращивания искусственных органов, которые могут заменить «естественные» органы, утратившие
    вследствие болезней свои физиологические и анатомические свойства.

    Искусственное ухо

Половое размножение

Осуществляется с помощью особых половых клеток (гамет). Имеет огромное эволюционное значение, так как в результате него образуются особи
с новыми комбинациями генов, новыми признаками. Такие особи являются материалом для естественного отбора.

В результате бесполого размножения появляются генетические копии материнских организмов, которые содержат точно такой же набор генов в ДНК.
В этом случае при изменении условий среды, если погибает одна особь, рискуют погибнуть все «генетические копии», так как они не обладают
разнообразием, имеют одинаковый генотип, а значит одинаково не приспособлены.

Половое размножение в схожих условиях выигрывает значительно, так как создает генетическое разнообразие.

Спаривание дождевых червей

В ходе гаметогенеза у мужских и женских особей образуются половые клетки (гаметы): сперматозоиды (n) и яйцеклетки (n). При оплодотворении
происходит их слияние, образуется зигота (2n). Далее следует эмбриональный период развития, который переходит в постэмбриональный.

У ряда организмов существуют свои особые варианты полового процесса. Таким является процесс конъюгации у инфузорий. Конъюгация
(лат. conjugatio — соединение) сопровождается обменом ядер между клетками партнеров при их непосредственном контакте.

Важно заметить, что это пример полового процесса без размножения, так как увеличения числа особей не происходит. Однако две разошедшиеся
клетки после конъюгации содержат новые комбинации генов, что в дальнейшем приведет к развитию новых признаков и появлению новых свойств
у их потомства.

Конъюгация у инфузорий

Партеногенез (греч. παρθένος — дева, девица, девушка + γένεσις — возникновение) — одна из форм полового размножения, так называемое
«девственное размножение».

При партеногенезе дочерний организм развивается из неоплодотворенной яйцеклетки. Несмотря на то, что в этом процессе не участвует мужская
половая клетка, партеногенез относят к половому размножению, так как дочерний организм развивается из половой клетки — яйцеклетки.

Партеногенез

Партеногенез выполняет важную функцию регуляции соотношения полов у пчел: из неоплодотворенной яйцеклетки развиваются самцы, из
оплодотворенной — самки. Партеногенез встречается также у муравьев, термитов, тлей.

Говоря о половом размножении нельзя не упомянуть интересное явление в природе — гермафродитизм. Это явление заключается в наличии у
особи как мужских, так и женских половых органов (назван по имени мифического обоеполого существа — Гермафродита).
Аналогичное явление у растений называется однодомностью: и мужские, и женские цветки в таком случае расположены на одном растении.

Очевидно, что особи гермафродиты вырабатывают два типа половых клеток: и сперматозоиды (мужские гаметы), и яйцеклетки (женские гаметы).
Гермафродитизм чаще встречается у низших, более примитивных животных. Гермафродитами являются многие черви, моллюски, кишечнополостные.

Гермафродитизм

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Селекция, ее задачи и практическое значение. Вклад Н. И. Вавилова в развитие
селекции: учение о центрах многообразия и происхождения культурных растений;
закон гомологических рядов в наследственной изменчивости. Методы селекции и их
генетические основы. Методы выведения новых сортов растений, пород животных, штаммов
микроорганизмов. Значение генетики для селекции. Биологические основы выращивания
культурных растений и домашних животных

Селекция, ее задачи и практическое значение

Селекция (от лат. селектио — отбор) — это наука о методах создания пород домашних животных, сортов культурных растений и штаммов микроорганизмов с нужными человеку свойствами.

Под селекцией понимают также и сам процесс изменения живых организмов, осуществляемый человеком для своих потребностей. Современные селекционеры придерживаются точки зрения Н. И. Вавилова, согласно которой теоретической основой данной науки являются генетика и эволюционное учение.

Порода (сорт, штамм, чистая линия) — это популяция организмов, искусственно созданная человеком и характеризующаяся специфическим генофондом, наследственно закрепленными морфологическими и физиологическими признаками, определенным уровнем и характером продуктивности.

Задачей современной селекции является повышение продуктивности сортов растений и пород животных. Однако ныне важнейшими факторами интенсификации растениеводства и животноводства становится их перевод на промышленную основу, например, сортов овощей и фруктов, пригодных для машинной уборки, пород животных, предназначенных для содержания в животноводческих хозяйствах.

Достижения селекции растений, связанные с выведением высокопродуктивных сортов пшеницы, позволили осуществить так называемую «зеленую» революцию в середине ХХ века в Мексике, когда традиционные сорта были заменены новыми. Это позволило не только спасти от разорения мелкие фермерские хозяйства, но и решить продовольственную проблему в данном регионе. В целом с селекцией связывают надежды на преодоление дефицита продовольствия в мире, несмотря на глобальный экологический кризис, поразивший даже такие традиционно «хлебные» страны, как Испания и Аргентина.

Вклад Н. И. Вавилова в развитие селекции: учение о центрах многообразия и происхождения культурных
растений; закон гомологических рядов в наследственной изменчивости

Первым этапом селекции было одомашнивание (доместикация), в процессе которого шел отбор по поведению животных и способности размножаться под контролем человека. Оно позволило сохранить огромное разнообразие признаков, в том числе неблагоприятных для вида. Всего человек окультурил около 150 видов растений и около 20 видов животных.

Выдающийся русский генетик и селекционер Н. И. Вавилов в ходе многочисленных экспедиций изучил мировые растительные ресурсы и установил, что наибольшее разнообразие форм определенного вида характерно для тех районов, где этот вид был введен в культуру. В соответствии с этим он определил семь центров происхождения культурных растений.

Центры происхождения культурных растений

Название центра Географическое положение Примеры культурных растений
Южноазиатский тропический Тропическая Индия, Индокитай, Южный Китай, о-ва Юго-Восточной Азии Рис, сахарный тростник, цитрусовые, огурец, баклажан, черный перец и др. (50 % культурных растений)
Восточноазиатский Центральный и Восточный Китай, Япония, Корея, Тайвань Соя, просо, гречиха, плодовые и овощные культуры: слива, вишня, редька и др. (20 % культурных растений)
Юго-Западноазиатский Малая Азия, Средняя Азия, Иран, Афганистан, Юго-Западная Индия Пшеница, рожь, бобовые культуры, лен, конопля, репа, морковь, чеснок, виноград, абрикос, груша и др. (14 % культурных растений)
Средиземноморский Страны Средиземноморского бассейна Капуста, сахарная свекла, маслины, клевер, чечевица, кормовые травы (11 % культурных растений)
Абиссинский Абиссинское нагорье Африки Твердая пшеница, ячмень, кофейное дерево, сорго, бананы
Центральноамериканский Южная Мексика Кукуруза, длинноволокнистый хлопчатник, какао, тыква, табак
Южноамериканский Южная Америка вдоль западного побережья Картофель, ананас, хинное дерево

Дальнейшие исследования позволили выделить уже 12 центров происхождения культурных растений, тесно связанных с центрами одомашнивания животных.

Н. И. Вавилов собрал также хранящуюся и поныне во Всероссийском институте растениеводства (г. Санкт-Петербург) мировую коллекцию культурных растений, которая и сейчас используется для выведения новых сортов и на основании изучения признаков культурных растений и близких к ним диких видов Н. И. Вавилов в 1920 году сформулировал закон гомологических рядов в наследственной изменчивости.

Закон гомологических рядов в наследственной изменчивости:

Генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов.

Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство.

Данный закон позволил предположить наличие некоторых форм злаков, которые впоследствии были описаны, и, как позже было установлено, он является универсальным для всех живых организмов.

Генетической основой данного закона является то, что степень исторического родства прямо пропорциональна количеству их общих генов, вследствие чего и мутации этих генов могут быть сходными. В фенотипе это проявляется одинаковым характером изменчивости многих признаков у близких видов, родов и других таксонов.

Закон гомологических рядов наследственной изменчивости организмов объясняет направленность исторического развития родственных групп организмов. Опираясь на него и изучив наследственную изменчивость близких видов, в селекции планируют работу по созданию новых сортов растений и пород животных с определенным набором наследственных признаков. В систематике организмов этот закон позволяет предвидеть существование неизвестных науке систематических групп (видов, родов и т. д.) с подобными сочетаниями признаков, выявленных в близкородственных группах.

Методы селекции и их генетические основы

Основные методы селекции — гибридизация и искусственный отбор.

Гибридизация — это процесс образования или получения гибридов, в основе которого лежит объединение генетического материала разных клеток в одной клетке.

Для достижения результата в процессе гибридизации особое внимание уделяется подбору родительских пар. В селекции растений подбор ведется по определенным признакам с учетом генетической и географической удаленности; в селекции животных — только по хозяйственно ценным признакам, которые определяют по экстерьеру, родословной и потомству.

Выделяют родственную и неродственную гибридизации. Родственное скрещивание, или инбридинг, приводит к появлению чистых линий, но при этом снижается жизнеспособность потомства вследствие перехода различных летальных и полулетальных генов в гомозиготное состояние.

Неродственное скрещивание, или аутбридинг, бывает внутривидовым и межвидовым (в т. ч. отдаленная гибридизация). Аутбридинг в первом поколении дает эффект гетерозиса.

Гетерозис (от греч. гетерозис — изменение, перевоплощение) — явление повышения жизнеспособности и продуктивности у гибридов первого поколения по сравнению с исходными родительскими формами.

Данное явление объясняется благоприятным сочетанием родительских генов, а также переходом сублетальных и летальных аллелей в гетерозиготное состояние. Во втором и последующих поколениях эффект гетерозиса ослабевает вследствие расщепления генов и гомоготизации. У растений его эффект можно закрепить вегетативным или партеногенетическим размножением, удвоением числа хромосом и т. д. Эффект гетерозиса широко применяется в сельском хозяйстве, так как он позволяет существенно повысить урожайность растений (кукурузы, огурцов, томатов) и продуктивность животных (яйценоскость гибридов леггорнов и австралорнов, скорость роста и улучшение качества мяса бройлеров).

Несмотря на то, что с помощью отдаленной гибридизации уже созданы и успешно внедрены в сельскохозяйственное производство высокопродуктивные гибриды растений (пшенично-пырейный, пшеницы и ржи — тритикале, малины и ежевики), у животных (лошади и осла — мул, белуги и стерляди — бестер), основной проблемой данного метода является преодоление бесплодия гибридов. Бесплодие возникает в результате различий размеров, форм и количества хромосом в кариотипе родительских форм, вследствие чего хромосомы утрачивают способность конъюгировать в процессе мейоза. Преодолеть его можно за счет удвоения числа хромосом в кариотипе, и тогда хромосомы каждого из родителей будут конъюгировать с гомологичными им. Первым данный метод апробировал российский селекционер Г. Д. Карпеченко в процессе создания редечнокапустного гибрида с 36 хромосомами, тогда как у каждой из родительских форм их было по 18.

У животных решить проблему данным путем не представляется возможным вследствие увеличения дозы летальных аллелей, поэтому у них только в некоторых случаях один или оба пола плодовиты, как, например, самки гибридов яка с крупным рогатым скотом.

Искусственный отбор — процесс создания новых пород животных и сортов культурных растений путем систематического сохранения и размножения особей с определенными, ценными для человека признаками и свойствами в ряду поколений.

Выделяют две формы искусственного отбора: бессознательный, ведущийся без определенного плана, и методический, производимый с определенной целью. Примером искусственного отбора являются породы домашних голубей, выведенные от дикого скалистого голубя. Также он применяется в форме массового и индивидуального отбора. Массовый отбор является эффективным при высокой наследуемости признака. В основном он используется в селекции растений и микроорганизмов. При индивидуальном отборе учитываются не только показатели продуктивности или иные качества организма, но и наследование данного признака в ряду поколений. В комбинации с инбридингом он позволяет получить чистые линии. Индивидуальный отбор характерен для селекции животных и самоопыляющихся растений.

Теорию искусственного отбора создал великий английский ученый Ч. Дарвин. Основные положения своей теории он изложил в труде «Происхождение видов путем естественного отбора, или сохранение благоприятствуемых пород в борьбе за жизнь» и развил в дальнейшем в книге «Изменения домашних животных и культурных растений под влиянием одомашнивания».

Методы выведения новых сортов растений, пород животных, штаммов микроорганизмов

В связи с тем, что генетически запрограммированные резервы продуктивности культурных растений и животных уже практически исчерпаны, создание новых сортов и пород этих организмов требует кардинального изменения подхода к процессу селекции. В первую очередь перед началом селекционного процесса создается модель сорта или породы, которая учитывает современные требования к нему, после чего производится подбор методов, при помощи которых может быть достигнут искомый результат. Помимо описанных выше гибридизации и искусственного отбора, на современном этапе развития селекции широко используются также искусственный мутагенез, методы биотехнологии, клеточной и генной инженерии, клонирование.

Искусственным, или экспериментальным мутагенезом называют получение мутаций с помощью физических или химических агентов, например рентгеновского и ультрафиолетового излучения. Он позволяет получить как новые полезные генные мутации, так и геномные, в том числе добиться полиплоидизации. Однако далеко не все мутации происходят в ядерном геноме и способны передаваться в ряду поколений, поскольку в клетках животных имеются еще геномы митохондрий, а в клетках растений — митохондрий и пластид. Кроме того, мутации могут затронуть только соматические клетки, но не произойти в половых. В связи с этим многие мутантные формы растений размножаются только вегетативно.

В селекции растений широко применяются различные формы гибридизации и искусственного отбора. Однако гибриды довольно часто являются бесплодными, и поэтому их либо каждый раз выводят заново, либо размножают вегетативно. Для преодоления бесплодия гибридов у растений используется искусственный мутагенез, который позволяет получать полиплоидные сорта, отличающиеся более высокой урожайностью. С его помощью был получен ряд сортов сахарной свеклы, гречихи, редечно-капустный гибрид Г. Д. Карпеченко, а также новые высокоурожайные сорта ячменя и пшеницы, сорта растений с декоративными листьями.

В плодоводстве и декоративном цветоводстве невозможно в настоящее время обойтись без методов, разработанных и усовершенствованных одним из самых выдающихся российских селекционеров — И. В. Мичуриным, в особенности методов ментора, вегетативного сближения, посредника, смеси пыльцы и др. Например, метод ментора благодаря сочетанию свойств привоя и подвоя позволил ему вывести сорт груши бере зимняя.

Селекция животных использует те же методы, что и селекция растений, однако она учитывает биологические особенности этих организмов. Так, здесь на определенных стадиях селекционного процесса прибегают к инбридингу, однако весьма в ограниченных масштабах, поскольку это может привести к снижению жизнеспособности особей вследствие перевода летальных аллелей в гомозиготное состояние. Более широко распространенный в животноводстве аутбридинг может давать эффект гетерозиса, как в случае бройлеров — гибридов пород кур корниш и белого плимутрока, но при межвидовой гибридизации гибриды в основном бесплодны и их вегетативное размножение невозможно.

Еще одной трудностью селекционной работы в данной области является то, что у особей одного из полов могут не проявляться хозяйственно ценные признаки, например у петухов — яйценоскость, а у быков — молочность и жирность. В связи с этим от производителей получают «пробных » потомков, и только в том случае, если для последних характерны более высокие показатели исследуемого признака, производителей целесообразно использовать в дальнейшей работе. Для получения от них максимально возможного числа потомков применяют технологии искусственного осеменения, которые предусматривают получение и хранение половых клеток в течение длительного времени, а также искусственного оплодотворения «в пробирке» и пересадки в матку менее ценной в хозяйственном отношении самки — суррогатной матери.

Микроорганизмы в последнее время широко применяются в различных отраслях хозяйственной деятельности. Так, дрожжи используют в хлебопечении, виноделии, пивоварении и т. д. Другие грибы синтезируют в промышленных условиях антибиотики, лимонную кислоту и кормовые белки из отходов растениеводства и даже нефти. С помощью бактерий человек получает витамины, аминокислоты, инсулин, а также извлекает металлы из руд и промышленных отходов. Широко используются микроорганизмы в сельском и лесном хозяйстве для борьбы с вредителями.

Особенности организации и жизнедеятельности микроорганизмов не позволяют применять у них метод гибридизации, тогда как искусственный мутагенез с последующим отбором наиболее продуктивных штаммов дает прекрасные результаты. В некоторых случаях проводят искусственное скрещивание штаммов с помощью бактериофагов, способных переносить наследственную информацию из одной клетки бактерий в другую. Это позволило получить, например, высокопродуктивные штаммы грибов — продуцентов антибиотиков и витаминов.

Значение генетики для селекции

Хотя селекция и возникла как наука для удовлетворения практических потребностей человека, издавна применявшего гибридизацию особей с лучшими сочетаниями признаков для получения новых сортов растений и пород животных (именно на основе сравнения гибридов с родительскими формами начали формироваться основные представления о закономерностях наследования признаков), в настоящее время генетика является теоретической основой селекции. Опираясь на частную генетику различных объектов, селекционеры подбирают исходный материал для создания новых сортов растений, пород животных и штаммов микроорганизмов. При этом не только используются уже имеющиеся наследственные признаки, но и создаются новые благодаря применению метода искусственного мутагенеза, а также вносятся новые гены с помощью методов биотехнологии, не утрачивает своего значения и явление гетерозиса.

Окраска и структура меха пушных животных наследуются как качественные признаки, в связи с чем селекционеры используют их для выведения новых пород норки, лисицы, кролика и др. Продуктивность растений и крупного рогатого скота, напротив, являются количественными признаками, что также не может не учитываться в процессе выведения новых сортов и пород.

Значительную роль методы искусственного мутагенеза, клеточной и генной инженерии сыграли в выведении новых штаммов микроорганизмов, продуцирующих антибиотики, гормон роста человека, инсулин и др., а также в создании новых сортов растений и животных с измененными свойствами — генетически модифицированных организмов.

Биологические основы выращивания культурных растений и домашних животных

Для достижения генетически запрограммированной продуктивности сельскохозяйственные растения нуждаются в создании оптимальных условий. В первую очередь им, безусловно, необходима соответствующая интенсивность освещения, которая обеспечивает протекание процессов фотосинтеза, однако если пшеница требует высокой интенсивности света, то кофейные деревья необходимо выращивать в тени. Не менее существенным фактором является и достаточное количество влаги в почве, что можно обеспечить в основном благодаря созданию оросительных систем, хотя в настоящее время все чаще прибегают к капельному поливу. Еще одним важным условием повышения урожайности сельскохозяйственных культур является обеспечение их элементами минерального питания. Эту проблему частично можно решить путем внесения в почву удобрений, что, однако, сопряжено с риском чрезмерного их накопления и смыва в близлежащие водоемы. Поэтому стараются применять многопольные севообороты, в которые включают бобовые, образующие симбиоз с клубеньковыми бактериями, переводящими атмосферный азот в доступную для растений форму.

С момента зарождения земледелия культурные растения страдают от вредителей и возбудителей различных заболеваний, которые снижают их урожайность, а в некоторых случаях и полностью уничтожают посевы. Причиной таких стихийных бедствий является их пониженная устойчивость к факторам среды и занятие больших площадей одним видом растений. Для борьбы с вредителями растений долгое время использовали химические вещества — пестициды, однако со временем выяснилось, что появились новые расы, устойчивые к этим веществам, а сами пестициды обладают токсическим и мутагенным действием. Поэтому в настоящее время во многих странах использование пестицидов существенно ограничено или вовсе запрещено. В связи с этим на передний план выходят биологические методы борьбы с вредителями, которые связаны либо с массовым размножением хищника или паразита данного вредителя, либо с нарушением размножения вредителя путем отлова самцов, а также с искусственной стерилизацией самцов, которые не дают потомков в результате скрещивания с нормальными самками.

Сельскохозяйственные животные, выращиваемые по интенсивным технологиям, также нуждаются в особых условиях. В первую очередь, им требуются сбалансированные корма, в которые ранее добавляли белок, полученный в результате бактериального синтеза, однако затем от него отказались, поскольку он мог вызывать аллергии не только у животных, но и у работников предприятий и жителей близлежащих населенных пунктов. Поэтому в настоящее время корма составляются большей частью на растительной основе.

Перспективы развития растениеводства и животноводства и, в конечном итоге, решение проблемы кризиса продовольствия связаны в основном с прогрессом биотехнологии, клеточной и генной инженерии.

Биотехнология, ее направления. Клеточная и генная инженерия, клонирование. Роль
клеточной теории в становлении и развитии биотехнологии. Значение биотехнологии для
развития селекции, сельского хозяйства, микробиологической промышленности, сохранения
генофонда планеты. Этические аспекты развития некоторых исследований в биотехнологии
(клонирование человека, направленные изменения генома)

Биотехнология, ее направления

Биотехнология — это применение биологических процессов и использование живых организмов в промышленности, медицине, сельском хозяйстве и других отраслях человеческой деятельности.

Несмотря на то, что биологические процессы издавна используются человеком в хлебопечении, сыроварении, виноделии, пивоварении, научный этап развития биотехнологии начался с 70-х годов ХIХ века с открытием Л. Пастером процесса брожения, а столетием позже биотехнология превратилась в бурно развивающуюся отрасль. В настоящее время прогресс в области биотехнологии тесно связан с применением методов генной и клеточной инженерии, а также клонированием.

В качестве основных направлений биотехнологии рассматриваются получение продуктов питания, кормовых добавок и ценных кормовых белков, лекарственных препаратов и средств диагностики, биотоплива, борьба с загрязнением окружающей среды, защита растений от вредителей и болезней, а также создание штаммов микроорганизмов, сортов растений и пород животных с новыми полезными свойствами.

В настоящее время в хлебопекарной и кондитерской промышленностях, пивоварении и виноделии применяются различные штаммы дрожжей. Благодаря способности осуществлять спиртовое брожение для них нашлось место и в технологиях выработки биотоплива, например, биодизеля из растительного сырья, особенно рапса. Другие микроскопические грибы широко используют для получения кефира, сыров, антибиотиков, лимонной кислоты, кормовых белков и т. д.

Без бактерий невозможно получить никакие кисломолочные продукты, в том числе кефир, йогурт и сыры. Брожение, осуществляемое молочнокислыми бактериями, используется и в процессах приготовления квашеных овощей, а также силоса, поскольку накапливающиеся при этом продукты реакции угнетают развитие других микроорганизмов. Не меньшую роль бактерии играют и в фармацевтической промышленности, где они культивируются с целью получения витаминов, гормонов и ферментов. Первой микробиологический синтез гормона инсулина с помощью методов генной инженерии «освоила» кишечная палочка Escherichia coli.

Очистка окружающей среды ведется в основном в двух направлениях: разложение органических остатков и накопление отдельных химических элементов, органических и неорганических веществ некоторыми видами бактерий, водорослей и простейших. С помощью методов селекции и генной инженерии уже выведены штаммы бактерий, способные разлагать соединения, утилизировать которые встречающиеся в природе виды неспособны, например пластмассы и полиэтилен. В процессе расщепления органических остатков бактерии могут выделять и горючие газы, в том числе метан, что легло в основу технологий получения биогаза из отходов растениеводства и животноводства.

В связи с тем, что бактерии, грибы и вирусы способны эффективно бороться с вредителями сельского и лесного хозяйства, а также с возбудителями и переносчиками заболеваний, их штаммы используют для приготовления биопрепаратов. Преимущество этих биологических методов борьбы состоит в том, что они не только снижают численность паразитов, будучи безвредными для других организмов, но и не загрязняют при этом окружающую среду токсичными соединениями.

Клеточная и генная инженерия, клонирование

Клеточная инженерия — метод конструирования клеток нового типа на основе их культивирования на питательной среде, гибридизации и реконструкции. При этом в клетки вводят новые хромосомы, ядра и другие клеточные структуры.

Достижения клеточной инженерии растений, которая позволяет сформировать целое растение, в том числе с измененными свойствами, из отдельной клетки, нашли широкое применение в растениеводстве и селекции. Так, стали возможными соматическая гибридизация, клеточная селекция, гаплоидизация, преодоление нескрещиваемости в культуре и другие приемы.

Технологии искусственного оплодотворения, за разработку которых присуждена Нобелевская премия в области физиологии и медицины в 2010 году, также базируются на методах клеточной инженерии.

Генная инженерия — это отрасль молекулярной биологии и генетики, задачей которой является конструирование генетических структур по заранее намеченному плану, создание организмов с новой генетической программой. Во многих случаях это сводится к переносу необходимых генов от одного вида живых организмов к другому, зачастую очень далекому по происхождению.

Переносу генов предшествует кропотливая работа по выявлению нужного гена в геноме организма- донора (вируса, бактерии, растения, животного, гриба) и его выделению. Это наиболее трудная часть работы, поскольку вместе со структурным геном необходимо перенести и регуляторные. Затем необходимо встроить данный участок молекулы ДНК в генетический вектор (переносчик ДНК). В качестве векторов чаще всего используют вирусы, плазмиды бактерий, хромосомы митохондрий и пластид, а также искусственно сконструированные молекулы ДНК. Процесс введения вектора новой ДНК в клетку-хозяина называется трансформацией. Последний этап работы заключается в размножении организмов-хозяев и отборе тех из них, в которых «прижился» введенный ген. В настоящее время применяют и прямое введение ДНК в клетки эукариот с помощью электрических разрядов, генной пушки и другими способами. Полученные в результате переноса генов организмы называются генетически модифицированными, или трансгенными.

Клонирование — это получение многочисленных копий гена, белка, клетки или организма. Клонирование генов чаще всего осуществляется с помощью бактерий и вирусов, поскольку, например, одна вирусная частица бактериофага, в которой содержится нужный ген, за один день может образовать более 1012 идентичных копий себя и этой молекулы.

Клонирование растений также не представляет значительной трудности, поскольку клетки растений тотипотентны, т. е. из одной клетки можно восстановить целый организм, особенно если культивировать эти клетки на питательной среде со всеми необходимыми веществами.

Массовое размножение генетически идентичных животных долгое время сталкивалось с таким существенным препятствием, как отсутствие способности к бесполому размножению у высших животных. Однако в 1997 году эта проблема была разрешена с получением первого клонированного организма — овцы Долли. Для клонирования были взяты клетки молочной железы ее генетической матери, а также яйцеклетки суррогатной матери. Ядра яйцеклеток удалялись, а на их место вводились ядра клеток молочной железы. После стимуляции развития зиготы электрическим током делящийся зародыш короткий промежуток времени культивировали на питательной среде, а затем вводили в матку суррогатной матери. К сожалению, из пяти пересаженных эмбрионов выжил лишь один.

В настоящее время клонирован уже целый ряд видов животных — мыши, собаки, коровы и др., однако клонирование человека запрещено законодательством многих государств и международными договорами.

Заманчивые перспективы перед человечеством раскрываются в области терапевтического клонирования — воспроизведения отдельных органов. Так, в настоящее время широко используются клонированная кожа, клетки соединительной ткани и другие части организма.

Роль клеточной теории в становлении и развитии биотехнологии

Создание клеточной теории позволило связать наследственность и изменчивость с их материальной основой — ДНК, а также определить, что клетка является единицей строения, жизнедеятельности и развития живых организмов. Поэтому дальнейшее внимание исследователей в области биотехнологии было сосредоточено именно на клетке как основном объекте. Уже в середине ХХ века были получены первые растения, выращенные из отдельных клеток на питательной среде, а в 1973 году родился первый «ребенок из пробирки». Операции с клетками (генная и клеточная инженерии) позволили клонировать сначала холоднокровных животных, а затем и млекопитающих.

Значение биотехнологии для развития селекции, сельского хозяйства, микробиологической
промышленности, сохранения генофонда планеты

Прогресс биотехнологии позволил совершить прорыв в таких отраслях человеческой деятельности, как селекция, сельское хозяйство, медицина, фармация и др., поскольку появились возможности не только для изменения свойств организмов, но и для ускорения процесса их создания. Так, введение в растения бактериальных генов устойчивости к поеданию насекомыми и поражению вирусами, а также способных расти на бедных или загрязненных почвах способствует решению продовольственной проблемы, особенно в странах с быстро растущим населением. В настоящее время значительная часть посевных площадей занята трансгенными культурами в США, Канаде и Китае.

Кроме того, культивирование клеток растений на фоне высоких концентраций солей и других соединений позволяет сократить сроки выведения новых сортов пшеницы, сои и других важнейших сельскохозяйственных культур до одного-двух лет.

Клонирование животных, особенно с генетически измененными признаками и свойствами, позволяет вывести более продуктивные породы и добиться их быстрого размножения, однако этот процесс пока еще слишком трудоемок и дорог, чтобы применяться в промышленном масштабе.

Трансформация бактерий позволила уже в начале 80-х годов ХХ века получать биологически активные вещества — инсулин, соматотропный гормон, интерферон, которые применяются в медицине, а также создать новые штаммы микроорганизмов, предназначенных для очистки сточных вод, ликвидации нефтяных разливов и т. д. Путем селекции выведены также и формы бактерий, с помощью которых получают антибиотики, извлекают цветные металлы, получают биогаз.

В будущем возможно использование клонирования в сочетании с другими отраслями биотехнологии не только для размножения растений, микроорганизмов и грибов, но и для восстановления исчезнувших видов животных, возобновления природных популяций исчезающих видов. Однако для этого необходимо вначале создать генные банки, поскольку ДНК довольно быстро подвергается разрушению в окружающей среде.

Этические аспекты развития некоторых исследований в биотехнологии (клонирование человека,
направленные изменения генома)

Расширение сферы влияния биотехнологии, с одной стороны, преследует благородные цели, поскольку с ее помощью стало возможным преодоление бесплодия, лечение многих наследственных и приобретенных заболеваний, а также решение продовольственных и экологических проблем современности. С другой стороны, активное вторжение современных технологий в медицину не может не настораживать, поскольку это сопряжено с операциями с клетками и тканями человека. Например, не совсем ясно, почему по американским законам при искусственном оплодотворении берется две донорские яйцеклетки, но пересаживается только одна из них, тогда как вторая замораживается, помещается в специальный банк и не выдается родителям даже по специальному запросу.

Большинство стран законодательно ограничило эксперименты по клонированию человека в основном по этическим соображениям, поскольку они направлены не просто на воспроизведение человека, но и на последующее использование клеток, тканей и органов зародыша для экспериментов, а также в качестве их донора. В связи с этим во всем мире активно обсуждается вопрос о допустимости подобных действий.

Применение генных технологий в создании новых сортов растений, пород животных и штаммов микроорганизмов также вызывает некоторые опасения, поскольку их попадание в окружающую среду может вызвать неконтролируемое распространение, например, раковых генов, и привести к необратимым последствиям для жизни и здоровья человека. Так, опыление пыльцой трансгенных растений генетически немодифицированных сортов и видов может стимулировать появление сверхустойчивых к химическим и биологическим средствам борьбы сорняков.

Особую опасность представляет внесение новых генов в сбалансированный геном, откуда они могут быть исключены в любой момент, что может привести к появлению каких-либо вирусоподобных организмов.

Потребление продуктов, полученных с использованием генетически модифицированных организмов, по некоторым данным, приводит к существенным нарушениям в репродуктивной сфере человека, а в перспективе может угрожать и самой жизни, поскольку мутировавший лишь по одному нуклеотиду ген устойчивости картофеля к поеданию колорадским жуком кодирует белок, смертельно опасный уже и для человека. И хотя это является маловероятным, поскольку ДНК потребляемых нами продуктов должна расщепляться в кишечнике, все же такая вероятность существует, и сбрасывать ее со счетов не приходится.

Сравнительно слабая изученность проблем клонирования и применения генных технологий заставляет многие правительства принимать решения по ограничению сферы их применения и специальной маркировке продуктов питания, полученных таким способом, с целью информирования.

Клонирование организмов

02-Июн-2015 | Нет комментариев | Лолита Окольнова

Клонирование организмов

 
клонирование организмов
 

автор статьи — Саид Лутфуллин

Клон – это точная генетическая копия живого организма.

В природе клоны широко распространены. Это, конечно же, потомки бесполого размножения. Так как полового процесса не происходит, не изменяется генотип. Поэтому дочерний организм является точной генетической копией предыдущего.

Клоны так же создаются с участием человека. Зачем это делается? Представьте, ведется многолетняя работа по отбору и гибридизации растений, из всех полученных гидридов, у одного очень удачная комбинация генов (например, сочные плоды больших размеров). Как размножить это растение? Если проводить скрещивание, то произойдет рекомбинация генов. Поэтому проводят вегетативное размножение.

клонирование организмов

Многие культурные сорта  являются клонами изначально полученного растения. (Фиалки, например, размножают листьями).Можно даже получить клон растения всего из одной клетки.

  • сначала выращивается культура клеток,
  • потом воздействуют нужными гормонами для дифференцировки тканей, и
  • воссоздается новый организм.

С помощью этого метода можно будет получать больше урожая, чем через стандартное разведение. Возможно, в будущем мы будем получать растительные продукты не с полей, а из пробирок.

Огромные площади земли заменит лаборатория. А колхозники останутся без работы. 

Но как создавать клоны организмов, неспособных к бесполому размножению (позвоночных к примеру)?

Это возможно.Такое явление встречается даже в природе. Это – монозиготные близнецы.

клонирование организмов

Из одной зиготы развивается не один организм, при том эти организмы являются генетическими копиями друг друга (так как развились из одной зиготы).

Такое явление позволило возникнуть близнецовому методу (благодаря ему, изучается влияние наследственности и среды на признаки).

Появилась идея искусственного клонирования организмов.

В теории она проста: если из зиготы удалить собственное ядро, и поместить ядро из соматической клетки, то разовьется организм – точная генетическая копия, клон донора соматической клетки. 

Практически осуществить это получилось не сразу. 

клонирование организмов

В 60-е года были проведены опыты по клонированию амфибий. Из икринок лягушек вытаскивали ядра и засовывали ядра, взятые из соматических клеток (метод такой пересадки ядер, между прочим, был разработан у нас в СССР в 1940 году ученым Г.В. Лопашовым). Получились клоны лягушки. С амфибиями проще, у них оплодотворение и эмбриональное развитие происходит во внешней среде.

Как быть с млекопитающими?

Икру то они не метят.В 1996 году группа британских ученых (это не фигура речи, они действительно из Британии) под руководством Иэна Уилмута сделала огромное достижение в области биологии. Они, с помощью метода пересадки ядра, клонировали овцу.

клонирование организмов

Из клетки ткани вымени уже умершей к моменту эксперименту овцы (организма-прототипа) взяли ядро. Из другой овцы взяли яйцеклетку и, предварительно удалив ее собственное ядро, трансплантировали ядро из клеток овцы-прототипа. Полученную уже диплоидную клетку (диплоидную, так как ядро взято из соматической клетки) поместили в другую овцу, которая стала суррогатной матерью. Полученного ягненка назвали Долли.

Она была генетической копией овцы-прототипа.

Но Долли не была первым в истории клоном млекопитающего. И до нее проводились удачные эксперименты. В чем новшество? В том, что ранее брались либо эмбриональные, либо стволовые клетки для донорства ядер. В случае с Долли были взяты уже дифференцированные клетки взрослого организма (клетки вымени). Овечка Долли прожила достойную жизнь, несколько раз становилась мамой. Рожала совершенно здоровых ягнят. Долли ничем не отличалась от других овец, только тем, что она являлась клоном. К концу жизни Долли заболела артритом. Ее усыпили. Болезнь эта никаким образом не связана с клонированием: ей болеют и обычные овцы. 

Эксперимент с Долли продемонстрировал возможность и безопасность клонирования млекопитающих.

Какова практическая значимость клонирования? Оно позволяет решить некоторые проблемы:

  • можно увеличить численность вымирающих животных — спасти от вымирания популяции, которые сами уже не могут поддерживать свою численность и, по сути, обречены;
  • клонирование дает возможность в прямом смысле воскресить вымершие виды, если сохранились образцы ядер клеток этих организмов (вспомните Парк Юрского периода);
  • не обязательно выращивать целиком новый организм. Можно выращивать отдельно органы и заменять ими поврежденные. У человека отказала почка. Взяли у него одну клетку – вырастили новую. И отторгаться она не будет, так как не содержит чужеродных белков: все свое.

 
клонирование организмов
 

В теории все прекрасно, на практике возникают некоторые проблемы. 

Прежде всего, это чисто «механические» проблемы. Несовершенство методов. Белые пятна, пробелы в знаниях: не все еще известно о генах и всех их тонкостях.

Еще одна проблема скрыта в ядре. В процессе дифференциации клеток происходит и дифференциация ядер этих клеток: некоторые гены отключаются, некоторые активируются. То есть в ядре, взятом для пересадки в яйцеклетку, могут быть отключены некоторые гены, которые необходимы для нормального развития зародыша. Понятно, что в этом случае нормального развития не получится. 

Есть проблема этическая — клонирование человека. Сути ее я не понимаю, лично мне она кажется надуманной. Поэтому комментировать ее не буду.

Последняя проблема, которую мы рассмотрим – это проблема старения ядер. В ядрах есть счетчики старения организма – теломеры. С каждым делением они все короче и короче. Очевидно, нужен способ искусственно «сбросить до заводских настроек» ядро: отменить отключение генов, восстановить теломеры.

На клонирование организмов возлагаются огромные надежды. В этом методе видят излечение болезней. Область открыта для исследований: еще многое нужно изучить.

Обсуждение: «Клонирование организмов»

(Правила комментирования)

Видеоурок: Биотехнологии 

Лекция: Биотехнология, её направления. Клеточная и генная инженерия, клонирование

Биотехнология, её направления

Биотехнология – это междунаучная дисциплина, занимающаяся изучением возможностей модификации биологических объектов, их биохимии, органов, продуциерумых ими веществ для выполнения хозяйственных и научных задач.

К этой дисциплине относится генная инженерия, все виды гибридизации и искусственного отбора. Ведутся исследования с привлечением специалистов биохимиков, эмбриологов, генетиков, владеющих современными знаниями клеточной и молекулярной биологии, а также робототехники, информационных технологий и современной химии.

Развитие науки и технологий позволяет использовать для изучения путей и методов достижения поставленных задач новые знания и аппаратуру.

Основными видами биотехнологии являются:

  • Биоинженерия. Объединяет в себе достижения биомедицины, клинической медицинской практики и инженерные подходы. Основными ее достижениями на сегодня являются: создание  кардиостимуляторов, искусственных суставов, биоинженерных протезов, а также методик и аппаратуры для процедур почечного диализа, артроскопии, магниторезонансной томографии и многих других.

  • Биомедицина. Занимается изучением человеческого организма в его нормальных пределах, а также патологических состояниях, разрабатывает методики диагностики, лечения или коррекции.

  • Наномедицина. Изучает возможности мониторинга, контроля и коррекции органов и их систем на молекулярном уровне. Уже разработаны методики доставки лекарственных препаратов непосредственно к больным клеткам, чипы, бактерицидные средства нового поколения.

  • Биофармакология. Изучение биологических объектов, тканей, биохимии с точки зрения возможности использования для создания и организации производства биофармацевтических препаратов – лекарств биологического происхождения.

  • Биоинформатика. Создание программного обеспечения и методик компьютерного анализа сложных биологических систем – генома, структуры белков, нейронных сетей и других.

  • Бионика. Это отрасль прикладного знания, занимающаяся изучением организации, свойств, структур живых объектов и их повторением в технических устройствах. Так, ее заслугой стало создание бионических протезов, повторяющих функции руки, реактивного двигателя, где для предотвращения вибрации использовался принцип, заимствованный у стрекоз, очки с двойными стеклами для чтения и разглядывания удаленных предметов и другие аппараты и инженерные приемы.

  • Биоремедиация. Это наука создающая методы и технологии очистки вод, грунта, воздуха с помощью биологических объектов. Так, с помощью водорослей и микроорганизмов очищают сточные воды, грибы и растения высаживают на закрытых мусорных полигонах, для удаления пятен разлившейся нефти используют бактерии.

Клеточная и генная инженерия, клонирование

Генная инженерия, например, уже достигла успехов в выведении и интродукции в искусственные биоценозы трансгенных растений и животных – свиней с человеческим геном, способных быть донорами, картофеля, индифферентного к колорадскому жуку. Тайваньские ученые вывели в лабораторных целях зеленых светящихся свиней.

Интенсивно изучаются возможности клонирования. Однако, ведутся споры на тему этичности этих исследований. Во-первых, клонирование более дорогой и нецелесообразный способ для хозяйственной деятельности. Во-вторых – дискуссии о возможности клонирования человека довольно остры. В некоторых странах запрещено применение этих технологий к человеку, например, во Франции, Японии, Германии. Действительно, сложно ответить на некоторые этические вопросы – как быть в случаях неудач или при появлении неполноценных людей? Каков будет законодательный статус такого человека? Как быть с вопросами родительства, наследования, прав исходного донора клеточного материала и генетической копии? Кроме того, ученые опасаются распространения идей медицинского фашизма и евгеники – принудительного искусственного отбора человека, дискриминации по медицинским и генетическим признакам и прочих возможных проблем.

Хромосомная и генная инженерия. ГМО

Ключевые слова: хромосомная инженерия, генная инженерия, рестрикционные эндонуклеазы (рестриктазы); липкие концы; плазмиды; метод рекомбинантных плазмид; рестрикция, лигирование, трансформация, скрининг; трансгенные (генетически модифицированные) организмы, ГМО.
Раздел ЕГЭ: 3.9. Биотехнология, ее направления. Клеточная и генная инженерия, клонирование.



Учёные издавна мечтали целенаправленно изменять наследственность организмов, создавать новые комбинации хозяйственно ценных признаков. Современные исследователи приблизились к осуществлению этой мечты, овладев методами выделения из клеток хромосом, генов и их переноса в клетки другого организма. Осуществляет подобные эксперименты хромосомная и генная инженерия — перспективные направления биотехнологии.

Хромосомная инженерия

Манипуляции с целыми хромосомами или их участками называют хромосомной инженерией. Её методы дают возможность заменить одну или обе гомологичные хромосомы на другие или ввести дополнительные хромосомы в генотип организма.

Метод добавления хромосом в геном детально разработан на культурных злаках. Так, японский учёный Д. Омара внёс отдельные хромосомы ржи в хромосомный набор пшеницы. Полученный гибрид дал при самоопылении совершенно иные растения, которые отличались от пшеницы по высоте, толщине стебля, размеру и форме колосьев. Привнесённые хромосомы ржи дали возможность существенно повысить зимостойкость гибридной пшеницы, придали ей устойчивость к полеганию и к заболеваниям.

Генная инженерия

Генная инженерия решает задачу целенаправленного создания новых комбинаций генетического материала путём лабораторных методов in vitro, которые позволяют манипулировать нуклеиновыми кислотами, переносить нужные гены организма одного вида в организм другого вида.

Генная инженерия зародилась в начале 70-х гг. XX в., когда американский учёный X. Корана искусственно синтезировал ген, а П. Лобан и П. Берг получили рекомбинантную молекулу ДНК, в которой были соединены фрагменты ДНК вирусов и бактерии кишечной палочки (Escherichia coli). Генная инженерия возникла на стыке молекулярной биологии, микробиологии и энзимологии. Открытия в молекулярной биологии позволили выяснить структуру и особенности работы генов. Микробиология помогла найти векторы для генно-инженерных работ — плазмиды — внехромосомные факторы наследственности бактерий, состоящие из небольших кольцевых молекул ДНК. Энзимология предоставила исследователям ферменты, называемые рестрикционными эндонуклеазами или рестриктазами (от лат. restricts — ограничение), которые способны «узнавать» определённые последовательности нуклеотидов в ДНК и разрезать их так, чтобы на концах молекул образовывались одноцепочечные «хвосты». Эти «хвосты» могут снова по принципу комплементарности соединяться друг с другом, поэтому они были названы липкими концами.

В генной инженерии бактериальные клетки с новым генетическим материалом создают с помощью метода рекомбинантных плазмид. Он включает несколько последовательных этапов.

Метод рекомбинантных плазмид

Метод рекомбинантных плазмид

  1. Рестрикция — разрезание молекулы ДНК, например клетки млекопитающего, ферментами-рекстриктазами на фрагменты с одинаковыми липкими концами и нужным геном. Такими же ферментами разрезают плазмидную ДНК, поэтому липкие концы плазмиды комплементарны нуклеотидным последовательностям липких концов гена. Ген можно синтезировать также искусственным путём с помощью матричных реакций. Такой синтез осуществляют с помощью фермента обратной транскриптазы, или ревертазы.
  2. Лигирование — «вшивание» гена с липкими концами в плазмидную ДНК с помощью ферментов-лигаз и получение рекомбинантной плазмиды.
  3. Трансформация — введение рекомбинантной плазмиды в бактериальную клетку. Для этого на клетку воздействуют высокой температурой и хлористым кальцием, что делает её оболочку проницаемой для ДНК. Внесённая в бактериальную клетку рекомбинантная плазмида начинает работать, и клетка синтезирует чужеродный белок. Частота попадания плазмиды в клетку невысока (в одну клетку из тысячи). Рекомбинантная плазмида в бактериальной клетке многократно удваивается, и чужеродный ген размножается, происходит его клонирование, т. е. передача от материнской клетки дочерним при бесполом размножении. От каждой бактериальной клетки образуется колония, состоящая из миллионов бактерий, которые подвергаются отбору — скринингу.
  4. Скрининг — отбор колоний бактерий, содержащих рекомбинантные плазмиды с нужным геном. Для этого все колонии накрывают специальным фильтром, к которому они прилипают. Затем фильтр обрабатывают радиоактивным зондом — полинуклеотидом, содержащим в своём составе радиоактивный изотоп фосфора — 32Р. Радиоактивный зонд комплементарен искомому гену, поэтому он связывается лишь с теми колониями бактерий, у которых имеются рекомбинантные плазмиды. Для их обнаружения на фильтр накладывают рентгеновскую плёнку, которую потом проявляют. По положению засвеченных на плёнке участков отбирают те колонии, которые получили нужный ген.

Методом рекомбинантных плазмид учёные создают штаммы бактерий, которые используются для производства в промышленном масштабе гормонов (инсулина, соматотропина), ферментов, белков-интерферонов, регуляторных пептидов и др. Этот же метод лежит в основе получения вакцин для борьбы с вирусами гепатита А и В, герпеса, гриппа, бешенства и ящура.

Создание трансгенных организмов (ГМО)

Клонированные гены путём микроинъекций могут быть введены в яйцеклетки, а из них выращены целые организмы, геном которых будет содержать чужеродные гены. Такие особи называют трансгенными (от лат. trans — сквозь, через) или генетически модифицированными организмами (ГМО).

В 1983 г. были получены первые трансгенные организмы — культурные растения табака и петуньи. Эти работы проводились учёными одновременно в Бельгии, Германии и США. Первой ГМО-культурой, коммерциализированной в Китае в 1992 году, стал табак, а первой ГМО-культурой, коммерциализированной в США в 1994 году, был томат FLAVR SAVR, разработанный для продления срока его хранения и минимизации размягчения фруктов. Этот томат не оправдал ожиданий, и его производитель прекратил продажи. С 1992 по 2020 год 41 страна пробовала выращивать ГМО-культуры. В настоящее время 28 стран ежегодно выращивают почти 200 млн га генетически модифицированных растений, что примерно в 113 раз больше, чем в 1996 году, когда их было 1,7 млн га. Биотехнологические культуры — это самая быстроразвивающаяся технология в истории современного сельского хозяйства.

Учёные создают трансгенные организмы с целью проявления у них новых хозяйственно ценных признаков. Например, при встраивании гена бактерии тюрингской бациллы (Bacillus thuringiensis), ответственного за выработку δ-эндотоксина, в генотип культурного картофеля получены так называемые Bt-растения картофеля (от названия вида бактерии), ядовитые для растительноядных насекомых, но безвредные для других животных и человека. Так был найден эффективный и экологически безопасный способ защиты культурного картофеля от его вредителя — колорадского жука.

Создание трансгенных организмов (ГМО)

(с) Genetic Literacy Project. Внедрение 22 различных культур в 41 странах мира с помощью трансгенеза, редактирования генов или других новых методов селекции (не все страны, которые ввели генетически модифицированные культуры за последние 28 лет, все еще выращивают их)

Получены трансгенные растения, устойчивые к гербицидам — ядам, применяемым для борьбы с сорняками. В настоящее время использование гербицидов сопряжено с рядом трудностей: универсальных препаратов не существует, т. е. каждый гербицид действует на определённые сорняки; гербициды накапливаются в почве, что угнетает развитие культурных растений и небезопасно для человека. Получение гербицидоустойчивых трансгенных культур стало выходом из сложившейся ситуации. Так, в клетки табака «вшили» гены бактерии сальмонеллы, обеспечивающие устойчивость к глифосату — наиболее часто используемому гербициду. Трансгенный табак стал невосприимчивым к этому препарату, кроме того, содержание глифосата в почве при выращивании такой генетически модифицированной культуры существенно снизилось. В настоящее время получение гербицидоустойчивых трансгенных культурных растений считается важным практическим достижением биотехнологии. В 1997 г. устойчивая к глифосату соя была признана в США сельскохозяйственным продуктом года.

TOP 5 BIOTECH CROPS IN THE WORLD. SOURCES: ISAAA Brief 54 (bit.ly/ISAAABrief54)

Предприняты попытки создания методами генной инженерии азотфиксирующих растений. Если удастся встроить в генотип сельскохозяйственных культур ген, отвечающий за выработку ферментов, превращающих у клубеньковых бактерий из рода Rhizobium атмосферный азот в азотистые соединения, то выращиваемые на полях сельскохозяйственные растения смогут обойтись без дополнительной подкормки азотными удобрениями.

Велико потенциальное значение трансгенных организмов для здоровья человека. Так, введение гена моркови в генотип риса уже сейчас обеспечивает потребность жителей Юго-Восточной Азии в витамине А, необходимом для нормального роста и зрения. Встраивание генов, отвечающих за выработку антител, в генотипы сельскохозяйственных растений позволит человеку в будущем обойтись без многих лекарств. При постоянном использовании таких растений в пищу организм будет получать достаточное количество антител, что создаст надёжную защиту от инфекционных болезней.

Важной задачей генной инженерии является создание трансгенных животных. На трансгенных лабораторных мышах учёные моделируют развитие и течение различных генетических болезней человека, проводят испытания лекарственных препаратов. Созданы трансгенные овцы, генотип которых содержит ген, отвечающий за синтез особого белка — фактора свёртываемости крови IX. Этот белок, вырабатываемый клетками молочной железы, выделяется из овечьего молока и используется для лечения больных гемофилией. Раньше подобный белок получали только из донорской крови. Использовать для этого трансгенных животных безопаснее, так как у них нет вирусов, например ВИЧ и гепатита, которые могут встречаться в донорской крови.


Это конспект по биологии для 10-11 классов по теме «Хромосомная и генная инженерия». Выберите дальнейшее действие:

  • Вернуться к Списку конспектов по Биологии.
  • Найти конспект в Кодификаторе ЕГЭ по биологии

Понравилась статья? Поделить с друзьями:
  • Клоков тематические задания по истории егэ 2022 скачать
  • Клишированные фразы для эссе по английскому егэ
  • Клишированные фразы для сочинения егэ по русскому
  • Клишированные фразы для итогового сочинения
  • Клише эссе английский егэ 2020