Конденсаторы формулы егэ

Конденсатор. Энергия электрического поля

  • Темы кодификатора ЕГЭ: электрическая ёмкость, конденсатор, энергия электрического поля конденсатора.

  • Ёмкость уединённого проводника

  • Ёмкость плоского конденсатора

  • Энергия заряженного конденсатора

  • Энергия электрического поля

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: электрическая ёмкость, конденсатор, энергия электрического поля конденсатора.

Предыдущие две статьи были посвящены отдельному рассмотрению того, каким образом ведут себя в электрическом поле проводники и каким образом — диэлектрики. Сейчас нам понадобится объединить эти знания. Дело в том, что большое практическое значение имеет совместное использование проводников и диэлектриков в специальных устройствах — конденсаторах.

Но прежде введём понятие электрической ёмкости.

к оглавлению ▴

Ёмкость уединённого проводника

Предположим, что заряженный проводник расположен настолько далеко от всех остальных тел, что взаимодействие зарядов проводника с окружающими телами можно не принимать во внимание. В таком случае проводник называется уединённым.

Потенциал всех точек нашего проводника, как мы знаем, имеет одно и то же значение varphi , которое называется потенциалом проводника. Оказывается, что потенциал уединённого проводника прямо пропорционален его заряду. Коэффициент пропорциональности принято обозначать 1/C, так что

varphi = frac{displaystyle q}{displaystyle C vphantom{1^a}}.

Величина C называется электрической ёмкостью проводника и равна отношению заряда проводника к его потенциалу:

C = frac{displaystyle q}{displaystyle varphi }. (1)

Например, потенциал уединённого шара в вакууме равен:

varphi = frac{displaystyle kq}{displaystyle R vphantom{1^a}}=frac{displaystyle q}{displaystyle 4 pi varepsilon_0R vphantom{1^a}},

где q — заряд шара, R — его радиус. Отсюда ёмкость шара:

C=4 pi varepsilon_0R. (2)

Если шар окружён средой-диэлектриком с диэлектрической проницаемостью varepsilon, то его потенциал уменьшается в varepsilon раз:

varphi = frac{displaystyle q}{displaystyle 4 pi varepsilon_0 varepsilon R vphantom{1^a}}.

Соответственно, ёмкость шара в varepsilon раз увеличивается:

C=4 pi varepsilon_0 varepsilon R. (3)

Увеличение ёмкости при наличии диэлектрика — важнейший факт. Мы ещё встретимся с ним при рассмотрении конденсаторов.

Из формул (2) и (3) мы видим, что ёмкость шара зависит только от его радиуса и диэлектрической проницаемости окружающей среды. То же самое будет и в общем случае: ёмкость уединённого проводника не зависит от его заряда; она определяется лишь размерами и формой проводника, а также диэлектрической проницаемостью среды, окружающей проводник. От вещества проводника ёмкость также не зависит.

В чём смысл понятия ёмкости? Ёмкость показывает, какой заряд нужно сообщить проводнику, чтобы увеличить его потенциал на 1 В. Чем больше ёмкость — тем, соответственно, больший заряд требуется поместить для этого на проводник.

Единицей измерения ёмкости служит фарад (Ф). Из определения ёмкости (1) видно, что Ф = Кл/В.

Давайте ради интереса вычислим ёмкость земного шара (он является проводником!). Радиус считаем приближённо равным 6400 км.

C = 4 pi varepsilon_0 R approx 4 cdot 3,14 cdot 8,85 cdot 10^{-12} cdot 6400 cdot 10^3 approx 712  мкФ.

Как видите, 1 Ф — это очень большая ёмкость.

Единица измерения ёмкости полезна ещё и тем, что позволяет сильно сэкономить на обозначении размерности диэлектрической постоянной varepsilon_0. В самом деле, выразим varepsilon_0 из формулы (2):

varepsilon_0 = frac{displaystyle C} {displaystyle 4 pi R vphantom{1^a}}.

Следовательно, диэлектрическая постоянная может измеряться в Ф/м:

varepsilon_0 = 8,85 cdot 10^{-12}   Ф.

Так легче запомнить, не правда ли?

к оглавлению ▴

Ёмкость плоского конденсатора

Ёмкость уединённого проводника на практике используется редко. В обычных ситуациях проводники не являются уединёнными. Заряженный проводник взаимодействует с окружающими телами и наводит на них заряды, а потенциал поля этих индуцированных зарядов (по принципу суперпозиции!) изменяет потенциал самого проводника. В таком случае уже нельзя утверждать, что потенциал проводника будет прямо пропорционален его заряду, и понятие ёмкости проводника самого по себе фактически утрачивает смысл.

Можно, однако, создать систему заряженных проводников, которая даже при накоплении на них значительного заряда почти не взаимодействует с окружающими телами. Тогда мы сможем снова говорить о ёмкости — но на сей раз о ёмкости этой системы проводников.

Наиболее простым и важным примером такой системы является плоский конденсатор. Он состоит из двух параллельных металлических пластин (называемых обкладками), разделённых слоем диэлектрика. При этом расстояние между пластинами много меньше их собственных размеров.

Для начала рассмотрим воздушный конденсатор, у которого между обкладками находится воздух left ( varepsilon =1 right ).

Пусть заряды обкладок равны +q и -q. Именно так и бывает в реальных электрических схемах: заряды обкладок равны по модулю и противоположны по знаку. Величина q — заряд положительной обкладки — называется зарядом конденсатора.

Пусть S — площадь каждой обкладки. Найдём поле, создаваемое обкладками в окружающем пространстве.

Поскольку размеры обкладок велики по сравнению с расстоянием между ними, поле каждой обкладки вдали от её краёв можно считать однородным полем бесконечной заряженной плоскости:

E_+ = E_-=frac{displaystyle sigma }{displaystyle 2 varepsilon_0 vphantom{1^a}}.

Здесь E_+ — напряжённость поля положительной обкладки, E_- — напряженность поля отрицательной обкладки, sigma — поверхностная плотность зарядов на обкладке:

sigma =frac{displaystyle q}{displaystyle S vphantom{1^a}}.

На рис. 1 (слева) изображены векторы напряжённости поля каждой обкладки в трёх областях: слева от конденсатора, внутри конденсатора и справа от конденсатора.

Рис. 1. Электрическое поле плоского конденсатора

Согласно принципу суперпозиции, для результирующего поля vec{E} имеем:

vec{E} = vec{E}_+ + vec{E}_-

Нетрудно видеть, что слева и справа от конденсатора поле обращается в нуль (поля обкладок погашают друг друга):

E = E_+ - E_-=0.

Внутри конденсатора поле удваивается:

E = E_+ + E_-= frac{displaystyle sigma }{displaystyle varepsilon_0},

или

E = frac{displaystyle q}{displaystyle varepsilon_0 S vphantom{1^a}}. (4)

Результирующее поле обкладок плоского конденсатора изображено на рис. 1 справа. Итак:

Внутри плоского конденсатора создаётся однородное электрическое поле, напряжённость которого находится по формуле (4). Снаружи конденсатора поле равно нулю, так что конденсатор не взаимодействует с окружающими телами.

Не будем забывать, однако, что данное утверждение выведено из предположения, будто обкладки являются бесконечными плоскостями. На самом деле их размеры конечны, и вблизи краёв обкладок возникают так называемые краевые эффекты: поле отличается от однородного и проникает в наружное пространство конденсатора. Но в большинстве ситуаций (и уж тем более в задачах ЕГЭ по физике) краевыми эффектами можно пренебречь и действовать так, словно утверждение, выделенное курсивом, является верным без всяких оговорок.

Пусть расстояние между обкладками конденсатора равно d. Поскольку поле внутри конденсатора является однородным, разность потенциалов U между обкладками равна произведению E на d (вспомните связь напряжения и напряжённости в однородном поле!):

U=Ed=frac{displaystyle qd}{displaystyle varepsilon_0 S vphantom{1^a}}. (5)

Разность потенциалов между обкладками конденсатора, как видим, прямо пропорциональна заряду конденсатора. Данное утверждение аналогично утверждению «потенциал уединённого проводника прямо пропорционален заряду проводника», с которого и начался весь разговор о ёмкости. Продолжая эту аналогию, определяем ёмкость конденсатора как отношение заряда конденсатора к разности потенциалов между его обкладками:

C=frac{displaystyle q}{displaystyle U vphantom{1^a}}. (6)

Ёмкость конденсатора показывает, какой заряд ему нужно сообщить, чтобы разность потенциалов между его обкладками увеличилась на 1 В. Формула (6), таким образом, является модификацией формулы (1) для случая системы двух проводников — конденсатора.

Из формул (6) и (5) легко находим ёмкость плоского воздушного конденсатора:

C=frac{displaystyle varepsilon_0 S}{displaystyle d vphantom{1^a}}. (7)

Она зависит только от геометрических характеристик конденсатора: площади обкладок и расстояния между ними.
Предположим теперь, что пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью varepsilon. Как изменится ёмкость конденсатора?

Напряжённость поля внутри конденсатора уменьшится в varepsilon раз, так что вместо формулы (4) теперь имеем:

E=frac{displaystyle q}{displaystyle varepsilon_0 varepsilon S vphantom{1^a}}. (8)

Соответственно, напряжение на конденсаторе:

U=Ed=frac{displaystyle qd}{displaystyle varepsilon_0 varepsilon S vphantom{1^a}}. (9)

Отсюда ёмкость плоского конденсатора с диэлектриком:

C=frac{displaystyle varepsilon_0 varepsilon S}{displaystyle d vphantom{1^a}}. (10)

Она зависит от геометрических характеристик конденсатора (площади обкладок и расстояния между ними) и от диэлектрической проницаемости диэлектрика, заполняющего конденсатор.

Важное следствие формулы (10): заполнение конденсатора диэлектриком увеличивает его ёмкость.

к оглавлению ▴

Энергия заряженного конденсатора

Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится.

Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке. Нетрудно понять, что этой энергией является потенциальная энергия взаимодействия обкладок конденсатора — ведь обкладки, будучи заряжены разноимённо, притягиваются друг к другу.

Мы сейчас вычислим эту энергию, а затем увидим, что существует и более глубокое понимание происхождения энергии заряженного конденсатора.

Начнём с плоского воздушного конденсатора. Ответим на такой вопрос: какова сила притяжения его обкладок друг к другу? Величины используем те же: заряд конденсатора q, площадь обкладок S.

Возьмём на второй обкладке настолько маленькую площадку, что заряд q_0 этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой

F_0 = q_0E_1,

где E_1 — напряжённость поля первой обкладки:

E_1=frac{displaystyle sigma }{displaystyle 2 varepsilon _0 vphantom{1^a}}=frac{displaystyle q}{displaystyle 2varepsilon_0 S vphantom{1^a}}.

Следовательно,

F_0=frac{displaystyle q_0q}{displaystyle 2 varepsilon_0 S vphantom{1^a}}.

Направлена эта сила параллельно линиям поля (т. е. перпендикулярно пластинам).

Результирующая сила F притяжения второй обкладки к первой складывается из всех этих сил F_0, с которыми притягиваются к первой обкладке всевозможные маленькие заряды q_0 второй обкладки. При этом суммировании постоянный множитель q/(2 varepsilon_0 S) вынесется за скобку, а в скобке просуммируются все q_0 и дадут q. В результате получим:

F=frac{displaystyle q^2}{displaystyle 2 varepsilon_0 S vphantom{1^a}}. (11)

Предположим теперь, что расстояние между обкладками изменилось от начальной величины d_1 до конечной величины d_2. Сила притяжения пластин совершает при этом работу:

A = F(d_1 - d_2).

Знак правильный: если пластины сближаются (d_2 < d_1), то сила совершает положительную работу, так как пластины притягиваются друг к другу. Наоборот, если удалять пластины (d_2 > d_1), то работа силы притяжения получается отрицательной, как и должно быть.

С учётом формул (11) и (7) имеем:

A=frac{displaystyle q^2}{displaystyle 2 varepsilon_0 S vphantom{1^a}}left ( d_1-d_2 right )=frac{displaystyle q^2d_1}{displaystyle 2varepsilon_0 S vphantom{1^a}}-frac{displaystyle q^2d_2}{displaystyle 2varepsilon_0 S vphantom{1^a}}=frac{displaystyle q^2}{displaystyle 2C_1 vphantom{1^a}}-frac{displaystyle q^2}{displaystyle 2C_2 vphantom{1^a}}=W_1-W_2,

где
W_1=frac{displaystyle q^2}{displaystyle 2C_1 vphantom{1^a}},
W_2=frac{displaystyle q^2}{displaystyle 2C_2 vphantom{1^a}}

Это можно переписать следующим образом:

A = -(W_2 - W_1) = - Delta W,

где

W=frac{displaystyle q^2}{displaystyle 2C vphantom{1^a}}. (12)

Работа потенциальной силы F притяжения обкладок оказалась равна изменению со знаком минус величины W. Это как раз и означает, что W — потенциальная энергия взаимодействия обкладок, или энергия заряженного конденсатора.

Используя соотношение q = CU, из формулы (12) можно получить ещё две формулы для энергии конденсатора (убедитесь в этом самостоятельно!):

W=frac{displaystyle qU}{displaystyle 2 vphantom{1^a}}, (13)

W=frac{displaystyle CU^2}{displaystyle 2 vphantom{1^a}}. (14)

Особенно полезными являются формулы (12) и (14).

Допустим теперь, что конденсатор заполнен диэлектриком с диэлектрической проницаемостью varepsilon. Сила притяжения обкладок уменьшится в varepsilon раз, и вместо (11) получим:

F=frac{displaystyle q^2}{displaystyle 2 varepsilon_0 varepsilon S vphantom{1^a}}.

При вычислении работы силы F, как нетрудно видеть, величина varepsilon войдёт в ёмкость C, и формулы (12)(14) останутся неизменными. Ёмкость конденсатора в них теперь будет выражаться по формуле (10).

Итак, формулы (12)(14) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.

к оглавлению ▴

Энергия электрического поля

Мы обещали, что после вычисления энергии конденсатора дадим более глубокое истолкование происхождения этой энергии. Что ж, приступим.

Рассмотрим воздушный конденсатор и преобразуем формулу (14) для его энергии:

W=frac{displaystyle CU^2}{displaystyle 2 vphantom{1^a}}=frac{displaystyle varepsilon_0 S}{displaystyle d vphantom{1^a}} cdot frac{displaystyle (Ed)^2}{displaystyle 2 vphantom{1^a}}=frac{displaystyle varepsilon_0 E^2}{displaystyle 2 vphantom{1^a}}Sd.

Но Sd = V — объём конденсатора. Получаем:

W=frac{displaystyle varepsilon_0 E^2}{displaystyle 2 vphantom{1^a}}V. (15)

Посмотрите внимательно на эту формулу. Она уже не содержит ничего, что являлось бы специфическим для конденсатора! Мы видим энергию электрического поля E, сосредоточенного в некотором объёме V.

Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.

Итак, электрическое поле само по себе обладает энергией. Ничего удивительного для нас тут нет. Радиоволны, солнечный свет — это примеры распространения энергии, переносимой в пространстве электромагнитными волнами.

Величина omega = W/V — энергия единицы объёма поля — называется объёмной плотностью энергии. Из формулы (15) получим:

omega =frac{displaystyle varepsilon_0 E^2}{displaystyle 2 vphantom{1^a}}. (16)

В этой формуле не осталось вообще никаких геометрических величин. Она даёт максимально чистую связь энергии электрического поля и его напряжённости.

Если конденсатор заполнен диэлектриком, то его ёмкость увеличивается в varepsilon раз, и вместо формул (15) и (16) будем иметь:

W =frac{displaystyle varepsilon_0 varepsilon E^2}{displaystyle 2 vphantom{1^a}}V. (17)

omega =frac{displaystyle varepsilon_0 varepsilon E^2}{displaystyle 2 vphantom{1^a}}. (18)

Как видим, энергия электрического поля зависит ещё и от диэлектрической проницаемости среды, в которой поле находится.
Замечательно, что полученные формулы для энергии и плотности энергии выходят далеко за пределы электростатики: они справедливы не только для электростатического поля, но и для электрических полей, меняющихся во времени.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Конденсатор. Энергия электрического поля» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Проводники и диэлектрики в электростатическом поле. Диэлектрическая проницаемость вещества. Электроемкость. Конденсаторы. Поле плоского конденсатора. Электроемкость плоского конденсатора. Последовательное и параллельное соединение конденсаторов. Энергия заряженного конденсатора.

  • Проводники и диэлектрики в электростатическом поле

    Вещества в природе можно разделить на проводники и диэлектрики.

    Основная особенность — наличие свободных зарядов (электронов), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника.

    Типичные проводники — металлы.

  • Диэлектрическая проницаемость вещества

    В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды. Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды — индукционными зарядами.

    В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

  • Физическая величина, равная отношению модуля напряженности (vec{E}_0) внешнего электрического поля в вакууме к модулю напряженности (vec{E}) полного поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества (varepsilon).

    [varepsilon=dfrac{vec{E}_0}{vec{E}}]

  • Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда (q) одного из проводников к разности потенциалов (Delta varphi) между ними:

    [fbox{$C=dfrac{q}{Delta varphi}$}]

    Единицы измерения: (displaystyle [text{Ф}]) (фарад).

    Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники.

  • Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, — обкладками.

  • Плоский конденсатор — система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.

  • Электроемкость плоского конденсатора

    Разность потенциалов (Delta varphi) между пластинами в однородном электрическом поле равна (Ed), где (d) — расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:

    [C=dfrac{q}{Delta varphi}=dfrac{sigma S}{Ed}=dfrac{varepsilon_0S}{d}]

    Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в (varepsilon) раз:

    [fbox{$C=dfrac{varepsilon_0varepsilon S}{d}$}]

  • Электрическое поле плоского конденсатора в основном локализовано между пластинами; однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния. В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками.

  • Последовательное и параллельное соединение конденсаторов

    Для достижения нужной емкости или при напряжении, превышающем номинальное напряжение, конденсаторы, могут соединяться последовательно или параллельно. Любое же сложное соединение состоит из нескольких комбинаций последовательного и параллельного соединений.

    • Последовательное соединение конденсаторов

      При последовательном соединении, конденсаторы подключены таким образом, что только первый и последний конденсатор подключены к источнику тока одной из своих пластин. Заряд одинаков на всех пластинах, но внешние заряжаются от источника, а внутренние образуются только за счет разделения зарядов ранее нейтрализовавших друг друга. При этом заряд конденсаторов в батарее меньше, чем, если бы каждый конденсатор подключался бы отдельно. Следовательно, и общая емкость батареи конденсаторов меньше.

      Напряжение на данном участке цепи соотносятся следующим образом:

      [fbox{$U=U_1+U_2$}]

      Зная, что напряжение конденсатора можно представить через заряд и емкость, запишем:

      [dfrac{q}{C}=dfrac{q}{C_1}+dfrac{q}{C_2}]

      Сократив выражение на (Q), получим формулу:

      [fbox{$dfrac{1}{C}=dfrac{1}{C_1}+dfrac{1}{C_2}$}]

      Откуда эквивалентная емкость батареи конденсаторов соединенных последовательно:

      [fbox{$C=dfrac{C_1C_2}{C_1+C_2}$}]

    • Параллельное соединение конденсаторов

      При параллельном соединении конденсаторов напряжение на обкладках одинаковое, а заряды разные.

      Величина общего заряда полученного конденсаторами, равна сумме зарядов всех параллельно подключенных конденсаторов. В случае батареи из двух конденсаторов:

      [fbox{$q=q_1+q_2$}]

      Так как заряд конденсатора

      [q=CU]

      А напряжения на каждом из конденсаторов равны, получаем следующее выражение для эквивалентной емкости двух параллельно соединенных конденсаторов

      [CU=C_1U+C_2U]

      [fbox{$C=C_1+C_2$}]

    • По сути, расчет общей емкости конденсаторов схож с расчетом общего сопротивления цепи в случае с последовательным или параллельным соединением, но при этом, зеркально противоположен.

  • Энергия заряженного конденсатора

    Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии того, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится. Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке.

    Вычислим эту энергию: начнём с плоского воздушного конденсатора.

    Ответим на такой вопрос: какова силу притяжения его обкладок друг к другу. Величины используем следующие: заряд конденсатора (q), площадь обкладок (S). Возьмём на второй обкладке настолько маленькую площадку, что заряд (q_0) этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой

    [F_0 = q_0E_1,]

    где (E_1) — напряжённость поля первой обкладки:

    [E_1=dfrac{sigma}{2varepsilon_0}=dfrac{q}{2varepsilon_0S}]

    Значит

    [F_0=dfrac{qq_0}{2varepsilon_0S}]

    Направлена эта сила параллельно линиям поля (т.е. перпендикулярно пластинам). Результирующая сила (F) притяжения второй обкладки к первой складывается из всех этих сил (F_0), с которыми притягиваются к первой обкладке всевозможные маленькие заряды (q_0) второй обкладки. При этом суммировании постоянный множитель (displaystyledfrac{q}{2varepsilon_0S}) вынесется за скобку, а в скобке просуммируются все (q_0) и дадут (q). В результате получим

    [F=dfrac{q^2}{2varepsilon_0S}]

    Предположим теперь, что расстояние между обкладками изменилось от начальной величины (d_1) до конечной величины (d_2). Сила притяжения пластин совершает при этом работу [A = F(d_1 -d_2)]

    Знак правильный: если пластины сближаются ((d_2 < d_1)), то сила совершает положительную работу, так как пластины притягиваются друг к другу. Наоборот, если удалять пластины ((d_2 > d_1)), то работа силы притяжения получается отрицательной, как и должно быть.

    Получаем

    [A=dfrac{q^2}{2varepsilon_0S}(d_1-d_2)=dfrac{q^2d_1}{2varepsilon_0S}-dfrac{q^2d_2}{2varepsilon_0S}=dfrac{q^2}{2C_1}-dfrac{q^2}{2C_2}=W_1-W_2]

    Это можно переписать следующим образом: [A =-(W_2-W_1) =-Delta W,]

    где [fbox{$W=dfrac{q^2}{2C}$}, (1)]

    Работа потенциальной силы (F) притяжения обкладок оказалась равна изменению со знаком минус величины (W). Это как раз и означает, что (W) — потенциальная энергия взаимодействия обкладок, или энергия заряженного конденсатора. Используя соотношение (q = CU), можно получить ещё две формулы для энергии конденсатора (проделать это самостоятельно).

    [fbox{$W=dfrac{qU}{2}$}, (2)]

    [fbox{$W=dfrac{CU^2}{2}$}, (3)]

    Формулы (1)—(3) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.

    • ЕГЭ по физике 2023

    • /
    • Теория по физике

    • /
    • Теория по теме «Конденсатор. Соединение конденсаторов»
    • /

    Каталог заданий.
    Электрическая ёмкость


    Пройти тестирование по этим заданиям
    Вернуться к каталогу заданий

    Версия для печати и копирования в MS Word

    1

    Конденсатор электроемкостью 0,5 Ф был заряжен до напряжения 4 В. Затем к нему подключили параллельно незаряженный конденсатор электроемкостью 0,5 Ф. Какова энергия системы из двух конденсаторов после их соединения? (Ответ дать в джоулях.)


    2

    К источнику тока с ЭДС 2 В подключён конденсатор ёмкостью 1 мкФ. Какую работу совершил источник тока при зарядке конденсатора? (Ответ дайте в микроджоулях.)


    3

    К источнику тока с ЭДС 2 В подключен конденсатор емкостью 1 мкФ. Какое тепло выделится в цепи в процессе зарядки конденсатора? (Ответ дайте в микроджоулях.) Эффектами излучения пренебречь.


    4

    К идеальному источнику тока с ЭДС 3 В подключили конденсатор ёмкостью 1 мкФ один раз через резистор 10 в степени 7 Ом, а второй раз  — через резистор 2 умножить на 10 в степени 7 Ом. Во сколько раз во втором случае тепло, выделившееся на резисторе, больше по сравнению с первым? Излучением пренебречь.


    5

    Плоский воздушный конденсатор изготовлен из квадратных пластин со стороной a, зазор между которым равен d. Другой плоский конденсатор изготовлен из двух одинаковых квадратных пластин со стороной a/2, зазор между которым также равен d, и заполнен непроводящим веществом. Чему равна диэлектрическая проницаемость этого вещества, если электрические ёмкости данных конденсаторов одинаковы?

    Пройти тестирование по этим заданиям

    Определение

    Конденсатор служит для накопления электрического заряда. Он представляет собой два проводника, разделенных слоем диэлектрика.

    Плоский конденсатор — система двух разноименно заряженных пластин.

    Разность потенциалов U (В) между обкладками конденсатора (напряжение между пластинами), определяется произведением напряженности создаваемого ими электрического поля на расстояние между ними:

    U=Ed

    Электроемкость конденсатора

    Определение

    Электрическая емкость — характеристика проводника, мера его способности накапливать электрический заряд.

    Электроемкость обозначается как C. Единица измерения электрической емкости — Фарад (Ф).

    Электроемкость конденсатора определяется формулой:

    C=ε0εSd

    • ε0 — диэлектрическая постоянная, равная 8,85∙10–12 Кл2/(Н∙м2);
    • ε — диэлектрическая проницаемость среды;
    • S2) — площадь каждой пластины.

    Внимание! У воздушного конденсатора диэлектрическая проницаемость среды равна 1.

    Связь между электроемкостью конденсатора, зарядом и напряжением определяется формулами:

    C=QU=qU

    Важно! Электроемкость конденсатора зависит только от площади его пластин, расстояния между ними и диэлектрической проницаемости среды. От заряда и напряжения эта величина не зависит.

    Энергия конденсатора

    Формула энергии конденсатора

    Энергия конденсатора связана с его электроемкостью и вычисляется по следующим формулам:

    Wэ=q22C=CU22

    Подсказки к задачам

    Конденсатор отключен от источника q = q′
    Конденсатор подключен к источнику U = U′
    Количество теплоты и энергия конденсатора Q = ∆Wэ

    Пример №1. Вычислить электроемкость плоского воздушного конденсатора с квадратными пластинами со стороной 10 см, расположенными на расстоянии 1 мм друг от друга. Ответ округлить до десятых.

    10 см = 0,1 м

    1 мм = 0,001 м

    Так как между обкладками конденсатора находится воздух, примем диэлектрическую проницаемость среды за единицу.

    Площадь квадратной пластины равна квадрату ее стороны:

    S = a2

    Соединения конденсаторов

    Последовательное соединение Параллельное соединение
    Схема
    Напряжение

    U=U1+U2

    U=U1=U2

    Заряд

    q=q1=q2

    q=q1+q2

    Электроемкость

    1C=1C1+1C2

    C=C1+C2

    Подсказки к задачам

    Два конденсатора, электроемкости которых C1 и C2, заряжены до напряжения U1 и U2. Найдите разность потенциалов после соединения конденсаторов одноименными полюсами. Схема соединения конденсаторов одноименными полюсами:

    Заряд системы после соединения:

    q
    =C1U1+C2U2

    Электрическая емкость системы:

    C
    =C1+C2

    Напряжение:

    U
    =qC=C1U1+C2U2C1+C2

    Два конденсатора, электроемкости которых C1 и C2, заряжены до напряжения U1 и U2. Найдите разность потенциалов после соединения конденсаторов разноименными полюсами.

    Схема соединения конденсаторов разноименными полюсами:

    Заряд системы после соединения:

    q
    =C1U1C2U2

    Электрическая емкость системы:

    C
    =C1+C2

    Напряжение:

    U
    =qC=C1U1C2U2C1+C2

    Пример №2. К конденсатору, электрическая емкость которого C = 16 пФ, подключают два одинаковых конденсатора емкостью X: один параллельно, а второй — последовательно (см. рисунок). Емкость образовавшейся батареи конденсаторов равна емкости C. Какова емкость X? Ответ округлите до десятых.

    Электрическая емкость параллельного соединения равна:

    Cпарал=X+C

    Электроемкость последовательного соединения:

    1Cпослед=1Cпарал+1X=1X+C+1X

    Учтем, что суммарная электроемкость равна C:

    1C=1X+C+1X

    Преобразуем, умножим выражение на CX(X+C):

    X(X+C)=CX+C(X+C)

    Раскроем скобки:

    X2+XC=CX+CX+C2

    X2CXC2=0

    Решив уравнение, получим: X = 25,9 пФ.

    Разбор задач на тему «Заряженная частица в поле конденсатора»

    Шарик, находящийся в масле плотностью ρ, «висит» в поле плоского конденсатора. Плотность вещества шарика ρш > ρ, его радиус r, расстояние между обкладками конденсатора d. Каков заряд шарика, если электрическое поле направлено вверх, а разность потенциалов между обкладками U? Условие равновесия исходит из второго закона Ньютона:

    Fтяж+FK+FA=0

    ρш > ρ, поэтому Fтяж> FA. В этом случае сила Кулона направлена вверх, а заряд шарика положительный. Схематически это можно отобразить так:

    Проекция второго закона Ньютона на ось ОУ:

    FK+FA=Fтяж

    Сила тяжести равна произведению объема на плотность шарика и на ускорение свободного падения:

    Fтяж=ρш43πr3g

    Архимедова сила равна произведению объема шарика на плотность масла и на ускорение свободного падения:

    FА=ρ43πr3g

    Сила Кулона:

    FK=qUd

    qUd+ρ43πr3g=ρш43πr3g

    q=(ρш43πr3gρ43πr3g)dU=4πr3gd(ρшρ)3U

    Маленький шарик с зарядом q и массой m, подвешенный на невесомой нити с коэффициентом упругости k, находится между вертикальными пластинами воздушного конденсатора. Расстояние между обкладками конденсатора d. Какова разность потенциалов между обкладками конденсатора U, если удлинение нити ∆l?

    Условие равновесия исходит из второго закона Ньютона:

    Fтяж+FK+Fупр=0

    Проекции на оси ОХ и ОУ соответственно:

    FупрsinαFK=0

    Fупрcosαmg=0

    Отсюда:

    kΔlsinα=qUd

    kΔlcosα=mg

    Чтобы избавиться от угла α, возведем уравнения в квадрат и сложим их:

    (kΔl)2sin2α+(kΔl)2cos2α=(qUd)2+(mg)2

    (kΔl)2(sin2α+cos2α)=(qUd)2+(mg)2

    sin2α+cos2α=1

    (kΔl)2=(qUd)2+(mg)2

    U=dq(kΔl)2(mg)2

    Пластины плоского конденсатора расположены горизонтально на расстоянии d друг от друга. Напряжение на пластинах конденсатора U. В пространстве между пластинами падает капля жидкости. Масса капли m, ее заряд q. Определите расстояние между пластинами. Влиянием воздуха на движение капли пренебречь. Второй закон Ньютона в векторной форме:

    Fтяж+FK=0

    Проекция на вертикальную ось:

    FтяжFK=0

    Fтяж=mg

    FK=qUd

    mg=qUd

    d=qUmg

    Между двумя параллельными горизонтально расположенными диэлектрическими пластинами создано однородное электрическое поле с напряженностью E, направленное вертикально вниз. Между пластинами помещен шарик на расстоянии d от верхней пластины и b от нижней. Заряд шарика –q, масса m. Шарик освобождают, и он начинает двигаться. Через какой промежуток времени t шарик ударится об одну из пластин, если система находится в поле силы тяжести Земли? Второй закон Ньютона в векторной форме:

    Fтяж+FK=ma

    Согласно условию данной задачи, сила тяжести противоположно направлена силе Кулона. Построим рисунок:

    Если Fтяж > FK, то шарик движется с ускорением вниз. Ускорение и перемещение в этом случае равны:

    a=mgqEm

    s=b

    Если Fтяж < FK, то шарик движется с ускорением верх. Ускорение и перемещение в этом случае равны:

    a=qEmgm

    s=d

    Начальная скорость шарика равна нулю. Поэтому перемещение также равно:

    s=at22

    Сделаем вычисления для случая Fтяж > FK:

    at22=b

    mgqEmt22=b

    t=2bmmgqE

    Выполняя вычисления для случая Сделаем вычисления для случая Fтяж < FK, получим:

    t=2bmqEmg

    Между двумя параллельными, вертикально расположенными диэлектрическими пластинами создано однородное электрическое поле, напряженность которого E и направлена слева направо. Между пластинами помещен шарик на расстоянии b от левой пластины и d от правой. Заряд шарика –q, масса m. Шарик освобождают, и он начинает двигаться. Найдите смещение шарика по вертикали ∆h до удара об одну из пластин. Пластины имеют достаточно большой размер. Второй закон Ньютона в векторной форме:

    Fтяж+FK=ma

    Если сила Кулона направлена вправо, то sx = d.

    Если сила Кулона направлена вправо, то sx = b.

    Учитывая, что заряд меньше нуля, а вектор напряженности направлен вправо, делаем вывод, что кулоновская сила направлена влево.

    Из проекций второго закона Ньютона выразим проекции ускорения на оси ОХ и ОУ соответственно:

    ax=qEm

    ay=g

    Проекции перемещений на эти же оси:

    sx=axt22

    sx=Δh=gt22

    axt22=b

    Или:

    qEmt22=b

    Так как время движения шарика по вертикали и горизонтали одинаково:

    t2=2Δhg=2mbqE

    Δh=mbgqE

    Задание EF17979

    Введите ответ в поле ввода
    Плоский конденсатор подключён к гальваническому элементу. Как изменятся при уменьшении зазора между обкладками конденсатора три величины: ёмкость конденсатора, величина заряда на его обкладках, разность потенциалов между ними?

    Для каждой величины определите соответствующий характер изменения:

    1. увеличится
    2. уменьшится
    3. не изменится

    Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


    Алгоритм решения

    1.Определить, от чего зависит емкость конденсатора, и как она изменится при уменьшении зазора между его обкладками.

    2.Определить, от чего зависит величина заряда конденсатора, и как она изменится после уменьшения зазора между его обкладками.

    3.Определить, от чего зависит разность потенциалов между обкладками конденсатора, и как она изменится при уменьшении зазора.

    Решение

    Емкость конденсатора определяется формулой:

    C=ε0εSd

    Следовательно, емкость имеет обратно пропорциональную зависимость от расстояния между обкладками. Если расстояние уменьшить, то емкость увеличится.

    Вот как взаимосвязана электроемкость и заряд конденсатора:

    C=qU

    Мы выяснили, что электроемкость увеличивается. Следовательно, увеличится и заряд, так как они имеют прямо пропорциональную зависимость.

    С учетом того, что плоский конденсатор подключен к гальваническому элементу, разность потенциалов никак не зависит от расстояния между обкладками. Поэтому величина U остается неизменной.

    Ответ: 113

    pазбирался: Алиса Никитина | обсудить разбор | оценить

    Задание EF18574

    Воспользовавшись оборудованием, представленным на рис. 1, учитель собрал модель плоского конденсатора (рис. 2), зарядил нижнюю пластину положительным зарядом, а корпус электрометра заземлил. Соединённая с корпусом электрометра верхняя пластина конденсатора приобрела отрицательный заряд, равный по модулю заряду нижней пластины. После этого учитель сместил одну пластину относительно другой не изменяя расстояния между ними (рис. 3). Как изменились при этом показания электрометра (увеличились, уменьшились, остались прежними)? Ответ поясните, указав, какие явления и закономерности Вы использовали для объяснения. Показания электрометра в данном опыте прямо пропорциональны разности потенциалов между пластинами конденсатора.


    Алгоритм решения

    1.Проанализировать каждый этап эксперимента.

    2.Установить, от чего зависит угол отклонения стрелки электрометра.

    3.Выяснить, что поменяется при смещении одной пластины конденсатора относительно другой, и что при этом произойдет со стрелкой электрометра.

    Решение

    На первом рисунке стрелка и стержень электрометра, соединённые с нижней пластиной, но изолированные от корпуса, заряжаются положительно. Поэтому стрелка отклоняется на некоторый угол. В верхней пластине и металлическом корпусе электрометра происходит перераспределение свободных электронов таким образом, что верхняя пластина заряжается отрицательно.

    На втором рисунке заряды пластин одинаковы по модулю и противоположны по знаку, пластины образуют конденсатор с ёмкостью:

    C=ε0εSd

    S — площадь перекрытия пластин, d — расстояние между ними, ε — диэлектрическая проницаемость диэлектрика между пластинами.

    Характер изменения угла отклонения стрелки совпадает с изменением разности потенциалов между пластинами: при увеличении разности потенциалов увеличивается угол отклонения, при уменьшении разности потенциалов угол уменьшается.

    На рисунке 3 площадь перекрытия пластин уменьшилась. Следовательно, уменьшилась электроемкость, которая имеет обратно пропорциональную зависимость от разности потенциалов:

    C=qU

    Заряд остается постоянным, поскольку система изолированная — заряду просто некуда деться. Поэтому с уменьшением электроемкость растет разность потенциалов. Поэтому показания электрометра увеличатся.

    Ответ: Увеличатся

    pазбирался: Алиса Никитина | обсудить разбор | оценить

    Задание EF18695

    Ученик изучает свойства плоского конденсатора. Какую пару конденсаторов (см. рисунок) он должен выбрать, чтобы на опыте обнаружить зависимость ёмкости конденсатора от расстояния между его обкладками?


    Алгоритм решения

    1. Установить, какие величины в данном эксперименте должны быть переменными, а какие — постоянными.
    2. Найти рисунок с парой конденсаторов, удовлетворяющий требованиям, выявленным в шаге 1.

    Решение

    Чтобы на опыте обнаружить зависимость ёмкости конденсатора от расстояния между его обкладками, нужно сохранить все величины постоянными, кроме самого расстояния. Поэтому площади обкладок должны быть одинаковыми, но расстояние между ними разными, как на рисунке 1.

    Ответ: а

    pазбирался: Алиса Никитина | обсудить разбор | оценить

    Задание EF18703

    Протон влетает в электрическое поле конденсатора параллельно его пластинам в точке, находящейся посередине между пластинами (см. рисунок). Найдите минимальную скорость υ, с которой протон должен влететь в конденсатор, чтобы затем вылететь из него. Длина пластин конденсатора 5 см, расстояние между пластинами 1 см, напряжённость электрического поля конденсатора 5000 В/м. Поле внутри конденсатора считать однородным, силой тяжести пренебречь.

    Ответ записать в км/с, округлив до десятков.


    Алгоритм решения

    1.Записать исходные данные и перевести единицы измерения величин в СИ.

    2.Выполнить рисунок. Указать направление движения протона и силы, действующие на него.

    3.Выяснить, при каком условии протон успеет вылететь из конденсатора.

    4.Выполнить решение в общем виде.

    5.Подставить известные данные и вычислить искомую величину.

    Решение

    Запишем исходные данные:

     Масса протона: m = 1,67∙10–27 кг.

     Заряд протона: q = 1,6∙10–19 Кл.

     Расстояние между обкладками конденсатора: d = 1 см.

     Длина пластин конденсатора: l = 5 см.

     Напряженность однородного поля внутри конденсатора: E = 5000 В/м.

    1 см = 0,01 м

    5 см = 0,05 м

    Сделаем рисунок:

    Изначально протон обладает только горизонтальной скоростью v, равной vx. Влетев в однородное электростатическое поле внутри конденсатора, протон обретает вертикальную компоненту скорости, которая растет за счет ускорения, придаваемого кулоновскими силами. Положительно заряженный протон притягивается нижней отрицательно зараженной пластиной конденсатора.

    Чтобы протон вылетел из конденсатора, его горизонтальная компонента скорости должна быть достаточной для того, чтобы частица не притянулась к нижней пластине раньше. Время, которое понадобится протону для преодоления длины пластин конденсатора со скоростью vx:

    t=lvx=lv

    Протон влетел в пространство между обкладками конденсатора на одинаковом расстоянии от них. Следовательно, прежде чем он упадет на нижнюю пластину, по оси OY он переместится на расстояние, равное 0,5d. Так как начальная компонента скорости равна нулю (мы пренебрегаем силой тяжести):

    0,5d=at22

    Протон вылетит из конденсатора, а не упадет на его пластину, если время горизонтального перемещения до конца пластин будет как минимум равно времени падения. Выразим время падения:

    t=da

    Приравняем правые части уравнений времени и получим:

    lv=da

    Отсюда скорость равна:

    v=al2d

    Ускорение выразим из второго закона Ньютона:

    FK=ma=qUd

    a=qUmd

    Но известно, что:

    U=Ed

    Поэтому:

    a=qEdmd=qEm

    Отсюда:

    Минимальная скорость, с которой протон должен влететь в конденсатор, составляет 346∙103 м/с. Округлим до десятков и переведем в км/с. Получим 350 км/с.

    Ответ: 350

    pазбирался: Алиса Никитина | обсудить разбор | оценить

    Алиса Никитина | Просмотров: 5.5k

    Конденсаторы и диоды — подготовка к олимпиадам

    Решаем задачи повышенной сложности с конденсаторами и диодами. Готовимся к Всероссу.

    Задача 1.

     Исходно на левом конденсаторе напряжение Конденсаторы и диоды - подготовка к олимпиадам, правый конденсатор не заряжен, и оба ключа разомкнуты (см. рис. 12.5). Сначала замыкают ключ 1, затем, дождавшись установления равновесия, замыкают ключ 2. Найдите тепло, выделившееся на каждом из сопротивлений.

    диоды6

    К задаче 1

    Решение. После замыкания ключа 1 заряженный конденсатор «поделится» своим зарядом с незаряженным. Поэтому энергия каждого конденсатора станет равной

    Конденсаторы и диоды - подготовка к олимпиадам

    А поначалу энергия заряженного конденсатора составляла

    Конденсаторы и диоды - подготовка к олимпиадам

    То есть на двух верхних резисторах потеряно энергии

    Конденсаторы и диоды - подготовка к олимпиадам

    Это на обоих верхних резисторах. На одном, стало быть, Конденсаторы и диоды - подготовка к олимпиадам.

    Вся энергия, которая осталась в системе после замыкания ключа 1, а это Конденсаторы и диоды - подготовка к олимпиадам, рассеется на всех трех резисторах после замыкания второго ключа. Причем схема симметрична, поэтому, если через правую ветвь течет ток Конденсаторы и диоды - подготовка к олимпиадам, то и через левую ток будет таким же. А вот через центральный резистор потечет суммарный ток Конденсаторы и диоды - подготовка к олимпиадам, и значит, потери на нем будут вчетверо большими, чем на двух верхних резисторах, так как тепловые потери пропорциональны квадрату тока. То есть оставшуюся энергию разделим на 6 частей: 4 будут рассеяны центральным резистором, и по одной части – каждым из двух верхних. Таким образом, на центральном будет рассеяно тепла:

    Конденсаторы и диоды - подготовка к олимпиадам

    На обоих верхних:

    Конденсаторы и диоды - подготовка к олимпиадам

    Выходит, на всех резисторах рассеяно одинаковое количество теплоты – по Конденсаторы и диоды - подготовка к олимпиадам.

    Ответ: на всех одинаковое количество теплоты, Конденсаторы и диоды - подготовка к олимпиадам.

    Задача 2.

    Два одинаковых неидеальных диода с вольтамперной характеристикой, приведённой на графике, включены вместе с конденсатором, двумя резисторами, идеальной батарейкой и ключом в электрическую цепь, изображённую на рисунке. Сопротивления резисторов Конденсаторы и диоды - подготовка к олимпиадам Ом, Конденсаторы и диоды - подготовка к олимпиадам Ом, ЭДС батарейки Конденсаторы и диоды - подготовка к олимпиадам В, электрическая ёмкость конденсатора Конденсаторы и диоды - подготовка к олимпиадам мкФ, параметры вольтамперной характеристики диода Конденсаторы и диоды - подготовка к олимпиадам В, Конденсаторы и диоды - подготовка к олимпиадам мА. а) Ключ в цепи замкнули. До какого напряжения зарядится конденсатор? б) После зарядки конденсатора ключ разомкнули. Какое количество теплоты выделится при разрядке конденсатора на резисторе Конденсаторы и диоды - подготовка к олимпиадам? А на каждом из диодов?

    диоды7

    К задаче 2

    Решение. Пусть на диодах напряжение по  Конденсаторы и диоды - подготовка к олимпиадам на каждом. Тогда

    Конденсаторы и диоды - подготовка к олимпиадам

    Конденсаторы и диоды - подготовка к олимпиадам

    Этот ток равен 100 мА, значит, предположив, что ток замыкается в контуре по часовой стрелке, мы угадали – величина его больше 50 мА!

    Конденсаторы и диоды - подготовка к олимпиадам

    Напряжение на конденсаторе 2,6 В.

    Энергию найдем с помощью закона сохранения энергии.

    Сначала в конденсаторе была запасена энергия

    Конденсаторы и диоды - подготовка к олимпиадам

    Посмотрим, какое напряжение на конденсаторе при критическом токе и разомкнутом ключе

    Конденсаторы и диоды - подготовка к олимпиадам

    Пока конденсатор разряжается от 2,6 В до 1,8 В на диоде постоянное напряжение Конденсаторы и диоды - подготовка к олимпиадам.

    Конденсаторы и диоды - подготовка к олимпиадам

    Конденсаторы и диоды - подготовка к олимпиадам

    Конденсаторы и диоды - подготовка к олимпиадам Дж. Теперь на конденсаторе энергия Конденсаторы и диоды - подготовка к олимпиадам Дж. Эта энергия выделится на диоде и резисторе пропорционально их сопротивлениям. Сопротивление диода определяем по графику:

    Конденсаторы и диоды - подготовка к олимпиадам

    Таким образом, 20 частей энергии выделится на диоде, а 16 – на резисторе.

    Конденсаторы и диоды - подготовка к олимпиадам

    Конденсаторы и диоды - подготовка к олимпиадам

    Ответ: Конденсаторы и диоды - подготовка к олимпиадам В, Конденсаторы и диоды - подготовка к олимпиадам Дж, Конденсаторы и диоды - подготовка к олимпиадам Дж.

    Исходя из опытов, заряженный конденсатор имеет запас энергии.

    Определение 1

    Энергия заряженного конденсатора равняется работе внешних сил, которая необходима для его зарядки.

    Его заряжение представляется как последовательный перенос малых порций заряда ∆q>0 с одной обкладки на другую, как изображено на рисунке 1.7.1 Одна из них заряжается положительным зарядом, другая – отрицательным. Процесс производится при уже имеющемся некотором заряде q, тогда как между обкладками существует разность потенциалов U=qC, а при переносе ∆q внешние силы совершают работу ∆A=U∆q=q∆qC.

    Нахождение энергии We конденсатора с емкостью С и с зарядом Q производится с помощью интегрирования в переделах от 0 до Q. Формула примет вид:

    We=A=Q22C.

    Энергия электрического поля

    Рисунок 1.7.1. Процесс зарядки конденсатора.

    Энергия заряженного конденсатора

    Существует еще одна эквивалентная запись заряженного конденсатора при использовании соотношения Q=CU:

    We=Q22C=CU22=QU2.

    Электрическая энергия We рассматривается как потенциальная. Формулы для We аналогичны формулам потенциальной энергии Ep деформированной пружины, а именно:

    Ep=kx22=F22k=Fx2, где k является жесткостью пружины, х – деформацией, F=kx – внешней силой.

    Определение 2

    Современные представления электрической энергии говорят о том, что она сосредоточена между пластинами конденсатора. В связи с этим и получила название энергии электрического поля. Это объяснимо с помощью иллюстрирования заряженного плоского конденсатора.

    Объемная плотность электрической энергии

    Определение 3

    Напряженность однородного поля плоского конденсатора равняется E=Ud, его емкость – C=ε0εSd.

    Отсюда следует, что We=C·U22=ε0·ε·S·E2·d22d=ε0·ε·E22V, где V=Sd обозначает объем пространства между обкладками с наличием электрического поля. Данное соотношение приводит к формуле следующей физической величины.

    Определение 4

    Физическая величина We=ε0·ε·E22 – это электрическая энергия на единицу объема пространства, в котором создается электрическое поле. Ее называют объемной плотностью данной электрической энергии.

    Энергия поля конденсатора, создаваемая любыми распределениями электрических зарядов в пространстве, находится путем интегрирования We по всему объему, в котором было создано электрическое поле.

    Понравилась статья? Поделить с друзьями:
  • Конденсаторы егэ теория
  • Конвертировать баллы егэ
  • Конвертер баллов егэ обществознание
  • Конвертер баллов егэ математика профиль 2022
  • Конвертер баллов егэ информатика