«Биосинтез белка. Репликация ДНК»
Раздел ЕГЭ: 2.6. Генетическая информация в клетке. Гены, генетический код и его свойства. Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот
К реакциям матричного синтеза относят репликацию ДНК, синтез и-РНК на ДНК (транскрипцию) и синтез белка на и-РНК (трансляцию), а также синтез РНК или ДНК на РНК вирусов.
Биосинтез белка — это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах. В биосинтезе белка выделяют два основных этапа: транскрипцию и трансляцию.
Репликация ДНК
Структура молекулы ДНК, установленная Дж. Уотсоном и Ф. Криком в 1953 г., отвечала тем требованиям, которые предъявлялись к молекуле-хранительнице и передатчику наследственной информации. Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов. Процесс удвоения ДНК происходит полуконсервативным способом: молекула ДНК расплетается, и на каждой из цепей синтезируется новая цепь по принципу комплементарности. Процесс самовоспроизведения молекулы ДНК, обеспечивающий точное копирование наследственной информации и передачу ее из поколения в поколение, называется репликацией.
Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях. Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться. Этот процесс устранения ошибок называется репарацией. Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.
Репликация — это процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.
Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.
Биосинтез белка и нуклеиновых кислот
В биосинтезе белка выделяют два основных этапа: транскрипцию и трансляцию.
Транскрипция — это биосинтез молекул иРНК на соответствующих участках ДНК. Транскрипция происходит только на одной цепи ДНК, которая называется кодирующей, в отличие от другой — некодирующей, или кодогенной. Обеспечивает процесс переписывания специальный фермент РНК-полимераза, который подбирает нуклеотиды РНК по принципу комплементарности.
Синтезированные в процессе транскрипции в ядре молекулы иРНК покидают его через ядерные поры, а митохондриальные и пластидные иРНК остаются внутри органоидов. После транскрипции происходит процесс активации аминокислот, в коде которой аминокислота присоединяется к соответствующей свободной тРНК.
Трансляция — это биосинтез полипептидной цепи на молекуле иРНК, при котором происходит перевод генетической информации в последовательность аминокислот полипептидной цепи.
Второй этап синтеза белка чаще всего происходит в цитоплазме, например на шероховатой ЭПС. Для его протекания необходимы наличие рибосом, активация тРНК, в ходе которой они присоединяют соответствующие аминокислоты, присутствие ионов Mg2+, а также оптимальные условия среды (температура, рН, давление и т. д.).
Для начала транскрипции (инициации) к молекуле иРНК присоединяется малая субъединица рибосомы, а затем по принципу комплементарности к первому кодону АУГ подбирается тРНК, несущая аминокислоту метионин. Лишь после этого присоединяется большая субъединица рибосомы. В пределах собранной рибосомы оказываются два кодона иРНК, первый из которых уже занят. К соседнему с ним кодону присоединяется вторая тРНК, также несущая аминокислоту, после чего между остатками аминокислот с помощью ферментов образуется пептидная связь.
Когда рибосома передвигается на один кодон иРНК, первая из тРНК, освободившаяся от аминокислоты, возвращается в цитоплазму за следующей аминокислотой, а фрагмент будущей полипептидной цепи как бы повисает на оставшейся тРНК. К новому кодону, оказавшемуся в пределах рибосомы, присоединяется следующая тРНК, процесс повторяется, и шаг за шагом полипептидная цепь удлиняется, то есть происходит ее элонгация.
Окончание синтеза белка (терминация) происходит, как только в молекуле иРНК встретится специфическая последовательность нуклеотидов, которая не кодирует аминокислоту (стоп-кодон). После этого рибосома, иРНК и полипептидная цепь разделяются, а вновь синтезированный белок приобретает соответствующую структуру и транспортируется в ту часть клетки, где он будет выполнять свои функции.
Трансляция является весьма энергоемким процессом, поскольку на присоединение одной аминокислоты к тРНК расходуется энергия одной молекулы АТФ, еще несколько используются для продвижения рибосомы по молекуле иРНК.
Репликация ДНК и синтез белка в клетке протекают по принципу матричного синтеза, поскольку новые молекулы нуклеиновых кислот и белков синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул тех же нуклеиновых кислот (ДНК или РНК).
Это конспект для 10-11 классов по теме «Биосинтез белка. Репликация ДНК».
Читайте также другие конспекты, относящиеся к разделу ЕГЭ 2.6:
- Генетическая информация в клетке. Гены, генетический код и его свойства.
- Вернуться в Кодификатор ЕГЭ.
МАСТЕР-КЛАСС
Подготовка учащихся к
ЕГЭ по биологии. Решение задач на тему
«Биосинтез белка»
Учитель
биологии
МБОУ
«Ильичевская средняя школа
Калюжная
В.В.
Цели:
показать фрагмент занятия по подготовке учащихся к
ЕГЭ по биологии, раскрыть приёмы и методы по формированию умений
решать задания повышенного уровня сложности по молекулярной биологии, научить
новому способу применении знаний по теме «биосинтез белка».
Дополнительные
занятия по подготовке учащихся к ЕГЭ по биологии позволяет решить следующие
дидактические задачи:
-усвоить базовые и углубленные знания по
предмету,
-систематизировать усвоенные знания,
-психологически настроить учащихся на
атмосферу экзамена,
-обеспечить удобную образовательную среду
и возможности самостоятельного выбора в поиске и использовании источников
информации, то есть подготовить учащегося к экзамену в кратчайшие сроки,
попутно сформировав у него массу полезных общеучебных навыков.
Средства обучения:
Листки с заданиями на каждый стол.
ХОД ЗАНЯТИЯ
1.Вступление
Дополнительные
занятия по подготовке учащихся к ЕГЭ по биологии позволяет решить следующие
дидактические задачи:
-усвоить базовые и углубленные знания по
предмету,
-систематизировать усвоенные знания,
-психологически настроить учащихся на
атмосферу экзамена,
-обеспечить удобную образовательную среду
и возможности самостоятельного выбора в поиске и использовании источников
информации, то есть подготовить учащегося к экзамену в кратчайшие сроки,
попутно сформировав у него массу полезных общеучебных навыков.
2.Актуализация опорных
знаний
1. Где
заключена запрограммированная наследственная информация о структуре белка?
2. Что
называется геном?__________________________________________
3. Как
закодированы аминокислоты?________________________________
4. Сколько
кодов может быть у аминокислоты?_______________________
5. Как
называется свойство когда несколько триплетов кодируют одну аминокислоту?
III.
Применение знаний и умений
Задача
№ 1. Известно, что все виды РНК
синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется
участок центральной петли тРНК, имеет следующую последовательность нуклеотидов
(верхняя цепь смысловая, нижняя транскрибируемая).
5’-ЦГААГГТГАЦААТГТ-3’
3’-ГЦТТЦЦАЦТГТТАЦА-5’
Установите
нуклеотидную последовательность участка тРНК, который синтезируется на данном
фрагменте, обозначьте 5’ и 3’ концы этого фрагмента и определите аминокислоту,
которую будет переносить эта тРНК в процессе биосинтеза белка, если третий
триплет с 5’ конца соответствует антикодону тРНК. Ответ поясните. Для решения
задания используйте таблицу генетического кода.
Схема
решения задачи:
1. Нуклеотидная последовательность участка тРНК (верхняя
цепь по условию смысловая):
ДНК: 3’-ГЦТ-ТЦЦ-АЦТ-ГТТ-АЦА-5’
тРНК:
5’-ЦГА-АГГ-УГА-ЦАА-УГУ-3’
2. Нуклеотидная последовательность антикодона УГА (по
условию третий триплет) соответствует кодону на иРНК УЦА;
3. По таблице генетического кода этому кодону соответствует
аминокислота -Сер, которую будет переносить данная тРНК.
Примечание.
1. По фрагменту молекулы ДНК, определяем нуклеотидную
последовательность участка тРНК, который синтезируется на данном фрагменте.
ДНК:
3’-ГЦТ-ТЦЦ-АЦТ-ГТТ-АЦА-5’
тРНК:
5’-ЦГА-АГГ-УГА-ЦАА-УГУ-3’
На ДНК с 3′ конца строится тРНК с 5′ — конца.
2. Определяем кодон иРНК, который будет комплементарен
триплету тРНК в процессе биосинтеза белка.
Если третий триплет соответствует антикодону тРНК 5’-
УГА-3’ , для нахождения иРНК сначала произведем запись в обратном порядке от
3’ → к 5’ получим 3’-АГУ- 5’, определяем иРНК: 5’–УЦА–3′.
3. По таблице генетического кода кодону 5′-УЦА-3′
соответствует аминокислота -Сер, которую будет переносить данная тРНК.
Пояснение
к строению ДНК в условии:
Двойная спираль ДНК. Две антипараллельные ( 5’- конец одной
цепи располагается напротив 3’- конца другой) комплементарные цепи
полинуклеотидов, соединенной водородными связями в парах А-Т и Г-Ц, образуют
двухцепочечную молекулу ДНК. Молекула ДНК спирально закручена вокруг своей оси.
На один виток ДНК приходится приблизительно 10 пар оснований.
Смысловая цепь ДНК — Последовательность нуклеотидов в
цепи кодирует наследственную информацию.
Транскрибируемая (антисмысловая) цепь по сути является
копией смысловой цепи ДНК. Служит матрицей для синтеза иРНК (информацию о
первичной структуре белка), тРНК, рРНК, регуляторной РНК.
Задача
№2. Молекулы тРНК, несущие
соответствующие антикодоны, входят в рибосому в следующем порядке: ГУА, УАЦ,
УГЦ, ГЦА. Определите последовательность нуклеотидов смысловой и
транскрибируемой цепей ДНК, иРНК и аминокислот в молекуле синтезируемого
фрагмента белка. Ответ поясните. Для решения задания используйте таблицу
генетического кода. При выполнении задания учитывайте, что антикодоны тРНК
антипараллельны кодонам иРНК.
Решение
1.
По принципу комплементарности определяем последовательность иРНК: 5’—
УАЦГУАГЦАУГЦ — 3’;
2.
Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также
определяем по принципу комплементарности:
5’ −
ТАЦГ ТАГЦАТГЦ − 3’
3’ −
АТ ГЦАТЦГТАЦГ − 5’.
3.
По таблице генетического кода и кодонам иРНК находим последовательность
аминокислот в пептиде: Тир-Вал-Ала-Цис.
Примечание.
Алгоритм выполнения задания.
1.
По принципу комплементарности определяем последовательность иРНК на основе
антикодонов тРНК, но сначала ориентируем антикодоны тРНК (3’→ 5’) так, чтобы
они присоединялись к иРНК антипараллельно (по условию антикодоны тРНК даны в
ориентации 5’→ 3’)
тРНК: 3’АУГ 5’, 3’ЦАУ 5’,
3’ЦГУ 5’, 3’АЦГ 5’
иРНК: 5’— УАЦ-ГУА-ГЦА-УГЦ — 3’
2.
Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также
определяем по принципу комплементарности (на основе найденной иРНК по принципу
комплементарности строим транскрибируемую ДНК, затем на её основе находим
смысловую. В молекулярной генетике принято смысловую ДНК писать сверху,
транскрибируему — снизу):
5’ −
ТАЦ-ГТА-ГЦА-ТГЦ − 3’
3’ −
АТГ-ЦАТ-ЦГТ-АЦГ − 5’.
3.
По таблице генетического кода и кодонам иРНК находим последовательность
аминокислот в пептиде:
иРНК: 5’— УАЦ-ГУА-ГЦА-УГЦ — 3’
белок: Тир-Вал-Ала-Цис
Задача
№ 3. Фрагмент молекулы ДНК имеет
следующую последовательность нуклеотидов (верхняя цепь — смысловая,
нижняя — транскрибируемая):
5’ − ГТЦАЦАГЦГАТЦААТ − 3’
3’ − ЦАГТГТЦГЦТАГТТА − 5’
Определите последовательность аминокислот во фрагменте
полипептидной цепи и обоснуйте свой ответ. Какие изменения могли произойти в
результате генной мутации во фрагменте молекулы ДНК, если вторая аминокислота
в полипептиде заменилась на аминокислоту Про? Какое свойство
генетического кода определяет возможность существования разных фрагментов
мутированной молекулы ДНК? Ответ обоснуйте. Для решения задания используйте
таблицу генетического кода.
Решение
1. Последовательность аминокислот в полипептиде:
Вал-Тре-Ала-Иле-Асн определяется по последовательности нуклеотидов в молекуле
иРНК:
5’ −
ГУЦАЦАГЦГАУЦААУ − 3’.
2. Во фрагменте белка вторая аминокислота Тре заменилась на Про
что возможно при замене второго триплета в смысловой цепи ДНК АЦА на триплет
ЦЦТ, ЦЦЦ, ЦЦА или ЦЦГ (второго кодона в РНК АЦА на кодон ЦЦУ, ЦЦЦ, ЦЦА или
ЦЦГ).
3. Свойство генетического кода — избыточность
(вырожденность), так как одной аминокислоте (Про) соответствует более одного
триплета (четыре триплета).
Примечание.
Алгоритм выполнения задания.
1. Последовательность аминокислот в полипептиде определяется по
последовательности нуклеотидов в молекуле иРНК:
иРНК: 5’ − ГУЦ-АЦА-ГЦГ-АУЦ-ААУ
− 3’
белок: Вал-Тре-Ала-Иле-Асн
2. Во фрагменте белка вторая аминокислота Тре заменилась
на Про что возможно при замене второго кодона в иРНК 5’-АЦА-3’
на кодон 5’-ЦЦУ-3’, 5’-ЦЦЦ-3’, 5’-ЦЦА-3’ или 5’-ЦЦГ-3’ → кодоны находим по
таблице генетического кода
Второй триплет в смысловой цепи ДНК 5’-АЦА-3’ заменился на триплет
5’-ЦЦТ-3’, 5’-ЦЦЦ-3’, 5’-ЦЦА-3’ или 5’-ЦЦГ-3’.
дополнительно
— НЕ ДЛЯ ОТВЕТА! — Скорее всего произошла мутация инверсия —
хромосомная перестройка, при которой происходит поворот участка хромосомы на
180°:
иРНК: 5’ − ГУЦ-АЦА-ГЦГ
-АУЦ-ААУ − 3’ → иРНК: 5’ − ГУА-ЦЦА-ГЦГ -АУЦ-ААУ − 3’
Первая аминокислота осталась той же, т.к. кодон ГУА, так же как и
ГУЦ, кодирует аминокислоту вал (определяем по таблице
генетического кода).
3. Свойство генетического кода — избыточность
(вырожденность), так как одной аминокислоте (Про) (и вал) соответствует
более одного триплета (четыре триплета).
Подведение итогов
И транскрипция, и трансляция относятся к матричным биосинтезам. Матричным биосинтезом называется синтез
биополимеров (нуклеиновых кислот, белков) на матрице — нуклеиновой кислоте ДНК или РНК. Процессы матричного биосинтеза относятся к пластическому обмену: клетка расходует энергию АТФ.
Матричный синтез можно представить как создание копии исходной информации на несколько другом или новом
«генетическом языке». Скоро вы все поймете — мы научимся достраивать по одной цепи ДНК другую, переводить РНК в ДНК
и наоборот, синтезировать белок с иРНК на рибосоме. В данной статье вас ждут подробные примеры решения задач, генетический словарик пригодится — перерисуйте его себе
Возьмем 3 абстрактных нуклеотида ДНК (триплет) — АТЦ. На иРНК этим нуклеотидам будут соответствовать — УАГ (кодон иРНК).
тРНК, комплементарная иРНК, будет иметь запись — АУЦ (антикодон тРНК). Три нуклеотида в зависимости от своего расположения
будут называться по-разному: триплет, кодон и антикодон. Обратите на это особое внимание.
Репликация ДНК — удвоение, дупликация (лат. replicatio — возобновление, лат. duplicatio — удвоение)
Процесс синтеза дочерней молекулы ДНК по матрице родительской ДНК. Нуклеотиды достраивает фермент ДНК-полимераза по
принципу комплементарности. Переводя действия данного фермента на наш язык, он следует следующему правилу: А (аденин) переводит в Т (тимин), Г (гуанин) — в Ц (цитозин).
Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них
содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между
дочерними клетками.
Транскрипция (лат. transcriptio — переписывание)
Транскрипция представляет собой синтез информационной РНК (иРНК) по матрице ДНК. Несомненно, транскрипция происходит
в соответствии с принципом комплементарности азотистых оснований: А — У, Т — А, Г — Ц, Ц — Г (загляните в «генетический словарик»
выше).
До начала непосредственно транскрипции происходит подготовительный этап: фермент РНК-полимераза узнает особый участок молекулы ДНК — промотор и связывается с ним. После связывания с промотором происходит раскручивание молекулы ДНК, состоящей из двух
цепей: транскрибируемой и смысловой. В процессе транскрипции принимает участие только транскрибируемая цепь ДНК.
Транскрипция осуществляется в несколько этапов:
- Инициация (лат. injicere — вызывать)
- Элонгация (лат. elongare — удлинять)
- Терминация (лат. terminalis — заключительный)
Образуется несколько начальных кодонов иРНК.
Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК
быстро растет.
Достигая особого участка цепи ДНК — терминатора, РНК-полимераза получает сигнал к прекращению синтеза иРНК. Транскрипция завершается. Синтезированная иРНК направляется из ядра в цитоплазму.
Трансляция (от лат. translatio — перенос, перемещение)
Куда же отправляется новосинтезированная иРНК в процессе транскрипции? На следующую ступень — в процесс трансляции.
Он заключается в синтезе белка на рибосоме по матрице иРНК. Последовательность кодонов иРНК переводится в последовательность
аминокислот.
Перед процессом трансляции происходит подготовительный этап, на котором аминокислоты присоединяются к соответствующим молекулам тРНК. Трансляцию можно разделить на несколько стадий:
- Инициация
- Элонгация
- Терминация
Информационная РНК (иРНК, синоним — мРНК (матричная РНК)) присоединяется к рибосоме, состоящей из двух субъединиц.
Замечу, что вне процесса трансляции субъединицы рибосом находятся в разобранном состоянии.
Первый кодон иРНК, старт-кодон, АУГ оказывается в центре рибосомы, после чего тРНК приносит аминокислоту,
соответствующую кодону АУГ — метионин.
Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз.
Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.
Доставка нужных аминокислот осуществляется благодаря точному соответствию 3 нуклеотидов (кодона) иРНК 3 нуклеотидам (антикодону) тРНК. Язык перевода между иРНК и тРНК выглядит как: А (аденин) — У (урацил), Г (гуанин) — Ц (цитозин).
В основе этого также лежит принцип комплементарности.
Движение рибосомы вдоль молекулы иРНК называется транслокация. Нередко в клетке множество рибосом садятся на одну молекулу
иРНК одновременно — образующаяся при этом структура называется полирибосома (полисома). В результате происходит одновременный синтез множества одинаковых белков.
Синтез белка — полипептидной цепи из аминокислот — в определенный момент завершатся. Сигналом к этому служит попадание
в центр рибосомы одного из так называемых стоп-кодонов: УАГ, УГА, УАА. Они относятся к нонсенс-кодонам (бессмысленным), которые не кодируют ни одну аминокислоту. Их функция — завершить синтез белка.
Существует специальная таблица для перевода кодонов иРНК в аминокислоты. Пользоваться ей очень просто, если вы запомните, что
кодон состоит из 3 нуклеотидов. Первый нуклеотид берется из левого вертикального столбика, второй — из верхнего горизонтального,
третий — из правого вертикального столбика. На пересечении всех линий, идущих от них, и находится нужная вам аминокислота
Давайте потренируемся: кодону ЦАЦ соответствует аминокислота Гис, кодону ЦАА — Глн. Попробуйте самостоятельно найти
аминокислоты, которые кодируют кодоны ГЦУ, ААА, УАА.
Кодону ГЦУ соответствует аминокислота — Ала, ААА — Лиз. Напротив кодона УАА в таблице вы должны были обнаружить прочерк:
это один из трех нонсенс-кодонов, завершающих синтез белка.
Примеры решения задачи №1
Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК),
приведенной вверху.
«Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов
во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны
соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода»
Объяснение:
По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити
ДНК: А-Т, Т-А, Г-Ц, Ц-Г.
Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК:
А-У, Т-А, Г-Ц, Ц-Г.
Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК:
А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что
тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).
Пример решения задачи №2
«Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет
следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ. Установите нуклеотидную последовательность участка тРНК, который синтезируется
на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону
тРНК»
Обратите свое пристальное внимание на слова «Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой
синтезируется участок центральной петли тРНК «. Эта фраза кардинально меняет ход решения задачи: мы получаем право напрямую и сразу
синтезировать с ДНК фрагмент тРНК — другой подход здесь будет считаться ошибкой.
Итак, синтезируем напрямую с ДНК фрагмент молекулы тРНК: АУЦ-ГУУ-УГЦ-ЦГА-УГГ. Это не отдельные молекулы тРНК (как было
в предыдущей задаче), поэтому не следует разделять их запятой — мы записываем их линейно через тире.
Третий триплет ДНК — АЦГ соответствует антикодону тРНК — УГЦ. Однако мы пользуемся таблицей генетического кода по иРНК,
так что переведем антикодон тРНК — УГЦ в кодон иРНК — АЦГ. Теперь очевидно, что аминокислота кодируемая АЦГ — Тре.
Пример решения задачи №3
Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и
аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной
молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.
Один триплет ДНК состоит из 3 нуклеотидов, следовательно, 150 нуклеотидов составляют 50 триплетов ДНК (150 / 3). Каждый триплет ДНК
соответствует одному кодону иРНК, который в свою очередь соответствует одному антикодону тРНК — так что их тоже по 50.
По правилу Чаргаффа: количество аденина = количеству тимина, цитозина = гуанина. Аденина 20%, значит и тимина также 20%.
100% — (20%+20%) = 60% — столько приходится на оставшиеся цитозин и гуанин. Поскольку их процент содержания равен, то
на каждый приходится по 30%.
Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы?
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Генетическая информация в клетке. Гены, генетический код и его свойства. Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот
Генетическая информация в клетке
Воспроизведение себе подобных является одним из фундаментальных свойств живого. Благодаря этому явлению существует сходство не только между организмами, но и между отдельными клетками, а также их органоидами (митохондриями и пластидами). Материальной основой этого сходства является передача зашифрованной в последовательности нуклеотидов ДНК генетической информации, которая осуществляется благодаря процессам репликации (самоудвоения) ДНК. Реа лизуются все признаки и свойства клеток и организмов благодаря белкам, структуру которых в первую очередь и определяют последовательности нуклеотидов ДНК. Поэтому первостепенное значение в процессах метаболизма играет именно биосинтез нуклеиновых кислот и белка. Структурной единицей наследственной информации является ген.
Гены, генетический код и его свойства
Наследственная информация в клетке не является монолитной, она разбита на отдельные «слова» — гены.
Ген — это элементарная единица генетической информации.
Работы по программе «Геном человека», которые проводились одновременно в нескольких странах и были завершены в начале нынешнего века, дали нам понимание того, что у человека всего около 25–30 тыс. генов, но информация с большей части нашей ДНК не считывается никогда, так как в ней содержится огромное количество бессмысленных участков, повторов и генов, кодирующих признаки, утратившие значение для человека (хвост, оволосение тела и др.). Кроме того, был расшифрован ряд генов, отвечающих за развитие наследственных заболеваний, а также генов-мишеней лекарственных препаратов. Однако практическое применение результатов, полученных в ходе реализации данной программы, откладывается до тех пор, пока не будут расшифрованы геномы большего количества людей и станет понятно, чем же все-таки они различаются.
Гены, кодирующие первичную структуру белка, рибосомальной или транспортной РНК называются структурными, а гены, обеспечивающие активацию или подавление считывания информации со структурных генов, — регуляторными. Однако даже структурные гены содержат регуляторные участки.
Наследственная информация организмов зашифрована в ДНК в виде определенных сочетаний нуклеотидов и их последовательности — генетического кода. Его свойствами являются: триплетность, специфичность, универсальность, избыточность и неперекрываемость. Кроме того, в генетическом коде отсутствуют знаки препинания.
Каждая аминокислота закодирована в ДНК тремя нуклеотидами — триплетом, например, метионин закодирован триплетом ТАЦ, то есть код триплетен. С другой стороны, каждый триплет кодирует только одну аминокислоту, в чем заключается его специфичность или однозначность. Генетический код универсален для всех живых организмов, то есть наследственная информация о белках человека может считываться бактериями и наоборот. Это свидетельствует о единстве происхождения органического мира. Однако 64 комбинациям нуклеотидов по три соответствует только 20 аминокислот, вследствие чего одну аминокислоту может кодировать 2–6 триплетов, то есть генетический код избыточен, или вырожден. Три триплета не имеют соответствующих аминокислот, их называют стоп-кодонами, так как они обозначают окончание синтеза полипептидной цепи.
Последовательность оснований в триплетах ДНК и кодируемые ими аминокислоты
*Стоп-кодон, означающий конец синтеза полипептидной цепи.
Сокращения названий аминокислот:
Ала — аланин
Арг — аргинин
Асн — аспарагин
Асп — аспарагиновая кислота
Вал — валин
Гис — гистидин
Гли — глицин
Глн — глутамин
Глу — глутаминовая кислота
Иле — изолейцин
Лей — лейцин
Лиз — лизин
Мет — метионин
Про — пролин
Сер — серин
Тир — тирозин
Тре — треонин
Три — триптофан
Фен — фенилаланин
Цис — цистеин
Если начать считывание генетической информации не с первого нуклеотида в триплете, а со второго, то произойдет не только сдвижка рамки считывания — синтезированный таким образом белок будет совсем иным не только по последовательности нуклеотидов, но и по структуре и свойствам. Между триплетами отсутствуют какие бы то ни было знаки препинания, поэтому нет никаких препятствий для сдвижки рамки считывания, что открывает простор для возникновения и сохранения мутаций.
Матричный характер реакций биосинтеза
Клетки бактерий способны удваиваться каждые 20–30 минут, а клетки эукариот — каждые сутки и даже чаще, что требует высокой скорости и точности репликации ДНК. Кроме того, каждая клетка содержит сотни и тысячи копий многих белков, особенно ферментов, следовательно, для их воспроизведения неприемлем «штучный» способ их производства. Более прогрессивным способом является штамповка, которая позволяет получить многочисленные точные копии продукта и к тому же снизить его себестоимость. Для штамповки необходима матрица, с которой осуществляется оттиск.
В клетках принцип матричного синтеза заключается в том, что новые молекулы белков и нуклеиновых кислот синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул тех же нуклеиновых кислот (ДНК или РНК).
Биосинтез белка и нуклеиновых кислот
Репликация ДНК. ДНК представляет собой двухцепочечный биополимер, мономерами которого являются нуклеотиды. Если бы биосинтез ДНК происходил по принципу ксерокопирования, то неизбежно возникали бы многочисленные искажения и погрешности в наследственной информации, которые в конечном итоге привели бы к гибели новых организмов. Поэтому процесс удвоения ДНК происходит иным, полуконсервативным способом: молекула ДНК расплетается, и на каждой из цепей синтезируется новая цепь по принципу комплементарности. Процесс самовоспроизведения молекулы ДНК, обеспечивающий точное копирование наследственной информации и передачу ее из поколения в поколение, называется репликацией (от лат. репликацио — повторение). В результате репликации образуются две абсолютно точные копии материнской молекулы ДНК, каждая из которых несет по одной копии материнской.
Процесс репликации на самом деле крайне сложен, так как в нем участвует целый ряд белков. Одни из них раскручивают двойную спираль ДНК, другие разрывают водородные связи между нуклеотидами комплементарных цепей, третьи (например, фермент ДНК-полимераза) подбирают по принципу комплементарности новые нуклеотиды и т. д. Образовавшиеся в результате репликации две молекулы ДНК в процессе деления расходятся по двум вновь образующимся дочерним клеткам.
Ошибки в процессе репликации возникают крайне редко, однако если они и происходят, то очень быстро устраняются как ДНК-полимеразами, так и специальными ферментами репарации, поскольку любая ошибка в последовательности нуклеотидов может привести к необратимому изменению структуры и функций белка и, в конечном итоге, неблагоприятно сказаться на жизнеспособности новой клетки или даже особи.
Биосинтез белка. Как образно выразился выдающийся философ XIX века Ф. Энгельс: «Жизнь есть форма существования белковых тел». Структура и свойства белковых молекул определяются их первичной структурой, т. е. последовательностью аминокислот, зашифрованной в ДНК. От точности воспроизведения этой информации зависит не только существование самого полипептида, но и функционирование клетки в целом, поэтому процесс синтеза белка имеет огромное значение. Он, по-видимому, является самым сложным процессом синтеза в клетке, поскольку здесь участвует до трехсот различных ферментов и других макромолекул. Кроме того, он протекает с высокой скоростью, что требует еще большей точности.
В биосинтезе белка выделяют два основных этапа: транскрипцию и трансляцию.
Транскрипция (от лат. транскрипцио — переписывание) — это биосинтез молекул иРНК на матрице ДНК.
Поскольку молекула ДНК содержит две антипараллельных цепи, то считывание информации с обеих цепей привело бы к образованию совершенно различных иРНК, поэтому их биосинтез возможен только на одной из цепей, которую называют кодирующей, или кодогенной, в отличие от второй, некодирующей, или некодогенной. Обеспечивает процесс переписывания специальный фермент РНК-полимераза, который подбирает нуклеотиды РНК по принципу комплементарности. Этот процесс может протекать как в ядре, так и в органоидах, имеющих собственную ДНК, — митохондриях и пластидах.
Синтезированные в процессе транскрипции молекулы иРНК проходят сложный процесс подготовки к трансляции (митохондриальные и пластидные иРНК могут оставаться внутри органоидов, где и происходит второй этап биосинтеза белка). В процессе созревания иРНК к ней присоединяются первые три нуклеотида (АУГ) и хвост из адениловых нуклеотидов, длина которого определяет, сколько копий белка может синтезироваться на данной молекуле. Только потом зрелые иРНК покидают ядро через ядерные поры.
Параллельно в цитоплазме происходит процесс активации аминокислот, в ходе которого аминокислота присоединяется к соответствующей свободной тРНК. Этот процесс катализируется специальным ферментом, на него затрачивается АТФ.
Трансляция (от лат. трансляцио — передача) — это биосинтез полипептидной цепи на матрице иРНК, при котором происходит перевод генетической информации в последовательность аминокислот полипептидной цепи.
Второй этап синтеза белка чаще всего происходит в цитоплазме, например на шероховатой ЭПС. Для его протекания необходимы наличие рибосом, активация тРНК, в ходе которой они присоединяют соответствующие аминокислоты, присутствие ионов Mg2+, а также оптимальные условия среды (температура, рН, давление и т. д.).
Для начала трансляции (инициации) к готовой к синтезу молекуле иРНК присоединяется малая субъединица рибосомы, а затем по принципу комплементарности к первому кодону (АУГ) подбирается тРНК, несущая аминокислоту метионин. Лишь после этого присоединяется большая субъединица рибосомы. В пределах собранной рибосомы оказываются два кодона иРНК, первый из которых уже занят. К соседнему с ним кодону присоединяется вторая тРНК, также несущая аминокислоту, после чего между остатками аминокислот с помощью ферментов образуется пептидная связь. Рибосома передвигается на один кодон иРНК; первая из тРНК, освободившаяся от аминокислоты, возвращается в цитоплазму за следующей аминокислотой, а фрагмент будущей полипептидной цепи как бы повисает на оставшейся тРНК. К новому кодону, оказавшемуся в пределах рибосомы, присоединяется следующая тРНК, процесс повторяется и шаг за шагом полипептидная цепь удлиняется, т. е. происходит ее элонгация.
Окончание синтеза белка (терминация) происходит, как только в молекуле иРНК встретится специфическая последовательность нуклеотидов, которая не кодирует аминокислоту (стоп-кодон). После этого рибосома, иРНК и полипептидная цепь разделяются, а вновь синтезированный белок приобретает соответствующую структуру и транспортируется в ту часть клетки, где он будет выполнять свои функции.
Трансляция является весьма энергоемким процессом, поскольку на присоединение одной аминокислоты к тРНК расходуется энергия одной молекулы АТФ, еще несколько используются для продвижения рибосомы по молекуле иРНК.
Для ускорения синтеза определенных белковых молекул к молекуле иРНК могут присоединяться последовательно несколько рибосом, которые образуют единую структуру — полисому.
Философ Фридрих Энгельс в своем знаменитом определении сказал, что жизнь является способом существования белковых тел. В каждом живом организме безостановочно идет сложный процесс, требующий немалых энергетических затрат, — синтезируются и созревают белки. Общая схема биосентеза белка такова: ДНК — иРНК — белок.
Биосинтез белка делится на два главных этапа. Во-первых, из аминокислот синтезируется полипептидная цепь. Этот этап проходит на рибосомах при участии молекул двух типов РНК, информационной и транспортной. Во-вторых, с полипептидной цепью происходят посттрансляционные модификации. Образно представить весь этот процесс можно как крошечную железную дорогу, по которой постоянно, от одной станции к другой, снуют паровозы с прицепленными гружеными вагонами.
Трансляция
1. Синтез полипептидных белковых цепей по матрице иРНК, который производится рибосомами, называется трансляцией.
2. Полисома — система рибосом в виде цепи, используемая для увеличения количества производимых белков. Через нее может проходить одна и та же иРНК.
3. Первым делом иРНК должна получить некую информацию. Транскрипция — процесс перенесения информации с ДНК на иРНК в ядре по принципу комплементарности. Далее иРНК идет в цитоплазму для синтеза белка на ее матрице.
4. Как ДНК проходит подготовку к транскрипции? При помощи ферментов двойная связь ДНК раскручивается, разрываются водородные связи.
5. Значительная часть ДНК, как и ее копия иРНК являются некодирующими. Кодирующие части иРНК называют экзонами, некодирующие интронами. Для «отбрасывания» некодирующих участков происходит сплайсинг — вырезание интронов с помощью ферментов.
6. Как аминокислоты доставляются к рибосомам? С помощью тРНК, по форме напоминающей клеверный лист и состоящей из 70–90 нуклеотидов.
7. Сколько видов тРНК в клетке? Столько же, сколько кодонов (триплетов), шифрующих аминокислоты — 64. Кодоны — это триплеты нуклеотидов в иРНК. Пример триплета — АГЦ (аденин, гуанин, цитозин). Каждое азотистое основание, например, аденин, входит в состав какого-то нуклеотида.
8. Вверху в тРНК имеется триплет, присоединяющийся к кодонам иРНК. Это антикодон.
9. Фермент кодаза присоединяет аминокислоту к тРНК. Причем он присоединяет строго ту аминокислоту, которая кодируется кодоном иРНК — триплетом, комплементарным антикодону тРНК.
10. Для связывания одной аминокислоты с тРНК тратится одна молекула АТФ.
11. Аминокислота отрывается от тРНК в тот момент, когда тРНК подходит к рибосоме и ее антикодон узнает кодон иРНК по принципу комплементарности.
12. В акцепторном участке рибосомы приходящая тРНК присоединяется к своему кодону иРНК, причем аминокислота присоединяет к себе растущую цепь белка — образуется пептидная связь.
13. В донорный участок рибосомы тРНК перемещается вместе с кодоном иРНК и с аминокислотой, цепь удлиняется на одну аминокислоту. На место данной тРНК в акцепторный участок идет новая тРНК.
14. Разные полипептидные цепи отделяются друг от друга своеобразными «знаками препинания», тремя триплетами — УАА, УАГ, УГА. Ни одна тРНК не имеет антикодонов, комплементарных данным триплетам, потому она не сможет поступить в акцепторный участок.
15. Какая аминокислота стоит в начале синтезируемого полипептида в рибосоме прокариот? Формилметионин, она соответствует антикодону АУГ иРНК. Данная измененная форма аминокислоты метионина является «заглавной буквой» фразы и прямиком следует в донорный участок рибосомы. С нее начинается синтез любой белковой цепи у бактерий, митохондрий, хлоропластов. У эукариот гены ядра не кодируют эту аминокислоту. После того как синтез полипептидной цепи закончен, формилметионин отщепляется от нее и отсутствует в готовом белке.
16. Что происходит с тРНК после выполнения ее роли? С помощью фермента кодазы к ней будет присоединена та же аминокислота, и тРНК продолжит функционировать.
17. Посттрансляционная модификация — формирование структур белка: вторичной, третичной и четвертичной. В этом процессе участвуют ферменты и затрачивается энергия.
Каждая клетка содержит тысячи белков. Свойства белков зависят от их первичной структуры, т. е. порядка соединения аминокислотных остатков в молекулах.
Информация о первичной структуре всех белков организма закодирована последовательностью нуклеотидов, образующих молекулы ДНК. В молекулах ДНК выделяют гены. Каждый ген соответствует одному белку.
Ген — это единица наследственности, представляющая собой участок ДНК, в котором закодирована первичная структура молекул одного белка.
В одной молекуле ДНК содержится много генов. Все гены данного организма образуют его генотип.
Процесс биосинтеза белка состоит из двух этапов: транскрипции и трансляции.
Рис. (1). Этапы биосинтеза белка
Для каждого этапа биосинтеза требуются особые ферменты и АТФ.
Биосинтез происходит в клетках с огромной скоростью. В организме высших животных в одну минуту образуется до (60) тыс. пептидных связей.
Транскрипция
Транскрипция — это процесс переписывания наследственной информации с молекулы ДНК на информационную (матричную) РНК.
В ходе транскрипции участок двуцепочечной ДНК «разматывается». На одной из цепочек синтезируется молекула иРНК.
Рис. (2). Транскрипция
Информационная (матричная) РНК одноцепочечная, она собирается на одной из нитей ДНК по правилу комплементарности.
Рис. (3). Комплементарность ДНК и РНК
Образуется молекула иРНК, которая является копией второй цепочки ДНК, только в ней тимин заменён на урацил. Закодированная в ДНК информация о первичной структуре белка таким образом переписывается на иРНК.
Как и в любой другой биохимической реакции, в этом процессе участвует фермент — РНК-полимераза.
Молекула ДНК содержит большое количество генов. Каждый ген начинается промотором — особым участком ДНК, состоящим из нескольких расположенных друг за другом нуклеотидов, который определяет РНК-полимераза, и с этого места начинает сборку молекулы иРНК.
Синтез иРНК продолжается до терминатора — последовательности, указывающей на завершение сборки иРНК.
В клетках прокариот иРНК образуется в цитоплазме, поэтому образовавшиеся молекулы могут сразу принимать участие в синтезе белков на рибосомах.
В клетках эукариот транскрипция происходит в ядре, поэтому иРНК сначала через поры в ядерной мембране выходит в цитоплазму.
Трансляция
Трансляция — это перевод информации, закодированной в иРНК, в первичную структуру молекулы белка.
Для сборки белковой молекулы в цитоплазме клетки должны присутствовать все необходимые аминокислоты. Они образуются при расщеплении белков, поступающих с пищей, или синтезируются в самом организме.
Аминокислоты доставляются к рибосомам транспортными РНК (тРНК). Аминокислота попадает в рибосому только в комплексе с сответствующей тРНК.
На тот конец иРНК, с которого нужно начать синтез белка, нанизывается рибосома. Она движется вдоль иРНК прерывисто, «скачками», задерживаясь на каждом кодоне приблизительно (0,2) секунды.
К кодону, расположенному в активном центре рибосомы, присоединяется тРНК с комплементарным антикодоном. Соединённая с ней аминокислота образует пептидную связь к растущей полипептидной цепочкой. Затем рибосома перемещается на следующий кодон иРНК. В рибосоме оказывается тРНК с антикодоном, комплементарным следующему триплету в иРНК, и к образующейся молекуле белка присоединяется следующая аминокислота.
Рис. (4). Трансляция
Рибосома постепенно сдвигается по иРНК, задерживаясь на следующих триплетах. Так поэтапно собирается молекула белка.
Синтез полипептидной цепи заканчивается, когда в активном центре рибосомы оказывается стоп-кодон (УАА, УАГ или УГА). Молекула белка отсоединяется от рибосомы, выходит в ЭПС или цитоплазму и усложняется, образуя характерную вторичную, третичную и четвертичную структуры.
На одной иРНК одновременно находятся несколько рибосом и происходит синтез нескольких молекул белка. Рибосомы, которые связаны с одной иРНК и синтезируют один и тот же белок, образуют полисому.
Когда синтез данного белка окончен, рибосома может найти другую иРНК и начать синтезировать другой белок.
Общая схема синтеза белка представлена на рисунке.
Рис. (5). Общая схема биосинтеза белка
Пример:
последовательность нуклеотидов матричной цепи ДНК: ААГ ГЦТ ТАГ.
При транскрипции на этой цепи по принципу комплементарности образуется участок иРНК с нуклеотидами УУЦ ЦГА АУЦ, на котором в результате трансляции образуется цепочка из аминокислот: фенилаланин — аргинин — серин.
Если в одном из триплетов произойдёт замена нуклеотидов или они поменяются местами, то может случиться так, что триплет станет кодировать какую-нибудь другую аминокислоту. Значит, произойдут изменения и в строении белка, закодированного данным геном, что может оказать влияние на процессы обмена веществ и изменить признаки организма.
Обрати внимание!
Нарушения последовательности нуклеотидов в ДНК или иРНК могут приводить к возникновению мутаций.
Источники:
Рис. 1. Этапы биосинтеза белка. https://image.shutterstock.com/image-vector/dna-replication-protein-synthesis-transcription-600w-1040732464.jpg
Рис. 2. Транскрипция. https://image.shutterstock.com/image-illustration/double-stranded-dna-copied-into-600w-757534681.jpg
Рис. 3. Комплементарность ДНК и РНК. © ЯКласс
Рис. 4. Трансляция. https://image.shutterstock.com/image-vector/scheme-translation-process-syntesis-mrna-600w-1314724547.jpg
Рис. 5. Общая схема биосинтеза белка. https://image.shutterstock.com/image-vector/protein-synthesis-vector-illustration-labeled-600w-1205986015.jpg
Наследственная информация в клетке не является монолитной, она разбита на отдель
ные «слова» — гены.
Ген — это элементарная единица генетической информации. У человека всего около
25–30 тыс. генов.
Генетический код. Наследственная информация организмов зашифрована в ДНК в виде определенных сочетаний нуклеотидов и их последовательности — генетического кода.
Его свойствами являются: триплетность, специфичность, универсальность и избыточность.
Кроме того, в генетическом коде отсутствуют «знаки препинания». 23
Каждая аминокислота закодирована в ДНК тремя нуклеотидами — триплетом, например, метионин закодирован триплетом ТАЦ. Каждый триплет кодирует только
одну аминокислоту, в чем заключается его специфичность или однозначность. Генетический код универсален для всех живых организмов, то есть наследственная информация о белках
человека может считываться бактериями и наоборот. Это свидетельствует о единстве проис
хождения органического мира. Однако 64 комбинациям нуклеотидов по три соответствует
только 20 аминокислот, вследствие чего одну аминокислоту могут кодировать 2–6 триплетов и имеется три стопкодона, то есть генетический код избыточен, или вырожден. Три
триплета не имеют соответствующих аминокислот, их называют стопкодонами, так как они обозначают окончание синтеза полипептидной цепи.
Репликация ДНК, а также синтез РНК и белков в клетках осуществляются по принципу
матричного синтеза, который заключается в том, что новые молекулы белков и нуклеи
новых кислот синтезируются в соответствии с программой, заложенной в структуре ранее
существовавших молекул нуклеиновых кислот (ДНК или РНК).
Репликация ДНК. Процесс самовоспроизведения молекулы ДНК, обеспечивающий точное
копирование наследственной информации и передачу ее из поколения в поколение, называет
ся репликацией (от лат. репликацио — повторение). В результате репликации образуются две
абсолютно точные копии материнской молекулы ДНК, каждая из которых несет по одной
копии материнской (рис. 42). Ключевым ферментом репликации является ДНКполимераза.
Репликация ДНК является полуконсервативной, так как молекула ДНК расплетается, и на
каждой из ее цепей синтезируется новая цепь по принципу комплементарности.
Образовавшиеся в результате репликации две молекулы ДНК в процессе деления расхо
дятся по двум вновь образующимся дочерним клеткам.
Ошибки в процессе репликации возникают крайне редко, но если они происходят,
то устраняются ДНКполимеразами или ферментами репарации.
Биосинтез белка является сложнейшим клеточным процессом — в нем участвуют
до трехсот различных ферментов и других макромолекул. Выделяют два основных этапа
синтеза белка: транскрипцию и трансляцию.
Транскрипция (от лат. транскрипцио — переписывание) — это биосинтез молекул иРНК
на соответствующих участках ДНК (рис. 43).
Биосинтез молекул иРНК происходит только на од
ной из цепей, которую называют матричной. Транскрибируется только один ген или группа генов. Процесс
транскрипции катализирует фермент РНКполимераза,
которая подбирает нуклеотиды РНК по принципу компле
ментарности. Этот процесс у эукариот протекает в ядре
и в органоидах, имеющих собственную ДНК, — митохондриях и пластидах, а у прокариот — в нуклеоиде.
Синтезированные в процессе транскрипции в ядре
молекулы иРНК проходят сложный процесс подготовки
к трансляции, после чего они выходят в цитоплазму.
Трансляция (от лат. транс
ляцио — передача) — это био
синтез полипептидной цепи
на матрице иРНК, при котором
происходит перевод генети
ческой информации в после
довательность аминокислот
полипептидной цепи (рис. 44).
Трансляция чаще всего происходит в цитоплазме, например на шероховатой ЭПС.
Для синтеза белка необходима предварительная активация аминокислот, в ходе кото
рой аминокислота присоединяется к соответствующей
тРНК. Этот процесс катализируется специальным ферментом и требует затраты АТФ.
Для начала трансляции (инициации) к готовой к син
тезу молекуле иРНК присоединяется малая субъединица
рибосомы, а затем к первому кодону (АУГ) иРНК подби
рается тРНК с комплементарным антикодоном, несущая
аминокислоту метионин. Лишь после этого присоединя
ется большая субъединица рибосомы. В пределах собран
ной рибосомы оказываются два кодона иРНК, первый
из которых уже занят. К соседнему с ним кодону под
бирается вторая тРНК, также несущая аминокислоту,
после чего между остатками аминокислот с помощью ферментов образуется пептидная связь. Рибосома передвигается на один кодон иРНК; пер
вая из тРНК, освободившаяся от аминокислоты, покидает рибосому, а фрагмент синте
зирующейся полипептидной цепи удерживается на оставшейся тРНК. К новому кодону,
оказавшемуся в пределах рибосомы, присоединяется следующая тРНК, процесс повторяется
и шаг за шагом полипептидная цепь удлиняется, т. е. происходит ее элонгация.