Биосфера (греч. bios — жизнь + sphaira — шар) — наружная оболочка Земли, населенная живыми организмами, составляющими
в совокупности живое вещество планеты. Термин «биосфера» предложен австрийским геологом Э. Зюссом, учение о биосфере было создано и
развито российским и советским ученым Вернадским Владимиром Ивановичем.
Биосфера — совокупность всех биогеоценозов, это открытая система, структура и свойства которой определяются деятельностью организмов
в прошлом и настоящем. Биосферу можно рассматривать как часть лито-, гидро- и атмосферы, заселенную живыми существами.
Запомните, что наибольшая концентрация живого вещества сосредоточена на границе сред (к примеру, на границе литосферы и атмосферы).
Границы биосферы
Общая толщина биосферы приблизительно 17 км. Живые организмы проникают вглубь литосферы на расстояние до 6-7 км, заселяют всю
толщу гидросферы (до самого дна мирового океана). В атмосфере живые организмы встречаются в нижней части — тропосфере, которую
сверху ограничивает озоновый слой (часть стратосферы).
Выше «озонового экрана» существование жизни в привычном для нас виде невозможно, так как губительное УФ (ультрафиолетовое) излучение уничтожает все живое.
Возникновению жизни в недрах Земли препятствует высокая температура, оказывающая разрушительное воздействие.
Вещество биосферы
Многокомпонентная сложная система биосферы включает несколько отдельных элементов. Вернадский В.И. создал учение, в соответствии с которым
вещество биосферы состоит из:
- Живое вещество
- Косное вещество
- Биогенное вещество
- Биокосное вещество
Совокупность всех живых организмов на нашей планете. Именно Вернадский показал, что деятельность живых существ —
важнейший фактор геологических изменений планеты.
Формируется без участия живых организмов. Базальт, гранит, песок, золотоносные руды. К косному веществу можно отнести горные породы
магматического происхождения, образовавшиеся в результате извержения вулканов.
Это вещество образуется живыми организмами в процессе их жизнедеятельности. Примерами биогенного вещества могут послужить
залежи известняка, природный газ, кислород, нефть, каменный уголь, торф.
Биокосное вещество создается одновременно деятельностью живых организмов и косными процессами. Таким образом, биокосное вещество объединяет в себе живое и косное вещества.
К биокосному веществу относятся пресная и соленая вода, почва, воздух. Почва является верхним наиболее плодородным слоем литосферы Земли. Почва — уникальный продукт совместной деятельности
живых организмов, то есть биологических и геологических процессов, протекающих в живой природе.
Функции живого вещества
Важнейший компонент биосферы — живое вещество, то есть — живые организмы. Их деятельность приводит к наиболее значительным геологическим изменениям в биосфере,
они обеспечивают круговорот веществ — главное условие зарождения новой жизни.
Перечислим важнейшие функции живого вещества:
- Энергетическая
- Газовая
- Концентрационная
- Окислительно-восстановительная
- Деструктивная
Живые организмы постоянно получают и преобразуют энергию. Растения преобразуют энергию солнечного света в энергию химических
связей, а животные передают ее по цепочке. После смерти растений и животных энергия возвращается в круговорот благодаря бактериям
и грибам — сапротрофам (греч. sapros – гнилой), разлагающим мертвое органическое вещество.
Деятельность живых организмов обеспечивает постоянный газовый состав атмосферы. В ходе дыхания животные поглощают кислород и
выделяют углекислый газ, а растения в ходе фотосинтеза поглощают углекислый газ и выделяют кислород. Бактерии хемотрофы также
выделяют в атмосферу некоторые газы, полученные окислением сероводорода, азота.
Я никогда не перестану восхищаться этой функцией живого вещества. Вы только вдумайтесь: на одной и той же почве, рядом друг с другом,
растут совершенно разные растения по форме, размеру и окраске плодов, цветков! Каждый раз задумываешься: как это возможно?
Это связано с тем, что каждое живое существо избирательно накапливает определенные химические элементы. К примеру, многие моллюски
накапливают кальций, образуют известковый скелет — раковину. После их смерти раковины опускаются на дно, в результате чего создаются залежи полезных ископаемых — известняка (мела).
В результате жизнедеятельности мха сфагнума образуется полезное ископаемое — торф, а папоротниковидные образуют каменный уголь. Это
концентрат углеродистых и кальциевых соединений в погибших растениях, которые тысячелетиями отмирали и образовали залежи ископаемых.
Живые организмы способны окислять и восстанавливать различные химические вещества. На реакциях окисления и восстановления основан
метаболизм (обмен веществ) любого живого существа, подобные реакции протекают постоянно в ходе фотосинтеза, энергетического обмена.
Без разрушения «старой» жизни, невозможно возникновение «новой». После смерти живых существ их останки подвергаются разрушению, из них
высвобождается энергия, накопленная в связях химических веществ. Непрерывный круговорот должен продолжаться всегда — это главное условие
жизни.
Теория биогенной миграции атомов Вернадского В.И.
При непосредственном участии живого вещества в биосфере непрерывно осуществляется биогенная миграция атомов. Даже сейчас, с каждым вашим
вдохом, атомы кислорода соединяются с гемоглобином эритроцитов, доставляются по крови к клеткам тканей организма и становятся частью ваших клеток.
Откуда взялся кислород, которым мы дышим? Его в процессе фотосинтеза выделили растения. Для процесса фотосинтеза необходим углекислый газ, который
в процессе дыхания выделяют животные, углекислый газ, который образуется при разложении останков растений и животных. Получается круговорот атомов.
Все атомы, которыми мы обладаем, которые стали частью наших рук, глаз, носа, языка — все эти атомы кому-то принадлежали до нас! За миллиарды
лет существования Земли они успели побывать в мириадах растений, грибов и животных. То, что наши атомы сейчас с нами — великое чудо и
немыслимая случайность.
Я искренне восхищаюсь этой теорией, она показывает непрерывность жизни, бесконечность нашего существования и единство
всего живого.
Ноосфера
Ноосфера (греч. noos — разум и sphaira — шар) — термин введенный русским ученым В.И. Вернадским. Ноосфера подразумевает взаимодействие
природы и общества, при котором человек является главным определяющим фактором эволюции. Человек становится крупнейшей геологической
силой.
Споры о том, можно ли считать современный этап развития цивилизации ноосферой остаются открытыми. Основная идея ноосферы — разумное,
рациональное поведение человека, при котором он сосуществует в гармонии со всеми другими формами жизни.
К сожалению, нынешняя ситуация напоминает старую поговорку: «Пока не потеряешь, не осознаешь ценность». Неужели растения должны исчезнуть с
лица Земли, чтобы мы вспомнили о том, что благодаря фотосинтезу в их листьях мы дышим кислородом? В этом случае чувство нашего ложного
величия может сильно пострадать.
Круговорот веществ
Углерод находится в природе в основном в составе углекислого газа, угольной кислоты и ее нерастворимых солей — карбоната кальция (из которого
состоят раковины моллюсков). Отмирая, живые организмы образуют залежи полезных ископаемых: торф, древесину, каменный уголь, нефть. Известняк
может надолго исключить углерод из круговорота веществ.
Подобно этому, долгое время нефть и уголь были почти полностью исключены из круговорота веществ, однако в настоящее время человек «вернул их в строй» вместе с
выхлопными газами.
Азот находится в воздухе, которым мы дышим, и составляет 78% от его объема. Большая часть азота поступает в почву и воду благодаря деятельности
микроорганизмов, бактерий и водорослей.
Широко известны клубеньковые бактерии на корнях бобовых растений, находящиеся с ними в симбиозе. Клубеньковые бактерии переводят атмосферный
азот в нитраты, которые необходимы для роста и развития растения и могут быть усвоены им, в отличие от атмосферного азота (газа).
В листьях в процессе биосинтеза азот преобразуется в белки. Травоядные животные поедают растения, таким образом, белок включается в их состав.
После смерти животных белки разлагаются сапротрофами, которые выделяют аммиак, нитраты. Часть нитратов усваивается растениями, а часть восстанавливается
бактериями до атмосферного азота — цикл замыкается.
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Всего: 23 1–20 | 21–23
Добавить в вариант
Установите соответствие между названиями веществ биосферы и их происхождением: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
НАЗВАНИЕ ВЕЩЕСТВ
А) донный ил
Б) песок
В) почва
Г) природный газ
Д) кварц
Е) каменный уголь
1) косное
2) биогенное
3) биокосное
Запишите в таблицу выбранные цифры под соответствующими буквами.
А | Б | В | Г | Д | Е |
Раздел: Основы экологии
Источник: СтатГрад биология. 30.11.2018. Вариант БИ10202
Установите соответствие между примерами и видами вещества биосферы: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ПРИМЕРЫ
А) известняк
Б) гранит
В) почва
Г) ил
Д) нефть
Е) песок
ВИДЫ ВЕЩЕСТВА
1) биогенное
2) биокосное
3) косное
Запишите в таблицу выбранные цифры под соответствующими буквами.
А | Б | В | Г | Д | Е |
Закон биогенной миграции атомов создал
Биогенная миграция атомов в биосфере обеспечивается
1) приспособленностью организмов к среде обитания
2) раздражимостью организмов
3) эволюцией органического мира
4) обменом веществ и превращением энергии
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни организации
живой природы |
Процессы |
---|---|
Молекулярный | Уровень ДНК |
? | Биогенная миграция атомов |
Источник: ЕГЭ по биологии 2020. Досрочная волна. Вариант 2
К биогенным веществам биосферы относят
Установите соответствие между природным образованием и веществом биосферы согласно классификации В. И. Вернадского.
ПРИРОДНОЕ ОБРАЗОВАНИЕ
A) известняк
Б) базальт
B) глина
Г) нефть
Д) каменный уголь
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
A | Б | В | Г | Д |
Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Сибирь. Вариант 3.
Биогенным веществом в биосфере является
Перемещение живого вещества в биосфере называется
1) абиогенной миграцией атомов
2) биогенной миграцией атомов
3) тепловым движением молекул
4) органической эволюцией
Источник: Диагностическая работа по биологии 06.04.2011 Вариант 2.
Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны. Основные положения клеточной теории позволяют сделать вывод о
1) биогенной миграции атомов
2) родстве организмов
3) происхождении растений и животных от общего предка
4) появлении жизни на Земле около 4,5 млрд. лет назад
5) сходном строении клеток всех организмов
Источник: РЕШУ ЕГЭ
Установите соответствие между веществами и их происхождением: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ВЕЩЕСТВА
А) фораминифера
Б) янтарь
В) торф
Г) железная руда
Д) актиния
Е) детрит
ПРОИСХОЖДЕНИЕ
1) живое
2) косное
3) биогенное
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
А | Б | В | Г | Д | Е |
Наибольшая роль человека в биогенной миграции атомов состоит в
1) вовлечении в биологический круговорот химических элементов
2) увеличении скорости круговорота воды
3) регулировании численности растений и животных
4) регулировании численности микроорганизмов
ВЫБЕРИТЕ ПРАВИЛЬНЫЕ УТВЕРЖДЕНИЯ. Биогеоценоз — это:
1) система, которая состоит из отдельных, невзаимосвязанных организмов;
2) система, которая состоит из структурных элементов: видов и популяций;
3) целостная система, способная к саморегуляции;
4) закрытая система взаимодействующих популяций;
5) открытая система, нуждающаяся в поступлении энергии извне;
6) система, характеризующаяся отсутствием биогенной миграции атомов.
Уровень, на котором изучаются процессы биогенной миграции атомов, называется
1) биогеоценотический
2) биосферный
3) популяционный
4) организменный
Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Укажите три функции живого вещества биосферы.
1) транспортная
2) гравитационная
3) тектоническая
4) средообразующая
5) фотопериодическая
6) энергетическая
Установите соответствие между характеристиками и названиями функций живого вещества в биосфере (по В. И. Вернадскому): к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ХАРАКТЕРИСТИКА
А) выделение метана в атмосферу
в результате деятельности денитрифицирующих бактерий
Б) образование воды и углекислого газа в процессе дыхания аэробов
В) накопление солей кремния в клетках хвощей
Г) восстановление углекислого газа в процессе фотосинтеза
Д) образование известняка
ФУНКЦИЯ
1) окислительно-восстановительная
2) газовая
3) концентрационная
Запишите в таблицу выбранные цифры под соответствующими буквами.
А | Б | В | Г | Д |
Установите соответствие между процессами и функциями вещества биосферы: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ПРОЦЕССЫ
А) переход двухвалентного железа в трёхвалентное под действием железобактерий
Б) преобразование сероводорода в серу серобактериями
В) выделение кислорода в атмосферу при фотосинтезе
Г) накопление кальция в костях человека
Д) выделение молекулярного азота в атмосферу при денитрификации
Е) накопление кремния в стеблях хвощей
ФУНКЦИИ ВЕЩЕСТВА
1) газовая
2) концентрационная
3) окислительно-восстановительная
Запишите в таблицу выбранные цифры под соответствующими буквами.
А | Б | В | Г | Д | Е |
Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они допущены. Исправьте их.
1. В составе клетки обнаружено около 80 химических элементов, входящих в периодическую таблицу Д. И. Менделеева. 2. Группу макроэлементов образуют водород, кислород, углерод, цинк, фосфор. 3. Группу микроэлементов составляют бром, азот, сера, железо, йод и другие. 4. Кальций и фосфор участвуют в формировании костной ткани. 5. Кроме того, фосфор – элемент, от которого зависит нормальная свертываемость крови. 6. Железо входит в состав гемоглобина – белка эритроцитов. 7. Калий и натрий необходимы для проведения нервных импульсов.
Какие из перечисленных соединений, входящих в состав клеток организма человека, включают азот?
Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Сибирь. Вариант 3.
Одним из положений учения В. И. Вернадского о биосфере служит следующее утверждение:
1) живое вещество — совокупность живых организмов на Земле
2) живым организмам присущи рост и развитие
3) все живые организмы образуют виды
4) живые организмы связаны со средой обитания
Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Центр, Урал. Вариант 4.
Всего: 23 1–20 | 21–23
Биосфера — глобальная экосистема. Учение В. И. Вернадского о биосфере. Живое вещество,
его функции. Особенности распределения биомассы на Земле. Биологический круговорот
и превращение энергии в биосфере, роль в нем организмов разных царств.
Эволюция биосферы
Биосфера — глобальная экосистема
Биосфера — область существования и жизнедеятельности ныне живущих организмов, которая пронизывает нижние слои атмосферы, всю гидросферу и верхнюю часть литосферы.
Помимо среды обитания, в понятие биосферы включается и вся совокупность живых организмов, населяющих ее и обеспечивающих ее функционирование. Биосферу можно рассматривать и как многоуровневую систему элементарных экосистем — биогеоценозов.
Распространение жизни в географических оболочках Земли зависит от ряда факторов. Так, в атмосфере нарастание силы земного тяготения по мере приближения к Земле и ослабление космического излучения озоновым экраном обусловливает наличие условий, пригодных для жизни, в пределах 20 км над уровнем моря. В гидросфере живые существа обнаружены до глубин 11 км и более (Марианская впадина). В литосфере же они проникают на глубину 5–6 км (в среднем до 2–3 км).
Способность биосферы как открытой системы, зависящей от поступления энергии извне, обеспечивать улавливание и прохождение потока энергии, а также круговорот веществ на планете делает ее глобальной экосистемой.
Большие круговороты веществ на уровне биосферы, являющиеся совокупностью малых круговоротов и представляющие собой совокупность путей перемещения веществ через живые организмы и среду их обитания, называются биогеохимическими циклами. Биогеохимические циклы гораздо более замкнуты, нежели малые круговороты на уровне биогеоценозов. Неполная замкнутость биогеохимических циклов (95–98 %) сыграла огромную роль в накоплении биогенных элементов в земной коре.
Стадии различных биогеохимических циклов протекают с неодинаковой скоростью, да и полного повторения каждого цикла добиться невозможно, поскольку вся природа постоянно находится в процессе изменения. Тем не менее все биогеохимические циклы в природе взаимосвязаны и обеспечивают существование жизни.
Биогеохимические циклы напоминают колеса водяной мельницы, которые под действием потока энергии Солнца обеспечивают перемещение, видоизменение и перераспределение энергии и веществ в биосфере. Сам термин «биогеохимический цикл» был введен в начале ХХ века В. И. Вернадским.
«Лопатками» на «колесах» биогеохимических циклов служат различные экологические группы организмов — продуценты, консументы и редуценты, от соотношения которых в биосфере зависит как улавливание солнечной энергии, так и полнота оборота веществ. Для обеспечения устойчивого потока энергии и круговорота веществ в биосфере необходимы не только видовое разнообразие организмов, но и саморегуляция этой глобальной экосистемы благодаря существованию многочисленных прямых и обратных связей.
Термин «биосфера» в значении «зоны жизни» и внешней оболочки Земли впервые был употреблен Ж. Б. Ламарком в 1802 году, однако его трактовку, близкую к современной, предложил в 1875 году австрийский ученый Э. Зюсс.
Учение В. И. Вернадского о биосфере и ноосфере
Разработка учения о биосфере как сложной многокомпонентной планетарной системе связанных между собой значительных биологических комплексов, а также химических и геологических процессов, происходящих на Земле, — заслуга великого русского ученого В. И. Вернадского (1864–1945). В отличие от других сфер Земли, в пределах биосферы мощнейшим геологическим фактором, преобразующим глобальную экосистему, выступают живые организмы, обеспечивающие направленный поток энергии и функционирование биогеохимических циклов.
Согласно теории В. И. Вернадского, биосфера состоит из четырех компонентов: живого, биогенного, биокосного и косного веществ.
Живое вещество является совокупностью ныне живущих организмов.
Биогенное вещество представляет собой разнообразные органические остатки, в том числе и не полностью разложившиеся (детрит, торф, уголь, нефть и газ биогенного происхождения).
Биокосное вещество — это уже разнообразные смеси биогенных веществ с минеральными породами абиогенного происхождения (почва, илы, природные воды, газо- и нефтеносные сланцы, битуминозные пески, часть осадочных карбонатов).
Косное вещество представлено различными абиотическими компонентами, не затронутыми прямым биогеохимическим воздействием организмов (горные породы, минералы, осадки и др.).
Несмотря на то, что человечество является частью биосферы, в последние два века оно стало не менее мощным геологическим фактором, нежели все остальное живое вещество. В связи с этим французский философ Э. Леруа в 1927 году ввел термин «ноосфера» в значении уже существующего «мыслящего пласта». Однако, согласно учению о ноосфере, также разработанному В. И. Вернадским, ноосфера — это высший этап развития земной природы, результата совместной эволюции природы и общества, направляемой человеком; будущее биосферы, когда она, благодаря разумной деятельности и могуществу человека, приобретет новую функцию — функцию гармоничной стабилизации условий жизни на планете. Согласно В. И. Вернадскому, главная цель в построении ноосферы заключается в неизменности того типа биосферы, в которой возник и может существовать человек как вид, сохраняя свое здоровье и образ жизни.
Эпохе ноосферы должна предшествовать глубокая социально-экономическая реорганизация общества, изменение его ценностной ориентации. К идее ноосферы примыкают соображения В. И. Вернадского о возможности в будущем достижения человеком состояния автотрофности как средства независимости от органических ресурсов.
Несмотря на то, что многие авторы не относят ноосферу в будущее, а считают ее совсем близкой или уже формирующейся, если принять во внимание все еще продолжающуюся разрушительную хозяйственную деятельность человека, то ноосфера является гипотетической стадией развития биосферы, когда в будущем разумная деятельность людей станет главным определяющим фактором ее устойчивого развития.
Гармония антропогенной деятельности человека и природы возможна только при осуществлении контроля численности человечества, ограничении чрезмерных потребностей людей, рационализации использования природных ресурсов, использовании только экологически целесообразных промышленных технологий с максимальной переработкой и применением вторичных материальных и технологических ресурсов, осуществлении глобального экологического мониторинга окружающей природной среды и др.
Живое вещество, его функции
Совокупность всех живых организмов планеты образует биомассу, или живое вещество Земли. Его сухая масса оценивается приблизительно в 1,8–2,5$·$1012 т. Это кажущееся невероятным количество на самом деле составляет всего лишь 0,01 % массы земной коры, однако еще В. И. Вернадский отмечал, что на земной поверхности нет иной химической силы, которая бы действовала более постоянно, а поэтому и более могущественной по своим конечным результатам, чем живое вещество.
И действительно, роль живых организмов в процессах, происходящих на планете, огромна. Хорошо известно, что весь кислород в атмосфере имеет биогенное происхождение, панцири отмерших морских и пресноводных одноклеточных образовали в течение миллионов лет такие осадочные породы, как известняки и диатомит, а без бактерий, грибов, водорослей и почвенных одноклеточных невозможно формирование плодородного слоя почвы. Живое вещество ежегодно воспроизводит около 10 % биомассы, а это 232,5 $×$ 109 т сухого органического вещества, при этом в фотосинтез вовлекается 46 $×$ 109 т углерода, для чего они пропускают через себя 170 $×$ 109 т диоксида углерода и 68 $×$ 109 т воды. Кроме того, в процесс вовлекается 6 $×$ 109 т азота, 2 $×$ 109 т фосфора в год, а также тысячи тонн калия, кальция, магния, серы, железа и других химических элементов.
Изучение деятельности живого вещества позволило В. И. Вернадскому выделить девять выполняемых им биогеохимических функций, в настоящее время к ним относят энергетическую, газовую, окислительно-восстановительную, концентрационную, деструктивную, средообразующую и др.
Энергетическая — связана с обеспечением поглощения солнечной энергии, ее аккумуляции в химических связях органических соединений и передаче по цепям питания и разложения, что, в конечном итоге, позволяет живому веществу выступать движущей силой геологических процессов.
Газовая — заключается в изменении газового состава атмосферы в процессе фотосинтеза и дыхания. Ее осуществляют растения и некоторые бактерии, которые в процессе фотосинтеза выделяют в атмосферу кислород и поглощают углекислый газ, тогда как все без исключения организмы поглощают кислород и выделяют углекислый газ в процессе дыхания. Часть бактерий способна также в процессе жизнедеятельности выделять азот, его оксиды, сероводород и др. Благодаря деятельности живых организмов не только сформировался, но и поддерживается постоянный состав атмосферы.
Окислительно-восстановительная — обусловлена окислением и восстановлением различных элементов в почве и гидросфере живыми организмами, что сопровождается образованием солей, оксидов и свободных соединений, а в конечном итоге известняков, бокситов и различных руд.
Концентрационная — связана с избирательным извлечением и накоплением в живом веществе химических элементов (углерода, водорода, азота и др.). Некоторые из них являются специфическими концентраторами определенных элементов: многие морские водоросли — йода, лютики — лития, ряска — радия, диатомовые водоросли и злаки — кремния, которые затем переходят в залежи полезных ископаемых.
Деструктивная — проявляется в завершении биологического круговорота веществ, поскольку в процессе жизнедеятельности организмов-редуцентов происходит разрушение (деструкция) отмерших остатков и продуктов жизнедеятельности до неорганических веществ, которые могут быть вновь вовлечены в биогенную миграцию атомов.
Средообразующая — обусловлена преобразованием состава окружающей среды в процессе жизнедеятельности биомассы, например, формированием состава атмосферы, накоплением солей в гидросфере, почвообразованием и регуляцией климатических изменений.
Особенности распределения биомассы на Земле
Несмотря на то, что живые организмы встречаются в биосфере повсеместно, как уже упоминалось выше, их распределение в пространстве является отнюдь не равномерным: подавляющая часть жизни сосредоточена в основном на суше, тогда как биомасса океана составляет около 0,13 %, не говоря уже об атмосфере.
Более 99 % биомассы организмов суши составляют продуценты (в основном растения), тогда как на долю консументов и редуцентов приходится менее 1 % (животные и микроорганизмы соответственно). Продуценты суши, как по систематической принадлежности, так и по биомассе, в большинстве своем относятся к высшим растениям, тогда как в океане это в основном мелкие одноклеточные водоросли. Однако и на суше они встречаются не равномерно: наибольшие видовое разнообразие, биомасса и продуктивность характерны для тропических влажных лесов и болот, тогда как пустыни практически безжизненны.
В океане наблюдается иная картина: на долю растений приходится около 6 %, а животные, бактерии и грибы составляют свыше 93 %. Такая пропорция продуцентов, консументов и редуцентов обусловливает и низкую продуктивность открытого океана, просторы которого можно считать полупустынными. Тем не менее, именно океан является основным поставщиком первичной продукции на планете благодаря его огромной протяженности и тому, что значительная часть энергии, запасенной продуцентами в виде химических связей органических веществ, не расходуется на процессы жизнедеятельности, а оседает на дно.
Биологический круговорот и превращение энергии в биосфере, роль в нем организмов разных царств
Энергия и вещества, поступающие извне в экосистемы в процессе их существования, подвергаются многочисленным изменениям и переходят из одной формы в другую. Поток энергии через экосистему не может быть замкнутым, поскольку солнечная энергия, хотя и переходит в энергию химических связей благодаря деятельности продуцентов, однако большая ее часть рассеивается в процессе жизнедеятельности отдельных компонентов биогеоценозов, и лишь незначительная доля депонируется в виде залежей полезных ископаемых (нефть, газ, торф). Энергия (солнечная и высвобождаемая в геологических процессах) является движущей силой круговорота веществ в отдельных биогеоценозах и биосфере в целом.
В течение коротких промежутков времени — от одного до нескольких лет — можно наблюдать почти циклические процессы превращений веществ и отдельных химических элементов при получении ресурсов и переработке отходов в экосистемах, тогда как в более длительной перспективе обнаруживается, что данные процессы замкнуты не полностью, поскольку они и депонируются в геосферах Земли, и выносятся в другие биогеоценозы ветрами, ливнями и т. д. Однако эти малые круговороты веществ (на уровне биогеоценоза) являются составляющими больших круговоротов веществ в экосистемах более высокого уровня, или биогеохимических циклов.
В круговороте веществ и энергии в биогеоценозах ведущую роль играют живые организмы, поскольку одни из них (продуценты) улавливают энергию Солнца и фиксируют углерод, а также азот, серу и фосфор в виде органических соединений, а другие, наоборот, используют их (консументы) и постепенно минерализуют (редуценты).
В экосистемах постоянно осуществляются круговороты углерода, азота, водорода, кислорода, серы, фосфора и других химических элементов, а также круговороты веществ, например, воды.
Круговорот углерода. Углерод является одним из важнейших биогенных элементов, который фиксируется растениями в процессе фотосинтеза в виде органических соединений, используемых консументами. В процессе дыхания большая часть органических соединений расщепляется с образованием углекислого газа, а органические остатки разлагаются и минерализуются организмами- редуцентами. В результате этих двух процессов большая часть углекислого газа возвращается обратно в атмосферу.
Часть углерода в настоящее время депонируется в виде неразложившихся органических остатков, формирующих плодородный слой почвы, а запасенный растениями, жившими миллионы лет назад, образовал залежи таких полезных ископаемых, как каменный и бурый уголь, нефть, природный газ, торф и др.
В водных экосистемах углекислый газ связывается в виде карбонат- и гидрокарбонатанионов, и может образовывать нерастворимый карбонат кальция, который входит в состав скелетов многих простейших животных и кишечнополостных. Скелеты отмерших животных образуют осадочные породы (мел, известняки) и надолго исключаются из круговорота, однако в процессе горообразования они выносятся на поверхность, и, разрушаясь под действием биотических факторов и в результате деятельности живых организмов, вновь вовлекаются в него.
Хозяйственная деятельность человека в значительной степени влияет на круговорот углерода в биогеоценозах, в основном вследствие использования невозобновляемых энергетических ресурсов — нефти и газа.
Круговорот азота. Как и углерод, азот является биогенным элементом, который входит в состав белков, нуклеиновых кислот, АТФ, хитина, ряда витаминов и др. В атмосфере азот находится в молекулярной форме (79 % атмосферы), однако он химически инертен и не может быть усвоен непосредственно растениями. Большая часть азота фиксируется свободноживущими и симбиотическими азотфиксирующими бактериями (в том числе цианобактериями), преобразующими его в нитраты. Некоторая часть азота поступает из атмосферы в виде оксида азота (IV), образующегося во время грозы.
Нитраты поглощаются растениями и включаются ими в состав органических соединений. Белки растений служат основой азотного питания животных, однако азотистые соединения постоянно выделяются последними в процессе жизнедеятельности, а также в процессе разложения растительных и животных остатков бактериями и грибами. Образующийся аммиак частично используется редуцентами на построение собственного тела, другая же его часть преобразуется нитрифицирующими бактериями в нитраты, вновь используемые растениями или денитрифицирующими бактериями, возвращающими его в атмосферу. Часть азота, как и углерода, на длительное время исключается из оборота, оседая в глубоководных отложениях.
Круговорот азота претерпел значительные изменения в связи с использованием человеком азотных удобрений, а также других азотистых соединений в различных отраслях промышленности, вследствие чего значительные количества азота попадают не только на поля, но и в воздух, и в водные экосистемы.
Круговорот серы. Сера как биогенный элемент входит в состав некоторых аминокислот и целого ряда других важнейших органических соединений. Большая часть серы депонирована в почве и морских осадочных породах в виде сульфидов и сульфатов. Микроорганизмы переводят сульфиды в доступную для растений форму — сульфаты. Остатки растений и животных перерабатываются редуцентами и обеспечивают возврат серы в круговорот.
На современном этапе выброс соединений серы существенно возрос в результате хозяйственной деятельности человека (сжигание каменного угля и газа на тепловых электростанциях, выхлопные газы автомобилей), что приводит к образованию серной кислоты и кислотным дождям, вызывающим гибель растительности.
Круговорот фосфора. Фосфор сосредоточен в отложениях, образовавшихся в прошлые геологические эпохи, поскольку многие фосфаты нерастворимы. Постепенно фосфор все же вымывается из них и попадает в экосистемы. Растения используют только часть этого фосфора, тогда как большая его часть уносится в водоемы и вновь откладывается в виде осадочных пород.
Деятельность человека внесла существенные коррективы в круговорот этого химического элемента в связи с добычей морепродуктов и использованием огромного количества фосфорных удобре ний, значительная часть которых ежегодно смывается с полей.
Нерациональная эксплуатация природных запасов фосфора ведет, например, и к географическим изменениям. Так, маленькое островное государство Науру в юго-западной части Тихого океана, существующее в основном за счет добычи фосфоритов, вскоре исчезнет с лица Земли, поскольку запасы этих полезных ископаемых, накапливавшихся в течение сотен тысяч лет благодаря экскрементам перелетных птиц, почти истощены.
Круговорот воды (гидрологический цикл). Совокупные запасы воды на планете составляют около 1,5 млрд м3, причем большая их часть находится в водоемах (особенно соленых), тогда как атмосфера достаточно бедна ею. Вода испаряется и воздушными течениями переносится на значительные расстояния. На поверхность суши вода выпадает в виде осадков, при этом она используется не только живыми существами, но и способствует разрушению горных пород, делает их пригодными для жизни растений и микроорганизмов, размывает верхний почвенный слой и возвращается вместе с растворенными в ней химическими соединениями и взвешенными органическими частицами в водоемы. Гидрологический цикл занимает около 1 года. Круговорот воды между океаном и сушей является важнейшим звеном в поддержании жизни на Земле, поскольку не только обеспечивает потребность организмов в воде, но и привносит в водные экосистемы минеральные и органические вещества, захватываемые на суше в процессе разрушения литосферы.
В настоящее время человек является мощным геологическим фактором, использующим в своей деятельности почти все элементы, даже те, которые необходимы лишь для техногенной деятельности (уран, плутоний и др.). Это способствует тому, что природные круговороты веществ трансформируются в природно-антропогенные, так как человек не только изымает из оборота определенные элементы, но и ускоряет использование некоторых из них.
Эволюция биосферы
Биосфера, как и любая другая экосистема, не является застывшей, так, в девонском периоде в атмосфере имелось до 30 % кислорода, а в настоящее время — до 21 %, кроме того, за последние 50 лет содержание углекислого газа в ней под влиянием хозяйственной деятельности человека возросло на 10 %. Само формирование и историческое развитие биосферы тесно связаны с возникновением и эволюцией жизни на планете.
На первом этапе эволюции биосферы ведущую роль в ней играли физико-химические процессы, связанные с образованием Земли из протопланетного облака, ее разогревом, миграцией атомов и разделением литосферы на мантию и ядро, возникновением гидросферы, а также формированием вторичной атмосферы из метана, углекислого газа, водяных паров и аммиака, что создавало предпосылки для абиогенного возникновения жизни.
В дальнейшем именно живое вещество оказало огромное влияние на эволюцию биосферы, которое заключалось в изменении состава атмосферы и его поддержании (возникновении кислорода, снижении концентрации углекислого газа, метана и др.), в регуляции состава морских и пресных вод, во влиянии на климат и плодородие почв, а также на процессы формирования осадочных и разрушения горных пород. Это было обусловлено возникновением уже на первых этапах развития жизни автотрофных и гетеротрофных организмов, обеспечивших круговорот веществ и поток энергии на планете. Несмотря на то, что естественные геологические и климатические изменения на планете также продолжают играть немаловажную роль в процессах, происходящих на планете, именно живое вещество выступает ведущим геохимическим фактором.
Эволюция органического мира неизбежно сопровождалась возникновением одних, более приспособленных к среде обитания систематических групп организмов, и вымиранием других, однако при этом в биосфере в целом поддерживается приблизительно одинаковое соотношение продуцентов, консументов и редуцентов, обеспечивающих устойчивое развитие биосферы.
На современном этапе эволюции биосферы огромную роль, сравнимую с деятельностью живого вещества, играет третий фактор — человеческое общество, хозяйственная деятельность которого уже привела к нарушению экологического равновесия и грозит полным разрушением биосферы.
Глобальные изменения в биосфере, вызванные деятельностью человека (нарушение
озонового экрана, кислотные дожди, парниковый эффект и др.). Проблемы устойчивого
развития биосферы. Правила поведения в природной среде
Глобальные изменения в биосфере, вызванные деятельностью человека (нарушение озонового экрана,
кислотные дожди, парниковый эффект и др.)
Эволюция человека и развитие человеческого общества достаточно длительное время не оказывали существенного влияния на биосферу, однако уже 20–30 тыс. лет назад началось интенсивное истребление крупных травоядных животных, а 10–12 тыс. лет назад — сведение лесов, обусловленное подсечной системой земледелия. Впоследствии в некоторых районах планеты вместе с изменениями климата это привело к эрозии почв и опустыниванию. Тем не менее только в последние два столетия резкий рост населения и качественный скачок в развитии науки и производства привели к сильнейшей нагрузке на природу, возникновению антропоценозов.
Хозяйственная деятельность человека, ставившая перед собой благую цель удовлетворить его самые основные потребности в пище и более или менее комфортной среде обитания, первоначально затрагивала лишь поверхность суши (вырубка лесов, распашка земель, прокладка дорог), а затем распространилась и вглубь литосферы (добыча полезных ископаемых), затронула атмосферу (сжигание топлива, выбросы промышленных предприятий и автомобилей) и гидросферу (бытовые и промышленные стоки, осушение болот, сооружение плотин). Негативные последствия этой деятельности длительное время нивелировались благодаря буферным свойствам биосферы, однако возрастающая антропогенная нагрузка, связанная с загрязнением воздуха, воды и земли вызвала, возможно, уже необратимые изменения в соответствующих оболочках планеты. Несмотря на то, что загрязнение происходит во многих местах по всему земному шару, их последствия не остаются локальными, а суммируются и приобретают глобальные масштабы.
Парниковый эффект. Ускорение минерализации гумуса почв на распаханных территориях, выбросы в атмосферу продуктов сгорания топлива, в особенности углекислого газа и метана, а также широко применяемого в холодильниках, кондиционерах и распылителях фреона привели не только к их накоплению, но и к задержке ими инфракрасного излучения земной поверхности, ведущей к разогреву биосферы. Считается, что наблюдаемый при этом парниковый эффект является основной причиной глобального потепления, которое сопровождается увеличением числа жарких дней в году, снижением количества осадков и засухами в основных сельскохозяйственных районах, таянием ледников и подъемом вод Мирового океана, а также различными катаклизмами, в частности ураганами, штормами и т. д. Ряд ученых объясняет глобальное потепление в большей степени цикличностью процессов изменения температуры на планете, т. е. тем, что мы живем в настоящее время в межледниковый период.
Нарушение озонового экрана. Фреон и оксид азота (II) считают также основными факторами ослабления озонового слоя и возникновения «озоновых дыр» над Антарктидой, Арктикой и Скандинавией. Несмотря на то, что озон образуется в атмосфере постоянно под действием электрических разрядов высокой мощности, и мы ощущаем его запах после грозы, озоновый экран формировался в течение миллионов лет, и только завершение этого процесса серьезно уменьшило поступление губительного для всего живого ультрафиолетового излучения на планету и позволило организмам выйти на сушу. Нарушение озонового слоя в настоящее время считается главной причиной тревожной статистики заболеваемости раком кожи во многих странах мира, и поэтому повсеместно ставится вопрос о вреде длительного воздействия солнечных лучей и соляриев.
Решить две вышеупомянутые насущные проблемы человечества призван ряд международных договоров, в том числе Монреальский (1987) и Киотский (1997) протоколы, предусматривающие ограничение использования фреонов, а также выбросов парниковых газов в атмосферу.
Кислотные дожди. К середине 70-х годов ХХ века в Скандинавии, Великобритании, а также в ряде районов Северной Америки было обнаружено, что дождевая вода вместо нейтральной реакции имеет кислую (рН < 7,0). В первую очередь выпадение кислотных дождей стало причиной нарушений в пресноводных экосистемах, где начала исчезать не только рыба, но и лягушки, тритоны и другие животные. Несмотря на то, что последствия таких осадков для растительности установить трудно, считается, что они являются причиной деградации лесов, а также разъедания строительных конструкций, эрозии почв и т. д. Причиной выпадения кислотных дождей является загрязнение воздушной среды оксидами серы и азота, которые реагируют с атмосферной влагой с образованием серной и азотной кислот. Оксиды серы и азота попадают в атмосферу в результате сгорания топлива, содержащего даже небольшие количества этих химических элементов.
Смог. Выброс различных газов и твердых частичек в атмосферу приводит также к образованию смога, характерного в настоящее время для промышленных районов государств (например, Китая), переживающих экономический бум. Смог является причиной роста числа заболеваний дыхательной системы.
Загрязнение водоемов. Интенсивная эксплуатация водных ресурсов связана не только с выловом рыбы, добычей морепродуктов и культивированием жемчуга, поскольку человечество нуждается в питьевой и технической воде. Изменение водного баланса на планете вследствие вырубки лесов, строительства плотин и осушения болот, а также загрязнение вод в первую очередь коснулось континентальных пресных водоемов, однако последствия этой деятельности ощущаются и в морях, как, например, в случае с пестицидом ДДТ, который применялся на полях, но был обнаружен и в тканях рыб и млекопитающих Северного Ледовитого океана. Загрязнение рек и стоячих водоемов бытовыми и промышленными стоками, в том числе радиоактивными отходами, привело к серьезному нарушению видового разнообразия данных экосистем, однако вовремя принятые в ряде стран меры способствовали их очистке и восстановлению природных популяций. Нерациональное использование подземных вод вызвало в некоторых регионах истощение природных ресурсов и проседание почв на огромных территориях. В настоящее время считается, что в мире более 1 млрд человек не имеет доступа к качественной питьевой воде, и такое положение продолжает усугубляться, поэтому водные ресурсы нуждаются в особой охране.
Сведение лесов. Леса издавна считаются легкими планеты, поскольку в процессе фотосинтеза в них образуется значительная часть атмосферного кислорода. Кроме того, они принимают активное участие в поддержании водного баланса планеты, сохранении почв, видового разнообразия и т. д. Несмотря на это, леса по всей планете продолжают вырубаться с ужасающей скоростью, особенно в тропических регионах, для нужд строительной, мебельной, химической, целлюлознобумажной и других отраслей промышленности. Последствиями такой хищнической эксплуатации природных ресурсов, которые становятся все более заметными в последнее время, являются обмеление рек, наводнения, исчезновение многих видов растений и животных, деградация почв, рост концентрации углекислого газа в атмосфере и изменение климата в целом.
Эрозия почв и опустынивание. Почвенное плодородие, которое интересует человечество в первую очередь, зависит от толщины слоя гумуса, накапливаемого в течение тысячелетий благодаря деятельности миллионов организмов. Наиболее плодородными почвами считаются черноземы, их во время Великой Отечественной войны даже вывозили в Германию с территории нашей страны немецко-фашистские захватчики. Однако в послевоенный период почвенное плодородие начало неуклонно снижаться вследствие эрозии. Эрозией называется разрушение верхнего плодородного слоя почвы вследствие его смывания водами и сноса ветрами. Эрозия, уплотнение почв сельскохозяйственной техникой, засоление, загрязнение, вырубка лесов, интенсивный выпас на пастбищах и другие воздействия ведут к деградации почв, и, в конечном итоге, к опустыниванию, как это произошло в колыбели человеческой цивилизации — Месопотамии и Северной Африке.
Не менее значительными последствиями хозяйственной деятельности человека являются истощение энергетических ресурсов, вымирание видов растений и животных и т. д.
Человек долгое время усиливал власть над природой, развивал технический потенциал, увеличивал эксплуатацию природных ресурсов, однако в дальнейшем этот процесс может привести лишь к катастрофическому разрушению природной среды с последующим снижением качества жизни. Единственно возможным шагом в направлении перехода биосферы в ноосферу является осознание и провозглашение необходимости перехода мирового сообщества на позиции устойчивого развития.
Проблемы устойчивого развития биосферы
В послевоенное время последствия хозяйственной деятельности человечества приобрели настолько угрожающие масштабы, что было доказано: устранение возникших противоречий между антропогенной нагрузкой и буферными возможностями биосферы, а также дальнейшее улучшение качества жизни людей возможны только в рамках стабильного социально-экономического развития, не разрушающего естественный механизм саморегуляции биосферы. Для решения этих проблем был создан целый ряд международных организаций по защите окружающей природной среды, таких как Международный союз по охране природы и природной среды (МСОП), Всемирный фонд охраны дикой природы (WWF), Римский клуб, Международный экологический суд (МЭС), Гринпис, а также было проведено немало представительных конференций. Наиболее значимыми форумами по данной проблематике считаются Конференция ООН по окружающей среде (Стокгольм, 1972) и Конференция ООН по окружающей среде и развитию (Рио-де-Жанейро, 1992). Результатом работы первой из них явилось создание Программы ООН по окружающей среде и развитию (ЮНЕП), а вторая приняла Декларацию РИО по окружающей среде и развитию, Рамочную конвенцию «Об изменении климата», Конвенцию «О биологическом разнообразии» и Программу действий ООН «Повестка дня на ХХІ век». Именно в документах последней встречи выдвинутая ранее в докладе ЮНЕП «Наше общее будущее» (1987) теория устойчивого развития составила концептуальную основу принятых решений.
Устойчивое развитие подразумевает такой тип развития, который позволяет обеспечить стабильный экономический рост на долговременной основе, не приводя при этом к дальнейшей деградации окружающей природной среды.
В узком смысле под устойчивым развитием понимается исключительно оптимизация хозяйственной деятельности человека в биосфере, которая, с одной стороны, удовлетворяла бы потребности человечества, а с другой, не усугубляла бы состояния природной среды.
Более широкая трактовка данного термина связывает устойчивое развитие с коренным пересмотром самих принципов функционирования человеческой цивилизации, в том числе решение продовольственной, экономической и других проблем, и переходу биосферы в качественно новое состояние — ноосферу.
Для решения данных проблем необходимо решить четыре основные задачи современности: сохранение уцелевших и восстановление до уровня естественной продуктивности ряда деградировавших экосистем, рационализация потребления, повсеместное внедрение «экологических» технологий и нормализация численности населения.
Поскольку биосфера, являясь регулятором состояния окружающей среды, представляет собой единую систему, то полноценный переход к устойчивому развитию возможен только в масштабах мирового сообщества при эффективном международном сотрудничестве. Большую роль в этом сыграли, помимо упоминавшихся Конференций ООН, Монреальская встреча (Монреаль, 1987; подписан Монреальский протокол об ограничении выбросов фреона в атмосферу), Общеевропейская конференция министров окружающей среды (София, 1995), Конференция Сторон Рамочной Конвенции ООН по изменению климата (Киото, 1997; подписан Киотский протокол об ограничении тепловых выбросов в атмосферу) и Международный конгресс по устойчивому развитию (Йоханнесбург, 2002). Тем не менее особую роль в данном процессе играет ряд стран, одной из которых является Россия, обладающая большими территориями, фактически не затронутыми хозяйственной деятельностью и являющимися резервом устойчивости биосферы в целом.
Российская Федерация активно подключилась к решению глобальных экологических проблем, что выразилось в принятии ряда основополагающих документов, в том числе Концепции перехода РФ к устойчивому развитию, Государственной стратегии устойчивого развития РФ, Экологической доктрины РФ, Федерального закона «Об охране окружающей среды», которые предусматри вают стабилизацию и коренное улучшение состояния окружающей природной среды за счет внедрения экологически оправданных технологий и методов управления, изменения самой структуры экономики, а также личного и общественного потребления. Большое внимание в этих документах уделяется формированию нового, экологического мышления как у подрастающего поколения, так и у экономически активного населения.
Отдельные успехи в деле защиты окружающей среды уже намечаются. В основном они связаны с природоохранной политикой государств и усилиями международного сообщества, устанавливающими стандарты качества окружающей природной среды и предельно допустимые уровни ее загрязнения, такие как «Евро-2», «Евро-4» и др. Большинство рычагов экологической политики лежит все-таки в экономической плоскости и предусматривает недопущение на рынок товаров и услуг, не отвечающих стандартам, введение штрафных санкций, экологических налогов, повышение цен на энергоносители и т. д. Введение же безвредных для состояния окружающей среды технологий, напротив, сопровождается налоговыми льготами. Поэтому в большинстве стран мира промышленные предприятия устанавливают специальные фильтры для снижения вредных выбросов в атмосферу, очищают сточные воды и пытаются сделать производственные циклы замкнутыми и безотходными. Особое значение в настоящее время уделяется получению энергии из возобновляемых источников путем строительства приливных, ветро- и гелиоэлектростанций, а также внедрению энергосберегающих технологий.
Однако эти усилия не могут быть плодотворными без участия каждого человека в отдельности. Поэтому в развитых странах бережное отношение к природе, которое заключается в сортировке бытового мусора, применении упаковки многоразового использования, передвижении на велосипеде и т. д., является элементом общей культуры.
Оценка глобальных экологических проблем и возможных путей их решения
Деятельность человека к концу ХХ века привела к разрушению более 60 % естественных экосистем суши (при том, что распахано только 10 % территорий), гибнут водные экосистемы, в том числе и морские, что обусловлено нерациональным использованием ресурсов, техногенным загрязнением и глобальным изменением климата. Однако первопричинами такого плачевного состояния биосферы являются демографический взрыв в ряде развивающихся стран и формирование общества потребления в экономически развитых странах.
Дальнейшее промедление в решении экологических проблем уже через 20 лет приведет к повышению температуры на планете на 1–2 С, вызовет жесткие засухи и затопление на огромных территориях, обречет миллионы людей на смерть от голода и болезней, вызванных в том числе неполноценным питанием, отсутствием качественной питьевой воды и загрязнением природной среды. В конечном итоге, уже в ближайшей перспективе возможно полное исчезновение человека как биологического вида вследствие разрушения его среды обитания.
Искусственно поддерживать функционирование биосферы на необходимом уровне человечеству не удастся, поскольку только живое вещество планеты в состоянии обеспечивать и регулировать этот процесс. Главным условием для восстановления нормальной природной среды обитания является восстановление самого живого вещества, прежде всего за счет сохранения видового разнообразия растений, животных, грибов и бактерий. Однако восстановить ее полностью не удастся, во всяком случае в настоящее время, поскольку на это пришлось бы направить все имеющиеся в распоряжении человечества ресурсы. Поэтому экономически и экологически оправданным уровнем является выделение в качестве заповедных территорий около 1/6 части суши. Если для большинства промышленно развитых стран мира эта задача представляется непосильной, то Россия имеет еще огромный запас в виде 65 % почти не тронутых деятельностью человека территорий.
Правила поведения в природной среде
Учитывая реалии сегодняшнего дня, отдыхая на природе, следует стараться не наносить еще большего вреда экосистемам. Для этого во время движения не стоит съезжать и сходить с уже проложенных маршрутов, чтобы не утрамбовывать почву. Нельзя ломать и срывать бесцельно растения, собирать их семена и плоды, так как это может нарушить процесс воспроизведения растительных сообществ. Разведение костров на природе также возможно только на специально оборудованных площадках во избежание пожаров, которые могут возникнуть даже от брошенной спички или окурка. Ловля и умерщвление насекомых и других животных только из-за того, что они красивы или из спортивного интереса являются недопустимыми, ибо также могут не только влиять на численность популяций, но и оказывать влияние на целостность цепей питания и трофических сетей биогеоценозов. Следует помнить и о том, что даже при гербаризации растений и сборе животных для коллекций учитывается степень редкости этих организмов. В природной среде нельзя также оставлять мусор, мыть машины и сливать машинное масло и горючее, так как это также наносит пусть не мгновенный, но все же большой вред экосистемам.
Только рациональное природопользование может обеспечить сохранность природной среды еще на долгие годы.
Косное вещество — гранит, глина, базальт, кварц, изверженные горные породы, космическая пыль, песок, вода. Это вещество чаще всего образовано горными породами, неживой частью биосферы.
Биогенное вещество — каменный и бурый уголь, торф, нефть, природный газ, горючие сланцы, известняк. Это вещество создается деятельностью живых организмов.
Биокосное вещество — почва, ил. Создается одновременно живыми организмами и косными процессами.
Важнейшие функции живого вещества биосферы
1. Энергетическая — аккумуляция и преобразование солнечной энергии в процессе фотосинтеза (хемоавтотрофы используют энергию окислительных химических реакций) и передача ее по пищевым цепям: продуценты — консументы — редуценты. В ходе этих сложных процессов энергия постепенно теряется, рассеивается, однако же часть ее с остатками живых организмов переходит в состояние ископаемое — так появляются залежи угля, нефти и др.
2. Газовая — нескончаемый газообмен с окружающей средой, происходящий в процессе дыхания и путем фотосинтеза. Зеленые растения усваивают из атмосферы углекислый газ и продуцируют кислород, живые организмы в большинстве своем в процессе дыхания потребляют кислород, одновременно выделяя углекислый газ. Благодаря этой всеобщей деятельности, живое вещество сохраняет достаточно стабильный газовый состав атмосферы.
3. Окислительно-восстановительная — характеризуется обменом веществ и энергии, а также фотосинтезом. Бесчисленные микроорганизмы окисляют или же восстанавливают различные соединения, вырабатывая при этом энергию для процесса жизнедеятельности, принимая участие в образовании полезных ископаемых. Скажем, залежи серы образовались благодаря деятельности серобактерий, восстанавливающих сульфаты.
4. Концентрационная функция реализуется в процессе накопления химических веществ в телах организмов при биогенной миграции атомов. Атомы, концентрирующиеся в живых организмах, переходят после их гибели в неживую природу. Например, в хвощах содержится кремний, попадающий в почву после отмирания растений, в морской капусте — йод, попадающий в морскую воду и т. д. Благодаря этим процессам за миллионы лет образуются залежи угля, нефти, мела, торфа и проч.
5. Биохимическая
функция реализуется в процессе обмена веществ.
Классификация природных ресурсов
1. Неисчерпаемые — солнечная энергия, ветер, приливы, текущая вода.
2. Исчерпаемые бывают возобновимыми и невозобновимыми
A. Возобновимые — чистый воздух, пресная вода, плодородная почва, растения и животные.
B. Невозобновимые — ископаемое топливо, металлическое минеральное сырье (железо, медь и пр.), неметаллическое минеральное сырье (глина, песок, фосфаты и пр.).
Биосфера — это, как уже было сказано экологическая система высшего порядка, слагающаяся из множества экосистем более низкого ранга, мелких биогеоценозов, которые, тесно взаимодействуя, обуславливают целостность биосферы Земли.
В водные экосистемы выносятся из наземных минеральные и органические вещества. Животные путем сезонных миграций перемещаются с одной территории на другую, нередко совершенно отличную по климатическим условиям.
И всех без исключения объединяет земная атмосфера, которая насыщается кислородом, благодаря фотосинтезу, и углекислым газом, образуемым в процессе дыхания аэробных организмов. Залог существования биосферы Земли — непрерывный круговорот веществ, энергетическая основа которого есть солнечный свет.
Определение боисферы. Виды веществ по Вернадскому
Биосфера ― оболочка Земли, населенная живыми организмами.
Академик В.И. Вернадский посвятил ее изучению основную часть своих научных трудов.
Основные положения теории В. И. Вернадского:
1. Солнце ― источник энергии. Главнейшую роль в жизни на Земле играет непрерывно поступающий поток энергии.
Биосфера ― открытая система, она не может существовать без энергии, поступающей извне. Основным поставщиком этой энергии является Солнце. Растения способны аккумулировать солнечную энергию и переводить ее в энергию химических связей, таким образом, делая ее доступной для всех остальных живых организмов.
2. Живое вещество играет основную роль в биохимическом круговороте веществ и энергии.
Живые организмы участвуют в круговороте всех химических элементов.
3. Элементарной структурной единицей биосферы является биогеоценоз.
Биосфера является высшим уровнем организации жизни на Земле. Она включает в себя все нижестоящие элементы и частично подчиняется их законам: биосфера тем устойчивее, чем устойчивее ее компоненты, то есть биогеоценозы.
4. Необходимым условием существования биосферы является круговорот веществ.
Круговорот веществ позволяет повторно использовать одни и те же элементы. Если бы этот процесс не происходил, растения бы исчерпали запас минеральных веществ и в итоге бы погибли.
5. Живое вещество в биосфере распределено неравномерно.
В океане обитает менее 1% живых организмов, населяющих планету. Оставшиеся организмы живут на суше. На суше 99% живых существ ― растения, животные составляют менее 1%.
6. Биосфера имеет границы.
Биосфера распространяется на нижний слой атмосферы, верхний слой литосферы и часть гидросферы.
7. Под влиянием деятельности человека биосфера переходит в ноосферу ― «сферу разума».
Ноосфера ― «разумная оболочка Земли» ― высшая стадия развития биосферы, в которой проявляется деятельность человека как главный, определяющий фактор развития.
8. Все вещества биосферы подразделяются на четыре группы: живое, косное, биокосное, биогенное.
Внимание!
Задания на знания данных четырех групп вещества очень часто встречаются в экзамене, поэтому обратите внимание на примеры!
-
Живое вещество ― совокупность всех живых элементов биосферы.
Примеры: медведь белый, осока заячья, олений мох.
-
Косное вещество ― неживые компоненты биосферы, в своем происхождении никак не связанные с деятельностью живого.
Примеры: гранит, базальт, мрамор, песок, глина.
-
Биокосное вещество ― элементы, образованные в результате совместной деятельности живого и косного.
Примеры: вода, почва, ил и другие элементы.
-
Биогенное вещество ― вещество, на протяжении истории развития планеты образуемое живыми веществами.
Примеры: нефть, газ, каменный уголь, молоко, мёд, жемчуг.
Функции живого вещества:
-
Энергетическая ― связана с запасанием энергии в виде химических связей в процессе фотосинтеза, передачей ее по цепям питания, использованием, рассеиванием;
-
Газовая ― поддержание постоянного газообмена с окружающей средой, влияние на газовый состав атмосферы;
-
Концентрационная ― участие в биогенной миграции атомов, которые концентрируются в живых организмах, а после их отмирания переходят в неживую природу;
-
Окислительно-восстановительная ― обмен веществ и энергии, фотосинтез;
-
Иногда выделяют транспортную функцию ― перенос веществ против силы тяжести и в горизонтальном направлении.
Внимание!
Процесс фотосинтеза может выполнять РАЗНЫЕ функции, это зависит от формулировки задания (можно применить метод ключевого слова).
Например:
Выделение кислорода в процессе фотосинтеза ― газовая функция,
или
Преобразование углекислого газа при синтезе глюкозы ― окислительно-восстановительная функция.
Материал по биологии
Согласно кодификатору ФИПИ в 2022 году первое задание будет содержать таблицу с пропущенным термином по темам:
- Свойства живого
- Уровни организации живой материи
- Биологические науки
- Методы, применяемые при изучении живых систем
Свойства живого
- Единство химического состава. Несмотря на то, что в живых организмах можно обнаружить практически все элементы таблицы Менделеева, большую долю занимают углерод, водород, кислород и азот.
Химический состав |
|
Живое |
Неживое |
Включают любые молекулы, встречающиеся на Земле |
|
Наибольшая массовая доля приходится на C, H, O, N |
Наибольшая массовая доля приходится на Al, Fe, O, Si |
- Обмен веществ и превращение энергии. Организмы потребляют из окружающей среды необходимые вещества, преобразуют их в своем теле и выделяют продукты распада в окружающую среду. Обмен веществ (метаболизм) складывается из двух взаимодополняющих процессов: анаболизма (реакций синтеза) и катаболизма (реакций распада). Направлены эти процессы на поддержание постоянства внутренней среды организма и его целостности.
- Самовоспроизведение. Способность образовывать новые особи, идентичные исходным (при размножении кошек получаются котята, а при размножении собак – щенки и никак иначе). В основе самовоспроизведения лежит наследственность.
- Наследственность – способность передавать свои признаки потомкам. В основе наследственности лежит структура ДНК. Это признак есть даже у вирусов.
- Изменчивость – это способность приобретать новые признаки. В основе лежит изменение молекулы ДНК и их количества (мутации и новые комбинации). Изменчивость – двигатель эволюции.
- Рост и развитие. Эти свойства являются всеобщей чертой живой и неживой природы. Рост организма происходит за счет увеличения количества молекул и увеличения количества клеток. Развитие – изменение качества объекта. Например, живые организмы проходят эмбриогенез (развитие зародыша) и онтогенез (индивидуальное развитие). Развитие может быть и историческим или эволюционным (филогенез).
- Раздражимость – способность реагировать на изменения внешней или внутренней среды. У животных примерами раздражимости служит рефлекс. У одноклеточных растений и животных примером раздражимости служит таксис – движение от, или к раздражителю. Например, хламидомонада и эвглена зеленая плывут в более освещенные части водоёма (положительный фототаксис), инфузория уплывает из более соленой части водоема в более пресноводную часть (отрицательный хемотаксис). У растений наблюдаются тропизмы (рост стебля в сторону солнца, рост корня вниз) и настии (движение при распускании цветка).
- Дискретность (делимость). Любой организм можно разделить на системы органов, системы органов на органы, органы на ткани и так далее. Дискретность – свойство, определяющее образование сложной структуры из более простых систем, работающих над общей целью.
- Саморегуляция. Способность поддерживать постоянство внутренней среды и физиологических процессов на одном уровне независимо от условий окружающей среды. Например, кожа человека пропускает определенное количество ультрафиолетовых лучей. Чтобы количество пропускаемого ультрафиолета не изменилось летом, в период более интенсивного излучения, человек покрывается загаром, служащим своеобразным экраном.
Тренировка по заданию 1. Свойства живого
Задание 1
Задание в формате ЕГЭ с ответом:
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Увеличение объёма выделяемой мочи при избыточном потреблении воды
Раздражимость
Увеличение количества выделяемого желудочного сока в ответ на запах еды
Увеличение объёма выделяемой мочи при избыточном потреблении воды помогает поддержать постоянство внутренней среды – гомеостаз, поэтому в данном задании допускается запись в ответ «гомеостаз»
Задание 2
Пример задания из КИМ ЕГЭ:
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Почкование дрожжей или гидры
Наследственность
Образование однородного потомства при скрещивании растений одного и того же сорта
Также в ответе допустим термин «размножение»
Задание 3
Задание по образцу ФИПИ:
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Развитие
Преобразование конечностей человека в процессе эволюции
Иммунный ответ
Иммунитет – один из механизмов, позволяющий сохранять целостность организма вопреки попадающим в него микроорганизмам и их деятельности. Уничтожение чужеродных веществ и организмов сохраняет постоянство внутренней среды организма
Задание 4
Попробуйте решить задание ЕГЭ:
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Раздражимость
Поворот соцветий сложноцветных к источнику света
Использование углекислого газа для получения сахаров в клетках растений
Преобразование веществ, полученных из вне для образования собственных веществ или энергии – метаболизм (обмен веществ)
Задание 5
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Выделение лишней жидкости через сократительную вакуоль у простейших пресноводных животных
Самовоспроизведение
Партеногенез у дафнии
Выделение лишней жидкости через сократительную вакуоль у простейших пресноводных животных – пример саморегуляции, этот процесс направлен на выделение воды, постоянно поступающей в организм по законам осмоса. Без пульсирующих (сократительных) вакуолей клетки бы наполнялись водой, и их мембрана разрывалась, то есть процесс выделения лишней воды направлен на сохранение целостности организма
Задание 6
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Постоянство состава внутренней среды организма
Дискретность
Организм аскариды можно разделить на кожно-мускульный мешок, пищеварительную, выделительную и половую системы
Допустим ответ «гомеостаз»
Задание 7
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Таксисы, тропизмы и настии
Развитие
Утрата хвоста головастиком при превращении в лягушку
Таксисы тропизмы и настии – это ответные реакции на изменения в окружающей среде, характерные для организмов, не имеющих нервной системы
Задание 8
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Наследственность
Образование копий материнской клетки при митозе
Преобразование зародыша в утробе матери
Преобразование зародыша в утробе матери – зародышевое развитие. Использование термина «эмбриогенез» недопустимо, так как это не общебиологическое свойство, а свойство только животных
Задание 9
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Полиэмбриония у ящериц
Изменчивость
Увеличение удоя коров при улучшении их питания
Полиэмбриония – процесс развития однояйцевых организмов. При половом размножении из сперматозоида и яйцеклетки образуется зигота, которая в дальнейшем должна начать дробиться, но в некоторых случаях вместо дробления происходит обычный митоз зиготы на две или более отдельные клетки, каждая из которых приступает к самостоятельному дроблению и служит началом для разных организмов с одинаковым генотипом
Задание 10
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Метаболизм (обмен веществ и превращение энергии)
Выделение спирта дрожжами при брожении сахаров
Смыкание ловчего аппарата венериной мухоловки при попадании в него насекомого
Смыкание ловчего аппарата венериной мухоловки при попадании в него насекомого – пример реакции на изменения в ловчем аппарате
Задание 11
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
саморегуляция
Существование в организме гормонов-антагонистов
Появление нового фенотипа в популяции
Свойство, определяющее появление чего-то нового – изменчивость
Задание 12
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Определение растениями сокращения длины светового дня
Метаболизм
Образование молочной кислоты из глюкозы при интенсивной работе мышц
Определение растениями сокращения длины светового дня – вид раздражимости, который помогает растениям вовремя сбросить листья осенью
Задание 13
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Развитие
Выход взрослого насекомого из куколки
Фрагментация морской звезды
Фрагментация – вид бесполого размножения. Допустим термин «размножение»
Задание 14
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Саморегуляция
Выделение лишних солей с потом
Включение аминокислот, полученных из пищи в состав собственных белков клетки
Включение аминокислот, полученных из пищи в состав собственных белков клетки – один из процессов обмена веществ. Обмен веществ = метаболизм
Задание 15
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Передача гемофилии от матери к сыну
Рост
Увеличение массы и количества клеток организма
Передача гемофилии от матери к сыну осуществляется за счет того, что именно от матери сын получает Х-хромосому, в которой содержится ген гемофилии
Задание 16
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Дискретность
Каждый более высокий уровень организации живой материи включает в себя все более низкие уровни организации
Деление инфузории туфельки
Деление – вид бесполого размножения. Допустимо использование термина «размножение»
Задание 17
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Явление сцепления признака дальтонизма с Х-хромосомой
Саморегуляция
Поддержание постоянной температуры и pH внутренней среды в организме человека
Явление сцепления признака дальтонизма с Х-хромосомой – пример наследственности, так как хромосомы передаются от родителей к детям
Задание 18
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Использование энергии, полученной от окисления веществ пищи
Раздражимость
В жаркий день рыба уплывает на дно водоёма
Использование энергии, полученной от окисления веществ пищи – часть обмена веществ (метаболизма)
Задание 19
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Появление детёныша-альбиноса у животных с нормальным количеством меланина
Самовоспроизведение
Образование множества гамет при митотическом делении хламидомонады
Появление детёныша-альбиноса у животных с нормальным количеством меланина одновременно можно отнести и к наследственности (рецессивный ген альбинизма был получен от родителей, которые имели гетерозиготный генотип Аа), но так как у родителей этот признак не проявился, вернее будет ответ «изменчивость»
Задание 20
Рассмотрите таблицу «Признаки живых систем» и заполните пустую ячейку, вписав соответствующий термин.
Признаки живых систем
Примеры
Метаболизм (обмен веществ и превращение энергии)
Затрата АТФ, полученной в световую фазу для синтеза углеводов
Образование нового штамма вируса в природе
Образование нового штамма вируса в природе происходит за счет мутаций, которые лежат в основе изменчивости
Уровни организации живой материи
- Молекулярный (молекулярно-генетический) уровень объединяет биомолекулы, из которых состоят клетки – белки, нуклеиновые кислоты, липиды, углеводы. На этом уровне начинаются важнейшие процессы: обмен веществ и превращение энергии, передача наследственной информации за счет самоудвоения ДНК, ферментативная активность, процессы транскрипции и трансляции.
- Клеточный уровень объединяет все структуры, органоиды и молекулы, работающие согласованно, в единую систему. Клетка – это функциональная и структурная единица всего живого на Земле. На клеточном уровне происходит большое количество процессов: деление, обмен веществ (биосинтез белка, клеточное дыхание, фотосинтез), обновление органоидов. У одноклеточных организмов клеточный уровень организации совпадает с организменным, их клетки зачастую организованы сложнее, чем клетки многоклеточных животных.
- Тканевый уровень включает в себя группы клеток, объединенных общими чертами строения и выполняемыми функциями.
- Органный уровень объединяет несколько тканей для наилучшего их функционирования. Например, сосуды человека состоят из эпителиальной (внутренний слой), гладкомышечной (средний слой) и соединительной (наружный слой) тканей. В некоторых учебниках и в тестах ЕГЭ можно встретить органно-тканевый уровень, объединяющий характеристики органов и тканей, из которых эти органы состоят.
- Организменный уровень объединяет органы и их системы в единое целое. На этом уровне происходят процессы обмена веществ, раздражимость, индивидуальное развитие. Об организменном уровне говорят, когда приводят в пример одну особь.
- Популяционно-видовой уровень объединяет группу особей одного вида, проживающих на одной территории. На данном уровне происходят эволюционные процессы (микроэволюция, возникновение адаптаций, увеличение разнообразия организмов).
- Биогеоценотический (экосистемный) – объединяет организмы разных видов и царств живой природы, обитающих на общей территории, и все абиотические факторы, которые влияют на эти организмы. На этом уровне происходит круговорот веществ, устанавливаются пищевые цепи или сети. В сборнике В. С. Рохлова вместо биогеоценотического уровня дается биоценотический.
- Биосферный уровень объединяет все экосистемы Земли в единую взаимодействующую систему, связанную общим, глобальным круговоротом веществ. Биосфера объединяет вещества: костное (неживое), живое, биокостное (структуры, на данный момент сочетающие живое и неживое, например — почвы), биогенное (произведенное живым).
Тренировка по заданию 1. Уровни организации живой материи
Задание 1
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
?
Включение неорганического фосфора в структуру АДФ
Биосферный
Минерализация органического фосфора почвенными бактериями
Самым низким уровнем, на котором происходит этот процесс, является молекулярный
Задание 2
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
Молекулярный
ДНК, РНК, липиды клетки
?
Сердечная мышца
Ткани определенных органов занимают тканевый или органно-тканевый уровень
Задание 3
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
?
Белки клетки
Популяционно-видовой
Разнообразие потомства
Белки – органические высокомолекулярные молекулы, соответственно они занимают молекулярный уровень жизни
Задание 4
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
Биоценотический (экосистемный)
Дубрава
?
Взаимосвязь костного, биокостного, биогенного и живого вещества
Костное, биокостное, биогенное и живое – компоненты биосферы по Вернадскому
Задание 5
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
Популяционно-видовой
Ландыш майский
?
Особь майского жука
Если в задании говориться «майский жук» — имеется ввиду вид животного (популяционно-видовой уровень), если же, как в данном задании, говориться об одной особи – имеется ввиду организменный уровень жизни
Задание 6
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
?
Березовая роща
Популяционно-видовой
Майский жук
Березовая роща – это не только живущие на одной территории березы, но и все другие растения и животные в этой роще, связанные трофическими цепями в единую экосистему. Допустимо использование терминов «биоценотический» и «биогеоценотический»
Задание 7
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
Биоценотический (экосистемный)
Взаимодействие фитофторы и картофеля
?
Миоцит
Миоцит – это клетка мышечной ткани, поэтому уровень клеточный
Задание 8
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
Тканевый (органо-тканевый)
Лимфа
?
Сворачивание белка в третичную структуру
Этот процесс связан с изменением белка при его созревании, происходит на молекулярном уровне
Задание 9
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
?
Серый волк
Клеточный
Бластомер
Если в задании дано только бинарное название, то имеется ввиду популяционно-видовой уровень
Задание 10
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
Организменный
Особь уссурийского тигра
?
Лёгочный ацинус
Лёгочный ацинус – наименьшая структурная и функциональная единица легкого. Так как ацинус состоит из множества тканей, но не является полноценным органом, лучше всего отнести его к органно-тканевому уровню
Задание 11
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
Органно-тканевый
Почечная долька
?
Заливной луг
Заливной луг включает в себя не только разнообразные светолюбивые растения, но и животных, которые там питаются и обитают. Группа организмов, объединенных общим местом обитания, взаимодействующих друг с другом и с факторами неживой природы образуют экосистему. Допустимо использование терминов «биоценоз» и «биогеоценоз»
Задание 12
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
?
Круговорот веществ между экосистемами
Молекулярный
Целлюлоза
Биосфера образует самый масштабный уровень организации, она включает в себя все экосистемы Земли
Задание 13
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
?
Лютик едкий
Органо-тканевый
Эмаль зубов
Лютик едкий – название вида, в природе любой вид разделен на обособленные популяции, поэтому уровень популяционно-видовой
Задание 14
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
Биосферный
Круговорот азота
?
Возбуждение хлорофилла светом
Самый низкий уровень, на котором происходит данный процесс – молекулярный
Задание 15
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
?
Разнотравный луг
Органо-тканевый
Нефрон
Допустимо использование терминов «биоценоз» и «биогеоценоз»
Задание 16
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
Популяционно-видовой
Петров крест
?
Влияние органов и систем органов друг на друга, образование ими целостной системы
Организм объединяет в себе системы органов
Задание 17
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
?
Взаимосвязь растений и животных, живущих на одной территории
Молекулярный
Образование молекулы липида
Допустимо использование терминов «биоценоз» и «биогеоценоз»
Задание 18
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
Органо-тканевый
Кожа человека
?
Гепатоцит
Гепатоцит – клетка печени, поэтому клеточный уровень
Задание 19
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
?
Круговорот углерода
Организменный
Почкование гидры
Глобальный круговорот веществ происходит не внутри одной экосистемы, а между компонентами разных экосистем, поэтому уровень биосферный
Задание 20
Рассмотрите таблицу «Уровни организации живой природы». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Уровни
Примеры
Клеточный
Митоз
?
Полярная сова
Вид в природе существует в виде популяций, поэтому популяционно-видовой уровень
Биологические науки
Науки, изучающие растения, лишайники и грибы
- Альгология – наука, изучающая низшие растения – водоросли.
- Биогеография – изучает распространение живых организмов.
- Ботаника – наука о растениях в целом.
- Бриология – изучает мхи.
- Лихенология – наука, изучающая лишайники.
- Микология – наука, изучающая грибы.
Науки, изучающие животных
- Зоогеография – наука, изучающая распространенность животных на планете.
- Зоология – наука, изучающая животных в целом.
- Ихтиология – наука, занимающаяся изучением рыб.
- Морфология – наука, изучающая чаще всего внешнее строение (существует и морфология растений).
- Орнитология – наука, изучающая птиц.
- Палеонтология – наука, изучающая ископаемые остатки животных.
- Териология – наука, изучающая млекопитающих.
- Энтомология – наука о насекомых.
- Этология – наука, изучающая инстинктивное поведение животных.
Науки, изучающие человека и его здоровье
- Анатомия – наука, изучающая строение (существует не только анатомия человека, но и анатомия животных и растений).
- Антропология – наука о происхождении и развитии человека.
- Гистология – наука о тканях (не только человека, но и животных).
- Иммунология – наука, изучающая реакцию организма на чужеродные белки и организмы.
- Физиология – наука о процессах в живых организмах (является не только частью наук о человеке, но и о животных, растениях, грибах).
- Эмбриология – наука о зародышевом развитии.
Науки, используемые в аграрной промышленности и в производстве различных веществ
- Агробиология – изучает повышение продуктивности культурных растений.
- Биотехнология – использование живых организмов в производстве лекарств и другой продукции, выведение микроорганизмов с необходимыми свойствами.
- Микробиология – наука, изучающая микроскопические организмы.
Науки, изучающие закономерности наследственности и изменчивости человека и других живых организмов, селекцию организмов
- Генеалогия – изучение родословной.
- Генетика – наука, изучающая закономерности наследственности организмов.
- Селекция – наука, изучающая способы получения новых пород животных, сортов растений и штаммов микроорганизмов.
Науки, изучающие молекулярный и клеточный уровни жизни
- Биохимия – наука о веществах, входящий в состав живых организмов, их превращениях и значении.
- Цитология – наука о строении и жизнедеятельности клетки.
Тренировка по заданию 1. Разделы биологии
Задание 1
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
Эмбриология
Установление строения зародыша костистой рыбы
…
Изучение строения мицелия плесневого гриба
Задание 2
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
Биогеография
Изучение распространенности некоторых видов животных и растений на территории России
…
Изучение спор древних растений и скелетов вымерших птиц
Задание 3
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
…
Изучение строения, развития, физиологии насекомых
Зоогеография
Определение распространения акул
Задание 4
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
Анатомия
Изучение строения генеративных органов двудольных растений
…
Изучение процессов разрушения пищевых частиц организмом гриба или животного
Задание 5
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
…
Синтез ферментов, способных разрушить отходы животного происхождения в пищевой промышленности
Анатомия
Сравннеие грудных и шейных позвонков человека
Задание 6
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
Биотехнология
Получение клонов животных для сохранения необходимых свойств
…
Движение крови в организме человека
Задание 7
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
…
Изучение вирусов, бактерий, микроскопических грибов
Микология
Распространение, строение, морфология опёнка осеннего
Задание 8
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
…
Изучение вымерших переходных форм
Биотехнология
Получение векторных вакцин
Задание 9
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
Биотехнология
Получение более продуктивных штаммов пропионовокислых бактерий
…
Сравнение клеток животных и растений
Задание 10
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
…
Установление родословной человека
Цитология
Изучение строения одномембранных органоидов
Задание 11
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
…
Изучение характера наследования признаков у человека
Физиология
Изучение закономерностей выработки гормонов организмом человека
Задание 12
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
…
Изучение внешнего строения растений и животных
Гистология
Изучение строения эпителиальной ткани животных и человека
Задание 13
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
Физиология
Изучение процессов роста боковых почек растения
…
Изучение наследования дальтонизма у человека
Задание 14
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
Ботаника
Изучение строения, систематики, физиологии растений
…
Получение новых сортов культурных растений
Задание 15
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
…
Изучение морфологии, анатомии, поведения рыб
Бриология
Изучение строения и распространения мхов
Задание 16
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
альгология
Изучение зеленых, бурых и красных водорослей
…
Изучение процессов мышечного сокращения
Задание 17
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
гистология
Расположение и происхождение тканей человека
…
Распространение бурого и белого медведей
Задание 18
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
Альгология
Изучение строения, физиологии и распространения водорослей
…
Получение большого количество кормовых белков
Задание 19
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
…
Сравнение вымерших насекомых с современными
Биогеография
Распространение видов растений и животных
Задание 20
Рассмотрите таблицу «Биологические науки» и заполните пустую ячейку, вписав соответствующий термин.
Наука
Область применения
Анатомия
Изучение внутреннего строения корня
…
Изучение механизма движения воды от корня к листьям
Методы, применяемые при изучении живых систем
Изучение химического состава клеток
- Хроматография позволяет разделить химические вещества из смеси для дальнейшего изучения или для определения химического состава этой смеси. Метод основан на разной скорости впитывания веществ в адсорбент (пористое вещество). Применяется в производстве лекарств и других химических веществ. Метод был разработан М. Цветом, который впервые разделил окрашенные пигменты растительных клеток (хлорофиллы и ксантофиллы). Так же применяется для разделения аминокислот.
Задание 1 биология ЕГЭ – теория и тренировка
В методе бумажной хроматографии на стартовой линии делают капли исследуемых жидкостей, а рядом – капли известных веществ
Вода постепенно поднимается по бумаге, перенося с собой капли веществ на определенные расстояния от исходных. У каждого вещества это расстояние отличается, на этом основан принцип хроматографии
- Электрофорез тоже применяется для разделения веществ из их смесей, но уже с помощью электрического тока. Имеет большое значение для изучения состава нуклеиновых кислот и белков, например, применяют для разделения фрагментов ДНК по размерам.
- Метод меченых атомов используют для изучения превращений определенных видов атомов в организме. Для этого изучаемый атом заменяют на радиоактивный изотоп.
Изучение клетки и других структур
- Микроскопия (электронная и световая) позволяет изучать объекты, недоступные глазу.
Световая |
Электронная |
Позволяет увидеть морфологию и некоторые процессы живых клеток |
Позволяет увидеть утраструктуру клетки |
Даже самые совершенные микроскопы имеют недостаточное большое увеличение |
Большое увеличение |
Можно изучать клетки эукариот и бактерий, мембранные органоиды, например, митохондрии и хлоропласты. |
Можно рассмотреть строение таких мелких органоидов, как рибосомы, а также изучить строение вирусов. |
- Центрифугирование – метод разделения клеток, клеточных структур и макромолекул по их массе. Исследуемый материал в центрифуге разделяется на фракции, вниз идут наиболее тяжелые компоненты, вверх – наиболее легкие. Так исследователь получает возможность изучить структуры по-отдельности. С помощью этого метода изучают кровь, органоиды и макромолекулы клетки.
Изучение генетических закономерностей
- Гибридологический метод был разработан Г. Менделем. Заключается в подборе родительских пар, имеющих определенные признаки, и анализе проявления этих признаков у потомства. Например, так определяется, является ли признак доминантным. Не применяется в изучении генетики человека.
- Цитогенетический метод заключается в изучении кариотипа организма (количества и структуры хромосом). Применяется при изучении геномных и хромосомных мутаций, для изучения которых сравнивают кариотипы здоровых и больных людей.
- Биохимический метод изучает нарушения обмена веществ, связанных с генными мутациями. Например, этим методом изучается сахарный диабет, ФКУ и другие.
- Генеалогический метод заключается в построении родословной с обозначением пола, степени родства, и самого изучаемого признака. С помощью этого метода можно определить, является ли признак доминантным, сцеплен ли он с полом.
- Близнецовый метод основан на изучении однояйцевых близнецов (организмов, генетически идентичных) и влиянии окружающей среды на развитие тех или иных признаков.
Методы селекции
- Подбор родительских пар для получения гибридов с необходимыми признаками.
- Гибридизация – скрещивание особей. Может быть близкородственной, тогда её называют инбридингом, это процесс часто используется для закрепления ценных рецессивных мутаций. Гибридизация может быть отдаленной, года скрещивают особи разных пород, сортов или штаммов, тогда она называется аутбридингом.
- Искусственный отбор – выбор гибридов с необходимыми свойствами для дальнейшего скрещивания. Отбор может быть массовым, он чаще применяется с селекции растений, при нем выбирают множество растений с необходимыми признаками. Отбор также может быть индивидуальным, когда отбирают один или несколько организмов, он характерен для селекции животных и селекции самоопыляемых растений.
- Мутагенез – заведомое изменение генетического материала организма. Применяется, например, при получении более продуктивных полиплоидных сортов растений.
Изучение экосистем
- Моделирование – это построение модели реального явления или живой системы, позволяющее сделать предсказание о изменениях в этом явлении или системе при различных воздействиях или об изменениях, происходящих со временем. С помощью моделирования рассчитывают динамику роста популяции (компьютерное моделирование) или влияние изменений, связанных с человеческой деятельностью на экосистемы.
- Мониторинг – это длительное наблюдение за состоянием биологической системы во времени с использованием различных технологий и математического анализа. Используется для анализа изменения численности популяций, для анализа состояния окружающей среды.
Общие методы
- Эксперимент – создание специально подобранных условий, в которых развивается биологическая система. Эксперимент сопровождается контролем (развитие системы без воздействий). Например, в популярном опыте, изучающим воздействие музыки на прорастание семян, разные горошины делятся на группы, на каждую из который действуют разной музыкой, но одну группу выращивают без музыки как контроль.
- Статистический – подсчет количества какого-либо признака или явления в биологической системе.
Не только эти два метода являются общеприменимыми, использование того или иного метода ограничивается лишь его удобством и целесообразностью в конкретном случае.
Тренировка по заданию 1. Методы изучения биологических систем
Задание 1
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Определение источника кислорода при фотосинтезе с помощью радиоактивных изотопов
Микроскопия
Изучение строения вируса бактериофага
Строение даже таких маленьких объектов, как вирусы, возможно благодаря электронной микроскопии. Допустимо использование термина «микроскопирование»
Задание 2
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Близнецовый
Изучение влияния окружающей среды на реализацию генетической информации
Разделение пигментов при их прохождении через адсорбент
Разделение пигментов и других веществ при их прохождении через пористую структуру – хроматография
Задание 3
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Эксперимент
Выявление влияния освещенности на массу выросших плодов
Составление схемы родства животных с указанием, у каких организмов был исследуемый признак
Допустимо использование термина «родословных», указывать слово «метод» ненужно, так как он есть в таблице
Задание 4
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Статистический
Определение количества пятнистых особей в популяции с преобладанием однотонной окраски
Изучение нарушения клеточного дыхания
Этот метод изучает нарушения обмена веществ
Задание 5
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Гибридизация
Появление эффекта гетерозиса
Изучение строения митохондрии
Митохондрии можно обнаружить с помощью светового микроскопа, его ультраструктру изучают с помощью электронного микроскопа. Допустимо использование термина «микроскопирование»
Задание 6
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Хроматография
Разделение аминокислот при их пропускании через пористый материал
Выращивание животных, полученных при полиэмбрионии в разных условиях
Полиэмбрионией образуются однояйцевые близнецы – организмы, полученные естественным путем при митозе зиготы. Однояйцевые близнецы являются клонами (копиями), то есть имеют одинаковый набор генов. Но даже организмы с одинаковыми генами развиваются по-разному, в зависимости от влияния среды на них
Задание 7
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Эксперимент
Определение влияния различных удобрений на скорость зацветания растений
Открытие принципа полуконсервативности репликации ДНК с помощью азота-14 и азота-15
Тяжелые и легкие изотопы применяются в методе меченных атомов
Задание 8
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Моделирование
Прогнозирование изменения количества популяции лося европейского
Ежегодный подсчет количества перелетных птиц
Допустимо применение термина «статистический»
Задание 9
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Биохимический
Изучение состава крови человека, больного диабетом
Изучение строения дафний и циклопов
Дафния и циклоп – микроскопические рачки, их изучают с помощью светового микроскопа. Допустимо использование термина «микроскопирование»
Задание 10
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Центрифугирование
Применение центробежной силы для разделения смеси на компоненты разной массы
Изучение процесса неправильного расхождения хромосом при мейозе
При изучении хромосом применяют цитогенетические методы
Задание 11
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Вычисление динамики роста популяции
Мутагенез
Получение полиплоидного сорта капусты
Для измерения численности популяций используют методы мониторинга и статистический метод
Задание 12
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Анализ признаков потомства, полученного от двух разных чистых линий
Близнецовый
Определение влияния питания на рост генетически идентичных организмов
Гибридологический метод используют не только для получения гибридов, в первую очередь он направлен на изучение признаков родительских особей. Этот метод используется в определении характера наследования тех или иных признаков (является признак доминантным или рецессивным, являются ли гены сцепленными, сцеплен ли признак с полом)
Задание 13
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Мониторинг
Подсчет количества лишайников в промышленной зоне
Разделение клеточных органоидов по их массе
Разделение органоидов, смесей и прочих структур по массе происходит с помощью центрифугирования
Задание 14
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Изучение кариотипа человека, больного анемией
Статистический
Определение изменения соотношения самок и самцов в популяции в течение нескольких лет
Кариотип изучается цитогенетическими методами
Задание 15
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Гибридологический
Скрещивание собак разных пород
Сравнение кариотипа человека и человекообразной обезьяны
Кариотип изучается цитогенетическими методами
Задание 16
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Цитогенетический
Сравнение клеток крови здорового человека и человека, больного серповидно-клеточной анемией
Разделение клеток крови на слои
Разделение органоидов, смесей и прочих структур по массе происходит с помощью центрифугирования
Задание 17
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Индивидуальный отбор
Выбор для дальнейшего размножения растения с появившейся мутацией махровости цветка
Изучение влияния ионов металлов на скорость сердечных сокращений
Изучить это можно с помощью эксперимента
Задание 18
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Прогнозирование урожайности сорта на основании данных полученных во множестве экспериментов
Статистический
Определение отношения молодых и старых особей в популяции
Формировать прогноз о процессах в биологических системах может моделирование
Задание 19
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Цитогенетический
Сравнение кариотипа человека с синдромом Дауна с кариотипом здорового человека
Скрещивание растений двух чистых линий
Скрещивание растений из разных чистых линий происходит для анализа их генотипа. Метод – гибридологический
Задание 20
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Методы
Применения
Наблюдение превращений веществ в организме путем введения радиоактивных изотопов
Центрифугирование
Расслоение крови на фракции по массе частиц
Радиоактивные изотопы применяют в методе меченых атомов
Косное и биокосное вещество
Косное вещество, по В.И. Вернадскому,
–это совокупность веществ в биосфере,
в образовании которых живые организмы
не участвовали и не участвуют, например,
магматические, частично метаморфические
породы, космическая пыль, метеориты.
К косному веществу относят многие
минеральные ресурсы суши и океана,
используемые без участия в круговоротах
прочей биоты, а только в антропогенных
превращениях (ресурсных циклах).
К этим же веществам относятся минералы
и материнские (горные) породы, образованные
минералами. В результате выветривания
минералов и пород освобождаются
химические элементы, служащие элементами
питания для растений и микроорганизмов.
Таким образом, косная природа является
источником элементов питания для живых
организмов. Выветрившаяся горная
(рыхлая) порода становится опорой для
растений и домов
животных и микроорганизмов, определяя
условия жизни всего живого.
Минералы и породы образовались в
результате геологических (эндогенных
и экзогенных) процессов. Химический
состав минералов и пород является важным
фактором (условием) среды обитания. К
неживой природе относят физические
условия существования живой природы:
свет, температура, влага (осадки).
Организмы постоянно взаимодействуют
с элементами неживой природы, а также
оказывают влияние друг на друга. Все
организмы при взаимодействии с неживой
природой поддерживают известное
динамическое равновесие или гомеостаз.
Живые организмы и неживая природа
существуют и развиваются совместно
образуя единое целое или систему. Такие
системы получили название экологических
систем, или экосистем.
Экосистемы являются биокосными системами,
состоящими из двух частей живой или
неживой природы, живого или неживого
(абиотического) вещества. Самой крупной
биокосной системой, известной нам,
является биосфера, которая включает
все живые
организмы планеты, находящиеся во
взаимодействии с физико-химической
(абиотической) средой Земли –атмосферой,
гидросферой и литосферой.
Таким образом, биокосное вещество
создается в биосфере одновременно
живыми и косными процессами, представляя
динамические системы тех и других.
Биокосные вещества планеты–кора
выветривания горных пород, почвы,
сапропели, природные воды, атмосферный
воздух, вода, углекислый газ, кислород
и др. Элементы и вещества за длительные
периоды в круговоротах проходят через
живое вещество.
Сапропель (греч. «sapros» –гнилой, «pelos»
–грязь, ил) – природный ил водоемов,
содержащий значительное количество
органического вещества, остатков водных
растений и животных, а также неорганические
компоненты биоминерального и наносного
происхождения. В свежем состоянии
сапропель оливкового, бурого, почти
черного цвета, а при наличии известковых
материалов и глинистых примесей –розового
или серого цвета.
Биогенные объекты
Биогенные объекты возникли как результат
деятельности разнообразных животных
и растительных макро- и микроорганизмов.
Биогенное вещество создается и
перерабатывается жизнью, совокупностью
живых организмов. Это источник большой
потенциальной энергии (угли, битумы,
известняки и др.). После образования
биогенного вещества живые организмы в
нем малодеятельны или не живут вообще.
Торф –результат анаэробного разложения
растений под водой. Торфяники образуются
в местностях с избытком влаги и умеренным
климатом. По берегам озера и старицы
селится болотная растительность: осока,
камыш, тростник, водяной хвощ, кувшинки,
рдесты, водоросли и др. растения, не
поднимающиеся над поверхностью воды.
Под водой растительные остатки не могут
разложиться до минеральных веществ, и
образуется торф.
Водная поверхность сокращается –осоковое
болото превращается в моховое болото.
Со временем поселяется травянистая и
древесно-кустарниковая растительность,
скрывая бывшее болото и запасы торфа.
Это, в основном, современный
биолого-геологический процесс. В торфе
содержится 55-59% углерода.
Бурый уголь –результат обугливания
древесной породы ранних геологических
эпох, причем процесс обугливания заходит
значительно дальше, чем в торфе, поэтому
содержание углерода выше, чем в торфе
–60-75%.
Каменный уголь –результат обугливания
гигантских древовидных растений прошлых
геологических эпох. Здесь процесс
обугливания зашел еще дальше, и количество
углерода колеблется в пределах 75-93%.
Антрацит –уголь, где количество углерода
колеблется от 93 до 98%, он имеет металлический
блеск, черный цвет, более плотный, чем
каменный уголь. Значительные залежи
каменного угля находятся в Кузбассе,
Донбассе, Воркутинском бассейне и
других территориях.
К органогенным породам относится и
нефть (жидкость бурого, желто-зеленого,
черного цвета). Она состоит из жидких
углеводородов. Существуют версии
происхождения: результат естественного
разложения под высоким давлением и
температурой жировых веществ, трупов
морских животных, а также водорослей и
растений; может быть ил органического
происхождения дна морей, от скопления
отмирающего планктона, действия большого
давления и высокой температуры.
Органогенной породой считается и газ,
который занял значительное место среди
энергоносителей России.
Таким образом, все вещества и системы
Земли являются объектами природопользования,
составляют природно-ресурсный и
эколого-экономический потенциал.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #