ЕГЭ Профиль №13. Логарифмические уравнения
Логарифмические уравнения
Прежде чем решать логарифмические уравнения, повторим еще раз определение логарифма и основные формулы.
Логарифм положительного числа b по основанию a — это показатель степени, в которую надо возвести a, чтобы получить b.
При этом 0,;a> 0,;aneq 1′ alt=’b> 0,;a> 0,;aneq 1′ />.
Обратим внимание на область допустимых значений логарифма:
Основное логарифмическое тождество:
Основные формулы для логарифмов:
(Логарифм произведения равен сумме логарифмов)
(Логарифм частного равен разности логарифмов)
(Формула для логарифма степени)
Формула перехода к новому основанию:
Мы знаем, как выглядит график логарифмической функции. Эта функция монотонна. Если основание логарифма больше единицы, логарифмическая функция монотонно возрастает. Если основание больше нуля и меньше единицы, логарифмическая функция монотонно убывает. И в любом случае каждое свое значение она принимает только один раз. Это значит, что если логарифмы двух чисел по какому-либо основанию равны, то равны и сами числа.
Все это пригодится нам в решении логарифмических уравнений.
Простейшие логарифмические уравнения
Основания логарифмов равны, сами логарифмы тоже равны – значит, равны и числа, от которых они берутся.
Обычно ученики запоминают это правило в краткой жаргонной формулировке: «Отбросим логарифмы!» Конечно, мы «отбрасываем» их не просто так, а пользуясь свойством монотонности логарифмической функции.
Решая логарифмические уравнения, не забываем про область допустимых значений логарифма. Помним, что выражение определено при 0,;a> 0,;aneq 1′ alt=’b> 0,;a> 0,;aneq 1′ />.
Очень хорошо, если вы, найдя корень уравнения, просто подставите его в уравнение. Если после такой подстановки левая или правая часть уравнения не имеют смысла – значит, найденное число не является корнем уравнения и не может быть ответом задачи. Это хороший способ проверки на ЕГЭ.
2. Решите уравнение:
В левой части уравнения – логарифм, в правой – число 7. Применив основное логарифмическое тождество, представим число 7 в виде . Дальше все просто.
3. Решите уравнение:
Видите число 2 перед логарифмом в правой части уравнения? Сейчас оно мешает вам «отбросить логарифмы». Что с ним сделать, чтобы в левой и правой частях были просто логарифмы по основанию 5? Конечно же, поможет формула для логарифма степени.
4. Решите уравнение:
Область допустимых значений: 0.’ alt=’4+x> 0.’ /> Значит, -4.’ alt=’x> -4.’ />
Представим 2 в правой части уравнения как — чтобы слева и справа в уравнении были логарифмы по основанию 5.
Функция монотонно возрастает и каждое свое значение принимает ровно один раз. Логарифмы равны, их основания равны. «Отбросим» логарифмы! Конечно, при этом -4′ alt=’x> -4′ />.
5. Решите уравнение:
Запишем решение как цепочку равносильных переходов. Записываем ОДЗ и «убираем» логарифмы:
0\ x^<2>-4> 0\ x^<2>+x=x^<2>-4 endright.Leftrightarrow left <beginx^<2>+x> 0\ x^<2>-4> 0\ x=-4 endright.Leftrightarrow x=-4′ alt=’log _<8>left ( x^<2>+x right )=log _<8>left ( x^<2>-4 right )Leftrightarrow left <beginx^<2>+x> 0\ x^<2>-4> 0\ x^<2>+x=x^<2>-4 endright.Leftrightarrow left <beginx^<2>+x> 0\ x^<2>-4> 0\ x=-4 endright.Leftrightarrow x=-4′ />
Ответ: –4.
Заметим, что решения логарифмических уравнений лучше всего записывать в виде цепочки равносильных переходов. Это поможет нам не забыть про область допустимых значений.
Перейдем от логарифма по основанию 4 (в показателе) к логарифму по основанию 2. Мы делаем это по формуле перехода к другому основанию:
Запишем решение как цепочку равносильных переходов.
0 endright.Leftrightarrow left <beginleft (2^<log _<2>left ( 4x+5 right )> right )^<frac<1><2>>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <beginleft ( 4x+5 right )^<frac<1><2>>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <beginsqrt<4x+5>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <begin4x+5=81\ x> -1frac<1> <4>endright.Leftrightarrow left <beginx=19\ x> -1frac<1> <4>endright.’ alt=’2^<log _<4>left ( 4x+5 right )>=9Leftrightarrow left <begin2^frac<<log _<2>left ( 4x+5 right )>><2>=9\ 4x+5> 0 endright.Leftrightarrow left <beginleft (2^<log _<2>left ( 4x+5 right )> right )^<frac<1><2>>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <beginleft ( 4x+5 right )^<frac<1><2>>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <beginsqrt<4x+5>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <begin4x+5=81\ x> -1frac<1> <4>endright.Leftrightarrow left <beginx=19\ x> -1frac<1> <4>endright.’ />
Обратите внимание: переменная х и под логарифмом, и в основании логарифма. Мы помним, что основание логарифма должно быть положительно и не равно 1.
ОДЗ:
0\ x> 0\ xneq 1 endright.’ alt=’left <begin12-x> 0\ x> 0\ xneq 1 endright.’ />
Теперь можно «убрать» логарифмы.
— посторонний корень, поскольку должно выполняться условие 0′ alt=’x> 0′ />.
8. Решите уравнение .
ОДЗ уравнения: 0′ alt=’x> 0′ />
Сделаем замену . Как и в алгебраических уравнениях, мы делаем замену переменной всегда, когда только возможно.
Вернемся к переменной х:
Выражение под логарифмом всегда положительно – поскольку к неотрицательной величине прибавляем 25. Выражение под корнем в правой части также положительно. Значит, х может быть любым действительным числом.
Представим сумму логарифмов в левой части как логарифм произведения. В правой части – перейдем к логарифму по основанию 3. И используем формулу логарифма степени.
Такое уравнение называется биквадратным. В него входят выражения и . Сделаем замену
Вернемся к переменной х. Получим:
. Мы нашли все корни исходного уравнения.
Логарифмические уравнения могут встретиться вам и в задании №1 Профильного ЕГЭ по математике, и в задании №12. И если в задании №1 нужно решить простейшее уравнение, то в задаче 12 решение состоит из двух пунктов. Второй пункт – отбор корней на заданном отрезке или интервале.
Задания по теме «Логарифмические уравнения»
Открытый банк заданий по теме логарифмические уравнения. Задания B5 из ЕГЭ по математике (профильный уровень)
Задание №887
Условие
Найдите корень уравнения 5^<log_<25>(10x-8)>=8.
Решение
Найдем ОДЗ: 10x-8>0.
10x-8=64, значит, условие 10x-8>0 выполняется.
Ответ
Задание №885
Условие
Найдите корень уравнения log_3(28+4x)=log_3(18-x).
Решение
log_3 20=log_3 20. Верно, значит, x=-2 — корень уравнения.
Ответ
Задание №288
Условие
Найдите корень уравнения log_81=2. Если уравнение имеет более одного корня, в ответе укажите меньший из них.
Решение
Согласно определению логарифма x-7>0 и x-7neq1, тогда x>7 и xneq8.
Так как 2=log_(x-7)^2 при x>7 и xneq8 , то получаем уравнение log_81=log_(x-7)^2.
Логарифмические уравнения
Логарифмом положительного числа $b$ по основанию $а$, где $a>0, a ≠ 1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.
$log_<2>8 = 3$, т.к. $2^3 = 8;$
Особенно можно выделить три формулы:
Основное логарифмическое тождество:
Это равенство справедливо при $b> 0, a> 0, a≠ 1$
Некоторые свойства логарифмов
Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.
1. Для любого действительного числа $m$ справедливы равенства:
2. Для решения задач иногда полезно следующее свойство: Если числа $а$ и $b$ на числовой оси расположены по одну сторону от единицы, то $log_b>0$, а если по разные, то $log_b 0$
Представим обе части уравнения в виде логарифма по основанию 2
Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.
Т.к. основания одинаковые, то приравниваем подлогарифмические выражения
Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые
Проверим найденные корни по условиям: $<table x^2-3x-5>0; 7-2x>0;$
При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень
4. Уравнения вида $a^x=b$. Решаются логарифмированием обеих частей по основанию $а$.
Решить уравнение $log_5log_2(x+1)=1$
Сделаем в обеих частях уравнения логарифмы по основанию $5$
Т.к. основания одинаковые, то приравниваем подлогарифмические выражения
Далее представим обе части уравнения в виде логарифма по основанию $2$
ОДЗ данного уравнения $x+1>0$
Подставим вместо х в неравенство $31$ и проверим, получиться ли верное условие $32>0$, следовательно, $31$ корень уравнения.
источники:
http://academyege.ru/theme/logarifmicheskie-uravneniya.html
http://examer.ru/ege_po_matematike/teoriya/logarifmicheskie_uravneniya
Прежде чем решать логарифмические уравнения, повторим еще раз определение логарифма и основные формулы.
Логарифм положительного числа b по основанию a — это показатель степени, в которую надо возвести a, чтобы получить b.
.
При этом .
Обратим внимание на область допустимых значений логарифма:
.
Основное логарифмическое тождество:
,
.
Основные формулы для логарифмов:
(Логарифм произведения равен сумме логарифмов)
(Логарифм частного равен разности логарифмов)
(Формула для логарифма степени)
Формула перехода к новому основанию:
.
Мы знаем, как выглядит график логарифмической функции. Эта функция монотонна. Если основание логарифма больше единицы, логарифмическая функция монотонно возрастает. Если основание больше нуля и меньше единицы, логарифмическая функция монотонно убывает. И в любом случае каждое свое значение она принимает только один раз. Это значит, что если логарифмы двух чисел по какому-либо основанию равны, то равны и сами числа.
Все это пригодится нам в решении логарифмических уравнений.
Простейшие логарифмические уравнения
1.Решите уравнение:
Основания логарифмов равны, сами логарифмы тоже равны – значит, равны и числа, от которых они берутся.
Обычно ученики запоминают это правило в краткой жаргонной формулировке: «Отбросим логарифмы!» Конечно, мы «отбрасываем» их не просто так, а пользуясь свойством монотонности логарифмической функции.
Получаем:
Решая логарифмические уравнения, не забываем про область допустимых значений логарифма. Помним, что выражение определено при .
Очень хорошо, если вы, найдя корень уравнения, просто подставите его в уравнение. Если после такой подстановки левая или правая часть уравнения не имеют смысла – значит, найденное число не является корнем уравнения и не может быть ответом задачи. Это хороший способ проверки на ЕГЭ.
2. Решите уравнение:
В левой части уравнения – логарифм, в правой – число 7. Применив основное логарифмическое тождество, представим число 7 в виде . Дальше все просто.
Ответ: -124
3. Решите уравнение:
Видите число 2 перед логарифмом в правой части уравнения? Сейчас оно мешает вам «отбросить логарифмы». Что с ним сделать, чтобы в левой и правой частях были просто логарифмы по основанию 5? Конечно же, поможет формула для логарифма степени.
;
;
;
4. Решите уравнение:
Область допустимых значений: Значит,
Представим 2 в правой части уравнения как — чтобы слева и справа в уравнении были логарифмы по основанию 5.
Функция монотонно возрастает и каждое свое значение принимает ровно один раз. Логарифмы равны, их основания равны. «Отбросим» логарифмы! Конечно, при этом .
.
Ответ: 21.
5. Решите уравнение:
Запишем решение как цепочку равносильных переходов. Записываем ОДЗ и «убираем» логарифмы:
Ответ: –4.
Заметим, что решения логарифмических уравнений лучше всего записывать в виде цепочки равносильных переходов. Это поможет нам не забыть про область допустимых значений.
6.Решите уравнение: .
Перейдем от логарифма по основанию 4 (в показателе) к логарифму по основанию 2. Мы делаем это по формуле перехода к другому основанию:
Запишем решение как цепочку равносильных переходов.
Ответ: 19.
7.Решите уравнение: .
Обратите внимание: переменная х и под логарифмом, и в основании логарифма. Мы помним, что основание логарифма должно быть положительно и не равно 1.
ОДЗ:
Теперь можно «убрать» логарифмы.
— посторонний корень, поскольку должно выполняться условие .
Ответ:
8. Решите уравнение .
ОДЗ уравнения:
Сделаем замену . Как и в алгебраических уравнениях, мы делаем замену переменной всегда, когда только возможно.
Вернемся к переменной х:
9.Решите уравнение:
Выражение под логарифмом всегда положительно – поскольку к неотрицательной величине прибавляем 25. Выражение под корнем в правой части также положительно. Значит, х может быть любым действительным числом.
Представим сумму логарифмов в левой части как логарифм произведения. В правой части – перейдем к логарифму по основанию 3. И используем формулу логарифма степени.
«Отбрасываем» логарифмы.
Такое уравнение называется биквадратным. В него входят выражения и . Сделаем замену
Вернемся к переменной х. Получим:
. Мы нашли все корни исходного уравнения.
Ответ: .
Логарифмические уравнения могут встретиться вам и в задании №1 Профильного ЕГЭ по математике, и в задании №12. И если в задании №1 нужно решить простейшее уравнение, то в задаче 12 решение состоит из двух пунктов. Второй пункт – отбор корней на заданном отрезке или интервале.
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Логарифмические уравнения» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
09.03.2023
Лучшие репетиторы для сдачи ЕГЭ
Задания по теме «Логарифмические уравнения»
Открытый банк заданий по теме логарифмические уравнения. Задания B5 из ЕГЭ по математике (профильный уровень)
Геометрические фигуры на плоскости: вычисление величин с использованием углов
Задание №887
Тип задания: 5
Тема:
Логарифмические уравнения
Условие
Найдите корень уравнения 5^{log_{25}(10x-8)}=8.
Показать решение
Решение
Найдем ОДЗ: 10x-8>0.
5^{log_{25}(10x-8)}=5^{log_58},
log_{25}(10x-8)=log_58,
log_{5^2}(10x-8)=log_58,
frac12log_5(10x-8)=log_58,
log_5(10x-8)=2log_58,
log_5(10x-8)=log_58^2,
10x-8=64, значит, условие 10x-8>0 выполняется.
10x=72,
x=7,2.
Ответ
7,2
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №885
Тип задания: 5
Тема:
Логарифмические уравнения
Условие
Найдите корень уравнения log_3(28+4x)=log_3(18-x).
Показать решение
Решение
28+4x=18-x,
5x=-10,
x=-2.
Сделаем проверку.
log_3(28+4cdot(-2))=log_3(18-(-2)),
log_3 20=log_3 20. Верно, значит, x=-2 — корень уравнения.
Ответ
-2
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №288
Тип задания: 5
Тема:
Логарифмические уравнения
Условие
Найдите корень уравнения log_{x-7}81=2. Если уравнение имеет более одного корня, в ответе укажите меньший из них.
Показать решение
Решение
Согласно определению логарифма x-7>0 и x-7neq1, тогда x>7 и xneq8.
Так как 2=log_{x-7}(x-7)^2 при x>7 и xneq8, то получаем уравнение log_{x-7}81=log_{x-7}(x-7)^2.
Поэтому (x-7)^2=81,
x-7=pm9,
x_1=16,
x_2=-2.
x_2=-2 решением не является, так как x>7.
Ответ
16
Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №287
Тип задания: 5
Тема:
Логарифмические уравнения
Условие
Найдите корень уравнения log_3(12-x)=4.
Показать решение
Решение
Так как 4=log_33^4=log_381, то log_3(12-x)=log_381,
12-x=81,
x=-69.
Ответ
-69
Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №286
Тип задания: 5
Тема:
Логарифмические уравнения
Условие
Найдите корень уравнения log_6(5x+27)=log_6(3+x)+1.
Показать решение
Решение
log_6(5x+27)=log_6(3+x)+log_66,
log_6(5x+27)=log_6(6cdot(3+x)),
log_6(5x+27)=log_6(18+6x),
5x+27=18+6x,
x=9.
Проверка:
log_6(5cdot9+27)=log_6(3+9)+1,
log_672=log_612+1,
log_672=log_672.
x=9 — корень уравнения.
Ответ
9
Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №284
Тип задания: 5
Тема:
Логарифмические уравнения
Условие
Найдите корень уравнения log_{14}(x-3)=log_{14}(8x-31).
Показать решение
Решение
x-3=8x-31,
7x=28,
x=4.
Проверкой убеждаемся, что x=4 действительно является корнем исходного уравнения.
Ответ
4
Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №34
Тип задания: 5
Тема:
Логарифмические уравнения
Условие
Найдите корень уравнения: log_42^{2x+5}=4.
Показать решение
Решение
Воспользуемся формулой:
log_{a}b=x Leftrightarrow a^x=b
Значит:
log_{4}2^{2x+5}=log_{4}256
2^{2x+5}=256
2^{2x+5}=2^8
2x+5=8
2x=3
x=frac{3}{2}=1,5
Ответ
1,5
Задание №33
Тип задания: 5
Тема:
Логарифмические уравнения
Условие
Найдите корень уравнения: log_4(2-x)=log_{16}25.
Показать решение
Решение
Воспользуемся формулой:
log_{a^k}x=frac{1}{k}log_{a}x, kneq 0
Получим:
log_{4}(2-x)=log_{4^2}25
log_{4}(2-x)=frac{1}{2}log_{4}25
2log_{4}(2-x)=log_{4}25
log_{4}(2-x)^2=log_{4}25
(2-x)^2=25
|2-x|=5
2-x=5
x=-3
Ответ
-3
Задание №26
Тип задания: 5
Тема:
Логарифмические уравнения
Условие
Найдите корень уравнения: log_7(9-x)=3log_73.
Показать решение
Решение
Выполним преобразования:
log_7(9-x)=log_73^3
Раскроем знак логарифма:
9-x=3^3
9-x=27
-x=27-9
x=-18
Ответ
-18
Задание №25
Тип задания: 5
Тема:
Логарифмические уравнения
Условие
Найдите корень уравнения: log_2(7-x)=5.
Показать решение
Решение
Раскроем знак логарифма по формуле
log_ab=c Leftrightarrow b=a^c
и выполним преобразования:
7-x=2^5
7-x=32
-x=32-7
x=-25
Ответ
-25
Лучшие репетиторы для сдачи ЕГЭ
Сложно со сдачей ЕГЭ?
Звоните, и подберем для вас репетитора: 78007750928