Логарифмические уравнения на егэ профильный уровень 2022

Skip to content

ЕГЭ Профиль №12. Логарифмические уравнения

ЕГЭ Профиль №12. Логарифмические уравненияadmin2022-08-08T15:34:14+03:00

Используйте LaTeX для набора формулы

Прототипы задания №1 профильного ЕГЭ 2022 по математике

Новые задания №1 ЕГЭ 2022 по математике профильного уровня — простейшие уравнения.

Для успешного результата необходимо уметь решать рациональные, иррациональные, показательные, тригонометрические и логарифмические уравнения, их системы.

Задание №1 ЕГЭ 2022 математика профильный уровень Прототипы

Источник: math100.ru → Рациональные уравнения

→ Тригонометрические уравнения

time4math.ru → скачать задания
vk.com/ekaterina_chekmareva → задания

При отработке данного задания будут полезны книги:

Логарифмические уравнения

Логарифмом положительного числа $b$ по основанию $а$, где $a>0, a ≠ 1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.

$log_<2>8 = 3$, т.к. $2^3 = 8;$

Особенно можно выделить три формулы:

Основное логарифмическое тождество:

Это равенство справедливо при $b> 0, a> 0, a≠ 1$

Некоторые свойства логарифмов

Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любого действительного числа $m$ справедливы равенства:

2. Для решения задач иногда полезно следующее свойство: Если числа $а$ и $b$ на числовой оси расположены по одну сторону от единицы, то $log_b>0$, а если по разные, то $log_b 0$

Представим обе части уравнения в виде логарифма по основанию 2

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

Проверим найденные корни по условиям: $<table x^2-3x-5>0; 7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

4. Уравнения вида $a^x=b$. Решаются логарифмированием обеих частей по основанию $а$.

Решить уравнение $log_5log_2(x+1)=1$

Сделаем в обеих частях уравнения логарифмы по основанию $5$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Далее представим обе части уравнения в виде логарифма по основанию $2$

ОДЗ данного уравнения $x+1>0$

Подставим вместо х в неравенство $31$ и проверим, получиться ли верное условие $32>0$, следовательно, $31$ корень уравнения.

Логарифмические уравнения

Прежде чем решать логарифмические уравнения, повторим еще раз определение логарифма и основные формулы.

Логарифм положительного числа b по основанию a — это показатель степени, в которую надо возвести a, чтобы получить b.

При этом 0,;a> 0,;aneq 1′ alt=’b> 0,;a> 0,;aneq 1′ />.

Обратим внимание на область допустимых значений логарифма:

Основное логарифмическое тождество:

Основные формулы для логарифмов:

(Логарифм произведения равен сумме логарифмов)

(Логарифм частного равен разности логарифмов)
(Формула для логарифма степени)

Формула перехода к новому основанию:

Мы знаем, как выглядит график логарифмической функции. Эта функция монотонна. Если основание логарифма больше единицы, логарифмическая функция монотонно возрастает. Если основание больше нуля и меньше единицы, логарифмическая функция монотонно убывает. И в любом случае каждое свое значение она принимает только один раз. Это значит, что если логарифмы двух чисел по какому-либо основанию равны, то равны и сами числа.

Все это пригодится нам в решении логарифмических уравнений.

Простейшие логарифмические уравнения

Основания логарифмов равны, сами логарифмы тоже равны – значит, равны и числа, от которых они берутся.
Обычно ученики запоминают это правило в краткой жаргонной формулировке: «Отбросим логарифмы!» Конечно, мы «отбрасываем» их не просто так, а пользуясь свойством монотонности логарифмической функции.

Решая логарифмические уравнения, не забываем про область допустимых значений логарифма. Помним, что выражение определено при 0,;a> 0,;aneq 1′ alt=’b> 0,;a> 0,;aneq 1′ />.

Очень хорошо, если вы, найдя корень уравнения, просто подставите его в уравнение. Если после такой подстановки левая или правая часть уравнения не имеют смысла – значит, найденное число не является корнем уравнения и не может быть ответом задачи. Это хороший способ проверки на ЕГЭ.

2. Решите уравнение:

В левой части уравнения – логарифм, в правой – число 7. Применив основное логарифмическое тождество, представим число 7 в виде . Дальше все просто.

3. Решите уравнение:

Видите число 2 перед логарифмом в правой части уравнения? Сейчас оно мешает вам «отбросить логарифмы». Что с ним сделать, чтобы в левой и правой частях были просто логарифмы по основанию 5? Конечно же, поможет формула для логарифма степени.

4. Решите уравнение:

Область допустимых значений: 0.’ alt=’4+x> 0.’ /> Значит, -4.’ alt=’x> -4.’ />

Представим 2 в правой части уравнения как — чтобы слева и справа в уравнении были логарифмы по основанию 5.

Функция монотонно возрастает и каждое свое значение принимает ровно один раз. Логарифмы равны, их основания равны. «Отбросим» логарифмы! Конечно, при этом -4′ alt=’x> -4′ />.

5. Решите уравнение:

Запишем решение как цепочку равносильных переходов. Записываем ОДЗ и «убираем» логарифмы:

0\ x^<2>-4> 0\ x^<2>+x=x^<2>-4 endright.Leftrightarrow left <beginx^<2>+x> 0\ x^<2>-4> 0\ x=-4 endright.Leftrightarrow x=-4′ alt=’log _<8>left ( x^<2>+x right )=log _<8>left ( x^<2>-4 right )Leftrightarrow left <beginx^<2>+x> 0\ x^<2>-4> 0\ x^<2>+x=x^<2>-4 endright.Leftrightarrow left <beginx^<2>+x> 0\ x^<2>-4> 0\ x=-4 endright.Leftrightarrow x=-4′ />
Ответ: –4.

Заметим, что решения логарифмических уравнений лучше всего записывать в виде цепочки равносильных переходов. Это поможет нам не забыть про область допустимых значений.

Перейдем от логарифма по основанию 4 (в показателе) к логарифму по основанию 2. Мы делаем это по формуле перехода к другому основанию:

Запишем решение как цепочку равносильных переходов.

0 endright.Leftrightarrow left <beginleft (2^<log _<2>left ( 4x+5 right )> right )^<frac<1><2>>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <beginleft ( 4x+5 right )^<frac<1><2>>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <beginsqrt<4x+5>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <begin4x+5=81\ x> -1frac<1> <4>endright.Leftrightarrow left <beginx=19\ x> -1frac<1> <4>endright.’ alt=’2^<log _<4>left ( 4x+5 right )>=9Leftrightarrow left <begin2^frac<<log _<2>left ( 4x+5 right )>><2>=9\ 4x+5> 0 endright.Leftrightarrow left <beginleft (2^<log _<2>left ( 4x+5 right )> right )^<frac<1><2>>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <beginleft ( 4x+5 right )^<frac<1><2>>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <beginsqrt<4x+5>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <begin4x+5=81\ x> -1frac<1> <4>endright.Leftrightarrow left <beginx=19\ x> -1frac<1> <4>endright.’ />

Обратите внимание: переменная х и под логарифмом, и в основании логарифма. Мы помним, что основание логарифма должно быть положительно и не равно 1.

ОДЗ:
0\ x> 0\ xneq 1 endright.’ alt=’left <begin12-x> 0\ x> 0\ xneq 1 endright.’ />

Теперь можно «убрать» логарифмы.

— посторонний корень, поскольку должно выполняться условие 0′ alt=’x> 0′ />.

8. Решите уравнение .

ОДЗ уравнения: 0′ alt=’x> 0′ />

Сделаем замену . Как и в алгебраических уравнениях, мы делаем замену переменной всегда, когда только возможно.

Вернемся к переменной х:

Выражение под логарифмом всегда положительно – поскольку к неотрицательной величине прибавляем 25. Выражение под корнем в правой части также положительно. Значит, х может быть любым действительным числом.

Представим сумму логарифмов в левой части как логарифм произведения. В правой части – перейдем к логарифму по основанию 3. И используем формулу логарифма степени.

Такое уравнение называется биквадратным. В него входят выражения и . Сделаем замену

Вернемся к переменной х. Получим:

. Мы нашли все корни исходного уравнения.

Логарифмические уравнения могут встретиться вам и в задании №1 Профильного ЕГЭ по математике, и в задании №12. И если в задании №1 нужно решить простейшее уравнение, то в задаче 12 решение состоит из двух пунктов. Второй пункт – отбор корней на заданном отрезке или интервале.

источники:

http://examer.ru/ege_po_matematike/teoriya/logarifmicheskie_uravneniya

http://ege-study.ru/logarifmicheskie-uravneniya/

работы варианты ответы

Автор

Уравнения 12.3. задание ЕГЭ 2022 по математике профильный уровень. Показательные, логарифмические уравнения и уравнения смешанного типа.

Ссылка для скачивания подборки: скачать

Предыдущие подборки: 

  • Уравнения №12 формулы двойного угла, приведения, сложения
  • Решать 12.1 тригонометрические уравнения 10 класс

Смотреть онлайн

ПОДЕЛИТЬСЯ МАТЕРИАЛОМ


Прежде чем решать логарифмические уравнения, повторим еще раз определение логарифма и основные формулы.

Логарифм положительного числа b по основанию a — это показатель степени, в которую надо возвести a, чтобы получить b.

log _{a}b=cLeftrightarrow a^{c}=b.

При этом b> 0,;a> 0,;aneq 1.

Обратим внимание на область допустимых значений логарифма:

b> 0,;a> 0,;aneq 1.

Основное логарифмическое тождество:

a^{log _{a}b}=b,

log _{a}a^{c}=c.

Основные формулы для логарифмов:

log _{a}left ( bc right )=log _{a}b+log _{a}c (Логарифм произведения равен сумме логарифмов)

log _{a}left ( frac{b}{c}right )=log _{a}b-log _{a}c (Логарифм частного равен разности логарифмов)
log _{a}b^{m}=mlog_{a}b (Формула для логарифма степени)

Формула перехода к новому основанию:

log _{a}b=frac{log _{c}b}{log _{c}a}

log _{a}b=frac{1}{log _{b}a} .

Мы знаем, как выглядит график логарифмической функции. Эта функция монотонна. Если основание логарифма больше единицы, логарифмическая функция монотонно возрастает. Если основание больше нуля и меньше единицы, логарифмическая функция монотонно убывает. И в любом случае каждое свое значение она принимает только один раз. Это значит, что если логарифмы двух чисел по какому-либо основанию равны, то равны и сами числа.

Все это пригодится нам в решении логарифмических уравнений.

Простейшие логарифмические уравнения

1.Решите уравнение: log _{5}left ( 15+x right )=log _{5}3

Основания логарифмов равны, сами логарифмы тоже равны – значит, равны и числа, от которых они берутся.
Обычно ученики запоминают это правило в краткой жаргонной формулировке: «Отбросим логарифмы!» Конечно, мы «отбрасываем» их не просто так, а пользуясь свойством монотонности логарифмической функции.

Получаем: 15+x=3

x=-12.

Решая логарифмические уравнения, не забываем про область допустимых значений логарифма. Помним, что выражение log _{a}b определено при b> 0,;a> 0,;aneq 1.

Очень хорошо, если вы, найдя корень уравнения, просто подставите его в уравнение. Если после такой подстановки левая или правая часть уравнения не имеют смысла – значит, найденное число не является корнем уравнения и не может быть ответом задачи. Это хороший способ проверки на ЕГЭ.

2. Решите уравнение: log _{2}left ( 4-x right )=7

В левой части уравнения – логарифм, в правой – число 7. Применив основное логарифмическое тождество, представим число 7 в виде log _{2}2^{7}. Дальше все просто.

Ответ: -124

3. Решите уравнение: log _{5}left ( 5-x right )=2cdot log _{5}3

Видите число 2 перед логарифмом в правой части уравнения? Сейчас оно мешает вам «отбросить логарифмы». Что с ним сделать, чтобы в левой и правой частях были просто логарифмы по основанию 5? Конечно же, поможет формула для логарифма степени.

log _{5}left ( 5-x right )=log _{5}left ( 3^{2} right );

log _{5}left ( 5-x right )=log _{5}9;

5-x=9;

x=-4

4. Решите уравнение: log _{5}left ( 4+x right )=2

Область допустимых значений: 4+x> 0. Значит, x> -4.

Представим 2 в правой части уравнения как log _{5}25 — чтобы слева и справа в уравнении были логарифмы по основанию 5.

log _{5}left ( 4+x right )=log _{5}25

Функция y=log _{5}x монотонно возрастает и каждое свое значение принимает ровно один раз. Логарифмы равны, их основания равны. «Отбросим» логарифмы! Конечно, при этом x> -4.

4+x=25

x=21.

Ответ: 21.

5. Решите уравнение: log _{8}left ( x^{2}+x right )=log _{8}left ( x^{2}-4 right )

Запишем решение как цепочку равносильных переходов. Записываем ОДЗ и «убираем» логарифмы:

log _{8}left ( x^{2}+x right )=log _{8}left ( x^{2}-4 right )Leftrightarrow left{begin{matrix}	x^{2}+x> 0\ 	x^{2}-4> 0\ 	x^{2}+x=x^{2}-4	end{matrix}right.Leftrightarrow 	left{begin{matrix}	x^{2}+x> 0\ 	x^{2}-4> 0\ 	x=-4	end{matrix}right.Leftrightarrow x=-4
Ответ: –4.

Заметим, что решения логарифмических уравнений лучше всего записывать в виде цепочки равносильных переходов. Это поможет нам не забыть про область допустимых значений.

6.Решите уравнение: 2^{log _{4}left ( 4x+5 right )}=9.

Перейдем от логарифма по основанию 4 (в показателе) к логарифму по основанию 2. Мы делаем это по формуле перехода к другому основанию:

log _{4}b=frac{log _{2}b}{log _{2}4}=frac{log _{2}b}{2}

Запишем решение как цепочку равносильных переходов.

2^{log _{4}left ( 4x+5 right )}=9Leftrightarrow left{begin{matrix} 	2^frac{{log _{2}left ( 4x+5 right )}}{2}=9\  	4x+5> 0 	end{matrix}right.Leftrightarrow left{begin{matrix} 	left (2^{log _{2}left ( 4x+5 right )}  right )^{frac{1}{2}}=9\  	x> -1frac{1}{4} 	end{matrix}right.Leftrightarrow left{begin{matrix} 	left ( 4x+5 right )^{frac{1}{2}}=9\  	x> -1frac{1}{4} 	end{matrix}right.Leftrightarrow  	left{begin{matrix} 	sqrt{4x+5}=9\  	x> -1frac{1}{4} 	end{matrix}right.Leftrightarrow left{begin{matrix} 	4x+5=81\  	x> -1frac{1}{4} 	end{matrix}right.Leftrightarrow left{begin{matrix} 	x=19\  	x> -1frac{1}{4} 	end{matrix}right.

Ответ: 19.

7.Решите уравнение: log _{x}x^{2}=log _{x}left ( 12-x right ).

Обратите внимание: переменная х и под логарифмом, и в основании логарифма. Мы помним, что основание логарифма должно быть положительно и не равно 1.

ОДЗ:
left{begin{matrix}	12-x> 0\ 	x> 0\ 	xneq 1	end{matrix}right.

Теперь можно «убрать» логарифмы.

x^{2}=12-x

x^{2}+x-12=0

x_{1}=3;;x_{2}=-4 — посторонний корень, поскольку должно выполняться условие x> 0.

Ответ: x=3

8. Решите уравнение 6log _{8}^{2}x-5log _{8}x+1=0.

ОДЗ уравнения: x> 0

Сделаем замену log _{8}x=t. Как и в алгебраических уравнениях, мы делаем замену переменной всегда, когда только возможно.

6t^{2}-5t+1=0Leftrightarrow left[ begin{array}{ccc}	t=frac{1}{2}\	t=frac{1}{3}	end{array}	right.

Вернемся к переменной х:

left[ begin{array}{ccc} 	log _{8}x=frac{1}{2}\ 	log _{8}x=frac{1}{3} 	end{array} 	right.Leftrightarrow  	left[ begin{array}{ccc} 	x=8^{frac{1}{2}}\ 	x=8^{frac{1}{3}} 	end{array} 	right.Leftrightarrow  left[ begin{array}{ccc} 	x=sqrt{8}\ 	x=2 	end{array} 	right.

9.Решите уравнение:
1+log _{3}left ( x^{4}+25 right )=log _{sqrt{3}}sqrt{30x^{2}+12}

Выражение под логарифмом всегда положительно – поскольку к неотрицательной величине x^{4} прибавляем 25. Выражение под корнем в правой части также положительно. Значит, х может быть любым действительным числом.

Представим сумму логарифмов в левой части как логарифм произведения. В правой части – перейдем к логарифму по основанию 3. И используем формулу логарифма степени.

log _{3}3left ( x^{4}+25 right )=frac{1}{2}cdot 2cdot log _{3}left (30x^{2}+12  right )

left (30x^{2}+12  right )

«Отбрасываем» логарифмы.

3left ( x^{4}+25 right) = 30x^{2}+12

3 x^{4} - 30x^{2}+63=0

x^{4} - 10x^{2}+21=0

Такое уравнение называется биквадратным. В него входят выражения x^{2} и x^{4}. Сделаем замену x^{2}=t,;tgeq 0

t^{2}-10t+21=0

left[	begin{array}{ccc} 	t_{1}=3\	t_{2}=7	end{array}	right.

Вернемся к переменной х. Получим:

x_{1}=sqrt{3},;x_{2}=-sqrt{3},;x_{3}=sqrt{7},;x_{4}=-sqrt{7} . Мы нашли все корни исходного уравнения.

Ответ: sqrt{3},;-sqrt{3},;sqrt{7},;-sqrt{7}.

Логарифмические уравнения могут встретиться вам и в задании №1 Профильного ЕГЭ по математике, и в задании №12. И если в задании №1 нужно решить простейшее уравнение, то в задаче 12 решение состоит из двух пунктов. Второй пункт – отбор корней на заданном отрезке или интервале.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Логарифмические уравнения» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Логарифмом положительного числа $b$ по основанию $а$, где $a>0, a ≠ 1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.

$log_{2}8 = 3$, т.к. $2^3 = 8;$

$log_3{1}/{27}=-3$, т.к $3^{-3} = {1}/{27}$.

Особенно можно выделить три формулы:

$log_{a}a=1;$

$log_{a}1=0;$

$log_{a}a^b=b.$

Основное логарифмическое тождество:

$a^{log_{a}b}=b$

Это равенство справедливо при $b> 0, a> 0, a≠ 1$

$4^{log_{4}5}=5$;

$3^{-2log_{3}5}=(3^{log_{3}5})^{-2}=5^{-2}={1}/{25}$

Некоторые свойства логарифмов

Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любого действительного числа $m$ справедливы равенства:

$log_{а}b^m=mlog_{a}b;$

$log_{a^m}b={1}/{m}log_{a}b.$

$log_{3}3^10=10log_{3}3=10;$

$log_{5^3}7={1}/{3}log_{5}7;$

$log_{3^7}4^5={5}/{7}log_{3}4;$

2. Для решения задач иногда полезно следующее свойство: Если числа $а$ и $b$ на числовой оси расположены по одну сторону от единицы, то $log_{a}b>0$, а если по разные, то $log_{a}b<0$.

Десятичным логарифмом числа называют логарифм этого числа по основанию $10$ и пишут $lg⁡b$ вместо $log_{10}b$.

Натуральным логарифмом числа называют логарифм этого числа по основанию $е$, где $е$ – иррациональное число, приближенно равное $2,7$. При этом пишут $ln b$, вместо $log_{e}b$

Логарифмические уравнения

Логарифмическими уравнениями называют уравнения вида

$log_{a}f(x)=log_{a}g(x)$, где $а$ – положительное число, отличное от $1$, и уравнения, сводящиеся к этому виду.

После нахождения корней логарифмического уравнения необходимо проверить условие: подлогарифмическое выражение должно быть больше $0$.

Можно выделить несколько основных видов логарифмических уравнений:

1. Простейшие логарифмические уравнения: $log_{a}x=b$. Решение данного вида уравнений следует из определения логарифма, т.е. $x=a^b$ и $х > 0$

$log_{2}x=3$

Представим обе части уравнения в виде логарифма по основанию 2

$log_{2}x=log_{2}2^3$

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

$x = 8$

Ответ: $х = 8$

2. Уравнения вида: $log_{a}f(x)=log_{a}g(x)$. Т.к. основания одинаковые, то приравниваем подлогарифмические выражения:

${table f(x)=g(x); f(x)>0; g(x)>0;$

$log_3(x^2-3x-5)=log_3(7-2x)$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

$x^2-3x-5=7-2x$

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

$x^2-x-12=0$

$x_1=4,x_2= -3$

Проверим найденные корни по условиям: ${table x^2-3x-5>0; 7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

Ответ: $х= -3$

3. Уравнения квадратного вида ${log_a^2}x+log_{a}x+c=0$. Такие уравнения решаются способом введения новой переменной и переходом к обычному квадратному уравнению.

4. Уравнения вида $a^x=b$. Решаются логарифмированием обеих частей по основанию $а$.

Решить уравнение $log_5log_2(x+1)=1$

Решение:

Сделаем в обеих частях уравнения логарифмы по основанию $5$

$log_5(log_2(x+1))=log_{5}5$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

$log_2(x+1)=5$

Далее представим обе части уравнения в виде логарифма по основанию $2$

$log_2(x+1)=log_{2}2^5$

$x+1=32$

$x=31$

ОДЗ данного уравнения $x+1>0$

Подставим вместо х в неравенство $31$ и проверим, получиться ли верное условие $32>0$, следовательно, $31$ корень уравнения.

Ответ: $31$

Задание 971

Найдите корень уравнения $$3^{log_9 (5x-5)}=5$$

Ответ: 6

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$3^{log_9 (5x-5)}=5Leftrightarrow 3^{frac{1}{2}log_3 (5x-5)}=5 Leftrightarrow$$ $$ 3^{log_3 sqrt{5x-5}}=5Leftrightarrow sqrt{5x-5}=5 Leftrightarrow$$ $$ 5x-5=25Leftrightarrow x=6$$

Задание 1010

Найдите корень уравнения $$log _{2} (-x) + log _{2} (2-x) = 3$$ .Если корней несколько, то в ответе укажите их сумму.

Ответ: -2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

 $$log _{2} (-x) + log _{2} (2-x) = 3$$

$$-x > 0 ; 2 — x > 0 Leftrightarrow x<0$$

$$log _{2} ((-x) *(2-x)) = log _{2} 8$$

$$-2x+x^2=8$$

$$x^2-2x-8=0$$

$$x_1=4 — не входит в ОДЗ ; x_2 =-2$$

Задание 3653

Найдите корень уравнения $$log_{0,5}(5-3x)=-5$$

Ответ: -9

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$log_{0,5}(5-3x)=-5$$

ОДЗ: $$5-3x>0$$

$$x<frac{5}{3}$$

$$5-3x=(0,5)^{-5}=2^{5}=32$$

$$-3x=32-5=27$$

$$x=-9$$

Задание 6607

Решите уравнение $$7*5^{log_{5} x}=x^{2}-30$$. Если корней несколько, то в ответе укажите меньший корень

Ответ: 10

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

ОДЗ: x>0(1)

$$7*x=x^{2}-30Leftrightarrow$$$$x^{2}-7x-30=0$$

$$left{begin{matrix}x_{1}+x_{2}=7\x_{1}x_{2}=-30end{matrix}right.Leftrightarrow$$ left{begin{matrix}x_{1}=10\x_{2}=-3notin (1)end{matrix}right.$$

Задание 7051

Найдите корень уравнения $$log_{0,5} (x+5)=log_{2} (x+5)$$

Ответ: -4

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$log_{0,5}(x+5)=log_{2}(x+5)Leftrightarrow$$ $$log_{2^{-1}}(x+5)=log_{2}(x+5)Leftrightarrow$$ $$(-1)log_{2}(x+5)=log_{2}(x+5)Leftrightarrow$$ $$2log_{2}(x+5)=0Leftrightarrow$$ $$x+5=1Leftrightarrow$$ $$x=-4$$

Задание 7314

Найдите корень уравнения $$frac{1}{log_{4} (2x+1)}=-2$$

Ответ: -0,25

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$frac{1}{log_{4}(2x+1)}=-2Leftrightarrow$$ $$left{begin{matrix}log_{4}(2x+1)=-frac{1}{2}\2x+1>0\2x+1neq 1end{matrix}right.$$$$Leftrightarrow$$ $$2x+1=4-frac{1}{2}Leftrightarrow$$ $$2x+1=frac{1}{2}Leftrightarrow$$ $$2x=-frac{1}{2}Leftrightarrow$$ $$x=-0,25$$

Задание 9056

Найдите корень уравнения $$log_{2}(8-x)=2log_{2}(4+x)$$. Если уравнение имеет более одного корня, в ответе запишите наименьший из корней.

Ответ: -1

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 9139

Решите уравнение $$frac{log_{2}4}{x}=frac{3^{log_{3}x}}{2}$$. Если уравнение имеет несколько корней, в ответе укажите меньший из них.

Ответ: 2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 9939

Решите уравнение: $$log_{frac{1}{8}}x+5log_{4}x+log_{sqrt{2}}x=16frac{2}{3}$$

Ответ: 16

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 10125

Решите уравнение $$log_{30-3cdot2^x}(2^x-3)^2=log_{2^x-2}(2^x-3)^2$$. Если корней несколько, в ответе укажите их сумму.

Ответ: 5

Скрыть

Задание 10159

Найдите произведение всех корней уравнения $$sqrt[3]{10+3x-x^2}cdotlg(7-x-x^2)=0$$

Ответ: 12

Скрыть

Задание 10478

Решите уравнение $$ln(frac{pi^{x}}{e^{x}}+2x-10)=x(ln pi-1)$$. Если корней больше одного, то в ответе запишите их сумму.

Ответ: 5

Задание 10488

Решите уравнение $$frac{5}{log_{2}x+3}+frac{4}{log_{2}x}=3$$. Если корней несколько, в ответе укажите их произведение.

Ответ: 1

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 10567

Найдите произведение всех различных корней уравнения: $${{log }_3 x }-6cdot {{log }_x 9 }=3$$

Ответ: 27

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
$${{log }_3 x }-6cdot {{log }_x 9 }=3;
Mleft(xright):left{ begin{array}{c}
x>0 \
xne 1 end{array}
right.$$
Учтем, что $${{log }_x 9 }=2cdot {{log }_x 3 }=frac{2}{{{log }_3 x }}$$; Замена: $${{log }_3 x }=y$$;

$$y-6cdot frac{2}{y}=3to frac{y^2-3cdot y-12}{y}=0to left{ begin{array}{c}
y_1+y_2=3 \
y_1cdot y_2=12 end{array}
right.$$ т.е. $${{log }_3 x_1+{{log }_3 x_2=3to {{log }_3 {(x}_1cdot x_2)=3to x_1cdot x_2=27 } } }$$

Задание 11266

Решить уравнение: $$frac{lg sqrt{x+11}-lg 2}{lg 8 -lg(x-1)}=-1$$

Ответ: 25

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Понравилась статья? Поделить с друзьями:
  • Логарифмические уравнения егэ профиль с решениями
  • Логарифмические уравнения егэ профиль примеры
  • Логарифмические уравнения егэ профиль 1 часть
  • Логарифмические уравнения егэ вторая часть
  • Логарифмические уравнения егэ базовый уровень решу