Логарифмические уравнения теория егэ

Логарифмом положительного числа $b$ по основанию $а$, где $a>0, a ≠ 1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.

$log_{2}8 = 3$, т.к. $2^3 = 8;$

$log_3{1}/{27}=-3$, т.к $3^{-3} = {1}/{27}$.

Особенно можно выделить три формулы:

$log_{a}a=1;$

$log_{a}1=0;$

$log_{a}a^b=b.$

Основное логарифмическое тождество:

$a^{log_{a}b}=b$

Это равенство справедливо при $b> 0, a> 0, a≠ 1$

$4^{log_{4}5}=5$;

$3^{-2log_{3}5}=(3^{log_{3}5})^{-2}=5^{-2}={1}/{25}$

Некоторые свойства логарифмов

Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любого действительного числа $m$ справедливы равенства:

$log_{а}b^m=mlog_{a}b;$

$log_{a^m}b={1}/{m}log_{a}b.$

$log_{3}3^10=10log_{3}3=10;$

$log_{5^3}7={1}/{3}log_{5}7;$

$log_{3^7}4^5={5}/{7}log_{3}4;$

2. Для решения задач иногда полезно следующее свойство: Если числа $а$ и $b$ на числовой оси расположены по одну сторону от единицы, то $log_{a}b>0$, а если по разные, то $log_{a}b<0$.

Десятичным логарифмом числа называют логарифм этого числа по основанию $10$ и пишут $lg⁡b$ вместо $log_{10}b$.

Натуральным логарифмом числа называют логарифм этого числа по основанию $е$, где $е$ – иррациональное число, приближенно равное $2,7$. При этом пишут $ln b$, вместо $log_{e}b$

Логарифмические уравнения

Логарифмическими уравнениями называют уравнения вида

$log_{a}f(x)=log_{a}g(x)$, где $а$ – положительное число, отличное от $1$, и уравнения, сводящиеся к этому виду.

После нахождения корней логарифмического уравнения необходимо проверить условие: подлогарифмическое выражение должно быть больше $0$.

Можно выделить несколько основных видов логарифмических уравнений:

1. Простейшие логарифмические уравнения: $log_{a}x=b$. Решение данного вида уравнений следует из определения логарифма, т.е. $x=a^b$ и $х > 0$

$log_{2}x=3$

Представим обе части уравнения в виде логарифма по основанию 2

$log_{2}x=log_{2}2^3$

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

$x = 8$

Ответ: $х = 8$

2. Уравнения вида: $log_{a}f(x)=log_{a}g(x)$. Т.к. основания одинаковые, то приравниваем подлогарифмические выражения:

${table f(x)=g(x); f(x)>0; g(x)>0;$

$log_3(x^2-3x-5)=log_3(7-2x)$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

$x^2-3x-5=7-2x$

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

$x^2-x-12=0$

$x_1=4,x_2= -3$

Проверим найденные корни по условиям: ${table x^2-3x-5>0; 7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

Ответ: $х= -3$

3. Уравнения квадратного вида ${log_a^2}x+log_{a}x+c=0$. Такие уравнения решаются способом введения новой переменной и переходом к обычному квадратному уравнению.

4. Уравнения вида $a^x=b$. Решаются логарифмированием обеих частей по основанию $а$.

Решить уравнение $log_5log_2(x+1)=1$

Решение:

Сделаем в обеих частях уравнения логарифмы по основанию $5$

$log_5(log_2(x+1))=log_{5}5$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

$log_2(x+1)=5$

Далее представим обе части уравнения в виде логарифма по основанию $2$

$log_2(x+1)=log_{2}2^5$

$x+1=32$

$x=31$

ОДЗ данного уравнения $x+1>0$

Подставим вместо х в неравенство $31$ и проверим, получиться ли верное условие $32>0$, следовательно, $31$ корень уравнения.

Ответ: $31$

Прежде чем решать логарифмические уравнения, повторим еще раз определение логарифма и основные формулы.

Логарифм положительного числа b по основанию a — это показатель степени, в которую надо возвести a, чтобы получить b.

log _{a}b=cLeftrightarrow a^{c}=b.

При этом b> 0,;a> 0,;aneq 1.

Обратим внимание на область допустимых значений логарифма:

b> 0,;a> 0,;aneq 1.

Основное логарифмическое тождество:

a^{log _{a}b}=b,

log _{a}a^{c}=c.

Основные формулы для логарифмов:

log _{a}left ( bc right )=log _{a}b+log _{a}c (Логарифм произведения равен сумме логарифмов)

log _{a}left ( frac{b}{c}right )=log _{a}b-log _{a}c (Логарифм частного равен разности логарифмов)
log _{a}b^{m}=mlog_{a}b (Формула для логарифма степени)

Формула перехода к новому основанию:

log _{a}b=frac{log _{c}b}{log _{c}a}

log _{a}b=frac{1}{log _{b}a} .

Мы знаем, как выглядит график логарифмической функции. Эта функция монотонна. Если основание логарифма больше единицы, логарифмическая функция монотонно возрастает. Если основание больше нуля и меньше единицы, логарифмическая функция монотонно убывает. И в любом случае каждое свое значение она принимает только один раз. Это значит, что если логарифмы двух чисел по какому-либо основанию равны, то равны и сами числа.

Все это пригодится нам в решении логарифмических уравнений.

Простейшие логарифмические уравнения

1.Решите уравнение: log _{5}left ( 15+x right )=log _{5}3

Основания логарифмов равны, сами логарифмы тоже равны – значит, равны и числа, от которых они берутся.
Обычно ученики запоминают это правило в краткой жаргонной формулировке: «Отбросим логарифмы!» Конечно, мы «отбрасываем» их не просто так, а пользуясь свойством монотонности логарифмической функции.

Получаем: 15+x=3

x=-12.

Решая логарифмические уравнения, не забываем про область допустимых значений логарифма. Помним, что выражение log _{a}b определено при b> 0,;a> 0,;aneq 1.

Очень хорошо, если вы, найдя корень уравнения, просто подставите его в уравнение. Если после такой подстановки левая или правая часть уравнения не имеют смысла – значит, найденное число не является корнем уравнения и не может быть ответом задачи. Это хороший способ проверки на ЕГЭ.

2. Решите уравнение: log _{2}left ( 4-x right )=7

В левой части уравнения – логарифм, в правой – число 7. Применив основное логарифмическое тождество, представим число 7 в виде log _{2}2^{7}. Дальше все просто.

Ответ: -124

3. Решите уравнение: log _{5}left ( 5-x right )=2cdot log _{5}3

Видите число 2 перед логарифмом в правой части уравнения? Сейчас оно мешает вам «отбросить логарифмы». Что с ним сделать, чтобы в левой и правой частях были просто логарифмы по основанию 5? Конечно же, поможет формула для логарифма степени.

log _{5}left ( 5-x right )=log _{5}left ( 3^{2} right );

log _{5}left ( 5-x right )=log _{5}9;

5-x=9;

x=-4

4. Решите уравнение: log _{5}left ( 4+x right )=2

Область допустимых значений: 4+x> 0. Значит, x> -4.

Представим 2 в правой части уравнения как log _{5}25 — чтобы слева и справа в уравнении были логарифмы по основанию 5.

log _{5}left ( 4+x right )=log _{5}25

Функция y=log _{5}x монотонно возрастает и каждое свое значение принимает ровно один раз. Логарифмы равны, их основания равны. «Отбросим» логарифмы! Конечно, при этом x> -4.

4+x=25

x=21.

Ответ: 21.

5. Решите уравнение: log _{8}left ( x^{2}+x right )=log _{8}left ( x^{2}-4 right )

Запишем решение как цепочку равносильных переходов. Записываем ОДЗ и «убираем» логарифмы:

log _{8}left ( x^{2}+x right )=log _{8}left ( x^{2}-4 right )Leftrightarrow left{begin{matrix}	x^{2}+x> 0\ 	x^{2}-4> 0\ 	x^{2}+x=x^{2}-4	end{matrix}right.Leftrightarrow 	left{begin{matrix}	x^{2}+x> 0\ 	x^{2}-4> 0\ 	x=-4	end{matrix}right.Leftrightarrow x=-4
Ответ: –4.

Заметим, что решения логарифмических уравнений лучше всего записывать в виде цепочки равносильных переходов. Это поможет нам не забыть про область допустимых значений.

6.Решите уравнение: 2^{log _{4}left ( 4x+5 right )}=9.

Перейдем от логарифма по основанию 4 (в показателе) к логарифму по основанию 2. Мы делаем это по формуле перехода к другому основанию:

log _{4}b=frac{log _{2}b}{log _{2}4}=frac{log _{2}b}{2}

Запишем решение как цепочку равносильных переходов.

2^{log _{4}left ( 4x+5 right )}=9Leftrightarrow left{begin{matrix} 	2^frac{{log _{2}left ( 4x+5 right )}}{2}=9\  	4x+5> 0 	end{matrix}right.Leftrightarrow left{begin{matrix} 	left (2^{log _{2}left ( 4x+5 right )}  right )^{frac{1}{2}}=9\  	x> -1frac{1}{4} 	end{matrix}right.Leftrightarrow left{begin{matrix} 	left ( 4x+5 right )^{frac{1}{2}}=9\  	x> -1frac{1}{4} 	end{matrix}right.Leftrightarrow  	left{begin{matrix} 	sqrt{4x+5}=9\  	x> -1frac{1}{4} 	end{matrix}right.Leftrightarrow left{begin{matrix} 	4x+5=81\  	x> -1frac{1}{4} 	end{matrix}right.Leftrightarrow left{begin{matrix} 	x=19\  	x> -1frac{1}{4} 	end{matrix}right.

Ответ: 19.

7.Решите уравнение: log _{x}x^{2}=log _{x}left ( 12-x right ).

Обратите внимание: переменная х и под логарифмом, и в основании логарифма. Мы помним, что основание логарифма должно быть положительно и не равно 1.

ОДЗ:
left{begin{matrix}	12-x> 0\ 	x> 0\ 	xneq 1	end{matrix}right.

Теперь можно «убрать» логарифмы.

x^{2}=12-x

x^{2}+x-12=0

x_{1}=3;;x_{2}=-4 — посторонний корень, поскольку должно выполняться условие x> 0.

Ответ: x=3

8. Решите уравнение 6log _{8}^{2}x-5log _{8}x+1=0.

ОДЗ уравнения: x> 0

Сделаем замену log _{8}x=t. Как и в алгебраических уравнениях, мы делаем замену переменной всегда, когда только возможно.

6t^{2}-5t+1=0Leftrightarrow left[ begin{array}{ccc}	t=frac{1}{2}\	t=frac{1}{3}	end{array}	right.

Вернемся к переменной х:

left[ begin{array}{ccc} 	log _{8}x=frac{1}{2}\ 	log _{8}x=frac{1}{3} 	end{array} 	right.Leftrightarrow  	left[ begin{array}{ccc} 	x=8^{frac{1}{2}}\ 	x=8^{frac{1}{3}} 	end{array} 	right.Leftrightarrow  left[ begin{array}{ccc} 	x=sqrt{8}\ 	x=2 	end{array} 	right.

9.Решите уравнение:
1+log _{3}left ( x^{4}+25 right )=log _{sqrt{3}}sqrt{30x^{2}+12}

Выражение под логарифмом всегда положительно – поскольку к неотрицательной величине x^{4} прибавляем 25. Выражение под корнем в правой части также положительно. Значит, х может быть любым действительным числом.

Представим сумму логарифмов в левой части как логарифм произведения. В правой части – перейдем к логарифму по основанию 3. И используем формулу логарифма степени.

log _{3}3left ( x^{4}+25 right )=frac{1}{2}cdot 2cdot log _{3}left (30x^{2}+12  right )

left (30x^{2}+12  right )

«Отбрасываем» логарифмы.

3left ( x^{4}+25 right) = 30x^{2}+12

3 x^{4} - 30x^{2}+63=0

x^{4} - 10x^{2}+21=0

Такое уравнение называется биквадратным. В него входят выражения x^{2} и x^{4}. Сделаем замену x^{2}=t,;tgeq 0

t^{2}-10t+21=0

left[	begin{array}{ccc} 	t_{1}=3\	t_{2}=7	end{array}	right.

Вернемся к переменной х. Получим:

x_{1}=sqrt{3},;x_{2}=-sqrt{3},;x_{3}=sqrt{7},;x_{4}=-sqrt{7} . Мы нашли все корни исходного уравнения.

Ответ: sqrt{3},;-sqrt{3},;sqrt{7},;-sqrt{7}.

Логарифмические уравнения могут встретиться вам и в задании №1 Профильного ЕГЭ по математике, и в задании №12. И если в задании №1 нужно решить простейшее уравнение, то в задаче 12 решение состоит из двух пунктов. Второй пункт – отбор корней на заданном отрезке или интервале.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Логарифмические уравнения» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Логарифмические уравнения – коротко о главном

Определение логарифмических уравнений

Логарифмическое уравнение – уравнение, в котором неизвестные переменные находятся внутри логарифмов.

Простейшим логарифмическим уравнением является уравнение вида ( displaystyle lo{{g}_{a}}~x~=~b).

Процесс решения любого логарифмического уравнения сводится к приведению логарифмического уравнения к виду ( displaystyle lo{{g}_{a}}left( fleft( x right) right)~=~lo{{g}_{a}}left( gleft( x right) right)), и переходе от уравнения с логарифмами к уравнению без них: ( displaystyle fleft( x right)=gleft( x right)).

ОДЗ (Область допустимых значений) для логарифмического уравнения:

( displaystyle left{ begin{align}& f(x)>0,\ & a>0,text{}\& ane 1.\end{align}right.)

5 основных методов решения логарифмических уравнений:

1 метод. Использование определения логарифма:

( displaystyle lo{{g}_{a}}~f(x)=b Leftrightarrow ~f(x)={{a}^{b}}, a>0, ane 1).

2 метод. Использование свойств логарифма:

  • ( displaystyle lo{{g}_{{{a}^{c}}}}b=frac{1}{c}lo{{g}_{a}}b)
  • ( displaystyle ccdot lo{{g}_{a}}b=lo{{g}_{a}}{{b}^{c}})
  • ( displaystyle lo{{g}_{a}}b+lo{{g}_{a}}c=lo{{g}_{a}}left( bc right))
  • ( displaystyle lo{{g}_{a}}b-lo{{g}_{a}}c=lo{{g}_{a}}left( frac{b}{c} right))
  • ( displaystyle {{log }_{{{a}^{n}}}}b=frac{1}{n}cdot {{log }_{a}}b)
  • ( displaystyle {{log }_{{{a}^{n}}}}{{b}^{m}}=frac{m}{n}cdot {{log }_{a}}b)
  • ( displaystyle lo{{g}_{a}}1=0,~a>0,ane 1)
  • ( displaystyle lo{{g}_{a}}a=1~(a>0,ane 1))

3 метод. Введение новой переменной (замена):

Замена ( displaystyle lo{{g}_{a}}x~=~t)позволяетсвести логарифмическое уравнение к более простому алгебраическому уравнению относительно t.

4 метод. Переход к новому основанию:

( displaystyle {{log }_{a}}b=frac{{{log }_{c}}b}{{{log }_{c}}a}text{ }left( c>0;text{ }ne text{1} right)).

( displaystyle {{log }_{a}}b=frac{1}{{{log }_{b}}a},text{ }left( bne 1 right)).

5 метод. Логарифмирование:

Берется логарифм от правой и левой частей уравнения.

Теорема: Если ( displaystyle a>1), то функция ( displaystyle f(x)=lo{{g}_{a}}x) является монотонно возрастающей, если ( displaystyle 0<a<1), то функция( displaystyle f(x)=lo{{g}_{a}}x) является монотонно убывающей.

( displaystyle left{ begin{array}{l}fleft( x right)=gleft( x right)\fleft( x right)ge A\gleft( x right)le Aend{array} right.Leftrightarrow left{ begin{array}{l}fleft( x right)=A\gleft( x right)=Aend{array} right.).

Метод введения новой переменной

Я начну с рассмотрения первого метода. Как ты уже понял из названия, суть этого метода – ввести такую замену переменной, что твое логарифмическое уравнение чудесным образом преобразится в такое, которое ты уже с легкостью можешь решить.

Все что тебе останется после решения этого самого «упрощенного уравнения» – это сделать «обратную замену» : то есть вернуться от замененного к заменяемому. Давай проиллюстрируем только что сказанное на очень простом примере:

( displaystyle frac{1}{4-lgx}+frac{2}{2+lgx}=1)

В этом примере замена прямо напрашивается сама собой! Ведь ясно, что если мы заменим ( displaystyle lgx) на ( displaystyle t), то наше логарифмическое уравнение превратится в рациональное:

( displaystyle frac{1}{4-t}+frac{2}{2+t}=1)

Его ты без проблем решишь, сведя к квадратному: 

( displaystyle left( 2+t right)+2left( 4-t right)=left( 4-t right)left( 2+t right))

( displaystyle tne 4,tne -2) (дабы знаменатель не обнулился ненароком!)

Упрощая полученное выражение, мы окончательно получим:

( displaystyle {{t}^{2}}-3t+2=0)

( displaystyle {{t}_{1}}=1,{{t}_{2}}=2)

Теперь делаем обратную замену: ( displaystyle t=lgx), тогда из ( displaystyle 1=lgx) следует, что ( displaystyle x=10), а из ( displaystyle 2=lgx) получим ( displaystyle x=100)

Теперь, как и раньше, пришла очередь проверки:

Пусть вначале ( displaystyle x=10), так как ( displaystyle lg 10=1), то ( displaystyle frac{1}{4-1}+frac{2}{2+1}=frac{1}{3}+frac{2}{3}=1), верно!

Теперь ( displaystyle x=100,lg 100=2), тогда ( displaystyle frac{1}{4-2}+frac{2}{2+2}=frac{1}{2}+frac{2}{4}=1), все верно!

Таким образом, числа ( displaystyle 10) и ( displaystyle 100) являются корнями нашего исходного уравнения.

Ответ: ( displaystyle 10,100).

Мне кажется, что основную идею ты уловил. Она не нова и распространяется не только на логарифмические уравнения. 

Другое дело, что иногда довольно сложно сразу «увидеть» замену. Здесь требуется некоторый опыт, который придет к тебе после некоторых усилий с твоей стороны.

А пока что потренируйся в решении следующих примеров:

2. ( displaystyle frac{{{log }_{2}}frac{x}{2}}{{{log }_{2}}x}-frac{{{log }_{2}}{{x}^{2}}}{{{log }_{2}}x-1}=1)

3. ( displaystyle 0.1{{lg }^{4}}x-{{lg }^{2}}x+0,9=0.)

Готов? Давай проверим, что у тебя получилось:

Вначале решим второй пример.

Он как раз демонстрирует тебе, что не всегда замену удается сделать, что говорится, «в лоб». Прежде нам нужно немного преобразовать наше уравнение: применить формулу разности логарифмов в числителе первой дроби, и вынести степень в числителе второй.

Сделав это, ты получишь:

( displaystyle frac{{{log }_{2}}x-1}{{{log }_{2}}x}-frac{2{{log }_{2}}x}{{{log }_{2}}x-1}=1)

Теперь замена стала очевидной, не так ли?

Давай сделаем ее: ( displaystyle t=lo{{g}_{2}}x). Теперь приведем дроби к общему знаменателю и упростим. Тогда мы получим:

( displaystyle frac{{{left( t-1 right)}^{2}}-2{{t}^{2}}}{tleft( t-1 right)}=frac{tleft( t-1 right)}{tleft( t-1 right)})

или

( displaystyle 2{{t}^{2}}+t-1=0)

при ( displaystyle tne 1,tne 0.)

Решив последнее уравнение, ты найдешь его корни: 

( displaystyle {{t}_{1}}=-1,{{t}_{2}}=0.5) откуда ( displaystyle {{x}_{1}}=frac{1}{2},{{x}_{2}}=sqrt{2}).

Самостоятельно сделай проверку и удостоверься в том, что ( displaystyle {{x}_{1}}) и ( displaystyle {{x}_{2}}) в самом деле являются корнями нашего первоначального уравнения.

Теперь давай попробуем решить третье уравнение

4. ( displaystyle 1+{{log }_{x}}frac{4-x}{10}=left( lg {{x}^{2}}-1 right){{log }_{x}}10)

Этот примерчик позаковырестее, однако, я постараюсь решить его вообще не прибегая к замене переменной!

Давай опять, будем делать, что можно: а можно для начала разложить логарифм слева по формуле для логарифма отношения, а также вынести двойку вперед у логарифма в скобках. В итоге у меня получится:

( displaystyle 1+{{log }_{x}}left( 4-x right)-{{log }_{x}}10=left( 2lgx-1 right){{log }_{x}}10)

Что будем делать дальше? Непонятно. А что делать можно? Можно перенести ( displaystyle {{log }_{x}}10) вправо и вынести его как общий множитель. Ура! У нас ушла минус единица!

( displaystyle 1+{{log }_{x}}left( 4-x right)=2lgx{{log }_{x}}10)

Ну а теперь та самая формула, которую мы уже применяли! Так как ( displaystyle {{log }_{x}}10=frac{1}{lgx}), то сократим правую часть! Теперь там вообще просто стоит двойка! Перенесем к ней слева единицу, окончательно получим:

( displaystyle {{log }_{x}}left( 4-x right)=1)

Как решать такие уравнения, ты уже знаешь. Корень находится без труда, и он равен ( displaystyle 2). Напоминаю тебе о проверке!

Ну вот, теперь ты, как я надеюсь, научился решать достаточно сложные задачи, которые « в лоб» не одолеешь! Но логарифмические уравнения бывают еще более коварными! Вот например такие:

( displaystyle log {{~}_{2}}x~+{{log }_{3}}~x~=1.)

Здесь уже, увы, предыдущий способ решения не даст ощутимых результатов. Как ты думаешь, почему? Да, никакой «обратности» логарифмов здесь уже не наблюдается. Этот наиболее общий случай, конечно, тоже поддается решению, но мы уже применяем вот такую формулу:

( displaystyle {{log }_{a}}b=frac{{{log }_{c}}b}{{{log }_{c}}a})

Уж этой формуле все равно, имеется у вас «противоположность» или нет. Ты можешь спросить, а чему выбирать основание ( displaystyle c)? Мой ответ – это не имеет никакого значения. Ответ в итоге не будет зависеть от этого ( displaystyle c). Традиционно используют либо натуральный, либо десятичный логарифм. Хотя это и не принципиально. Я, например, буду применять десятичный:

( displaystyle frac{lgx}{lg 2}+frac{lgx}{lg 3}=1)

( displaystyle lgxleft( lg 2+lg 3 right)=lg 2lg 3)

( displaystyle lgxlg6=lg 2lg 3)

( displaystyle lgx=frac{lg 2lg 3}{lg 6})

Отставлять ответ в таком виде – форменное безобразие! Давайте я вначале запишу по определению, что

( displaystyle x={{10}^{frac{lg 2lg 3}{lg 6}}}={{left( {{10}^{lg 2}} right)}^{frac{lg3}{lg 6}}})

Теперь пришло время воспользоваться: внутри скобок – основным логарифмическим тождеством, а снаружи (в степени) – превратить отношение в один логарифм: ( displaystyle {{10}^{lg 2}}=2,frac{lg 3}{lg 6}={{log }_{6}}3), тогда окончательно получим вот такой «странный» ответ: ( displaystyle x={{2}^{{{log }_{6}}3}}).

Дальнейшие упрощения, увы, нам уже недоступны.

Давай сделаем проверку вместе:

( displaystyle {{log }_{2}}{{2}^{{{log }_{6}}3}}+{{log }_{3}}{{2}^{{{log }_{6}}3}}=1)

( displaystyle {{log }_{6}}3cdot {{log }_{2}}2+{{log }_{6}}3cdot {{log }_{3}}2=1)

( displaystyle {{log }_{6}}3left( 1+{{log }_{3}}2 right)=1)

( displaystyle {{log }_{6}}3cdot {{log }_{3}}6=1)

( displaystyle 1=1)

Верно! Кстати, еще раз вспомни, из чего следует предпоследнее равенство в цепочке!

( displaystyle {{log }_{3x+7}}~left( 9+12x+4{{x}^{2}} right)+{{log }_{2x+3}}left( 6{{x}^{2}}~+23x+21 right)=4.)

В принципе, решение этого примера тоже можно свести к переходу к логарифму по новому основанию, только тебя должно уже пугать то, что получится в итоге. Давай попробуем поступить разумнее: как можно лучше преобразуем левую часть.

( displaystyle 9+12x+4{{x}^{2}}={{left( 2x+3 right)}^{2}})

( displaystyle 6{{x}^{2}}~+23x+21=left( 3x+7 right)left( 2x+3 right))

Кстати, а как по-твоему я получил последнее разложение? Верно, я применил теорему о разложении квадратного трехчлена на множители, а именно:

Если ( displaystyle {{x}_{1}}), ( displaystyle {{x}_{2}})– корни уравнения ( displaystyle a{{x}^{2}}+bx+c=0), то:

( displaystyle a{{x}^{2}}+bx+c=aleft( x-{{x}_{1}} right)left( x-{{x}_{2}} right))

Ну вот, теперь я перепишу мое исходное уравнение вот в таком виде:

( displaystyle {{log }_{3x+7}}~{{left( 2x+3 right)}^{2}}+{{log }_{2x+3}}~left( 3x+7 right)left( 2x+3 right)=4)

( displaystyle 2{{log }_{3x+7}}~left( 2x+3 right)+{{log }_{2x+3}}~left( 3x+7 right)=3)

А вот решить такую задачу нам уже вполне по силам!

Так как ( displaystyle {{log }_{2x+3}}~left( 3x+7 right)=1/{{log }_{3x+7}}~left( 2x+3 right)), то введем замену ( displaystyle t={{log }_{3x+7}}~left( 2x+3 right)).

Тогда мое исходное уравнение примет вот такой простой вид: ( displaystyle frac{2}{t}+t-3=0)

Его корни равны: ( displaystyle {{t}_{1}}=2,{{t}_{2}}=1), тогда

( displaystyle {{log }_{3x+7}}~left( 2x+3 right)=1), откуда ( displaystyle 3x+7=2x+3,{{x}_{1}}=-4)

( displaystyle {{log }_{3x+7}}~left( 2x+3 right)=2), откуда ( displaystyle {{left( 3x+7 right)}^{2}}=left( 2x+3 right)) – данное уравнение корней не имеет.

Тебе осталось сделать проверку!

Следующее уравнение попробуй решить самостоятельно. Не торопись и будь внимателен, тогда удача будет на твоей стороне!

( displaystyle {{log }_{5}}left( 5+3x right)={{log }_{5}}3cdot {{log }_{3}}left( 2x+10 right))

Готов? Давай посмотрим, что у нас получилось.

На самом деле, пример решается в два действия:

1. Преобразуем ( displaystyle {{log }_{5}}3=frac{1}{{{log }_{3}}5})

2. Теперь справа у меня стоит выражение ( displaystyle frac{{{log }_{3}}left( 2x+10 right)}{{{log }_{3}}5}), которое равно ( displaystyle {{log }_{5}}left( 2x+10 right))

Таким образом, исходное уравнение свелось к простейшему:

( displaystyle {{log }_{5}}~left( 5+3x right)={{log }_{5}}left( 2x+10 right))

( displaystyle x=5).

Проверка говорит о том, что данное число в самом деле является корнем уравнения.

Опишем непосредственно сам мини-максный метод

Я думаю, что ты понимаешь, от каких слов произошло такое название? Верно, от слов минимум и максимум. Кратко метод можно представить в виде:

( displaystyle left{ begin{array}{l}fleft( x right)=gleft( x right)\fleft( x right)ge A\gleft( x right)le Aend{array} right.Leftrightarrow left{ begin{array}{l}fleft( x right)=A\gleft( x right)=Aend{array} right.)

Наша самая главная цель – это найти вот эту самую константу ( displaystyle A), чтобы далее свести уравнение к двум более простым. Для этого могут быть полезны свойства монотонности логарифмической функции, сформулированные выше.

Теперь давай рассмотрим конкретные примеры:

  • ( displaystyle {{log }_{frac{1}{3}}}left( 1+{{left( {{x}^{2}}-3x+2 right)}^{2}} right)=sqrt{{{x}^{2}}-6x+8})
  • ( displaystyle {{left( 4{{x}^{2}}-7{x} -2 right)}^{2}}+log _{5}^{5}left( 2{{x}^{2}}-11x+15 right)=0)
  • ( displaystyle {{log }_{3}}left( {{x}^{2}}+6x+18 right)=2{{sin }^{2}}frac{pi x}{6})

1. Вначале рассмотрим левую часть. Там стоит логарифм с основанием меньше ( displaystyle 0<a<1). 

По теореме, сформулированной выше, какой оказывается функция ( displaystyle y={{log }_{a}}t)? Она убывает. При этом, ( displaystyle t=1+{{left( {{x}^{2}}-3x+2 right)}^{2}}ge 1), а значит, ( displaystyle {{log }_{a}}tle 0). 

С другой стороны, по определению корня:

( displaystyle sqrt{{{x}^{2}}-6x+8}ge 0). 

Таким образом, константа ( displaystyle A) найдена и равна ( displaystyle 0). Тогда исходное уравнение равносильно системе:

( displaystyle left{ begin{array}{l}sqrt{{{x}^{2}}-6x+8}=0\{{log }_{frac{1}{3}}}left( 1+{{left( {{x}^{2}}-3x+2 right)}^{2}} right)=0end{array} right.)

Первое уравнение имеет корни ( displaystyle {{x}_{1}}=4,{{x}_{2}}=2), а второе: ( displaystyle {{x}_{1}}=1,{{x}_{2}}=2). 

Таким образом, общий корень равен ( displaystyle 2), и данный корень будет корнем исходного уравнения. На всякий случай сделай проверку, чтобы убедиться в этом.

Ответ: ( displaystyle 2)

2. ( displaystyle {{left( 4{{x}^{2}}-7{x} -2 right)}^{2}}+log _{5}^{2}left( 2{{x}^{2}}-11x+15 right)=0)

Давай сразу задумаемся, что здесь написано? Я имею в виду общую структуру. Здесь сказано, что сумма двух квадратов равна нулю. Когда это возможно? Только тогда, когда оба этих числа по отдельности равны нулю. Тогда перейдем к следующей системе:

( displaystyle left{ begin{array}{l}{{left( 4{{x}^{2}}-7{x} -2 right)}^{2}}=0\log _{5}^{2}left( 2{{x}^{2}}-11x+15 right)=0end{array} right.Leftrightarrow left{ begin{array}{l}left[ begin{array}{l}{{x}_{1}}=2;\{{x}_{2}}=-0,25end{array} right.\left[ begin{array}{l}{{x}_{1}}=3;\{{x}_{2}}=2,5end{array} right.end{array} right.)

Общих корней у первого и второго уравнений нет, тогда и исходное уравнение корней не имеет.

Ответ: нет решений.

3. ( displaystyle {{log }_{3}}left( {{x}^{2}}+6x+18 right)=2{{sin }^{2}}frac{pi x}{6})

Давай вначале рассмотрим правую часть – она попроще. По определению синуса:

( displaystyle -1le sintle 1), откуда ( displaystyle 0le {{sin }^{2}}tle 1), и тогда ( displaystyle 0le 2{{sin }^{2}}tle 2.) Поэтому ( displaystyle 0le 2{{sin }^{2}}frac{pi x}{6}le 2.)

Теперь вернемся к левой части: рассмотрим выражение, стоящее под знаком логарифма:

( displaystyle {{x}^{2}}+6x+18)

Попытка найти корни у уравнения ( displaystyle {{x}^{2}}+6x+18=0) не приведет к положительному результату. Но тем не менее, мне надо как-то это выражение оценить. Ты, конечно, знаешь такой метод, как выделение полного квадрата. Его я здесь и применю.

( displaystyle {{x}^{2}}+6x+18={{x}^{2}}+2cdot 3cdot x+9+9={{left( x+3 right)}^{2}}+9ge 9)

Тогда ( displaystyle {{log }_{3}}left( {{x}^{2}}+6x+18 right)={{log }_{3}}left( {{left( x+3 right)}^{2}}+9 right))

Так как ( displaystyle y={{log }_{3}}t) – функция возрастающая, то из ( displaystyle {{left( x+3 right)}^{2}}+9ge 9) cледует, что ( displaystyle {{log }_{3}}left( {{left( x+3 right)}^{2}}+9 right)ge {{log }_{3}}9=2).

Таким образом, ( displaystyle {{log }_{3}}left( {{left( x+3 right)}^{2}}+9 right)ge 2)

Тогда наше исходное уравнение равносильно следующей системе:

( displaystyle left{ begin{array}{l}{{log }_{3}}left( {{x}^{2}}+6x+18 right)=2\2{{sin }^{2}}frac{pi x}{6}=2end{array} right.)

Я не знаю, знаком ты или нет с решением тригонометрических уравнений, поэтому я сделаю так: решу первое уравнение (оно имеет максимум два корня), а потом результат подставлю во второе:

( displaystyle {{log }_{3}}left( {{x}^{2}}+6x+18 right)=2)

( displaystyle {{x}_{1}}=-3) (можешь сделать проверку и убедиться, что это число является корнем первого уравнения системы)

Теперь я подставлю его во второе уравнение:

( displaystyle 2{{sin }^{2}}frac{pi x}{6}=2)

( displaystyle 2{{sin }^{2}}frac{pi left( -3 right)}{6}=2)

( displaystyle {{sin }^{2}}frac{-pi }{2}=1)

( displaystyle 1=1.)

Ответ: ( displaystyle x=-3)

Ну как, теперь тебе стала ясна техника применения мини-максного метода? Тогда постарайся решить следующий пример самостоятельно.

( displaystyle 1+left| {{log }_{4}}left( 9{{x}^{2}}-39x+43 right) right|=left| cos cos left( {x} -2 right)cos left( x right) right|)

Готов? Давай проверим:

Левая часть – сумма двух неотрицательных величин (единицы и модуля) а потому, левая часть не меньше единицы, причем она равна единице только тогда, когда

( displaystyle left| {{log }_{4}}left( 9{{x}^{2}}-39x+43 right) right|=0)

В то же время правая часть – это модуль (значит, больше нуля) произведения двух косинусов (значит не более единицы), тогда:

( displaystyle left| {{log }_{4}}left( 9{{x}^{2}}-39x+43 right) right|=0)

Тогда исходное уравнение равносильно системе:

( displaystyle left{ begin{array}{l}1+|{{log }_{4}}left( 9{{x}^{2}}-39x+43 right)|=1\left| cos cos left( {x} -2 right)cos left( x right) right|=1end{array} right.)

Я опять предлагаю решить первое уравнение и результат подставить во второе:

( displaystyle 1+|{{log }_{4}}left( 9{{x}^{2}}-39x+43 right)|=1)

( displaystyle |{{log }_{4}}left( 9{{x}^{2}}-39x+43 right)|=0)

( displaystyle {{log }_{4}}left( 9{{x}^{2}}-39x+43 right)=0).

Данное уравнение корней не имеет.

Тогда исходное уравнение также не имеет корней.

Ответ: решений нет.

На этой странице вы узнаете:

  • Кручу, верчу, запутать хочу. Что можно сделать с логарифмами, не навредив себе?
  • Как быстро избавиться от логарифмов c одинаковым основанием?
  • Как не попасть в аварию в погоне за результатом??

Математики иногда скучают?! 

Иначе как объяснить то, что для понимания этой пугающей многих учеников темы, нужно запомнить единственный факт:

Степень и логарифм —  разная запись одного и того же математического события.

Понятие логарифма

Логарифм отвечает на вопрос: “В какую степень возвести число a, чтобы получилось число b ?”

Например: log2 4 = 2, так как  22=4 . 

Вот и всё!

Если понятие “степень” всё ещё звучит устрашающе, мы написали статью “Действия с натуральными числами”.

Что же такое логарифм во вселенной математики?

Логарифм — это число, в которое нужно возвести основание a, чтобы получить число b.

Элементы логарифма:

Существуют такие понятия, как десятичный логарифм и натуральный логарифм. Давайте их рассмотрим.

Десятичный логарифм – это логарифм числа по основанию 10. 

Записывается это следующим образом

В случае с десятичным алгоритмом перед нами стоит задача понять, в какую степень возвести 10, чтобы получить нужное нам число.

Натуральный логарифм – это логарифм по основанию е (e ≈ 2,7). 

Записывается это следующим образом

У натурального логарифма в основании стоит число e, которое называется числом Эйлера. Число e играет важную роль во многих разделах математики.

Нельзя обходить такую важную тему, как логарифмы, стороной. Они часто встречаются в заданиях 12 и 14 профильного ЕГЭ по математике. При умелом использовании их свойств можно упростить выражение или заменить запись логарифма на более удобную.

Свойства логарифмов

Основное логарифмическое тождество

Данное тождество следует из определения логарифма и используется для преобразований. 

Кручу, верчу, запутать хочу. Что можно сделать с логарифмами, не навредив себе?

У логарифмов есть свойства. Каждое из рассмотренных в таблице свойств можно использовать для преобразований.

Свойства логарифмов

Простейшие логарифмические уравнения

Как же решать логарифмические уравнения?

Логарифмическое уравнение нужно привести к виду loga f(x) = loga g(x). При решении таких уравнений нужно обязательно учитывать, что по определению аргумент логарифма всегда должен быть больше нуля, а основание больше нуля и не должно равняться единице.

Как быстро избавиться от логарифмов c одинаковым основанием?

Это можно сделать, приравняв аргументы и добавив условие на один из аргументов, так как аргументы логарифмов всегда больше нуля.

Например: 

Алгоритм решения логарифмического уравнения:

  1. Написать ОДЗ.
  2. Упростить выражения слева и справа от знака равенства, используя свойства логарифмов, если это возможно.
  3. Если основания логарифмов одинаковые избавиться от логарифмов, иначе, используя свойства логарифмов, привести к одинаковому основанию, а уже потом совершить эти действия.
  4. Решить уравнение и сравнить с ОДЗ, выписать в ответ корни.
Как не попасть в аварию в погоне за результатом?

Осторожно! Решая логарифмические уравнения, можно разогнаться слишком сильно и вылететь с дороги…

Чтобы такого не случилось, есть специальный ограничитель неправильных ответов – ОДЗ. Область допустимых значений – это те значения, которые может принимать x (или другая буква латинского алфавита) в выражении. Работая с логарифмами и избавляясь от них, всегда следи за показаниями ОДЗ, иначе в ответ попадут лишние корни.

Рассмотрим на примере:

  1. ОДЗ: 5x — 4 > 0, x + 8 > 0
  2. Если в обеих частях уравнения находится логарифм по одинаковому основанию, то можно скинуть логарифмы и записать равенство аргументов

5x — 4 = x + 8

  1. Теперь решим систему и получим

x = 3

  1. Подставим в ОДЗ и проверим, подходит ли корень, запишем ответ, х = 3.

Давайте рассмотрим ещё одно уравнение

  1. Добавим ОДЗ: х > 0, x — 4 > 0, 4x > 0, 4x ≠ 1
  2. По свойствам логарифма преобразуем правую часть уравнения
  1. Представим правую часть в виде логарифма с основанием 2
  1. Скинем логарифмы

x — 4 = 2
x = 6

Проверим, подходит ли значение под ограничения, и запишем ответ, x = 6.

Простейшие логарифмические неравенства

Для решения логарифмических неравенств тоже можно избавляться от логарифмов.

Делается это уже известным способом, при этом нужно обращать внимание на основание логарифма.

Важно:
Если 0<a<1, тогда знак неравенства меняется на противоположный
Если a>1, тогда знак неравенства не меняется

Алгоритм решения логарифмического неравенства:

  1. Написать ОДЗ.
  2. Упростить выражения слева и справа от знака неравенства, используя свойства логарифмов, если это возможно.
  3. Если основания логарифмов одинаковые избавиться от логарифмов по схеме выше. Иначе, используя свойства логарифмов, привести к одинаковому основанию, а уже потом совершить эти действия.
  4. Решить неравенство, пересечь с ОДЗ, записать ответ.

Давайте рассмотрим решение неравенства на примере:

  1. Напишем ОДЗ и по свойству логарифма вынесем степень перед логарифмом

x2 > 0, x > 0 ⇔ x > 0

  1. Перенесем одно слагаемое влево и упростим 
  1. Представим правую часть в виде логарифма с основанием 5
  1. Скинем логарифмы без изменения знака неравенства, так как основание больше единицы и учтём ОДЗ 

x ≥ 25

Запишем ответ [25; +∞).

Фактчек

  • Логарифм – это степень, в которую возводится основание логарифма, чтобы получить аргумент (a^{x} = b Leftrightarrow x = log_{a}:b, при: a > 0, a neq 1, b > 0);
  • Десятичный логарифм: lg a;
  • Натуральный логарифм: ln a;
  • Основное логарифмическое тождество: (a^{log_{a}: b} = b, при: a > 0, a neq 1, b > 0);
  • Существуют специальные свойства логарифмов, благодаря которым можно совершать преобразования;
  • При решении уравнений и неравенств не забывать про ОДЗ на аргумент и основание логарифма: основание больше нуля и не равно единице, аргумент больше нуля;
  • В логарифмических неравенствах при переходе к неравенству аргументов логарифмов знак меняется на противоположный, если значение основания логарифма находится на промежутке от 0 до 1.

Проверь себя

Задание 1.
Решите уравнение

  1. 1 и -1
  2. 2 и -2
  3. 2
  4. -1

Задание 2.
Решите уравнение

  1. 16
  2. 12
  3. 1
  4. 8

Задание 3.
Решите уравнение

  1. 0 и 163
  2. 0 и 323
  3. 32
  4. 163

Задание 4.
Решите неравенство

  1. [-43;0)(0;4]
  2. (0;4]
  3. [-43;0)
  4. -43;4

Задание 5.
Решите неравенство

  1. (0;13] 
  2. (-13;13]
  3. -13;13
  4. -13;0

Ответы: 1. — 3; 2. — 1; 3. — 4; 4. — 1; 5. — 2

Логарифмом числа по основанию называется такой показатель степени, в которую нужно возвести , чтобы получить (то есть ). При этом задаются ограничения: . Значение логарифма может быть любым.

Вычислите:

1. Действуем по определению. Подберем степень, в которую нужно возвести 3, чтобы получить 27.

2. При возведении значит,

Ответ: 3; -3.

Помня об ограничениях, построим по точкам графики логарифмической функция в разных случаях.

Пусть Подставим вместо разные числа и определим соответствующие значения переменной .

Отметим координаты точек на плоскости и соединим их плавной линией.

Легко заметить, что функция все время возрастает. Такое поведение характерно для всех логарифмических функций с основанием больше единицы.

Пусть теперь . Составим таблицу значений для этого случая.

Тогда график функции будет выглядеть следующим образом.

Все логарифмические функции с основанием от 0 до 1 убывают на всей области определения.

Графики всех логарифмических функций проходят через точку с координатами (1;0).

Особыми знаками принято обозначать логарифмы с основанием десять и логарифмы с натуральным основанием .

Свойства логарифмов

Для упрощения вычислений при работе с логарифмами полезно знать и уметь использовать основные свойства.

Используем рассмотренные свойства для решения некоторых задач.

Пример 2

Вычислите

1. Представим .

2. Вынесем степень из—под знака логарифма:

3. Логарифм числа по равному ему основанию равен 1:

Ответ: 5.

Пример 3

Вычислите

1. Воспользуемся свойством степеней:

2. Используем основное логарифмическое тождество:

Ответ: 75.

Пример 4

Вычислите

1. Воспользуемся формулой для суммы логарифмов:

2. Представим 1000 = 103 и вынесем 3 за знак логарифма:

3. Воспользуемся тем, что .

Ответ: 3.

Пример 5

Вычислить .

1. Воспользуемся формулой для частного логарифмов:

2. Преобразуем основание логарифма 36 = 62 и вынесем, «перевернув», вынесем показатель:

3. Воспользуемся тем, что

Ответ: 0,5.

Пример 6

Вычислите .

1. Применим в числителе формулу для сумы логарифмов:

2. В знаменателе внесем 2 под знак логарифма:

3. Воспользуемся формулой суммы логарифмов для знаменателя:

4. Перейдем от частного к логарифму с основанием 12:

5. Представим144 = 122, вынесем степень за знак логарифма и воспользуемся соотношением

Ответ: 2.

Кроме выражений с числами, на экзамене могут встретиться выражения, содержащие переменные. В этом случае можно использовать те же формулы и правила.

Пример 7

Вычислите

1. Преобразуем отдельно подлогарифмическое выражение:

2. Логарифм 1 по любому основанию равен 0:

Ответ: 0.

Логарифмические уравнения

Логарифмом положительного числа $b$ по основанию $а$, где $a>0, a ≠ 1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.

$log_<2>8 = 3$, т.к. $2^3 = 8;$

Особенно можно выделить три формулы:

Основное логарифмическое тождество:

Это равенство справедливо при $b> 0, a> 0, a≠ 1$

Некоторые свойства логарифмов

Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любого действительного числа $m$ справедливы равенства:

2. Для решения задач иногда полезно следующее свойство: Если числа $а$ и $b$ на числовой оси расположены по одну сторону от единицы, то $log_b>0$, а если по разные, то $log_b 0$

Представим обе части уравнения в виде логарифма по основанию 2

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

Проверим найденные корни по условиям: $<table x^2-3x-5>0; 7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

4. Уравнения вида $a^x=b$. Решаются логарифмированием обеих частей по основанию $а$.

Решить уравнение $log_5log_2(x+1)=1$

Сделаем в обеих частях уравнения логарифмы по основанию $5$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Далее представим обе части уравнения в виде логарифма по основанию $2$

ОДЗ данного уравнения $x+1>0$

Подставим вместо х в неравенство $31$ и проверим, получиться ли верное условие $32>0$, следовательно, $31$ корень уравнения.

Логарифмические уравнения

Прежде чем решать логарифмические уравнения, повторим еще раз определение логарифма и основные формулы.

Логарифм положительного числа b по основанию a — это показатель степени, в которую надо возвести a, чтобы получить b.

При этом 0,;a> 0,;aneq 1′ alt=’b> 0,;a> 0,;aneq 1′ />.

Обратим внимание на область допустимых значений логарифма:

Основное логарифмическое тождество:

Основные формулы для логарифмов:

(Логарифм произведения равен сумме логарифмов)

(Логарифм частного равен разности логарифмов)
(Формула для логарифма степени)

Формула перехода к новому основанию:

Мы знаем, как выглядит график логарифмической функции. Эта функция монотонна. Если основание логарифма больше единицы, логарифмическая функция монотонно возрастает. Если основание больше нуля и меньше единицы, логарифмическая функция монотонно убывает. И в любом случае каждое свое значение она принимает только один раз. Это значит, что если логарифмы двух чисел по какому-либо основанию равны, то равны и сами числа.

Все это пригодится нам в решении логарифмических уравнений.

Простейшие логарифмические уравнения

Основания логарифмов равны, сами логарифмы тоже равны – значит, равны и числа, от которых они берутся.
Обычно ученики запоминают это правило в краткой жаргонной формулировке: «Отбросим логарифмы!» Конечно, мы «отбрасываем» их не просто так, а пользуясь свойством монотонности логарифмической функции.

Решая логарифмические уравнения, не забываем про область допустимых значений логарифма. Помним, что выражение определено при 0,;a> 0,;aneq 1′ alt=’b> 0,;a> 0,;aneq 1′ />.

Очень хорошо, если вы, найдя корень уравнения, просто подставите его в уравнение. Если после такой подстановки левая или правая часть уравнения не имеют смысла – значит, найденное число не является корнем уравнения и не может быть ответом задачи. Это хороший способ проверки на ЕГЭ.

2. Решите уравнение:

В левой части уравнения – логарифм, в правой – число 7. Применив основное логарифмическое тождество, представим число 7 в виде . Дальше все просто.

3. Решите уравнение:

Видите число 2 перед логарифмом в правой части уравнения? Сейчас оно мешает вам «отбросить логарифмы». Что с ним сделать, чтобы в левой и правой частях были просто логарифмы по основанию 5? Конечно же, поможет формула для логарифма степени.

4. Решите уравнение:

Область допустимых значений: 0.’ alt=’4+x> 0.’ /> Значит, -4.’ alt=’x> -4.’ />

Представим 2 в правой части уравнения как — чтобы слева и справа в уравнении были логарифмы по основанию 5.

Функция монотонно возрастает и каждое свое значение принимает ровно один раз. Логарифмы равны, их основания равны. «Отбросим» логарифмы! Конечно, при этом -4′ alt=’x> -4′ />.

5. Решите уравнение:

Запишем решение как цепочку равносильных переходов. Записываем ОДЗ и «убираем» логарифмы:

0\ x^<2>-4> 0\ x^<2>+x=x^<2>-4 endright.Leftrightarrow left <beginx^<2>+x> 0\ x^<2>-4> 0\ x=-4 endright.Leftrightarrow x=-4′ alt=’log _<8>left ( x^<2>+x right )=log _<8>left ( x^<2>-4 right )Leftrightarrow left <beginx^<2>+x> 0\ x^<2>-4> 0\ x^<2>+x=x^<2>-4 endright.Leftrightarrow left <beginx^<2>+x> 0\ x^<2>-4> 0\ x=-4 endright.Leftrightarrow x=-4′ />
Ответ: –4.

Заметим, что решения логарифмических уравнений лучше всего записывать в виде цепочки равносильных переходов. Это поможет нам не забыть про область допустимых значений.

Перейдем от логарифма по основанию 4 (в показателе) к логарифму по основанию 2. Мы делаем это по формуле перехода к другому основанию:

Запишем решение как цепочку равносильных переходов.

0 endright.Leftrightarrow left <beginleft (2^<log _<2>left ( 4x+5 right )> right )^<frac<1><2>>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <beginleft ( 4x+5 right )^<frac<1><2>>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <beginsqrt<4x+5>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <begin4x+5=81\ x> -1frac<1> <4>endright.Leftrightarrow left <beginx=19\ x> -1frac<1> <4>endright.’ alt=’2^<log _<4>left ( 4x+5 right )>=9Leftrightarrow left <begin2^frac<<log _<2>left ( 4x+5 right )>><2>=9\ 4x+5> 0 endright.Leftrightarrow left <beginleft (2^<log _<2>left ( 4x+5 right )> right )^<frac<1><2>>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <beginleft ( 4x+5 right )^<frac<1><2>>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <beginsqrt<4x+5>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <begin4x+5=81\ x> -1frac<1> <4>endright.Leftrightarrow left <beginx=19\ x> -1frac<1> <4>endright.’ />

Обратите внимание: переменная х и под логарифмом, и в основании логарифма. Мы помним, что основание логарифма должно быть положительно и не равно 1.

ОДЗ:
0\ x> 0\ xneq 1 endright.’ alt=’left <begin12-x> 0\ x> 0\ xneq 1 endright.’ />

Теперь можно «убрать» логарифмы.

— посторонний корень, поскольку должно выполняться условие 0′ alt=’x> 0′ />.

8. Решите уравнение .

ОДЗ уравнения: 0′ alt=’x> 0′ />

Сделаем замену . Как и в алгебраических уравнениях, мы делаем замену переменной всегда, когда только возможно.

Вернемся к переменной х:

Выражение под логарифмом всегда положительно – поскольку к неотрицательной величине прибавляем 25. Выражение под корнем в правой части также положительно. Значит, х может быть любым действительным числом.

Представим сумму логарифмов в левой части как логарифм произведения. В правой части – перейдем к логарифму по основанию 3. И используем формулу логарифма степени.

Такое уравнение называется биквадратным. В него входят выражения и . Сделаем замену

Вернемся к переменной х. Получим:

. Мы нашли все корни исходного уравнения.

Логарифмические уравнения могут встретиться вам и в задании №1 Профильного ЕГЭ по математике, и в задании №12. И если в задании №1 нужно решить простейшее уравнение, то в задаче 12 решение состоит из двух пунктов. Второй пункт – отбор корней на заданном отрезке или интервале.

Поверните устройство

  1. Классы
  2. ЕГЭ (профиль)
  3. 01. Простейшие уравнения
  4. Теория: 07. Элементарные логарифмические уравнения

Найдите корень уравнения:

Решим уравнение (displaystyle log_7(13-3x)=2<small .>)

Если (displaystyle a>0,, b>0 ) и (displaystyle acancel<=>1), то по определению логарифма

(displaystyle log_a b=c) равносильно (displaystyle b=a^c <small .>)

(displaystyle log_7(13-3x)=2) равносильно (displaystyle 13-3x=7^2 <small .>)

Решим линейное уравнение (displaystyle 13-3x=7^2 <small :>)

Так как (displaystyle 13-3x=7^2 <small ,>) то ограничение (displaystyle 13-3x>0 ) будет верным для решения линейного уравнения.

источники:

http://ege-study.ru/logarifmicheskie-uravneniya/

http://m.01math.com/maths/theory?subcategory_id=1457

Тема 13. Логарифмические уравнения и неравенства.

Логарифмическим уравнением называется уравнение, в котором неизвестное находится под знаком логарифма или в основании логарифма.

Логарифмом числа по основанию  называется показатель степени , в которую надо возвести основание , чтобы получить число , то есть из  следует  и наоборот.

Основные формулы.

  1. .
  2. — запись числа через логарифм.
  3. — основное логарифмическое тождество.
  4.  — формула перехода к логарифму по основанию
  5. .

Основные методы решения логарифмических уравнений.

I. По определению логарифма.

Так решаются простейшие уравнения вида

Примеры.

Решить уравнение. 1)  .

Решение.

Проверка:  верно;

                     верно.

Ответ: -1; 3.

2) .

Решение. По определению логарифма:  Получаем

.

Проверка:  верно.

Ответ: .

Решить уравнения.

  1. .                                                        Ответ:
  2. .                                                Ответ:      
  3. .                                                Ответ:    
  4. .                                  Ответ:
  5. .                                                               Ответ:
  6.                                                                      Ответ:

II. Метод потенцирования.

Сущность метода в следующем: с помощью формул уравнение привести к виду   Это уравнение ( при  равносильно системе

Примеры.

Решить уравнение.

1) .

Решение. ОДЗ (область допустимых значений переменной): . Преобразуем исходное уравнение

-удовлетворяет условию (1).

Ответ: .

2) .

Решение. ОДЗ    (2)

 

 не удовлетворяет ОДЗ,  удовлетворяет ОДЗ.

Ответ: 2.

Решение. ОДЗ:

           Найдем связь между основаниями логарифмов. По формуле разности кубов получаем  

 Таким образом

  Значение  удовлетворяет ОДЗ,  не удовлетворяет ОДЗ.

Ответ: -4.

Решить уравнения.

  1.                                                    Ответ:
  2.                                                  Ответ:
  3.                                                      Ответ:
  4.                                                             Ответ:
  5.                   Ответ:  
  6.                                  Ответ:  

III. Метод введения неизвестного (подстановка).

Обычно замену (подстановку) производят после некоторых преобразований данного уравнения.

Примеры.

Решить уравнение. 1)

Решение. ОДЗ  В первом слагаемом перейдем к основанию 25, воспользовавшись формулой  Получим . Так как , т.е.  то умножив обе части уравнения на  получим  . Введем новую переменную, обозначив  Получим  квадратное уравнение относительно нового неизвестного :

. Решая его, находим Используя обозначение  получаем

Найденные значения удовлетворяют ОДЗ.

Ответ:

2)

Решение. ОДЗ   С учетом ОДЗ раскроем модуль, получим  Обозначим  приходим к квадратному уравнению  Тогда  

Найденные значения удовлетворяют уравнению.

Ответ: -10; —.

Решить уравнения.

1.                                                              Ответ:              

2.                                                 Ответ:

3.                                         Ответ:

4.                                                    Ответ:

5.                                                        Ответ:

IV. Метод приведения к одному основанию.

Обычно условие примера подсказывает, к какому основанию следует перейти. Часто метод приведения к одному основанию «работает» с методом подстановки.

Примеры. Решить уравнение.

1) .

Решение. ОДЗ: . Перейдем к основанию 2, используя формулу , получим

, , обозначим , тогда

                     . Значит,

Найденное значение удовлетворяет ОДЗ.

Ответ: 64.

2) .

Решение. ОДЗ: Переходим к основанию 2, используя формулу.

Итак,

Тогда исходное уравнение перепишется так

. Обозначим , получим уравнение

   Тогда

Найденные значения  удовлетворяют ОДЗ.

Ответ: 1, 4, .

Решить уравнения

  1.                                    Ответ:
  2.                                           Ответ:
  3.                                                      Ответ:
  4.                                                              Ответ:
  5.                                                  Ответ:  

V. Метод логарифмирования.

Уравнения, содержащие неизвестную величину как в основании, так и в показателе степени, решают, логарифмируя левую и правую части по некоторому основанию. Основание логарифмирования выбирают по виду конкретного уравнения.

Примеры. Решить уравнение.

1) , где

Решение. В данном задании целесообразно прологарифмировать обе части уравнения по основанию 10, поскольку в условии уже имеется десятичный логарифм.

Получаем , откуда  Введем новую переменную . Тогда полученное уравнение перепишется в виде (учитывая, что )

Ответ:

2) .

Решение. ОДЗ:  Прологарифмируем обе части уравнения по основанию .

  Пусть , тогда

Тогда  Найденные значения  удовлетворяют ОДЗ.

Ответ:

Решить уравнения

  1.                                                           Ответ:
  2.                                         Ответ:
  3.                                                     Ответ:
  4.                                                        Ответ:
  5.                                                           Ответ:

Понравилась статья? Поделить с друзьями:
  • Логарифмические уравнения на егэ профильный уровень 2022
  • Логарифмические уравнения на егэ 24 варианта
  • Логарифмические уравнения егэ профильная математика
  • Логарифмические уравнения егэ профиль с решениями
  • Логарифмические уравнения егэ профиль примеры