Логарифмы в егэ базовый уровень 2022 математика

Всего: 35    1–20 | 21–35

Добавить в вариант

Найдите корень уравнения  логарифм по основанию 4 левая круглая скобка x плюс 2 правая круглая скобка плюс логарифм по основанию 4 3= логарифм по основанию 4 15.


Найдите корень уравнения  логарифм по основанию 5 левая круглая скобка x плюс 3 правая круглая скобка плюс логарифм по основанию 5 4= логарифм по основанию 5 16.


Найдите корень уравнения  логарифм по основанию 3 левая круглая скобка x минус 3 правая круглая скобка плюс логарифм по основанию 3 2= логарифм по основанию 3 10.


Найдите корень уравнения  логарифм по основанию 7 левая круглая скобка x плюс 4 правая круглая скобка плюс логарифм по основанию 7 2= логарифм по основанию 7 12.


Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:


Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:


Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:


Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:


Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.

Впишите в приведённую в ответе таблицу под каждой буквой соответствующий решению номер.


Найдите значение выражения 2 в степени левая круглая скобка 3 логарифм по основанию 2 7 правая круглая скобка .


Найдите значение выражения 7 в степени левая круглая скобка минус 2 логарифм по основанию 7 2 правая круглая скобка .


Найдите значение выражения 5 в степени левая круглая скобка 2 логарифм по основанию 5 6 правая круглая скобка .


Найдите значение выражения 4 в степени левая круглая скобка 3 логарифм по основанию 4 2 правая круглая скобка .


Найдите значение выражения  логарифм по основанию левая круглая скобка 15 правая круглая скобка 5 плюс логарифм по основанию левая круглая скобка 15 правая круглая скобка 45.

Источник: Досрочная волна ЕГЭ по математике 29.03.2019. Вариант 1


Найдите значение выражения  логарифм по основанию 3 1,8 плюс логарифм по основанию 3 5.

Всего: 35    1–20 | 21–35

14 января 2018

В закладки

Обсудить

Жалоба

Логарифмы в заданиях ЕГЭ

Большая часть заданий, включенных в ЕГЭ, представляет собой задания на вычисление значений числовых логарифмических выражений.

При подготовке следует обратить внимание на формулу перехода к новому основанию логарифма и следствия из нее. Задачи на использование этих формул в школьных учебниках практически не встречаются.

Материал для проведения самостоятельных работ. 15 вариантов по 28 заданий. Ответы прилагаются.

log-sm.docx



Логарифмы в заданиях ЕГЭ

Логарифмы в заданиях ЕГЭ

Борисова Елена Леонидовна,

учитель математики

высшей квалификационной категории

МОУ Левобережная средняя школа

г.Тутаева ярославской области.

Большая часть заданий, включенных в ЕГЭ, представляет собой задания на вычисление

значений числовых логарифмических выражений. При подготовке следует обратить внимание на

формулу перехода к новому основанию логарифма и следствия из нее. Задачи на использование

этих формул в школьных учебниках практически не встречаются.

Проверяемые элементы:

Владение понятием логарифм

Знание основных свойств логарифмов

Умение выполнять тождественные преобразования логарифмических выражений.

Вариант 1.

Найдите значение выражения:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Вариант 2.

Найдите значение выражения:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Вариант 3.

Найдите значение выражения:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Вариант 4.

Найдите значение выражения:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Вариант 5.

Найдите значение выражения:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Вариант 6.

Найдите значение выражения:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Вариант 7.

Найдите значение выражения:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Вариант 8.

Найдите значение выражения:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Вариант 9.

Найдите значение выражения:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Вариант 10.

Найдите значение выражения:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Вариант 11.

Найдите значение выражения:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Вариант 12.

Найдите значение выражения:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Вариант 13.

Найдите значение выражения:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Вариант 14.

Найдите значение выражения:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Вариант15.

Найдите значение выражения:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Используемые источники:

1. ЕГЭ: 4000 задач с ответами по математике. Все задания «Закрытый сегмент». Базовый и

профильный уровни /И.В.Ященко, И.Р.Высоцкий, А.В.Забелин и др.; под редакцией И.В.Ященко.

М.: Издательство «Экзамен», 2016. – 640 с. (Серия «Банк заданий ЕГЭ»)

2. http://reshuege.ru/

3. http://www.yaklass.ru/materiali?mode=lsntheme&themeid=10

4. http://nsportal.ru/shkola/algebra/library/2012/01/09/svoystva-logarifmov-trenirovochnye-zadaniya

Логарифмы

Предыдущую статью о показательных уравнениях мы начали с уравнения 2x = 8. Там всё было ясно: x = 3.

А теперь рассмотрим уравнение 2x = 7.

По графику функции y = 2x мы видим, что это уравнение имеет корень, и притом единственный.


Ясно, что этот корень — не целое число (так как 22 = 4, 23 = 8). Более того, оказывается, что он не является даже рациональным числом, т. е. не представляется в виде обыкновенной дроби. Интуитивно мы чувствуем лишь, что он меньше 3, но не намного.

Этот корень обозначается log27 (читается: «логарифм семи по основанию два»). Он является иррациональным числом, т. е. бесконечной непериодической десятичной дробью. Калькулятор даёт: log27 = 2,807354922057604107…

Итак, наше число log27 — это показатель степени, в которую надо возвести 2, чтобы получить 7.

Теперь дадим общее определение логарифма. Пусть a > 0 и a ≠ 1 (условия те же, что и для основания показательной функции).

Определение. Логарифм положительного числа b по основанию a (обозначается logab) — это показатель степени, в которую надо возвести a, чтобы получить b.

Иными словами,

Например:

  так как  ;

, так как  ;

  так как  ;

, так как  .

Логарифм с основанием 10 называется десятичным и обозначается lg. Например, lg 100 = 2, lg 1000 = 3, lg 0,01 = −2.

Логарифм с основанием e называется натуральным и обозначается ln.

Обратите внимание: логарифм определён только для положительных чисел. Причина заключается в том, что показательная функция может принимать лишь положительные значения. Например, число log2(−4) не существует: в какую бы степень мы ни возводили 2, мы никогда не получим −4.

Не забывайте также про ограничения на основание логарифма: 0 < a < 1 или a > 1.

Основные формулы

По определению, logab — это показатель степени, в которую надо возвести число a, чтобы получить число b:

Формула (1) называется основным логарифмическим тождеством.
Вот еще один вариант записи основного логарифмического тождества:

logaax=x.

Перечислим свойства логарифмов. Они являются простыми следствиями правил действия со степенями. Все логарифмы ниже считаются определёнными.

Логарифм произведения — это сумма логарифмов:

loga(bc) = logab + logac. (2)

Логарифм частного — это разность логарифмов:

log_{a}frac{b}{c}=log_{a}b-log_{a}c. (3)

Показатель степени логарифмируемого числа «спрыгивает» перед логарифмом:

log_{a}b^{m}=mlog_{a}b. (4)

Показатель степени основания логарифма тоже «спрыгивает», но в виде обратного числа:

log_{a^{n}}b=frac{1}{n}log_{a}b. (5)

Формулы (4) и (5) вместе дают:

. (6)

В частности, если m = n, мы получаем формулу:

. (7)

Например, .

Наконец, важнейшая формула перехода к новому основанию:

. (8)

В частности, если c = b, то logbb = 1, и тогда:

. (9)

Приведём несколько примеров из банка заданий.
1. (применили формулу (2) суммы логарифмов).

2. (применили основное логарифмическое тождество(1)).

3. log^{2}_{sqrt{7}}49=(log_{sqrt{7}}49)^{2}=(log_{sqrt{7}}7^{2})^{2}=(2log_{sqrt{7}}7)^{2}=(2cdot 2)^{2}=16 (применили формулу (4)).

4. log_{0,8}3cdot log_{3}1,25=log_{0,8}3cdot frac{log_{0,8}1,25}{log_{0,8}3}=log_{0,8}1,25=log_{frac{4}{5}}frac{5}{4}=-1 (применили формулу (9), перейдя к новому основанию 0,8).

5. frac{9^{log_{5}50}}{9^{log_{5}2}}=9^{log_{5}50-log_{5}2}=9^{log_{5}25}=9^{2}=81 (применили формулу (3) разности логарифмов).

Немного истории

Теперь вы поняли, что такое логарифмы и как ими пользоваться. Но для чего они всё-таки нужны? Или это просто такая математическая игрушка с хитрой инструкцией по применению?

Понятие логарифма и логарифмические таблицы появились в 17 веке, и значение их было огромно.

Это в наши дни вычисления не представляют труда — у каждого есть калькулятор. А как считали в «докомпьютерные» времена?

Складывать и вычитать можно было на счётах, а вот умножать и делить приходилось «в столбик» — медленно и трудно.

В 15–17 веках, в эпоху великих географических открытий, стали бурно развиваться торговля, экономика и наука. Требования к математике росли: расчёты становились более сложными, а точность — например, для решения навигационных задач — нужна была всё более высокая.

Необходим был инструмент, позволяющий упростить и ускорить расчёты, и таким инструментом явились логарифмы.

Предположим, что b и c — большие числа, которые надо перемножить. Появление таблиц логарифмов (например, с основанием 10) существенно упростило эту задачу. Теперь вычислителю достаточно было найти по таблицам десятичные логарифмы чисел b и c, сложить их (на счётах) и получить логарифм произведения: lgb + lgc = lg(bc).

А затем по таблице логарифмов найти само произведение чисел b и c.

Недаром французский математик и астроном Лаплас сказал, что изобретение логарифмов удлинило жизнь вычислителей. Логарифмическая линейка (которой инженеры пользовались до 70-х годов двадцатого века) была не менее прогрессивным изобретением, чем современный калькулятор.

Но это еще не всё! Мы не занимались бы логарифмами, если бы они имели лишь историческую, «музейную» ценность. О неожиданных применениях логарифмов мы расскажем в следующей статье, посвящённой логарифмической функции.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Логарифмы» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

Задания для
подготовки к ЕГЭ

Базовый уровень.

Логарифмические
уравнения.

1.
Найдите корень уравнения

2.
Найдите корень уравнения

3.
Найдите корень уравнения

4.
Найдите корень уравнения
+2x)=

5.
Найдите корень уравнения

6.   
Найдите корень уравнения
                

7.  
Найдите корень уравнения
         

8.
  Найдите корень уравнения
          

9.   
Найдите корень уравнения 
    

10. Найдите корень уравнения

11. Найдите корень уравнения

12. Найдите корень уравнения

13. Найдите корень уравнения

14. Найдите корень уравнения

15. Найдите корень уравнения

16. Найдите корень уравнения

17. Найдите корень уравнения

18. Найдите корень уравнения

19. Найдите корень уравнения

20. Найдите корень уравнения

04
Авг 2013

Категория: 06 ВычисленияЛогарифмы

06. Логарифмические выражения

2013-08-04
2022-09-11


Задача 1. Найдите значение выражения log_{0,2}125.

Решение: + показать



Задача 2. Найдите значение выражения  9cdot 7^{log_73}.

Решение: + показать



Задача 3. Найдите значение выражения 16^{log_47}.

Решение: + показать



Задача 4. Найдите значение выражения 6^{2+log_68}.

Решение: + показать



Задача 5. Найдите значение выражения log_8160-log_82,5.

Решение: + показать



Задача 6. Найдите значение выражения (log_981)cdot (log_264).

Решение: + показать



Задача 7. Найдите значение выражения log_432+log_{0,1}10.

Решение: + показать



Задача 8. Найдите значение выражения log_{sqrt[9]{13}}13.

Решение: + показать



Задача 9. Найдите значение выражения frac{log_42}{log_45}+log_50,5.

Решение: + показать



Задача 10. Найдите значение выражения frac{log_2225}{log_215}.

Решение: + показать



Задача 11. Найдите значение выражения frac{log_92}{log_{81}2}.

Решение: + показать



Задача 12. Найдите значение выражения log_311cdot log_{11}27.

Решение: + показать



Задача 13. Найдите значение выражения frac{3^{log_{13}507}}{3^{log_{13}3}}.

Решение: + показать



Задача 14. Найдите значение выражения (1-log_218)(1-log_918).

Решение: + показать



Задача 15. Вычислите значение выражения: (5^{log_57})^{log_72}.

Решение: + показать



Задача 16. Найдите значение выражения log_{16}log_39.

Решение: + показать



Задача 17. Найдите значение выражения log^2_{sqrt2}4.

Решение: + показать



Задача 18. Найдите log_afrac{a^3}{b^5}, если log_ab=7.

Решение: + показать



Задача 19. Найдите значение выражения log_a(ab^6), если log_ba=frac{2}{11}.

Решение: + показать



тест

Вы можете пройти обучающий тест по теме «Преобразование логарифмических выражений».

Автор: egeMax |

комментариев 11

Понравилась статья? Поделить с друзьями:
  • Логарифмы в базовом егэ по математике
  • Логарифмы 11 класс егэ профиль
  • Логарифмическое уравнение с параметром егэ
  • Логарифмическое неравенство егэ профиль задание 14
  • Логарифмические функции 9 задание егэ