Ма2110409 профиль егэ математика

Skip to content

Диагностический вариант СтатГрад ЕГЭ Профиль по математике 2110409-15.03.2022 с ответами и критериями

Диагностический вариант СтатГрад ЕГЭ Профиль по математике 2110409-15.03.2022 с ответами и критериямиadmin2022-03-16T15:46:59+03:00

Математика, 11 класс, Тренировочная работа №4, Профильный уровень, Вариант МА2110409-412, 2022.

   Работа по математике состоит из двух частей, включающих в с ебя 18 заданий. Часть 1 содержит 11 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.
На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут). Ответы к заданиям 1–11 записываются в виде целого числа или конечной десятичной дроби.
При выполнении заданий 12–18 требуется записать полное решение на отдельном листе бумаги. При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.
Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Математика, 11 класс, Тренировочная работа №4, Профильный уровень, Вариант МА2110409-412, 2022

Примеры.
В сборнике билетов по физике всего 40 билетов, в 14 из них встречается вопрос по теме «Скорость». Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по теме «Скорость».

 Товарный поезд каждую минуту проезжает на 450 метров меньше, чем скорый, и на путь в 630 км тратит времени на 3 часа больше, чем скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.

Первый игральный кубик обычный, а на гранях второго кубика числа 5 и 6 встречаются по три раза. В остальном кубики одинаковые. Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 5 и 6 очков. Какова вероятность того, что бросали второй кубик?

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:

Скачать книгу Математика, 11 класс, Тренировочная работа №4, Профильный уровень, Вариант МА2110409-412, 2022 — fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу

Скачать
— pdf — Яндекс.Диск.

Дата публикации: 13.06.2022 08:23 UTC

Теги:

тесты по математике :: математика :: 11 класс


Следующие учебники и книги:

  • Математика, 9 класс, Тренировочная работа №5, Вариант МА2190501-502, 2022
  • Математика, 9 класс, Тренировочная работа №4, Вариант МА2190401-404, 2022
  • Математика, 9 класс, Тренировочная работа №3, Вариант МА2190301-304, 2022
  • Математика, 11 класс, Тренировочная работа №5, Вариант МА2110501-508, 2022

Предыдущие статьи:

  • Математика, 11 класс, Тренировочная работа №4, Вариант МА2110401-408, 2022
  • Математика, 11 класс, Тренировочная работа №3, Профильный уровень, Вариант МА2110309-312, 2022
  • Математика, 11 класс, Тренировочная работа №3, Вариант МА2110301-308, 2022
  • Математика, 11 класс, Тренировочная работа №2, Профильный уровень, Вариант МА2110209-212, 2021

Статград егэ математика профиль 2022 январь

Тренировочная работа №4 статград ЕГЭ 2022 по математике 11 класс задания и ответы для 12 вариантов МА2110401-МА2110412 базового и профильного уровня. Официальная дата проведения работы: 15 марта 2022 год.

Тренировочные варианты статград математика 11 класс ЕГЭ 2022 базовый уровень МА2110401-МА2110408 :

Варианты статград профильный уровень МА2110409-МА2110412:

Сложные задания с варианта МА2110401:

2)Для ремонта требуется 63 рулона обоев. Какое наименьшее количество пачек обойного клея нужно для такого ремонта, если 1 пачка клея рассчитана на 6 рулонов?

3)Установите соответствие между величинами и их возможными значениями: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца. А) диаметр монеты Б) рост жирафа В) высота Эйфелевой башни Г) радиус Земли

4)Результаты соревнований по метанию молота представлены в таблице. Места распределяются по результату лучшей попытки каждого спортсмена: чем дальше он метнул молот, тем лучше. Каков результат лучшей попытки (в метрах) спортсмена, занявшего четвёртое место?

5)План местности разбит на клетки. Каждая клетка обозначает квадрат 1м×1м. Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных метрах.

6)Число больных гриппом в школе уменьшилось за месяц в десять раз. На сколько процентов уменьшилось число больных гриппом?

10)Квартира состоит из двух комнат, кухни, коридора и санузла (см. план). Первая комната имеет размеры 4 м×4,5 м, вторая — 4 м×4м, санузел имеет размеры 1,5 м ×1,5 м, длина коридора — 10,5 м. Найдите площадь кухни (в квадратных метрах).

11)У бабушки 10 чашек: 4 с красными цветами, остальные с синими. Бабушка наливает чай в случайно выбранную чашку. Найдите вероятность того, что это будет чашка с синими цветами.

12)Дмитрий Валентинович собирается в туристическую поездку на трое суток в некоторый город. В таблице дана информация о гостиницах в этом городе со свободными номерами на время его поездки. Дмитрий Валентинович хочет остановиться в гостинице, которая находится не далее чем в 2,5 км от центральной площади и рейтинг которой не ниже 8,5. Среди гостиниц, удовлетворяющих этим условиям, выберите гостиницу с наименьшей ценой номера за сутки. Сколько рублей стоит проживание в этой гостинице в течение трёх суток?

13)Ящик, имеющий форму куба с ребром 40 см без одной грани, нужно покрасить снаружи со всех сторон. Найдите площадь поверхности, которую необходимо покрасить. Ответ дайте в квадратных сантиметрах.

15)В треугольнике ABC стороны AC и BC равны. Внешний угол при вершине B равен 115° . Найдите угол C. Ответ дайте в градусах.

16)Основанием четырёхугольной пирамиды является прямоугольник со сторонами 6 и 8. Найдите высоту этой пирамиды, если её объём равен 80.

18)Диагностика 30 машин в автосервисе показала, что у 5 машин нужно заменить тормозные колодки, а у 10 машин — заменить воздушный фильтр (колодки и фильтр требуют замены независимо друг от друга). Выберите утверждения, которые верны при указанных условиях вне зависимости от того, какие машины нуждаются в замене фильтра, а какие — в замене колодок.

    1) Найдётся 6 машин, в которых нужно поменять и колодки, и фильтр. 2) Найдётся 9 машин, в которых не нужно менять ни колодки, ни фильтр. 3) Не найдётся 7 машин, в которых нужно менять и колодки, и фильтр. 4) Если в машине нужно менять колодки, то фильтр тоже нужно менять.

19)Найдите четырёхзначное натуральное число, кратное 36, произведение цифр которого больше 12, но меньше 18. В ответе укажите какое-нибудь одно такое число.

20)Расстояние между городами A и B равно 790 км. Из города A в город B выехал первый автомобиль, а через два часа после этого навстречу ему из города B выехал со скоростью 85 км/ч второй автомобиль. Найдите скорость первого автомобиля, если автомобили встретились на расстоянии 450 км от города A. Ответ дайте в км/ч.

21)Десять столбов соединены между собой проводами так, что от каждого столба отходит ровно 9 проводов. Сколько всего проводов протянуто между этими десятью столбами?

Сложные задания с варианта МА2110402:

2)Для ремонта требуется 66 рулонов обоев. Какое наименьшее количество пачек обойного клея нужно для такого ремонта, если 1 пачка клея рассчитана на 7 рулонов?

3)Установите соответствие между величинами и их возможными значениями: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца. А) высота вагона Б) рост восьмилетнего ребёнка В) высота Троицкой башни Кремля Г) длина реки Москвы

4)Результаты соревнований по метанию молота представлены в таблице. Места распределяются по результату лучшей попытки каждого спортсмена: чем дальше он метнул молот, тем лучше. Каков результат лучшей попытки (в метрах) спортсмена, занявшего третье место?

5)План местности разбит на клетки. Каждая клетка обозначает квадрат 1м×1м. Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных метрах.

6)Число больных гриппом в школе уменьшилось за месяц в двадцать раз. На сколько процентов уменьшилось число больных гриппом?

11)У бабушки 25 чашек: 5 с красными цветами, остальные с синими. Бабушка наливает чай в случайно выбранную чашку. Найдите вероятность того, что это будет чашка с синими цветами.

12)Дмитрий Валентинович собирается в туристическую поездку на трое суток в некоторый город. В таблице дана информация о гостиницах в этом городе со свободными номерами на время его поездки. Дмитрий Валентинович хочет остановиться в гостинице, которая находится не далее чем в 2,5 км от центральной площади и рейтинг которой не ниже 8,5. Среди гостиниц, удовлетворяющих этим условиям, выберите гостиницу с наименьшей ценой номера за сутки. Сколько рублей стоит проживание в этой гостинице в течение трёх суток?

13)Ящик, имеющий форму куба с ребром 30 см без одной грани, нужно покрасить снаружи со всех сторон. Найдите площадь поверхности, которую необходимо покрасить. Ответ дайте в квадратных сантиметрах.

15)В треугольнике ABC стороны AC и BC равны. Внешний угол при вершине B равен 142° . Найдите угол C. Ответ дайте в градусах.

16)Основанием четырёхугольной пирамиды является прямоугольник со сторонами 12 и 5. Найдите высоту этой пирамиды, если её объём равен 60.

18)Марусе на день рождения подарили 20 шариков, из которых 13 красных, а остальные синие. Маруся хочет на четырёх случайных шариках нарисовать рисунки маркером, чтобы подарить маме, папе, брату и сестре. Выберите утверждения, которые будут верны при указанных условиях независимо от того, на каких шариках Маруся нарисует рисунки. 1) Найдётся 4 красных шарика с рисунками. 2) Найдётся 2 синих шарика без рисунков. 3) Если шарик красный, то на нём есть рисунок. 4) Не найдётся 5 синих шариков с рисунками.

19)Найдите четырёхзначное натуральное число, кратное 12, произведение цифр которого больше 40, но меньше 45. В ответе укажите какое-нибудь одно такое число.

20)Расстояние между городами A и B равно 390 км. Из города A в город B выехал первый автомобиль, а через два часа после этого навстречу ему из города B выехал со скоростью 85 км/ч второй автомобиль. Найдите скорость первого автомобиля, если автомобили встретились на расстоянии 220 км от города A. Ответ дайте в км/ч.

21)Семь столбов соединены между собой проводами так, что от каждого столба отходит ровно 4 провода. Сколько всего проводов протянуто между этими восемью столбами?

Сложные задания с варианта МА2110409:

1)В сборнике билетов по физике всего 40 билетов, в 14 из них встречается вопрос по теме «Скорость». Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по теме «Скорость».

4)Найдите − α 20cos2 , если sin α=−0,8 .

5)Объём куба равен 375√3 . Найдите его диагональ.

8)Товарный поезд каждую минуту проезжает на 450 метров меньше, чем скорый, и на путь в 630 км тратит времени на 3 часа больше, чем скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.

10)Первый игральный кубик обычный, а на гранях второго кубика числа 5 и 6 встречаются по три раза. В остальном кубики одинаковые. Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 5 и 6 очков. Какова вероятность того, что бросали второй кубик?

13)В правильной четырёхугольной пирамиде SABCD с основанием ABCD из точки B опущен перпендикуляр BH на плоскость SAD. а) Докажите, что ∠AHC = 90° . б) Найдите объём пирамиды, если HA = 2 и HC = 4.

15)В июле планируется взять в банке некоторую сумму в кредит на три года. Условия его возврата таковы: — каждый январь долг возрастает на 10 % по сравнению с концом предыдущего года; — с февраля по июнь каждого года нужно внести платёж, равный 2,662 млн рублей. Сколько рублей было взято в банке, если известно, что долг был полностью погашен тремя равными платежами (то есть за три года)?

16)Из вершины тупого угла C треугольника ABC проведена высота CH. Окружность с центром H и радиусом HC второй раз пересекает стороны AC и BC в точках M и N соответственно, а прямая CH — эту окружность в точке D. а) Докажите, что угол MDN равен сумме углов A и B треугольника ABC. б) Найдите отношение MN к AB, если известно, что CM MA : 2 : 25 = и CN NB : 2:1 = .

18)У Вани есть несколько пакетов с вещами, каждый из которых весит целое число килограммов. Он хочет разложить все эти пакеты, не перекладывая их содержимое, по n имеющимся у него одинаковым рюкзакам. В каждый рюкзак можно положить любое число пакетов, суммарная масса которых не превосходит m килограммов. а) Сможет ли Ваня разложить таким образом семь пакетов, которые весят 3, 6, 9, 12, 15, 18 и 21 кг, если n = 3 и m = 29 ? б) Сможет ли Ваня разложить таким образом семь пакетов, которые весят 2, 5, 8, 11, 14, 17 и 20 кг, если n = 3 и m = 26 ? в) Какое наименьшее значение может принимать m, чтобы Ваня при n = 4 смог разложить таким образом девять пакетов, которые весят 3, 5, 7, 9, 11, 13, 15, 17 и 19 кг?

Сложные задания с варианта МА2110410:

1)В сборнике билетов по географии всего 25 билетов, в 15 из них встречается вопрос по теме «Реки и озёра». Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по теме «Реки и озёра».

8)Товарный поезд каждую минуту проезжает на 750 метров меньше, чем скорый, и на путь в 560 км тратит времени на 4 часа больше, чем скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.

10)Первый игральный кубик обычный, а на гранях второго кубика числа 1 и 2 встречаются по три раза. В остальном кубики одинаковые. Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 1 и 2 очка. Какова вероятность того, что бросали первый кубик?

15)В июле планируется взять в банке некоторую сумму в кредит на три года. Условия его возврата таковы: — каждый январь долг возрастает на 20 % по сравнению с концом предыдущего года; — с февраля по июнь каждого года нужно внести платёж, равный 2,592 млн рублей. Сколько рублей было взято в банке, если известно, что долг был полностью погашен тремя равными платежами (то есть за три года)?

18)У Вани есть несколько пакетов с вещами, каждый из которых весит целое число килограммов. Он хочет разложить все эти пакеты, не перекладывая их содержимое, по n имеющимся у него одинаковым рюкзакам. В каждый рюкзак можно положить любое число пакетов, суммарная масса которых не превосходит m килограммов. а) Сможет ли Ваня разложить таким образом семь пакетов, которые весят 3, 9, 12, 15, 18, 21 и 24 кг, если n = 3 и m = 35? б) Сможет ли Ваня разложить таким образом семь пакетов, которые весят 2, 8, 11, 14, 17, 20 и 23 кг, если n = 3 и m = 32 ? в) Какое наименьшее значение может принимать m, чтобы Ваня при n = 4 смог разложить таким образом девять пакетов, которые весят 3, 7, 9, 11, 13, 15, 17, 19 и 21 кг?

Сложные задания с варианта МА2110411:

1)В сборнике билетов по философии всего 50 билетов, в 6 из них встречается вопрос по теме «Пифагор». Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопрос по теме «Пифагор».

3)Диагонали четырёхугольника равны 34 и 38. Найдите периметр четырёхугольника, вершинами которого являются середины сторон данного четырёхугольника.

5)Основанием прямой призмы является ромб с диагоналями, равными 10 и 24. Найдите боковое ребро призмы, если площадь её поверхности равна 422.

8)Курага получается в процессе сушки абрикосов. Сколько килограммов абрикосов потребуется для получения 21 килограмма кураги, если абрикосы содержат 86 % воды, а курага содержит 18 % воды?

10)Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 5 очков в двух играх. Если команда выигрывает, она получает 4 очка, в случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,2.

15)В июле планируется взять в банке некоторую сумму в кредит на три года. Условия его возврата таковы: — каждый январь долг возрастает на 25 % по сравнению с концом предыдущего года; — с февраля по июнь каждого года нужно внести платёж, равный 2,5 млн рублей. Сколько рублей было взято в банке, если известно, что долг был полностью погашен тремя равными платежами (то есть за три года)?

Варианты МА2110401-МА2110412 ЕГЭ 2022 работа статград математика 11 класс с ответами

Тренировочная работа №4 статград ЕГЭ 2022 по математике 11 класс задания и ответы для 12 вариантов МА2110401-МА2110412 базового и профильного уровня. Официальная дата проведения работы: 15 марта 2022 год.

2)Для ремонта требуется 63 рулона обоев. Какое наименьшее количество пачек обойного клея нужно для такого ремонта, если 1 пачка клея рассчитана на 6 рулонов?

3)Установите соответствие между величинами и их возможными значениями: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца. А) диаметр монеты Б) рост жирафа В) высота Эйфелевой башни Г) радиус Земли

4)Результаты соревнований по метанию молота представлены в таблице. Места распределяются по результату лучшей попытки каждого спортсмена: чем дальше он метнул молот, тем лучше. Каков результат лучшей попытки (в метрах) спортсмена, занявшего четвёртое место?

5)План местности разбит на клетки. Каждая клетка обозначает квадрат 1м×1м. Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных метрах.

6)Число больных гриппом в школе уменьшилось за месяц в десять раз. На сколько процентов уменьшилось число больных гриппом?

10)Квартира состоит из двух комнат, кухни, коридора и санузла (см. план). Первая комната имеет размеры 4 м×4,5 м, вторая — 4 м×4м, санузел имеет размеры 1,5 м ×1,5 м, длина коридора — 10,5 м. Найдите площадь кухни (в квадратных метрах).

11)У бабушки 10 чашек: 4 с красными цветами, остальные с синими. Бабушка наливает чай в случайно выбранную чашку. Найдите вероятность того, что это будет чашка с синими цветами.

12)Дмитрий Валентинович собирается в туристическую поездку на трое суток в некоторый город. В таблице дана информация о гостиницах в этом городе со свободными номерами на время его поездки. Дмитрий Валентинович хочет остановиться в гостинице, которая находится не далее чем в 2,5 км от центральной площади и рейтинг которой не ниже 8,5. Среди гостиниц, удовлетворяющих этим условиям, выберите гостиницу с наименьшей ценой номера за сутки. Сколько рублей стоит проживание в этой гостинице в течение трёх суток?

13)Ящик, имеющий форму куба с ребром 40 см без одной грани, нужно покрасить снаружи со всех сторон. Найдите площадь поверхности, которую необходимо покрасить. Ответ дайте в квадратных сантиметрах.

15)В треугольнике ABC стороны AC и BC равны. Внешний угол при вершине B равен 115° . Найдите угол C. Ответ дайте в градусах.

16)Основанием четырёхугольной пирамиды является прямоугольник со сторонами 6 и 8. Найдите высоту этой пирамиды, если её объём равен 80.

18)Диагностика 30 машин в автосервисе показала, что у 5 машин нужно заменить тормозные колодки, а у 10 машин — заменить воздушный фильтр (колодки и фильтр требуют замены независимо друг от друга). Выберите утверждения, которые верны при указанных условиях вне зависимости от того, какие машины нуждаются в замене фильтра, а какие — в замене колодок.

    1) Найдётся 6 машин, в которых нужно поменять и колодки, и фильтр. 2) Найдётся 9 машин, в которых не нужно менять ни колодки, ни фильтр. 3) Не найдётся 7 машин, в которых нужно менять и колодки, и фильтр. 4) Если в машине нужно менять колодки, то фильтр тоже нужно менять.

19)Найдите четырёхзначное натуральное число, кратное 36, произведение цифр которого больше 12, но меньше 18. В ответе укажите какое-нибудь одно такое число.

20)Расстояние между городами A и B равно 790 км. Из города A в город B выехал первый автомобиль, а через два часа после этого навстречу ему из города B выехал со скоростью 85 км/ч второй автомобиль. Найдите скорость первого автомобиля, если автомобили встретились на расстоянии 450 км от города A. Ответ дайте в км/ч.

21)Десять столбов соединены между собой проводами так, что от каждого столба отходит ровно 9 проводов. Сколько всего проводов протянуто между этими десятью столбами?

Варианты статград профильный уровень МА2110409-МА2110412:

4 Найдите α 20cos2 , если sin α 0,8.

Myotveti. ru

10.08.2020 23:17:48

2018-01-29 08:49:16

Источники:

Https://myotveti. ru/%D0%B2%D0%B0%D1%80%D0%B8%D0%B0%D0%BD%D1%82%D1%8B-%D0%BC%D0%B02110401-%D0%BC%D0%B02110412-%D0%B5%D0%B3%D1%8D-2022-%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%B0-%D1%81%D1%82%D0%B0%D1%82%D0%B3%D1%80%D0%B0%D0%B4/

ЕГЭ 2022 по математике профиль: тренировочные и реальные варианты с ответами » /> » /> .keyword { color: red; } Статград егэ математика профиль 2022 январь

ЕГЭ по профильной математике

ЕГЭ по профильной математике

Сборники тренировочных тестов по математике профильного уровня для ЕГЭ в 2022 году и для ЕГЭ прошлых лет. Все тренировочные варианты/пробники содержат ответы и решения ко 2-й части кима. Обсудить решение и задания каждого варианта вы можете в комментариях под ними. РЕШАТЬ ТЕСТЫ

Обращайте внимание на уровень пробника — здесь только профильный! Базовый уровень смотрите здесь.

Где потренироваться?

Что почитать из теории?

Выбирайте вариант, сверяйте с ответами, оставляйте комментарии НИЖЕ

Базовый уровень смотрите здесь.

Ctege. info

17.01.2020 23:41:02

2020-01-17 23:41:02

Источники:

Https://ctege. info/ege-po-matematike/

Математика 11 класс пробный ЕГЭ 2022 статград 12 вариантов МА2110201-МА2110212 с ответами | ЕГЭ ОГЭ СТАТГРАД ВПР 100 баллов » /> » /> .keyword { color: red; } Статград егэ математика профиль 2022 январь

Математика 11 класс пробный ЕГЭ 2022 статград 12 вариантов МА2110201-МА2110212 с ответами

Математика 11 класс пробный ЕГЭ 2022 статград 12 вариантов МА2110201-МА2110212 с ответами

Тренировочная работа №2 пробный ЕГЭ 2022 статград по математике 11 класс составлена по образцу экзамена ЕГЭ 2022 года, тренировочные варианты с МА2110201 по МА2110212 базового и профильного уровня с ответами на тестовую часть и решением на 2 часть заданий официальная дата проведения работы 15 декабря 2021 год.

Варианты базового уровня

Варианты профильного уровня

Ответы, решения и критерии

Решать тренировочные варианты базового уровня статград ЕГЭ 2022 по математике 11 класс:

Решать тренировочные варианты профильного уровня статград ЕГЭ 2022 по математике 11 класс:

Сложные задания с МА2110201 варианта:

2)Установка двух счётчиков воды (холодной и горячей) стоит 3500 рублей. До установки счётчиков за воду платили 1100 рублей ежемесячно. После установки счётчиков ежемесячная оплата воды стала составлять 900 рублей. Через какое наименьшее количество месяцев экономия по оплате воды превысит затраты на установку счётчиков, если тарифы на воду не изменятся?

3)Установите соответствие между величинами и их возможными значениями: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца.

4)Результаты соревнований по метанию молота представлены в таблице. Места распределяются по результату лучшей попытки каждого спортсмена: чем дальше он метнул молот, тем лучше. Какое место занял спортсмен Минаков?

5)План местности разбит на клетки. Каждая клетка обозначает квадрат 1 м × 1 м. Найдите площадь участка, изображённого на плане. Ответ дайте в квадратных метрах.

6)Магазин детских товаров закупает погремушки по оптовой цене 110 рублей за одну штуку и продаёт с наценкой 30 %. Сколько рублей будут стоить 4 такие погремушки, купленные в этом магазине?

10)Какой наименьший угол (в градусах) образуют минутная и часовая стрелки часов в 8:00?

11)На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,25. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

12)На соревнованиях по прыжкам в воду судьи выставили оценки от 0 до 10 трём спортсменам. Результаты приведены в таблице. Итоговый балл вычисляется следующим образом: две наибольшие и две наименьшие оценки отбрасываются, а три оставшиеся складываются, и их сумма умножается на коэффициент сложности. В ответе укажите номера спортсменов, итоговый балл которых больше 170, без пробелов, запятых и других дополнительных символов.

13)Даны две коробки, имеющие форму правильной четырёхугольной призмы, стоящей на основании. Первая коробка в полтора раза ниже второй, а вторая вдвое шире первой. Во сколько раз объём второй коробки больше объёма первой?

16)Сторона основания правильной шестиугольной пирамиды равна 22, боковое ребро равно 61. Найдите площадь боковой поверхности этой пирамиды.

18)Некоторые учащиеся школы съели за завтраком булочку с рисом. Некоторые учащиеся этой школы на обед получат пирожок, причём среди них не будет тех, кто съел за завтраком булочку. Выберите все утверждения, которые будут верны при указанных условиях независимо от того, кому достанутся пирожки. 1) Нет ни одного учащегося этой школы, который съел булочку за завтраком и получит пирожок на обед. 2) Найдётся учащийся, который не съел булочку за завтраком и не получит пирожок на обед. 3) Каждый учащийся, который не съел булочку за завтраком, получит пирожок на обед. 4) Среди учащихся этой школы, которым не достанется пирожок на обед, есть хотя бы один, который съел булочку за завтраком. В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.

19)Найдите четырёхзначное число, кратное 24, произведение цифр которого равно 16. В ответе запишите запишите какое-нибудь одно такое число.

20)Два человека отправляются из одного дома на прогулку до опушки леса, находящейся в 5,5 км от дома. Один идёт со скоростью 2,5 км/ч, а другой — со скоростью 3 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от дома произойдёт их встреча? Ответ дайте в километрах.

21)Улитка за день заползает вверх по дереву на 3 м, а за ночь сползает на 1 м. Высота дерева равна 13 м. За сколько дней улитка доползёт до вершины дерева, начав путь от его основания?

Сложные задания с МА2110205 варианта:

2)В квартире установлен прибор учёта расхода горячей воды (счётчик). Показания счётчика 1 июля составляли 77,2 куб. м воды, а 1 августа — 79,7 куб. м. Сколько нужно заплатить за горячую воду за июль, если стоимость 1 куб. м горячей воды составляет 144 руб. 80 коп.? Ответ дайте в рублях.

3)Установите соответствие между величинами и их возможными значениями: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца.

4)Результаты игры КВН представлены в таблице. Для каждой команды баллы по всем конкурсам суммируются. Победителем считается команда, набравшая в сумме наибольшее количество баллов. Сколько в сумме баллов у команды-победителя?

6)Тетрадь стоит 18 рублей. Сколько рублей заплатит покупатель за 30 тетрадей, если при покупке более 20 тетрадей магазин делает скидку 5 % от стоимости всей покупки?

10)Колесо имеет 18 спиц. Углы между соседними спицами равны. Найдите величину угла (в градусах), который образуют две соседние спицы.

11)На борту самолёта 27 мест рядом с запасными выходами и 17 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир З. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру З. достанется удобное место, если всего в самолёте 400 мест.

12)В трёх салонах сотовой связи один и тот же смартфон продаётся в кредит на разных условиях. Условия приведены в таблице. Определите, в каком из салонов покупка обойдётся дешевле всего (с учётом переплаты). В ответе запишите стоимость этой покупки в рублях.

13)Вода в сосуде, имеющем форму правильной четырёхугольной призмы, находится на уровне h = 120 см. На каком уровне окажется вода, если её перелить в другой сосуд, имеющий форму правильной четырёхугольной призмы, у которого сторона основания вдвое больше, чем у данного? Ответ дайте в сантиметрах.

16)Сторона основания правильной шестиугольной пирамиды равна 14, боковое ребро равно 25. Найдите площадь боковой поверхности этой пирамиды.

18)Некоторые учащиеся 10-х классов школы зимой ездили на экскурсию в Суздаль. Весной некоторые десятиклассники поедут в Кострому, причём среди них не будет тех, кто ездил зимой в Суздаль. Выберите все утверждения, которые будут верны при указанных условиях независимо от того, кто из десятиклассников поедет в Кострому. 1) Среди учащихся 10-х классов этой школы, которые не поедут в Кострому, есть хотя бы один, который ездил на экскурсию в Суздаль. 2) Найдётся десятиклассник, который не ездил на экскурсию в Суздаль и не поедет в Кострому. 3) Нет ни одного десятиклассника, который ездил на экскурсию в Суздаль и поедет в Кострому. 4) Каждый десятиклассник, который не был на экскурсии в Суздале, поедет в Кострому.

19)Найдите четырёхзначное число, кратное 12, произведение цифр которого больше 25, но меньше 30. В ответе запишите какое-нибудь одно такое число.

20)Толя и Саша выполняют одинаковый тест. Толя отвечает за час на 12 вопросов теста, а Саша — на 17. Они одновременно начали отвечать на вопросы теста, и Толя закончил свой тест позже Саши на 50 минут. Сколько вопросов содержит тест?

21)Кузнечик прыгает вдоль координатной прямой в любом направлении на единичный отрезок за прыжок, делая первый прыжок из начала координат. Сколько существует различных точек на координатной прямой, в которых кузнечик может оказаться, совершив 8 прыжков?

Сложные задания с МА2110209 варианта:

2)В классе 9 учащихся, среди них два друга — Олег и Сергей. Класс случайным образом разбивают на 3 равные группы. Найдите вероятность того, что Олег и Сергей окажутся в одной группе.

3)Боковые стороны равнобедренного треугольника равны 13, основание равно 24. Найдите радиус описанной около этого треугольника окружности.

5)В правильной четырёхугольной пирамиде все рёбра равны 22. Найдите площадь сечения пирамиды плоскостью, проходящей через середины боковых рёбер.

8)Два человека отправляются одновременно из одного дома на прогулку до опушки леса, находящейся в 6,3 км от дома. Первый идёт со скоростью 2,5 км/ч, а второй — со скоростью 3,8 км/ч. Дойдя до опушки, второй разворачивается и с той же скоростью возвращается обратно. На каком расстоянии от дома произойдёт их встреча? Ответ дайте в километрах.

10)На фабрике керамической посуды 20 % произведённых тарелок имеют дефект. При контроле качества продукции выявляется 90 % дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефекта. Ответ округлите до сотых.

13)В правильной шестиугольной пирамиде SABCDEF с вершиной S в грани SBC проведена высота SH, а в грани SEF проведена высота SK. а) Докажите, что прямая AD перпендикулярна плоскости SHK. б) Найдите угол между прямыми BE и SH, если SA =13, а BC =10 .

15)В июле планируется взять кредит в банке на сумму 5 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы: — каждый январь долг будет возрастать на 14 % по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить часть долга; — в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. Чему будет равна сумма всех платежей после полного погашения кредита, если наименьший годовой платёж будет составлять 475 000 рублей?

16)Диагонали АС и ВD выпуклого четырёхугольника ABCD пересекаются в точке Р. Известно, что угол DAC равен 90° , а угол ACB в 2 раза больше угла ADB. Сумма угла DBС и удвоенного угла ADС равна 180 . ° а) Докажите, что ВР АР = 2 . б) Найдите площадь четырёхугольника AВCD, если BD = 8 и точка Р является серединой диагонали BD.

Сложные задания с МА2110211 варианта:

2)В группе туристов 32 человека. Их вертолётом доставляют в труднодоступный район, перевозя по 4 человека за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист К. полетит пятым рейсом вертолёта.

3)Периметр прямоугольной трапеции, описанной около окружности, равен 36, её бóльшая боковая сторона равна 11. Найдите радиус окружности.

5)Найдите площадь поверхности правильной четырёхугольной пирамиды, стороны основания которой равны 14, а высота равна 24.

8)Феде надо решить 133 задачи. Ежедневно он решает на одно и то же количество задач больше по сравнению с предыдущим днём. Известно, что за первый день Федя решил 7 задач. Определите, сколько задач решил Федя в последний день, если со всеми задачами он справился за 7 дней.

10)Помещение освещается фонарём с двумя лампами. Вероятность перегорания лампы в течение года равна 0,4. Найдите вероятность того, что в течение года в фонаре хотя бы одна лампа не перегорит.

13)В правильной шестиугольной пирамиде SABCDEF с вершиной S в грани SBC проведена высота SH, а в грани SEF проведена высота SK. а) Докажите, что прямая AD перпендикулярна плоскости SHK. б) Найдите угол между прямыми BE и SH, если SA =13, а BC =10 .

15)В июле планируется взять кредит в банке на сумму 5 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы: — каждый январь долг будет возрастать на 14 % по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить часть долга; — в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. Чему будет равна сумма всех платежей после полного погашения кредита, если наименьший годовой платёж будет составлять 475 000 рублей?

16)Диагонали АС и ВD выпуклого четырёхугольника ABCD пересекаются в точке Р. Известно, что угол DAC равен 90° , а угол ACB в 2 раза больше угла ADB. Сумма угла DBС и удвоенного угла ADС равна 180 . ° а) Докажите, что ВР АР = 2 . б) Найдите площадь четырёхугольника AВCD, если BD = 8 и точка Р является серединой диагонали BD.

Математика 11 класс пробный ЕГЭ 2022 статград 12 вариантов МА2110201-МА2110212 с ответами

Тренировочная работа №2 пробный ЕГЭ 2022 статград по математике 11 класс составлена по образцу экзамена ЕГЭ 2022 года, тренировочные варианты с МА2110201 по МА2110212 базового и профильного уровня с ответами на тестовую часть и решением на 2 часть заданий официальная дата проведения работы 15 декабря 2021 год.

2)Установка двух счётчиков воды (холодной и горячей) стоит 3500 рублей. До установки счётчиков за воду платили 1100 рублей ежемесячно. После установки счётчиков ежемесячная оплата воды стала составлять 900 рублей. Через какое наименьшее количество месяцев экономия по оплате воды превысит затраты на установку счётчиков, если тарифы на воду не изменятся?

3)Установите соответствие между величинами и их возможными значениями: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца.

4)Результаты соревнований по метанию молота представлены в таблице. Места распределяются по результату лучшей попытки каждого спортсмена: чем дальше он метнул молот, тем лучше. Какое место занял спортсмен Минаков?

5)План местности разбит на клетки. Каждая клетка обозначает квадрат 1 м × 1 м. Найдите площадь участка, изображённого на плане. Ответ дайте в квадратных метрах.

6)Магазин детских товаров закупает погремушки по оптовой цене 110 рублей за одну штуку и продаёт с наценкой 30 %. Сколько рублей будут стоить 4 такие погремушки, купленные в этом магазине?

10)Какой наименьший угол (в градусах) образуют минутная и часовая стрелки часов в 8:00?

11)На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,25. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

12)На соревнованиях по прыжкам в воду судьи выставили оценки от 0 до 10 трём спортсменам. Результаты приведены в таблице. Итоговый балл вычисляется следующим образом: две наибольшие и две наименьшие оценки отбрасываются, а три оставшиеся складываются, и их сумма умножается на коэффициент сложности. В ответе укажите номера спортсменов, итоговый балл которых больше 170, без пробелов, запятых и других дополнительных символов.

13)Даны две коробки, имеющие форму правильной четырёхугольной призмы, стоящей на основании. Первая коробка в полтора раза ниже второй, а вторая вдвое шире первой. Во сколько раз объём второй коробки больше объёма первой?

16)Сторона основания правильной шестиугольной пирамиды равна 22, боковое ребро равно 61. Найдите площадь боковой поверхности этой пирамиды.

18)Некоторые учащиеся школы съели за завтраком булочку с рисом. Некоторые учащиеся этой школы на обед получат пирожок, причём среди них не будет тех, кто съел за завтраком булочку. Выберите все утверждения, которые будут верны при указанных условиях независимо от того, кому достанутся пирожки. 1) Нет ни одного учащегося этой школы, который съел булочку за завтраком и получит пирожок на обед. 2) Найдётся учащийся, который не съел булочку за завтраком и не получит пирожок на обед. 3) Каждый учащийся, который не съел булочку за завтраком, получит пирожок на обед. 4) Среди учащихся этой школы, которым не достанется пирожок на обед, есть хотя бы один, который съел булочку за завтраком. В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.

19)Найдите четырёхзначное число, кратное 24, произведение цифр которого равно 16. В ответе запишите запишите какое-нибудь одно такое число.

20)Два человека отправляются из одного дома на прогулку до опушки леса, находящейся в 5,5 км от дома. Один идёт со скоростью 2,5 км/ч, а другой — со скоростью 3 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от дома произойдёт их встреча? Ответ дайте в километрах.

21)Улитка за день заползает вверх по дереву на 3 м, а за ночь сползает на 1 м. Высота дерева равна 13 м. За сколько дней улитка доползёт до вершины дерева, начав путь от его основания?

Сколько в сумме баллов у команды-победителя.

100ballnik. com

18.04.2017 3:35:35

2017-04-18 03:35:35

Источники:

Https://100ballnik. com/%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0-11-%D0%BA%D0%BB%D0%B0%D1%81%D1%81-%D0%BF%D1%80%D0%BE%D0%B1%D0%BD%D1%8B%D0%B9-%D0%B5%D0%B3%D1%8D-2022-%D1%81%D1%82%D0%B0%D1%82%D0%B3%D1%80/

Понравилась статья? Поделить с друзьями:
  • Ма2110310 егэ математика ответы
  • Магнитные наушники для экзамена купить
  • Ма2110309 статград егэ математика
  • Магнитные наушники для экзамена как подключить
  • Ма2110110 математика егэ