Задание 3. Теория вероятностей на ЕГЭ по математике.
Мы начнем с простых задач и основных понятий теории вероятностей.
Случайным называется событие, которое нельзя точно предсказать заранее. Оно может либо произойти, либо нет.
Вы выиграли в лотерею — случайное событие. Пригласили друзей отпраздновать выигрыш, а они по дороге к вам застряли в лифте — тоже случайное событие. Правда, мастер оказался поблизости и освободил всю компанию через десять минут — и это тоже можно считать счастливой случайностью…
Наша жизнь полна случайных событий. О каждом из них можно сказать, что оно произойдет с некоторой вероятностью. Скорее всего, вы интуитивно знакомы с этим понятием. Теперь мы дадим математическое определение вероятности.
Начнем с самого простого примера. Вы бросаете монетку. Орел или решка?
Такое действие, которое может привести к одному из нескольких результатов, в теории вероятностей называют испытанием.
Орел и решка — два возможных исхода испытания.
Орел выпадет в одном случае из двух возможных. Говорят, что вероятность того, что монетка упадет орлом, равна .
Бросим игральную кость. У кубика шесть граней, поэтому возможных исходов тоже шесть.
Например, вы загадали, что выпадет три очка. Это один исход из шести возможных. В теории вероятностей он будет называться благоприятным исходом.
Вероятность выпадения тройки равна (один благоприятный исход из шести возможных).
Вероятность четверки — тоже .
А вот вероятность появления семерки равна нулю. Ведь грани с семью точками на кубике нет.
Вероятность события равна отношению числа благоприятных исходов к общему числу исходов.
Очевидно, что вероятность не может быть больше единицы.
Вот другой пример. В пакете яблок, из них — красные, остальные — зеленые. Ни формой, ни размером яблоки не отличаются. Вы запускаете в пакет руку и наугад вынимаете яблоко. Вероятность вытащить красное яблоко равна , а зеленое — .
Вероятность достать красное или зеленое яблоко равна .
БЕСПЛАТНЫЙ МИНИ-КУРС ПО ТЕОРВЕРУ
Определение вероятности. Простые задачи из вариантов ЕГЭ.
Разберем задачи по теории вероятностей, входящие в сборники для подготовки к ЕГЭ.
В фирме такси в данный момент свободно машин: красных, желтых и зеленых. По вызову выехала одна из машин, случайно оказавшихся ближе всего к заказчице. Найдите вероятность того, что к ней приедет желтое такси.
Всего имеется машин, то есть к заказчице приедет одна из пятнадцати. Желтых — девять, и значит, вероятность приезда именно желтой машины равна , то есть .
В сборнике билетов по биологии всего билетов, в двух из них встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет. Найдите вероятность того, что в этом билете не будет вопроса о грибах.
Очевидно, вероятность вытащить билет без вопроса о грибах равна , то есть .
Родительский комитет закупил пазлов для подарков детям на окончание учебного года, из них с картинами известных художников и с изображениями животных. Подарки распределяются случайным образом. Найдите вероятность того, что Вовочке достанется пазл с животным.
Задача решается аналогично.
Ответ: .
В чемпионате по гимнастике участвуют спортсменок: — из России, — из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая последней, окажется из Китая.
Давайте представим, что все спортсменки одновременно подошли к шляпе и вытянули из нее бумажки с номерами. Кому-то из них достанется двадцатый номер. Вероятность того, что его вытянет китайская спортсменка, равен (поскольку из Китая — спортсменок). Ответ: .
Ученика попросили назвать число от до . Какова вероятность того, что он назовет число кратное пяти?
Каждое пятое число из данного множества делится на . Значит, вероятность равна .
Брошена игральная кость. Найдите вероятность того, что выпадет нечетное число очков.
— нечетные числа; — четные. Вероятность нечетного числа очков равна .
Ответ: .
Монета брошена три раза. Какова вероятность двух «орлов» и одной «решки»?
Заметим, что задачу можно сформулировать по-другому: бросили три монеты одновременно. На решение это не повлияет.
Как вы думаете, сколько здесь возможных исходов?
Бросаем монету. У этого действия два возможных исхода: орел и решка.
Две монеты — уже четыре исхода:
орел | орел |
орел | решка |
решка | орел |
решка | решка |
Три монеты? Правильно, исходов, так как .
Вот они:
орел | орел | орел |
орел | орел | решка |
орел | решка | орел |
решка | орел | орел |
орел | решка | решка |
решка | орел | решка |
решка | решка | орел |
решка | решка | решка |
Два орла и одна решка выпадают в трех случаях из восьми.
Ответ: .
В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет очков. Результат округлите до сотых.
Бросаем первую кость — шесть исходов. И для каждого из них возможны еще шесть — когда мы бросаем вторую кость.
Получаем, что у данного действия — бросания двух игральных костей — всего возможных исходов, так как .
А теперь — благоприятные исходы:
Вероятность выпадения восьми очков равна .
Стрелок попадает в цель с вероятностью . Найдите вероятность того, что он попадёт в цель четыре выстрела подряд.
Если вероятность попадания равна — следовательно, вероятность промаха . Рассуждаем так же, как и в предыдущей задаче. Вероятность двух попадания подряд равна . А вероятность четырех попаданий подряд равна .
Лень разбираться самому?
Присоединяйся к мини-курсу по теории вероятностей
ПОДРОБНЕЕ
Вероятность: логика перебора.
В кармане у Пети было монеты по рублей и монеты по рублей. Петя не глядя переложил какие-то монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.
Мы знаем, что вероятность события равна отношению числа благоприятных исходов к общему числу исходов. Но как посчитать все эти исходы?
Можно, конечно, обозначить пятирублевые монеты цифрами , а десятирублевые цифрами — а затем посчитать, сколькими способами можно выбрать три элемента из набора .
Однако есть более простое решение:
Кодируем монеты числами: , (это пятирублёвые), (это десятирублёвые). Условие задачи можно теперь сформулировать так:
Есть шесть фишек с номерами от до . Сколькими способами можно разложить их по двум карманам поровну, так чтобы фишки с номерами и не оказались вместе?
Давайте запишем, что у нас в первом кармане.
Для этого составим все возможные комбинации из набора . Набор из трёх фишек будет трёхзначным числом. Очевидно, что в наших условиях и — это один и тот же набор фишек. Чтобы ничего не пропустить и не повториться, располагаем соответствующие трехзначные числа по возрастанию:
…
А дальше? Мы же говорили, что располагаем числа по возрастанию. Значит, следующее — , а затем:
.
Все! Мы перебрали все возможные комбинации, начинающиеся на . Продолжаем:
.
Всего возможных исходов.
У нас есть условие — фишки с номерами и не должны оказаться вместе. Это значит, например, что комбинация нам не подходит — она означает, что фишки и обе оказались не в первом, а во втором кармане. Благоприятные для нас исходы — такие, где есть либо только , либо только . Вот они:
134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256 – всего благоприятных исходов.
Тогда искомая вероятность равна .
Ответ: .
Сумма событий, произведение событий и их комбинации
Вероятность того, что новый электрический чайник прослужит больше года, равна 0,93. Вероятность того, что он прослужит больше двух лет, равна 0,87. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
Проработав год, чайник может либо сломаться на второй год, либо благополучно служить и после 2 лет работы.
Пусть – вероятность того, что чайник прослужил больше года.
– вероятность того, что он сломается на второй год, – вероятность того, что он прослужит больше двух лет.
Очевидно,
Тогда
Ответ: 0,06.
События, взаимоисключающие друг друга в рамках данной задачи, называются несовместными. Появление одного из несовместных событий исключает появление других.
Сумма двух событий – термин, означающий, что произошло или первое событие, или второе, или оба сразу.
Вероятность суммы несовместных событий равна сумме их вероятностей.
В нашей задаче события «чайник сломался на второй год работы» и «чайник работает больше двух лет» — несовместные. Чайник или сломался, или остается в рабочем состоянии.
На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может. На каждом разветвлении паук выбирает путь, по которому ещё не полз. Считая выбор дальнейшего пути случайным, определите, с какой вероятностью паук выйдет через выход А.
Пронумеруем развилки, на которых паук может случайным образом свернуть в ту или другую сторону.
Он может либо выйти в выход D, и вероятность этого события равна Либо уйти дальше в лабиринт. На второй развилке он может либо свернуть в тупик, либо выйти в выход В (с вероятностью На каждой развилке вероятность свернуть в ту или другую сторону равна а поскольку развилок пять, вероятность выбраться через выход А равна то есть 0,03125.
События А и В называют независимыми, если вероятность появления события А не меняет вероятности появления события В.
В нашей задаче так и есть: неразумный паук сворачивает налево или направо случайным образом, независимо от того, что он делал до этого.
Для нескольких независимых событий вероятность того, что все они произойдут, равна произведению вероятностей.
(А) Два грузовика, работая совместно, вывозят снег с улицы Нижняя Подгорная, причем первый грузовик должен сделать три рейса с грузом снега, а второй — два. Вероятность застрять с грузом снега при подъеме в горку равна 0,2 для первого грузовика и 0,25 — для второго. С какой вероятностью грузовики вывезут снег с улицы Нижняя Подгорная, ни разу не застряв на горке?
Вероятность для первого грузовика благополучно одолеть горку Для второго Поскольку первый грузовик должен сделать 3 рейса, а второй – два, грузовики ни разу не застрянут на горке с вероятностью
Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Нарисуем все возможные исходы ситуации. Покупатель пришел в магазин, который принадлежит агрофирме, и купил яйцо. Надо найти вероятность того, что это яйцо из первого хозяйства.
Яйца могут быть только или из первого домашнего хозяйства, или из второго, причем эти два события несовместны. Других яиц в этот магазин не поступает.
Пусть вероятность того, что купленное яйцо из первого хозяйства, равна . Тогда вероятность того, что яйцо из второго хозяйства (противоположного события), равна .
Яйца могут быть высшей категории и не высшей.
В первом хозяйстве 40% яиц имеют высшую категорию, а 60% — не высшую. Это значит, что случайно выбранное яйцо из первого хозяйства с вероятностью 40% будет высшей категории.
Во втором хозяйстве 20% яиц высшей категории, а 80% — не высшей.
Пусть случайно выбранное в магазине яйцо — из первого хозяйства и высшей категории. Вероятность этого события равна произведению вероятностей:
Вероятность того, что яйцо из второго хозяйства и высшей категории, равна
Если мы сложим эти две вероятности, мы получим вероятность того, что яйцо имеет высшую категорию. По условию, высшую категорию имеют 35% яиц, значит, эта вероятность равна 0,35.
Мы получили уравнение:
Решаем это уравнение и находим, что – вероятность того, что яйцо, купленное у этой агрофирмы, оказалось из первого хозяйства.
Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.
С чем пришел пациент в клинику? – С подозрением на гепатит. Возможно, он действительно болен гепатитом, а возможно, у его плохого самочувствия другая причина. Может быть, он просто съел что-нибудь. Вероятность того, что он болен гепатитом, равна 0,05 (то есть 5%). Вероятность того, что он здоров, равна 0,95 (то есть 95%).
Пациенту делают анализ. Покажем на схеме все возможные исходы:
Если он болен гепатитом, анализ дает положительный результат с вероятностью 0,9. То есть анализ покажет: «есть гепатит».
Заметим, что анализ не во всех случаях выявляет гепатит у того, кто действительно им болен. С вероятностью 0,1 анализ не распознает гепатит у больного.
Более того. Анализ может ошибочно дать положительный результат у того, кто не болеет гепатитом. Вероятность такого ложного положительного результата 0,01. Тогда с вероятностью 0,99 анализ даст отрицательный результат, если человек здоров.
Найдем вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.
Благоприятные для этой ситуации исходы: человек болен, и анализ положительный (вероятность одновременного наступления этих двух событий равна ), или человек здоров, и анализ ложный положительный (вероятность одновременного наступления этих двух событий равна ). Так как события «человек болен» и «человек не болен» несовместны, то вероятность того, что результат анализа будет положительным, равна
Ответ: 0,0545.
Чтобы поступить в институт на специальность «Лингвистика», абитуриент З. должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх предметов — математика, русский язык и обществознание.
Вероятность того, что абитуриент З. получит не менее 70 баллов по математике, равна 0,6, по русскому языку — 0,8, по иностранному языку — 0,7 и по обществознанию — 0,5.
Найдите вероятность того, что З. сможет поступить хотя бы на одну из двух упомянутых специальностей.
Заметим, что в задаче не спрашивается, будет ли абитуриент по фамилии З. учиться и лингвистике, и коммерции сразу и получать два диплома. Здесь надо найти вероятность того, что З. сможет поступить хотя бы на одну из двух данных специальностей – то есть наберет необходимое количество баллов.
Для того чтобы поступить хотя бы на одну из двух специальностей, З. должен набрать не менее 70 баллов по математике. И по русскому. И еще – обществознание или иностранный.
Вероятность набрать 70 баллов по математике для него равна 0,6.
Вероятность набрать баллы по математике и русскому равна
Разберемся с иностранным и обществознанием. Нам подходят варианты, когда абитуриент набрал баллы по обществознанию, по иностранному или по обоим. Не подходит вариант, когда ни по языку, ни по «обществу» он не набрал баллов. Значит, вероятность сдать обществознание или иностранный не ниже чем на 70 баллов равна
В результате вероятность сдать математику, русский и обществознание или иностранный равна Это ответ.
Чтобы полностью освоить тему, смотрите видеокурс по теории вероятностей. Это бесплатно.
Еще задачи ЕГЭ по теме «Теория вероятностей».
Смотрите также: парадокс Монти Холла.
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задание 3. Теория вероятностей на ЕГЭ по математике.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
09.03.2023
Раздел «Элементы комбинаторики, статистики и теории вероятностей» в материалах открытого банка заданий ФИПИ по математике ЕГЭ базового уровня содержит 392 задачи на сорока страницах. В статье выделены несколько типов задач по различным темам курса теории вероятностей и предложены способы их решения. Каждый тип задач сопровождают минимально необходимые теоретические сведения. Формулировки задач скопированы с сайта ФИПИ.
1. Задачи на применение классической формулы определения вероятности события
Вероятностью события А называют отношение числа m благоприятствующих этому событию исходов к общему числу n всех равновозможных несовместных элементарных исходов, образующих полную группу: .
Задача 1.1. На семинар приехали 6 учёных из Норвегии, 5 из России и 9 из Испании. Каждый учёный подготовил один доклад. Порядок докладов определяется случайным образом. Найдите вероятность того, что восьмым окажется доклад учёного из России.
Решение. Число благоприятных исходов –это и есть число участников семинара из России. Их пятеро. Общее число исходов 6+5+9=20, -это количество учёных, участвующих в семинаре. Итак, искомая вероятность равна .
Замечание: решительно всё равно, каким по счёту, восьмым, как в условии задачи, или первым, вторым, третьим, …, двадцатым будет выступать российский докладчик. Искомая вероятность зависит только от количества российских учёных и общего количества участников.
Ответ: 0,25.
Задача 1.2. В кармане у Дани было пять конфет — «Ласточка», «Взлётная», «Василёк», «Грильяж» и «Гусиные лапки», а также ключи от квартиры. Вынимая ключи, Даня случайно выронил из кармана одну конфету. Найдите вероятность того, что упала конфета «Взлётная».
Решение. Конфета «Взлётная» — одна, всего конфет – 5. Вероятность того, что выпала именно она, равна
Ответ: 0,2.
Задача 1.3. На борту самолёта 26 мест рядом с запасными выходами и 10 мест
за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир Д. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру Д. достанется удобное место, если всего в самолёте 300 мест.
Решение: Удобных для пассажира Д. мест 26+10=36. Общее число мест для пассажиров -300. Значит, искомая вероятность равна
Задача 1.4. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл выпадет ровно два раза.
Решение. Перечислим все возможные исходы (их 4) при двух бросаниях монеты:
N исходов |
Первое бросание |
Второе бросание |
1 |
Решка |
Решка |
2 |
Орёл |
Орёл |
3 |
Орёл |
Решка |
4 |
Решка |
Орёл |
Видно из таблицы, что интересующему нас событию (ровно двум появлениям орла) благоприятствует исход с номером 2. Он единственный, а возможных исходов в нашем случае – 4. Стало быть, искомая вероятность равна
Ответ: 0,25.
Задача 1.5. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл выпадет ровно один раз.
Решение: Ровно один раз орёл выпадает в исходах под номерами 2 и 3 (см. таблицу к задаче 1.4). Отношение числа благоприятных исходов (2) к общему числу всех равновозможных исходов (4) определяет вероятность интересующего нас события:
Ответ: 0,5.
Задача 1.6. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл выпадет хотя бы один раз.
Событие «орёл выпадет хотя бы один раз» означает, что орёл появится либо один раз (первым или вторым), либо оба раза, что возможно при реализации исходов 2,3,4. Благоприятных исходов, таким образом, три, при общем количестве возможных – четырёх. Вероятность, согласно классической формуле, равна
Ответ: 0,75.
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл выпадет ровно два раза.
Задача 1.7. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл выпадет ровно два раза.
Решение: Орёл выпадает оба раза – один исход при двух бросаниях математической монеты из четырёх возможных. Значит, вероятность равна .
Ответ: 0,25.
Задача 1.8. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что во второй раз выпадет то же, что и в первый.
Решение: Формулировка «во второй раз выпадет то же, что и в первый» означает, что могут выпасть подряд два орла, либо выпадают две решки подряд, что соответствует исходам 1 и 2 в таблице к задаче 1.4. При общем количестве (их 4) равновозможных исходов вычисляем вероятность .
Ответ: 0,5.
Задача 1.9. Найдите вероятность того, что случайно выбранное трёхзначное число делится на 25.
Решение: Найдем количество трёхзначных чисел. Первое из них -100. Последнее -999. Значит, их всего 999-100+1=900. Определяем количество чисел, кратных 25. Первое из них – 100. Последнее – 975. Таких чисел По классической формуле вычисляем вероятность .
Ответ: 0,04.
Задача 1.10. Найдите вероятность того, что случайно выбранное трёхзначное число делится на 33.
Решение: Как и в задаче 1.10, общее число всех равновозможных исходов 900. Первое трёхзначное число, кратное 33, это — 132. Последнее из них – 990. Таким образом, благоприятных исходов, т.е. трёхзначных чисел, кратных 33, всего
Ответ: 0,03.
Задача 1.11. В коробке вперемешку лежат чайные пакетики с чёрным и зелёным чаем, одинаковые на вид, причём пакетиков с чёрным чаем в 4 раза больше, чем пакетиков с зелёным. Найдите вероятность того, что случайно выбранный
из этой коробки пакетик окажется пакетиком с зелёным чаем.
Решение: Примем количество пакетиков с зелёным чаем за х, тогда количество пакетиков с чёрным чаем будет равно 4х, и общее количество пакетиков с чаем определится как х+4х=5х (пакетиков). Вероятность того, что случайно выбранный из этой коробки пакетик окажется пакетиком с зелёным чаем, согласно классической формуле, определяется отношением
Ответ: 0,2.
Задача 1.12. На олимпиаде по русскому языку участников рассаживают по трём аудиториям. В первых двух по 130 человек, оставшихся проводят в запасную аудиторию в другом корпусе. При подсчёте выяснилось, что всего было 400 участников. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.
Решение: Найдём количество человек, писавших олимпиаду в запасной аудитории: 400-(130+130) =140. Значит, искомая вероятность равна .
Ответ: 0,35.
Задача 1.13. В группе туристов 8 человек. С помощью жребия они выбирают шестерых человек, которые должны идти в село в магазин за продуктами. Какова вероятность того, что турист Д., входящий в состав группы, пойдёт в магазин?
Решение: Для туриста Д., входящего в состав группы, для похода в магазин есть 6 благоприятных исходов. Общее число всех равновозможных исходов – количество туристов в группе (их 8 по условию задачи). Итак Р(А)=
Ответ: 0,75.
Задача 1.14. Научная конференция проводится в 3 дня. Всего запланировано 50 докладов:
в первый день — 18 докладов, остальные распределены поровну между вторым и третьим днями. На конференции планируется доклад профессора М. Порядок докладов определяется случайным образом. Какова вероятность того, что доклад профессора М. окажется запланированным на последний день конференции?
Решение: Последний день конференции – третий. Количество докладов, запланированных во второй, а также и в третий день конференции: Это и есть число благоприятных для профессора М. исходов. Вычисляем вероятность выступления докладчика в третий день: .
Ответ: 0,32.
Задача 1.15. На экзамене будет 50 билетов, Оскар не выучил 7 из них. Найдите вероятность того, что ему попадётся выученный билет.
Решение: Невелик у Оскара шанс получить выученный билет: .
Ответ: 0,14.
Задача 1.16. В фирме такси в наличии 12 легковых автомобилей: 3 из них чёрного цвета
с жёлтыми надписями на боках, остальные — жёлтого цвета с чёрными надписями. Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета с чёрными надписями.
Решение: Жёлтых с чёрными надписями машин -9. Разделив их на общее число машин фирмы (12), получаем:
Ответ: 0,75.
2. Задачи на нахождение вероятности противоположного события
Определение. Противоположными событиями называют два несовместных события, образующих полную группу.
Два события называются несовместными, если они не могут появиться одновременно в результате однократного опыта. События образуют полную группу, если в результате опыта одно из событий обязательно произойдёт. Сумма вероятностей противоположных событий равна 1, т.е. . Здесь — вероятность события, противоположного событию А.
Задача 2.1. Вероятность того, что новая шариковая ручка пишет плохо или вовсе
не пишет, равна 0,21. Покупатель, не глядя, берёт одну шариковую ручку
из коробки. Найдите вероятность того, что эта ручка пишет хорошо.
Решение. Событие А – новая шариковая ручка пишет плохо или вовсе
не пишет. Событие — ручка пишет хорошо. Эти события – противоположные. Р(А)=0,21. Р(
Ответ: 0,79.
Задача 2.2. В среднем из 140 садовых насосов, поступивших в продажу, 7 подтекает. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.
Решение: Событие А — насос подтекает, событие – насос не подтекает.
Ответ: 0,95.
Задача 2.3. Из 600 луковиц тюльпанов в среднем 48 не прорастают. Какова вероятность того, что случайно выбранная и посаженная луковица прорастёт?
Решение. Событие – «случайно выбранная и посаженная луковица прорастёт» противоположно событию «что случайно выбранная и посаженная луковица не прорастёт». Поэтому .
Ответ: 0,92.
3. Задачи на применение теоремы сложения вероятностей для несовместных событий
Суммой (А+В) двух событий А и В называют событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий А или В.
Сложение вероятностей используется тогда, когда нужно вычислить вероятность суммы случайных событий.
Теорема сложения вероятностей несовместных событий. Вероятность того, что произойдёт одно из двух несовместных событий, равна сумме вероятностей этих событий: .
Задача 3.1. На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Вписанная окружность», равна 0,35. Вероятность того, что это вопрос
по теме «Внешние углы», равна 0,25. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение: событие А – достанется вопрос по теме «Вписанная окружность», событие В – достанется вопрос по теме «Внешние углы», тогда событие А+В — на экзамене школьнику достанется вопрос по одной из этих двух тем. Учитывая, что «Вопросов, которые одновременно относятся к этим двум темам, нет», применяем теорему сложения вероятностей для двух несовместных событий: P(А+В) = 0,35+0,25 = 0,6.
Ответ: 0,6.
Задача 3.2. На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,3. Вероятность того, что это вопрос по теме «Вписанная окружность», равна 0,25. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение: Как и при решении задачи 3.1, применяем теорему сложения вероятностей для двух несовместных событий: P(А+В) = 0,3+0,25 = 0,55.
Ответ: 0,55.
Сборник задач по теории вероятностей
(с решениями)
Разработка предназначена для учащихся 9–11 классов для подготовки к ОГЭ и ЕГЭ по математике.
УМК любой
Цель: показать решение типовых задач по данной теме, закрепить умение учащихся решать данные задачи, подготовить учеников к сдаче ОГЭ и ЕГЭ
Методические рекомендации по использованию ресурса: Работу можно применить:
- при проведении урока по систематизации и закреплении знаний учащихся
- при проведении консультаций.
Источники информации: Открытый банк ЕГЭ ФИПИ http://fipi.ru/
Теория вероятностей
Классическое определение вероятности
Вероятностью события A называется отношение числа благоприятных для A исходов к числу всех равновозможных исходов: Р (А) =
где n — общее число равновозможных исходов, m — число исходов, благоприятствующих событию A.
Противоположные события
Событие, противоположное событию A, обозначают Ā. При проведении испытания всегда происходит ровно одно из двух противоположных событий и
Объединение несовместных событий
Два события A и B называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию A, так и событию B.
Если события A и B несовместны, то вероятность их объединения равна сумме вероятностей событий A и B: P(A U B) =P(A) + P(B)
Пересечение независимых событий
Два события A и B называют независимыми, если вероятность каждого из них не зависит от появления или непоявления другого события.
Событие C называют пересечением событий A и B (пишут C = A∩B), если событие C означает, что произошли оба события A и B.
Если события A и B независимы, то вероятность их пересечения равна произведению вероятностей событий A и B:
P(A∩B) = P(A) • P(B)
Формула сложения вероятностей совместных событий:
P(A U B) =P(A) + P(B) – P(A∩B)
1. Из 1000 собранных на заводе телевизоров 5 штук бракованных. Эксперт проверяет один наугад выбранный телевизор из этой 1000. Найдите вероятность того, что проверяемый телевизор окажется бракованным.
Решение. При выборе телевизора наугад возможны 1000 исходов, событию A «выбранный телевизор — бракованный» благоприятны 5 исходов. По определению вероятности P(A) = 5÷1000 = 0,005. Ответ: 0,005.
2. В урне 9 красных, 6 жёлтых и 5 зелёных шаров. Из урны наугад достают один шар. Какова вероятность того, что этот шар окажется жёлтым? Решение. Общее число исходов равно числу шаров: 9 + 6 + 5 = 20. Число исходов, благоприятствующих данному событию, равно 6. Искомая вероятность равна 6÷20 = 0,3. Ответ: 0,3.
3. Петя, Вика, Катя, Игорь, Антон, Полина бросили жребий — кому начинать игру. Найдите вероятность того, что начинать игру должен будет мальчик.
Решение. Вероятность события равна отношению количества благоприятных случаев к количеству всех случаев. Благоприятными случаями являются 3 случая, когда игру начинает Петя, Игорь или Антон, а количество всех случаев 6. Поэтому искомое отношение равно 3:6=0,5. Ответ: 0,5.
4. В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4. Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?
Решение: Обозначим через А событие «команда России во второй группе». Тогда количество благоприятных событий m = 4 (четыре карточки с номером 2), а общее число равновозможных событий n = 16 (16 карточек) по определению вероятности Р= 4: 16 = 0,25. Ответ:0,25
5. В лыжных гонках участвуют 11 спортсменов из России, 6 спортсменов из Норвегии и 3 спортсмена из Швеции. Порядок, в котором спортсмены стартуют, определяется жребием. Найдите вероятность того, что первым будет стартовать спортсмен не из России.
Решение. Всего спортсменов 11 + 6 + 3 = 20 человек. Поэтому вероятность того, что первым будет стартовать спортсмен не из России равна 9:20 = 0,45. Ответ: 0,45.
6. На каждые 1000 электрических лампочек приходится 5 бракованных. Какова вероятность купить исправную лампочку?
Решение. На каждые 1000 лампочек приходится 5 бракованных, всего их 1005. Вероятность купить исправную лампочку будет равна доле исправных лампочек на каждые 1005 лампочек, то есть 1000:1005=0,995.Ответ: 0,995.
7. В группе туристов 8 человек. С помощью жребия они выбирают шестерых человек, которые должны идти в село в магазин за продуктами. Какова вероятность того, что турист Д., входящий в состав группы, пойдёт в магазин? 6 : 8=0,75.
8. В чемпионате по футболу участвуют 16 команд, которые жеребьевкой распределяются на 4 группы: A, B, C и D. Какова вероятность того, что команда России не попадает в группу A?
Решение. Каждая команда попадет в группу с вероятностью 0,25. Таким образом, вероятность того, что команда не попадает в группу равна 1-0,25=0,75. Ответ:0,75
9. На турнир по шахматам прибыло 26 участников в том числе Коля и Толя. Для проведения жеребьевки первого тура участников случайным образом разбили на две группы по 13 человек. Найти вероятность того, что Коля и Толя попадут в разные группы. Решение. Всего 26 мест. Пусть Коля займет случайное место в любой группе. Останется 25 мест, из них в другой группе 13. Исходом считаем выбор места для Толи. Благоприятных исходов 13. Р=13/25 = 0,52. Ответ:0,52
10. В классе 16 учащихся, среди них два друга —Вадим и Сергей. Учащихся случайным образом разбивают на 4 равные группы. Найдите вероятность того, что Вадим и Сергей окажутся в одной группе. Решение. Если Сергею первому досталось некоторое место, то Олегу остаётся 15 мест. Из них 3 — в той же группе, где Сергей. Искомая вероятность равна 3/15. Ответ:0,2
11. В классе 21 учащийся, среди них два друга — Вадим и Олег. Класс случайным образом разбивают на 3 равные группы. Найдите вероятность того, что Вадим и Олег окажутся в одной группе. Решение. Пусть один из друзей находится в некоторой группе. Вместе с ним в группе окажутся 6 человек из 20 оставшихся учащихся. Вероятность того, что друг окажется среди этих 6 человек, равна 6 : 20 = 0,3. Ответ: 0,3
12. Перед началом первого тура чемпионата по настольному теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 16 спортсменов, среди которых 7 участников из России, в том числе Платон Карпов. Найдите вероятность того, что в первом туре Платон Карпов будет играть с каким-либо спортсменом из России? 6:15=0,4. Ответ:0,4.
13. Перед началом первого тура чемпионата по шашкам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шашистов, среди которых 3 участника из России, в том числе Василий Лукин. Найдите вероятность того, что в первом туре Василий Лукин будет играть с каким-либо шашистом из России? 2: 25=0,08. Ответ: 0,08.
14. В классе 26 учащихся, среди них два друга — Сергей и Андрей. Учащихся случайным образом разбивают на 2 равные группы. Найдите вероятность того, что Сергей и Андрей окажутся в одной группе. Ответ 12 : 25 = 0,48.
15. В классе 21 ученик, среди них 2 друга – Тоша и Гоша. На уроке физкультуры класс случайным образом разбивают на 3 равные группы. Найдите вероятность того, что Тоша и Гоша попали в одну группу. Ответ 6 : 20 = 0,3.
16. В классе 21 учащийся, среди них две подруги — Аня и Нина. Класс случайным образом делят на семь групп, по 3 человека в каждой. Найдите вероятность того, что Аня и Нина окажутся в одной группе. Ответ: 2: 20 = 0,1.
17. Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась, достигнув отметки 7, но не дойдя до отметки 1. Ответ. 6 : 12= 0,5 ( 6 делений между 12 и 7, всего 12 делений)
18. Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 6, но не дойдя до отметки 9 часов. 3:12 = 0,25
При решении задач с монетами число всех возможных исходов можно посчитать по формуле п=2ª, где α –количество бросков
19. В случайном эксперименте симметричную монету бросают 2 раза. Найдите вероятность того, что орел выпадет ровно 1 раз.
Решение. Всего возможны четыре исхода: решка-решка, решка-орёл, орёл-решка, орёл-орёл. Орёл выпадает ровно один раз в двух случаях, поэтому вероятность того, что орёл выпадет ровно один раз равна 2:4=0,5. Ответ: 0,5.
20. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл не выпадет ни разу. Ответ: 1:4=0,25
21. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл не выпадет ни разу. Решение. 1:8=0,125 Ответ. 0,125
22. В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что орёл выпадет ровно 2 раза. Решение. Составим список возможных вариантов. Бросают 2 раза может выпасть О — Орел, Р — Решка:
ОО, ОР, РО, РР. Всего 4 исхода из них только один случай удовлетворяет условию. Вероятность (P) = 1 / 4 = 0.25. Ответ: 0.25
23. В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что решка не выпадет ни разу. Решение. Всего исходов = 16, благоприятных 1 ( ОООО). 1:16 = 0,0625. Ответ: 0,0625
При решении задач с кубиками число всех возможных исходов можно посчитать по формуле п=6ª, где α –количество бросков
24. Определите вероятность того, что при бросании игрального кубика (правильной кости) выпадет нечетное число очков. Решение. При бросании кубика равновозможных шесть различных исходов. Событию «выпадет нечётное число очков» удовлетворяют три случая: когда на кубике выпадает 1, 3 или 5 очков. Поэтому вероятность того, что на кубике выпадет нечётное число очков равна 3:6=0,5. Ответ: 0,5.
25. Определите вероятность того, что при бросании кубика выпало число очков, не большее 3.
Решение. При бросании кубика равновозможны шесть различных исходов. Событию «выпадет не больше трёх очков» удовлетворяют три случая: когда на кубике выпадает 1, 2, или 3 очка. Поэтому вероятность того, что на кубике выпадет не больше трёх очков равна 3:6=0,5 Ответ: 0,5.
26. Игральную кость бросают дважды. Найдите вероятность того, что оба раза выпало число, большее 3.
Решение. При бросании кубика 6²= 36 различных исходов. Событию «выпадет больше трёх очков» удовлетворяют три случая: когда на кубике выпадает 4, 5, или 6 очков , благоприятных исходов 9 (4,4; 4,5; 4,6; 5,4; 5,5; 5,6; 6,4; 6,5; 6,6.) Ответ: 9: 36 = 0,25.
27. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 7 очков. Результат округлите до сотых. Решение. При бросании кубика 6³= 216 различных исходов, благоприятных 14. 14 : 216 = 0,07. Ответ: 0,07.
28. Коля выбирает трехзначное число. Найдите вероятность того, что оно делится на 5.
Решение. Всего трехзначных чисел 900. На пять делится каждое пятое их них, то есть таких чисел 900:5=180. Вероятность того, что Коля выбрал трехзначное число, делящееся на 5, определяется отношением количества трехзначных чисел, делящихся на 5, ко всему количеству трехзначных чисел: 180:900=0,2. Ответ: 0,2.
29.Для экзамена подготовили билеты с номерами от 1 до 50. Какова вероятность того, что наугад взятый учеником билет имеет однозначный номер?
Решение. Всего было подготовлено 50 билетов. Среди них 9 были однозначными. Таким образом, вероятность того, что наугад взятый учеником билет имеет однозначный номер равна 9:50=0,18. Ответ: 0,18.
30. В мешке содержатся жетоны с номерами от 5 до 54 включительно. Какова вероятность, того, что извлеченный наугад из мешка жетон содержит двузначное число?
Решение. Всего в мешке жетонов — 50. Среди них 45 имеют двузначный номер. Таким образом, вероятность, того, что извлеченный наугад из мешка жетон содержит двузначное число равна 45 : 50 = 0,9. Ответ: 0.9.
31. Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на 3? 3 : 10 = 0,3. Ответ: 0,3.
Противоположные события.
32. Вероятность того, что новая шариковая ручка пишет плохо (или не пишет), равна 0,19. Покупатель в магазине выбирает одну такую ручку. Найдите вероятность того, что эта ручка пишет хорошо.
Решение. Вероятность того, что ручка пишет хорошо, равна 1 − 0,19 = 0,81. Ответ: 0,81.
33. Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже 36,8°C равна 0,87. Найдите вероятность того, что в случайный момент времени у здорового человека температура тела окажется 36,8°C или выше. Ответ. 1-0,87=0,13
34. При изготовлении подшипников диаметром 67 мм вероятность того, что диаметр будет отличаться от заданного не больше, чем на 0,01 мм, равна 0,965. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 66,99 мм или больше чем 67,01 мм.
Решение. По условию, диаметр подшипника будет лежать в пределах от 66,99 до 67,01 мм с вероятностью 0,965. Поэтому искомая вероятность противоположного события равна 1 − 0,965 = 0,035. Ответ: 0,035.
Несовместные и независимые события. 35. На экзамене по геометрии школьнику достаётся одна задача из сборника. Вероятность того, что эта задача по теме «Углы», равна 0,1. Вероятность того, что это окажется задача по теме «Параллелограмм», равна 0,6. В сборнике нет задач, которые одновременно относятся к этим двум темам. Найдите вероятность того, что на экзамене школьнику достанется задача по одной из этих двух тем. Решение. Суммарная вероятность несовместных событий равна сумме вероятностей этих событий: P=0,6+ 0,1 = 0,7. Ответ: 0,7.
36. Вероятность того, что на тесте по биологии учащийся О. верно решит больше 11 задач, равна 0,67. Вероятность того, что О. верно решит больше 10 задач, равна 0,74. Найдите вероятность того, что О. верно решит ровно 11 задач.
Решение. Рассмотрим события A = «учащийся решит 11 задач» и В = «учащийся решит больше 11 задач». Их сумма — событие A + B = «учащийся решит больше 10 задач». События A и В несовместные, вероятность их суммы равна сумме вероятностей этих событий: P(A + B) = P(A) + P(B). Тогда, используя данные задачи, получаем: 0,74 = P(A) + 0,67, откуда P(A) = 0,74 − 0,67 = 0,07. Ответ: 0,07.
37. Вероятность того, что на тесте по химии учащийся П. верно решит больше 8 задач, равна 0,48. Вероятность того, что П. верно решит больше 7 задач, равна 0,54. Найдите вероятность того, что П. верно решит ровно 8 задач. Решение. Вероятность решить несколько задач складывается из суммы вероятностей решить каждую из этих задач. Больше 8: решить 9-ю, 10-ю … Больше 7: решить 8-ю, 9-ю, 10-ю …Вероятность решить 8-ю = 0,54-0,48=0,06. Ответ:0.06
38. На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет меньше 4? Ответ: 4 : 10 = 0,4.
39. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.
Решение. Поскольку биатлонист попадает в мишени с вероятностью 0,8, он промахивается с вероятностью 1 − 0,8 = 0,2. Cобытия попасть или промахнуться при каждом выстреле независимы, вероятность произведения независимых событий равна произведению их вероятностей. Тем самым, вероятность события «попал, попал, попал, промахнулся, промахнулся» равна 0,8•0,8•0,8•0,2•0,2=0,02048. Ответ:0.02048.
40. Помещение освещается фонарём с двумя лампами. Вероятность перегорания лампы в течение года равна 0,3. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Решение. Найдем вероятность того, что перегорят обе лампы. Эти события независимые, вероятность их произведения равно произведению вероятностей этих событий: 0,3·0,3 = 0,09. Событие, состоящее в том, что не перегорит хотя бы одна лампа, противоположное. Следовательно, его вероятность равна 1 − 0,09 = 0,91. Ответ: 0,91.
41. Вероятность того, что батарейка бракованная, равна 0,06. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.
Решение. Вероятность того, что батарейка исправна, равна 0,94. Вероятность произведения независимых событий (обе батарейки окажутся исправными) равна произведению вероятностей этих событий: 0,94·0,94 = 0,8836. Ответ: 0,8836.
42. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.
Решение. Возможность выиграть первую и вторую партию не зависят друг от друга. Вероятность произведения независимых событий равна произведению их вероятностей: 0,52 · 0,3 = 0,156. Ответ: 0,156.
43. В магазине три продавца. Каждый из них занят с клиентом с вероятностью 0,3. Найдите вероятность того, что в случайный момент времени все три продавца заняты одновременно (считайте, что клиенты заходят независимо друг от друга).
Решение. Вероятность произведения независимых событий равна произведению вероятностей этих событий. Поэтому вероятность того, что все три продавца заняты равна (0,3)³ = 0,027. Ответ: 0,027.
44. Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 20 пассажиров, равна 0,94. Вероятность того, что окажется меньше 15 пассажиров, равна 0,56. Найдите вероятность того, что число пассажиров будет от 15 до 19.
Решение. Рассмотрим события A = «в автобусе меньше 15 пассажиров» и В = «в автобусе от 15 до 19 пассажиров». Их сумма — событие A + B = «в автобусе меньше 20 пассажиров». События A и В несовместные, вероятность их суммы равна сумме вероятностей этих событий: P(A + B) = P(A) + P(B).
Тогда, используя данные задачи, получаем: 0,94 = 0,56 + P(В), откуда P(В) = 0,94 − 0,56 = 0,38.Ответ: 0,38.
45. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение. Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий: 0,2 + 0,15 = 0,35.
Ответ: 0,35.
46.Вероятность того, что новый электрический чайник прослужит больше года, равна 0,97. Вероятность того, что он прослужит больше двух лет, равна 0,89. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
Решение. Пусть A = «чайник прослужит больше года, но меньше двух лет», В = «чайник прослужит больше двух лет», С = «чайник прослужит ровно два года», тогда A + B + С = «чайник прослужит больше года». События A, В и С несовместные, вероятность их суммы равна сумме вероятностей этих событий. Вероятность события С, состоящего в том, что чайник выйдет из строя ровно через два года — строго в тот же день, час и секунду — равна нулю. Тогда: P(A + B+ С) = P(A) + P(B)+ P(С)= P(A) + P(B)
откуда, используя данные из условия, получаем 0,97 = P(A) + 0,89.Тем самым, для искомой вероятности имеем: P(A) = 0,97 − 0,89 = 0,08. Ответ: 0,08.
47. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.
Решение. Для погоды на 4, 5 и 6 июля есть 4 варианта: ХХО, ХОО, ОХО, ООО (здесь Х — хорошая, О — отличная погода). Найдем вероятности наступления такой погоды: P(XXO) = 0,8·0,8·0,2 = 0,128; P(XOO) = 0,8·0,2·0,8 = 0,128; P(OXO) = 0,2·0,2·0,2 = 0,008; P(OOO) = 0,2·0,8·0,8 = 0,128.Указанные события несовместные, вероятность их суммы равна сумме вероятностей этих событий:
P(ХХО) + P(ХОО) + P(ОХО) + P(ООО) = 0,128 + 0,128 + 0,008 + 0,128 = 0,392. Ответ: 0,392.
48. В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.
Решение. Найдем вероятность того, что неисправны оба автомата. Эти события независимые, вероятность их произведения равна произведению вероятностей этих событий: 0,05 · 0,05 = 0,0025. Событие, состоящее в том, что исправен хотя бы один автомат, противоположное. Следовательно, его вероятность равна 1 − 0,0025 = 0,9975. Ответ: 0,9975.
49. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.
Решение. Рассмотрим событиеА = кофе закончится в первом автомате, В = кофе закончится во втором автомате.
Вероятность того, что кофе останется в первом автомате равна 1 − 0,3 = 0,7. Вероятность того, что кофе останется во втором автомате равна 1 − 0,3 = 0,7. Вероятность того, что кофе останется в первом или втором автомате равна 1 − 0,12 = 0,88. Поскольку P(A + B) = P(A) + P(B) − P(A·B), имеем: 0,88 = 0,7 + 0,7 − х, откуда искомая вероятность х = 0,52. Ответ: 0,9975.
50. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Решение. Вероятность того, что стекло куплено на первой фабрике и оно бракованное: 0,45 · 0,03 = 0,0135. Вероятность того, что стекло куплено на второй фабрике и оно бракованное: 0,55 · 0,01 = 0,0055. Поэтому по формуле полной вероятности вероятность того, что случайно купленное в магазине стекло окажется бракованным равна 0,0135 + 0,0055 = 0,019. Ответ: 0,019.
51. Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.
Решение. Джон попадает в муху, если схватит пристрелянный револьвер и попадет из него, или если схватит непристрелянный револьвер и попадает из него. По формуле условной вероятности, вероятности этих событий равны соответственно 0,4·0,9 = 0,36 и 0,6·0,2 = 0,12. Эти события несовместны, вероятность их суммы равна сумме вероятностей этих событий: 0,36 + 0,12 = 0,48. Событие, состоящее в том, что Джон промахнется, противоположное. Его вероятность равна 1 − 0,48 = 0,52. Ответ. 0,52
52. Чтобы поступить в институт на специальность «Лингвистика», абитуриент должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх предметов — математика, русский язык и обществознание.
Вероятность того, что абитуриент З. получит не менее 70 баллов по математике, равна 0,6, по русскому языку — 0,8, по иностранному языку — 0,7 и по обществознанию — 0,5.
Найдите вероятность того, что З. сможет поступить хотя бы на одну из двух упомянутых специальностей.
Решение. В силу независимости событий, вероятность успешно сдать экзамены на лингвистику: 0,6·0,8·0,7 = 0,336, вероятность успешно сдать экзамены на коммерцию: 0,6·0,8·0,5 = 0,24, вероятность успешно сдать экзамены и на «Лингвистику», и на «Коммерцию»: 0,6·0,8·0,7·0,5 = 0,168. Успешная сдача экзаменов на «Лингвистику» и на «Коммерцию» — события совместные, поэтому вероятность их суммы равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения. Тем самым, поступить на одну из этих специальностей абитуриент может с вероятностью 0,336 + 0,24 − 0,168 = 0,408. Ответ: 0,408.
53. По отзывам покупателей Иван Иванович оценил надёжность двух интернет- магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,8. Вероятность того, что этот товар доставят из магазина Б, равна 0,9. Иван Иванович заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар. Решение. Вероятность того, что первый магазин не доставит товар равна 1 − 0,9 = 0,1. Вероятность того, что второй магазин не доставит товар равна 1 − 0,8 = 0,2. Поскольку эти события независимы, вероятность их произведения (оба магазина не доставят товар) равна произведению вероятностей этих событий: 0,1 · 0,2 = 0,02. Ответ: 0,02.
54.Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры. Решение. Требуется найти вероятность произведения трех событий: «Статор» начинает первую игру, не начинает вторую игру, начинает третью игру. Вероятность произведения независимых событий равна произведению вероятностей этих событий. Вероятность каждого из них равна 0,5, откуда находим: 0,5·0,5·0,5 = 0,125. Ответ: 0,125.
55. Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.
Решение. Анализ пациента может быть положительным по двум причинам: А) пациент болеет гепатитом, его анализ верен; B) пациент не болеет гепатитом, его анализ ложен. Это несовместные события, вероятность их суммы равна сумме вероятностей этих событий. Имеем: Р(А)=0,9•0.05=0,045; Р(В)= 0,01•0,95=0,0095 ,Р(А+В)=Р(А)(В)=0,045+0,0095=0,0545.
Ответ:0,0545.
56. Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная батарейка будет забракована системой контроля.
Решение. Ситуация, при которой батарейка будет забракована, может сложиться в результате событий: A = батарейка действительно неисправна и забракована справедливо или В = батарейка исправна, но по ошибке забракована. Это несовместные события, вероятность их суммы равна сумме вероятностей эти событий. Имеем: Р(А+В)=Р(А)+Р(В)=0,02•0,99+0,98•0,01=0,0198+0,0098=0,0296 Ответ: 0,0296.
57. Стрелок стреляет по мишени один раз. В случае промаха стрелок делает второй выстрел по той же мишени. Вероятность попасть в мишень при одном выстреле равна 0,7. Найдите вероятность того, что мишень будет поражена (либо первым, либо вторым выстрелом).
Решение. Пусть A — событие, состоящее в том, что мишень поражена стрелком с первого выстрела, B — событие, состоящее в том, что мишень поражена со второго выстрела. Вероятность события A равна P(A) = 0,7. Событие B наступает, если, стреляя первый раз, стрелок промахнулся, а, стреляя второй раз, попал. Это независимые события, их вероятность равна произведению вероятностей этих событий: P(B) = 0,3·0,7 = 0,21. События A и B несовместные, вероятность их суммы равна сумме вероятностей этих событий: P (A + B) = P(A) + P(B) = 0,7 + 0,21 = 0,91. Ответ: 0,91.
58.Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд будет первой владеть мячом. Команда А должна сыграть два матча — с командой В и с командой С. Найдите вероятность того, что в обоих матчах первой мячом будет владеть команда А.
Решение. Рассмотрим все возможные исходы жеребьёвки.
· КомандаА в матче в обоих матчах первой владеет мячом.
· КомандаА в матче в обоих матчах не владеет мячом первой.
· КомандаА в матче с командой В владеет мячом первой, а в матче с командой С — второй.
· КомандаА в матче с командой С владеет мячом первой, а в матче с командой В — второй.
Из четырех исходов один является благоприятным, вероятность его наступления равна 1:4=0,25. Ответ: 0,25.
59. Стрелок 4 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,5. Найдите вероятность того, что стрелок первые 3 раза попал в мишени, а последний раз промахнулся.
Решение. Вероятность промаха равна 1 − 0,5 = 0,5. Вероятность того, что стрелок первые три раза попал в мишени равна 0,53 = 0,125. Откуда, вероятность события, при котором стрелок сначала три раза попадает в мишени, а четвёртый раз промахивается равна 0,125 · 0,5 = 0,0625. Ответ: 0,0625.
60. Перед началом матча по футболу судья бросает монету, чтобы определить, какая из команд будет первой владеть мячом. Команда «Байкал» играет по очереди с командами
«Амур», «Енисей», «Иртыш». Найти вероятность того, что команда «Байкал» будет первой владеть мячом только в игре с «Амуром».
Решение. Монету бросают 3 раза.
Для команды «Байкал» возможные исходы в трех бросках {О О О},{Р О О}, {О Р О}, {О О Р}, {Р Р О},{Р О Р}, {О Р Р},{Р Р Р}. Всего исходов 8, благоприятныx1(выпадение орла в первой игре) {О Р Р, 1:8=0,125.Ответ 0,125.
61.У Пети в кармане лежат шесть монет: четыре монеты по рублю и две монеты по два рубля. Петя, не глядя, переложил какие-то три монеты в другой карман. Найдите вероятность того, что теперь две двухрублевые монеты лежат в одном кармане.
Решение. Пронумеруем монеты: рублевые – 1, 2, 3, 4; двухрублевые – 5, 6. {123} {124} {125} {126} {134} {135} {136} {145} {146} {156} {234} {235} {236} {245} {246} {256} {345} {346} {356} {456}
n = 20 – число всех исходов .Взять три монеты можно так: (числа в порядке возрастания,чтобы не пропустить комбинацию) m = 8 – число благоприятных исходов
(комбинации, в которых монеты 5 и 6 (двухрублевые) не взяты или взяты обе. 8:20=0,4
События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).
Зачем нужна теория вероятности
Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.
Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.
В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.
Основные понятия теории вероятности
Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.
Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.
Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.
События А и В называется несовместными, если они не могут произойти одновременно.
Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .
Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .
Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.
- Вероятность принимает значения на отрезке от 0 до 1, т.е. .
- Вероятность невозможного события равна 0, т.е. .
- Вероятность достоверного события равна 1, т.e. .
- Если события A и В несовместные, то вероятность их суммы равна сумме их вероятностей, т.е. .
Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.
Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .
Ответ получаем по формуле .
Пример задачи из ЕГЭ по математике по определению вероятности
На столе лежат 20 пирожков – 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?
Решение.
Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А – это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:
Ответ: 0,4
Независимые, противоположные и произвольные события
Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.
События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.
Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .
Теоремы сложения и умножения вероятностей, формулы
Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .
Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .
Последние 2 утверждения называются теоремами сложения и умножения вероятностей.
Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.
Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается “шесть факториал”.
В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов В нашем случае .
Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .
В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам
В нашем случае .
И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: . В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:
В нашем случае .
Примеры решения задач из ЕГЭ по математике на определение вероятности
Задача 1. Из сборника под ред. Ященко.
На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.
Решение:
.
Ответ: 0,3.
Задача 2. Из сборника под ред. Ященко.
В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.
Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:
Ответ: 0,98.
Задача 3.
Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.
Решение:
Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие “У. верно решит ровно 9 задач” входит в условие “У. верно решит больше 8 задач”, но не относится к условию “У. верно решит больше 9 задач”.
Однако, условие “У. верно решит больше 9 задач” содержится в условии “У. верно решит больше 8 задач”. Таким образом, если мы обозначим события: “У. верно решит ровно 9 задач” – через А, “У. верно решит больше 8 задач” – через B, “У. верно решит больше 9 задач” через С. То решение будет выглядеть следующим образом:
.
Ответ: 0,06.
Задача 4.
На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение.
Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме “Тригонометрия”, либо к теме “Внешние углы”. По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:
Ответ: 0,35.
Задача 5.
Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Решение:
Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.
Тогда укажем варианты таких событий. Примем обозначения: – лампочка горит, – лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события “лампочка перегорела”, “лампочка горит”, “лампочка горит”: , где вероятность события “лампочка горит” подсчитывается как вероятность события, противоположного событию “лампочка не горит”, а именно: .
Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: .
Ответ: 0,975608.
Еще одну задачку вы можете посмотреть на рисунке:
Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.
Способы решения задач по теории вероятностей ЕГЭ по математике
профильного уровня
Раздел «Элементы комбинаторики, статистики и теории вероятностей» в материалах
открытого банка заданий ФИПИ по математике ЕГЭ профильного уровня содержит 403
задачи на 41 странице. В статье выделены несколько типов задач по различным темам
курса теории вероятностей и предложены способы их решения. Каждый тип задач
сопровождают минимально необходимые теоретические сведения. Формулировки задач
скопированы с сайта ФИПИ.
1. Задачи на применение классической формулы вероятности события
Вероятностью события А называют отношение числа m благоприятствующих этому
событию исходов к общему числу n всех равновозможных несовместных элементарных
исходов, образующих полную группу:
.
Задача 1.1. В чемпионате по гимнастике участвуют 70 спортсменок: 25 из США, 17 из
Мексики, остальные из Канады. Порядок, в котором выступают гимнастки, определяется
жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из
Канады.
Решение. Число благоприятных исходов –это и есть число канадских спортсменок. Их 70—
(25+17) =28. Общее число исходов – 70, это количество спортсменок, участвующих в
чемпионате. Итак, искомая вероятность равна
.
Ответ: 0,4.
Замечание: решительно всё равно, какой по счёту, первой, как в условии задачи, или
второй, третьей, …, семидесятой будет выступать канадская спортсменка. Искомая
вероятность зависит только от количества канадских гимнасток и общего количества
участниц.
Задача 1.2. Перед началом первого тура чемпионата по теннису участников разбивают на
игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 76
теннисистов, среди которых 7 спортсменов из России, в том числе Анатолий Москвин.
Найдите вероятность того, что в первом туре Анатолий Москвин будет играть с каким—
либо теннисистом из России.
Решение. Для выбранного уже по условию задачи россиянина Анатолия Москвина
благоприятных исходов (его партнёр — российский теннисист) остаётся всего 6.
Уменьшается на единицу и общее число всех равновозможных исходов – число
спортсменов, готовых сражаться с Москвиным, их – 75. Значит, искомая вероятность
равна
Ответ: 0,08.
Задача 1.3. В случайном эксперименте симметричную монету бросают дважды. Найдите
вероятность того, что решка выпадет ровно один раз.
Решение. Перечислим все возможные исходы (их 4) при двух бросаниях монеты:
Видно из таблицы, что интересующему нас событию (ровно одному появлению решки)
благоприятствуют исходы с номерами 3 и 4. Их два, а возможных исходов в нашем случае
– 4. Стало быть, искомая вероятность равна
Ответ: 0,5.
Задача 1.4. В случайном эксперименте симметричную монету бросают дважды. Найдите
вероятность того, что орёл выпадет оба раза.
Решение. Благоприятному событию (А)— орёл выпадет оба раза благоприятствует один
исход – номер 2 (см. задачу 1.3). Таким образом, Р(А)=
Ответ: 0,25.
Задача 1.5. На олимпиаде по русскому языку 350 участников разместили в трёх
аудиториях. В первых двух удалось разместить по 140 человек, оставшихся перевели в
запасную аудиторию в другом корпусе. Найдите вероятность того, что случайно
выбранный участник писал олимпиаду в запасной аудитории.
Решение. Найдём количество человек, писавших олимпиаду в запасной аудитории: 350—
(140+140) =70. Значит, искомая вероятность равна
.
Ответ: 0,2.
Задача 1.6. В группе туристов 300 человек. Их вертолётом доставляют в труднодоступный
район, перевозя по 15 человек за рейс. Порядок, в котором вертолёт перевозит туристов,
случаен. Найдите вероятность того, что турист В. полетит первым рейсом вертолёта.
Решение. Способ 1. Интересующее нас событие – «турист В. полетит первым рейсом
вертолёта» означает, что он попадает в число15 человек, вылетающих первым рейсом,
поэтому искомая вероятность есть
Способ 2. Всего рейсов
. Туристу В, согласно условию задачи, подходит только
один из них, значит, вероятность определяется отношением
.
Ответ: 0,05.
Задача 1.7. Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится
3 сумки со скрытыми дефектами. Найдите вероятность того, что купленная сумка
окажется качественной. Результат округлите до сотых.
Решение. Качественных сумок 100, а общее число сумок 100+3=103. Значит, вероятность
вычисляется как отношение
.
Ответ: 0,97.
Задача 1.8. В школе 51 пятиклассник, среди них — Саша и Настя. Всех пятиклассников
случайным образом делят на три группы, по 17 человек в каждой. Найдите вероятность
того, что Саша и Настя окажутся в одной группе.
Решение. Предполагаем, что Саша уже попал в одну из трёх групп, безразлично, какую.
Для Насти, таким образом, число мест в Сашиной группе сократилось до 16, т.к. место
занято Сашей. Заметим, что на единицу уменьшилось и общее число участников
распределения по группам, т.к. из их числа уже исключён Саша. Таким образом,
вероятность того, что Саша и Настя окажутся в одной группе, равна
.
Ответ: 0,32.
Задача 1.9. В случайном эксперименте бросают две игральные кости (кубика). Найдите
вероятность того, что в сумме выпадет 7 очков. Результат округлите до сотых.
Решение. При бросании двух игральных костей возможны 36 исходов испытания, т.к.
любой исход испытания при бросании первой кости (1, 2, 3, 4, 5, 6) может сочетаться с
любым из шести исходов (1, 2, 3, 4, 5, 6) при бросании второй кости. Интересующему нас
событию — в сумме выпадет 7 очков благоприятны исходы: 1 и 6, 6 и 1, 5 и 2, 2 и 5, 4 и 3, 3
и 4. Их всего – 6. Значит, искомая вероятность
.
Ответ: 0,17
Задача 1.10. В случайном эксперименте бросают две игральные кости (кубика). Найдите
вероятность того, что в сумме выпадет 9 очков. Результат округлите до сотых.
Решение. Как и в предыдущей задаче, общее число всех равновозможных исходов – 36.
Благоприятными исходами будут: 6 и 3, 3 и 6, 4 и 5, 5 и 4. Их всего четыре. Вычисляем
вероятность:
Ответ: 0,11.
Задача 1.11. В случайном эксперименте бросают две игральные кости (кубика). Найдите
вероятность того, что в сумме выпадет 11 очков. Результат округлите до сотых.
Решение. Всех равновозможных исходов – 36. Благоприятные: 5 и 6, 6 и 5. Их два, и
поэтому вероятность равна
.
Ответ: 0,06.
Задача 1.12. Перед началом футбольного матча судья бросает монетку, чтобы определить,
какая из команд начнёт игру с мячом. Команда «Сапфир» играет три матча с разными
командами. Найдите вероятность того, что в этих матчах команда «Сапфир» начнёт игру с
мячом не более одного раза.
Решение. Составим таблицу, в которой символ «+» обозначит тот факт, что команда
Сапфир начинает игру, а символ будет означать, что игру начинает другая команда
(соперник Сапфира):
Очевидно, что интересующему нас событию А — в этих матчах команда «Сапфир» начнёт
игру с мячом не более одного раза, благоприятствуют исходы с номерами 5, 6, 7, 8. Всего
исходов – 8, значит, вероятность равна
Ответ: 0,5.
Задача 1.13. Перед началом футбольного матча судья бросает монетку, чтобы определить,
какая из команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными
командами. Найдите вероятность того, что в этих матчах команда «Биолог» начнёт игру с
мячом все три раза.
Решение. Таблица исходов приведена в предыдущей задаче. Событию А — в этих матчах
команда «Биолог» начнёт игру с мячом все три раза, благоприятствует исход с номером 1
(он – единственный). Таким образом, искомая вероятность вычисляется как отношение
.
Ответ: 0,125.
Задача 1.14. Механические часы с двенадцатичасовым циферблатом в какой—то момент
сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась,
достигнув отметки 7, но не дойдя до отметки 1.
Решение. При рассмотрении подобных задач на геометрическую вероятность полезно
иметь ввиду, что один час на двенадцатичасовом циферблате занимает сектор
.
От 7 до 1 проходит 6 часов, часовая стрелка преодолевает 30 , таким образом,
искомая вероятность вычисляется как
.
С другой стороны, посмотрев на 12—часовой циферблат, можем видеть, что промежуток от
7 часов до 1 часа занимает ровно половину циферблата, значит, вероятность равна 0,5.
Ответ: 0,5.
Задача 1.15. В случайном эксперименте симметричную монету бросают трижды. Найдите
вероятность того, что решка выпадет все три раза.
Решение. Все возможные исходы (их при трёх бросаниях представлены в таблице:
Благоприятный исход один – последний: Решка—Решка—Решка. Вероятность, согласно
классической формуле, равна
Ответ: 0,125.
Задача 1.16. В случайном эксперименте симметричную монету бросают четырежды.
Найдите вероятность того, что орёл выпадет ровно два раза.
Решение. Можно составить таблицу и для четырёх бросаний симметричной монеты:
Число исходов равно 16. Благоприятные исходы в таблице имеют номера: 6,7,8,9,10,11. Их
всего 6. Значит, вероятность равна
.
Если взять на себя труд и выучить теорему Я. Бернулли, то составления таблицы можно
избежать.
Теорема: Если вероятность р наступления события А в каждом испытании постоянна, то
вероятность
того, что в серии n однородных независимых испытаний событие А
наступит ровно k раз, равна:
(1).
Здесь
– число сочетаний из n элементов по k в каждом, q – вероятность
события, противоположного событию А.
В условиях нашей задачи p=
, q=
=
,
. Подставляем в формулу
(1) и получаем:
.
Ответ: 0,375.
2. Задачи на нахождение вероятности противоположного события
Определение. Противоположными событиями называют два несовместных события,
образующих полную группу.
Два события называются несовместными, если они не могут появиться одновременно в
результате однократного опыта. События образуют полную группу, если в результате
опыта одно из событий обязательно произойдёт. Сумма вероятностей противоположных
событий равна 1, т.е.
. Здесь
— вероятность события,
противоположного событию А.
Задача 2.1. В среднем из 900 садовых насосов, поступивших в продажу, 27 подтекают.
Найдите вероятность того, что один случайно выбранный для контроля насос не
подтекает.
Решение. Событие А – насос подтекает, событие
– насос не подтекает.
Ответ: 0,97.
Задача 2.2. Вероятность того, что в случайный момент времени температура тела
здорового человека окажется ниже 36,8°C, равна 0,94. Найдите вероятность того, что в
случайный момент времени у здорового человека температура тела окажется 36,8°C или
выше.
Решение. Событие – «в случайный момент времени у здорового человека температура
тела окажется 36,8°C или выше» противоположно событию «что в случайный момент
времени температура тела здорового человека окажется ниже 36,8°C». Поэтому
.
Ответ: 0,06.
Задача 2.3. Серёжа, Саша, Ира, Соня, Женя, Толя, Ксюша и Федя бросили жребий — кому
начинать игру. Найдите вероятность того, что начинать игру должна будет не Ксюша.
Решение. Вероятность события А – «игру начнёт Ксюша» равна
, а
вероятность противоположного события — начинать игру должна будет не Ксюша, равна
.
Заметим, что можно было вычислять искомую вероятность как отношение числа детей,
которые «не Ксюши» — их семеро, к общему числу детей в игре (их 8 человек):
.
Ответ: 0,875.
3. Задачи на применение теоремы сложения вероятностей для несовместных
событий
Суммой (А+В) двух событий А и В называют событие, которое наступает тогда и только
тогда, когда наступает хотя бы одно из событий А или В.
Сложение вероятностей используется тогда, когда нужно вычислить вероятность суммы
случайных событий.
Теорема сложения вероятностей несовместных событий. Вероятность того, что
произойдёт одно из двух несовместных событий, равна сумме вероятностей этих событий:
.
Задача 3.1. На экзамене по геометрии школьник отвечает на один вопрос из списка
экзаменационных вопросов. Вероятность того, что это вопрос по теме «Вписанная
окружность», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна
0,35. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух
тем.
Решение: событие А – достанется вопрос по теме «Вписанная окружность», событие В –
достанется вопрос по теме «Внешние углы», тогда событие А+В — на экзамене школьнику
достанется вопрос по одной из этих двух тем. Учитывая, что «Вопросов, которые
одновременно относятся к этим двум темам, нет», применяем теорему сложения
вероятностей для двух несовместных событий: P(А+В) = 0,2+0,35 = 0,55.
Ответ: 0,55.
Задача 3.2. Вероятность того, что на тестировании по математике учащийся А. верно
решит больше 9 задач, равна 0,63. Вероятность того, что А. верно решит больше 8 задач,
равна 0,75. Найдите вероятность того, что А. верно решит ровно 9 задач.
Решение. Введём обозначения: событие А— решено более 9 задач, событие В – решено
больше 8 задач. Другими словами, событие В заключается в том, что решено ровно 9 или
больше 9 задач. Пусть событие С – учащийся решил ровно 9 задач. Тогда В=А+С. По
теореме сложения вероятностей для несовместных событий, Р(В)=Р(А)+Р(С), и,
следовательно, Р(С)=Р(В)—Р(А). Подставляя числовые значения, получаем: Р(С)=0,75—
0,63=0,12.
Ответ: 0,12.
Задача 3.3. Вероятность того, что на тестировании по физике учащийся А. верно решит
больше 6 задач, равна 0,61. Вероятность того, что А. верно решит больше 5 задач, равна
0,66. Найдите вероятность того, что А. верно решит ровно 6 задач.
Решение. Содержание задачи аналогично предыдущей. Пусть событие Е – решено верно
ровно 6 задач, событие F – решено верно больше 5 задач, событие K – решено верно
больше 6 задач. Тогда F=K+E и P(Е)=Р(F)—Р(K)=0,66-0,61=0,05.
Ответ: 0,05.
Задача 3.4. Вероятность того, что новый сканер прослужит больше года, равна 0,94.
Вероятность того, что он прослужит больше двух лет, равна 0,87. Найдите вероятность
того, что он прослужит меньше двух лет, но больше года.
Решение. Пусть событие А — новый сканер прослужит больше года, событие В —
прослужит больше двух лет, событие С – сканер прослужит меньше двух лет, но больше
года. Тогда А=В+С. Согласно теореме сложения вероятностей Р(А)=Р(В)+Р(С) и тогда
Р(С)=Р(А)—Р(В). Имеем: Р(С)=0,94-0,87=0,07.
Ответ: 0,07.
4. Задачи на применение теоремы умножения вероятностей независимых событий
Произведением двух событий А и В называют событие , которое заключается в
том, что происходят и событие А, и событие В.
Событие В называют независимым от события А, если вероятность появления события В
не зависит от того, произошло событие А или не произошло.
Теорема: Вероятность произведения двух независимых событий А и В равна
произведению вероятности одного из них на вероятность другого:
.
Задача 4.1. Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста
Б. с вероятностью 0,6. Если А. играет чёрными, то А. выигрывает у Б. с вероятностью
0,45. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет
фигур. Найдите вероятность того, что А. выиграет оба раза.
Решение. Пусть событие А – шахматист А. выиграл первую партию, событие В –
шахматист А. выиграл вторую партию, тогда событие – шахматист А. выиграл обе
партии. Применяем теорему умножения вероятностей независимых событий:
.
Ответ: 0,27.
Используя теорему умножения вероятностей независимых событий, можно решить и
задачу 1.13:
Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из
команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными командами.
Найдите вероятность того, что в этих матчах команда «Биолог» начнёт игру с мячом все
три раза.
Решение. Вероятность начать игру при бросании жребия равна
. Вероятность того, что
это событие повторится три раза, по теореме умножения вероятностей (в данном случае
трёх) независимых событий равна
⸱
.
Ответ: 0,125.
Задача 4.2. В случайном эксперименте симметричную монету бросают дважды. Найдите
вероятность того, что орёл не выпадет ни разу.
Решение. Событие «орёл не выпадет ни разу» при двух бросаниях монеты означает
выпадение двух решек подряд. Поскольку вероятность выпадения решки при одном
бросании равна
, то вероятность события «выпадение двух решек» по теореме
умножения вероятностей двух независимых событий равна
.
Разумеется, эту задачу можно было решать и с помощью классической формулы
вычисления вероятности события (см. задачи 1.3, 1.4).
Ответ: 0,25.
Задача 4.3. Чтобы пройти в следующий круг соревнований, футбольной команде нужно
набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в
случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что
команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре
вероятности выигрыша и проигрыша одинаковы и равны 0,3.
Решение. Придётся вспомнить и понятие полной группы событий, и теорему сложения
вероятностей несовместных событий, и теорему умножения вероятностей независимых
событий. В задаче указаны вероятности выигрыша и проигрыша (обе равны 0,3), значит,
вероятность ничьей равна 1— (0,3+0,3) =0,4. Чтобы команда вышла в следующий круг, она,
согласно условию, должна набрать как минимум 4 очка за две игры, значит, она может
выиграть в обеих играх (это принесёт ей 6 очков), либо выиграть одну из игр, а другую
свести к ничьей (тогда получит 4 очка, чего ей, в принципе, тоже достаточно). Итак,
команду устраивает одно из трёх событий: выигрыш—выигрыш (событие А), выигрыш—
ничья (событие В), ничья—выигрыш (событие С). Все эти события — А, В, С — несовместны.
Найдём вероятности этих событий. Вероятность события А по теореме умножения
вероятностей независимых событий
. Аналогично
и
Применяем теорему сложения вероятностей для трёх
несовместных событий А, В, С. Получим:
Ответ: 0,33.