Анна Малкова
Эти две полезные теоремы – теорема Менелая и теорема Чевы — чаще применяются при решении олимпиадных задач, чем на ЕГЭ по математике. Однако в 2020 году в ряде вариантов ЕГЭ обнаружилась задача по планиметрии (№16), которую на первый взгляд невозможно решить без теоремы Менелая или теоремы Чевы. Но на самом деле, конечно, возможно. Например, в Санкт-Петербурге попались такие задачи.
Разберемся, что это за теоремы и как применяются. И действительно ли на ЕГЭ дали задачи на применение теорем, выходящих за рамки школьной программы. И можно ли эти задачи решить по-другому?
Теорема Менелая:
Пусть прямая пересекает произвольный треугольник причем – точка ее пересечения со стороной – точка ее пересечения со стороной и – точка ее пересечения с продолжением стороны
Тогда выполняется равенство:
Как это запомнить? Сначала рисуем треугольник Затем прямую, пересекающую две его стороны и продолжение третьей. На этой прямой лежат точки и причем на стороне должна лежать точка на стороне – точка и на продолжении – точка
Затем записываем равенство так, как будто «обходим» весь треугольник от точки к точкам и и затем возвращаемся в точку Но по дороге нам встречаются точки и – их тоже включаем в формулу.
Один из учащихся нашей ЕГЭ-Студии предложил такое мнемоническое правило: пусть точки и – это города, а точки и – заправки, где можно пополнить запас бензина. Тогда правило звучит так: «Едем из города в город, заезжаем на заправку!»Возможно, вы придумаете свое правило : -)
В некоторых задачах полезна обратная теорема Менелая.
Теорема (Менелая, обратная). Пусть дан треугольник Предположим, что точка лежит на стороне точка лежит на стороне а точка лежит на продолжении стороны причём про эти точки известно, что
Тогда эти точки лежат на одной прямой.
Как правило, не так-то просто бывает доказать, что три точки лежат на одной прямой. Обычно мы используем для доказательства такого факта косвенные методы. Например, если для точек и выполняется равенство: – то это означает, что точка лежит на отрезке Или, если нам удается доказать, что угол – развернутый, это и будет означать, что точки и лежат на одной прямой. Обратная теорема Менелая дает еще один способ доказательства того, что три точки – в данном случае и – лежат на одной прямой.
Теорема Чевы
Пусть точки и лежат соответственно на сторонах и треугольника причем отрезки и пересекаются в одной точке. В этом случае выполняется равенство:
Обратная теорема Чевы:
Теорема (Чевы, обратная). Пусть точки лежат соответственно на сторонах и треугольника причём
Тогда отрезки и пересекаются в одной точке.
Как применяются теоремы Менелая и Чевы?
Вот задача Профильного ЕГЭ по математике 2020 года (№16), Санкт-Петербургский вариант.
На сторонах и треугольника отмечены точки и соответственно, причём Отрезки и пересекаются в точке
а) Докажите, что — параллелограмм.
б) Найдите если отрезки и перпендикулярны,
Докажем пункт (а) с помощью теоремы Менелая:
Пусть
По теореме Чевы,
тогда
тогда
Это значит, что по двум углам и то есть
Рассмотрим треугольник
Прямая пересекает две его стороны и продолжение третьей стороны
По теореме Менелая,
тогда
по углу и двум сторонам, отсюда
Мы получили:
— параллелограмм по определению.
Мы доказали то, что требовалось в пункте (а).
Но что делать, если теоремы Менелая и Чевы вы не проходили в школе? Ничего страшного, докажем без теорем Менелая и Чевы. Их легко заменят подобные треугольники.
Обозначим
Докажем, что — параллелограмм.
Пусть — середина
Тогда
Тогда по углу и двум пропорциональным сторонам,
Проведём
По теореме Фалеса
Пусть
по двум углам;
Пусть
по 2 углам,
тогда
Это значит, что по углу и двум сторонам и
При этом
Получим, что в четырёхугольнике :
Значит, — параллелограмм.
Как видим, эти решения примерно одного уровня сложности.
А вот в пункте (б) нет необходимости применять теоремы Чевы и Менелая. Он легко решается с помощью обычной школьной геометрии.
б) Найдём , если
Поскольку получим, что — прямоугольный.
Мы доказали в пункте (а), что — трапеция, причём
По условию,
Тогда
Пусть
Тогда — параллелограмм (по признаку паралелограмма)
по теореме Пифагора из
Найдём из по теореме косинусов.
Ответ: 17.
Вот еще одна задача, которую можно решить как с помощью теоремы Чевы, так и без нее.
На сторонах прямоугольного треугольника с прямым углом построены во внешнюю сторону квадраты и Докажите, что:
а) прямые и отсекают от катетов треугольника равные отрезки
б) прямые и высота треугольника проведённая из вершины пересекаются в одной точке.
Пункт (а) доказывается легко.
а) Пусть ,
.
Докажем, что .
Обозначим
по 2 углам,
, так как
получим:
(1)
по 2 углам,
(2)
отсюда
Решим пункт (б) с помощью теоремы Чевы:
Запишем, чему равны длины отрезков Для длин и воспользуемся тем, что в прямоугольном треугольнике каждый катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
Проверим выполнение равенства
Равенство выполняется.
Согласно теореме Чевы, это значит, что и пересекаются в одной точке.
А вот как решается эта задача без теоремы Чевы, с помощью векторов:
Смотрите решение: https://ege-study.ru/zadacha-na-dokazatelstvo-planimetriya/
Математик Менелай Александрийский жил в I веке до нашей эры (Древний Рим).
Математик и инженер Джованни Чева – XVII век, Италия.
Как видим, теоремы Менелая и Чевы оказываются полезны в некоторых задачах. Очень хорошо, если вы знаете эти теоремы. Однако если они для вас непривычны, можно применить простой школьный прием – пары подобных треугольников.
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Теорема Менелая, теорема Чевы – нужны на ЕГЭ или нет?» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
08.03.2023
5 февраля 2018
В закладки
Обсудить
Жалоба
Какие геометрические факты можно использовать на ЕГЭ без доказательства?
Начнём с того, что для ЕГЭ не нужны сколько-нибудь редкие теоремы, особенно где-нибудь на шпаргалке.
Нужно уметь применять всем знакомые факты, видеть рисунок и решать больше задач. Но вопрос из заголовка задают очень часто, и ответить на него нужно. Естественно, все сотни признаков и свойств, что есть в вашем школьном учебнике можно использовать. Но как насчет более редких фактов: что можно применять без доказательства, а что нет? Точный ответ: любые факты из школьных учебников, рекомендованных минобром на 2017-2018 год.
Ну а вот заветный список того, что мне все-таки удалось обнаружить в соответствующих учебниках:
→ Теорема Менелая (Атанасян. Геометрия 7-9 классы)
→ Теорема Чевы (Атанасян. Геометрия 7-9 классы)
→ Теорема Птолемея (Мерзляк. Геометрия 8 класс)
→ Прямая Эйлера (Мерзляк. Геометрия 8 класс)
→ Теорема об окружности Эйлера (Бутузов. Геометрия 8 класс)
→ Формула медианы треугольника (Шарыгин. Геометрия 7-9 классы)
→ Формула биссектрисы треугольника (Шарыгин. Геометрия 7-9 классы)
→ Теорема о четырех замечательных точках трапеции (Шарыгин. Геометрия 7-9 классы)
Формулу радиуса вневписанной окружности используйте. Каноническое уравнение эллипса — да пожалуйста! Ключевые формулы метода координат для задачи №14, опять же, есть
Но если здесь есть коллеги по цеху, которые могут уточнить еще несколько популярных вопросов насчет непопулярной теории — черкните, буду признателен! Вот интересующие факты: формула Брахмагупты, теорема Стюарта, формула Эйлера для расстояния между центрами вписанной и описанной окружностями треугольника, понятие определителя квадратной матрицы.
Ну и еще раз в заключение. Вероятность того, что задача ЕГЭ не решается без экзотики, равна нулю (такие события называются невозможными). Вероятность того, что вам вообще попадется конфигурация, для которой актуальна, например, теорема о девяти точках окружности, приблизительно равна 0,015. Вероятность того, что школьник в целом знает что-то «запрещенное», приблизительно равна, не кидайтесь камнями, 0,000037.
Источник: vk.com/wildmathing
Подготовка к ЕГЭ с преподавателем
Теорема Пифагора
Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии. Она устанавливает соотношение между сторонами прямоугольного треугольника. И звучит так:
В прямоугольном треугольнике сумма квадратов длин катетов равна квадрату длины гипотенузы.
c2 = a2 + b2.
Теорема Пифагора — это частный случай теоремы косинусов. Это объясняется тем, что косинус 90 градусов равен нулю.
Получай лайфхаки, статьи, видео и чек-листы по обучению на почту
Демоурок по подготовке к экзаменам
Составим ваш личный путь к высоким баллам — учтем сроки, уровень знаний и цель.
Теорема Фалеса
Теорема Фалеса — это свойство параллельных прямых, которые пересекают две секущие с общей точкой.
Вообще, есть две теоремы Фалеса — общая, на все случаи жизни, и частная — то, что нужно для решения задач на ЕГЭ по математике.
Через произвольные точки A1, A2, … An–1, An, лежащие на стороне AO угла AOB, проведены параллельные прямые, пересекающие сторону угла OB в точках B1, B2, … Bn–1, Bn, соответственно. Тогда справедливы равенства:
В ЕГЭ по математике теорема Фалеса встречается чаще всего в параллелограмме, у которого проведена диагональ, — будьте начеку.
Теорема косинусов
Теорема Пифагора — кайф, легко запомнить, часто встречается, применяем только тогда, когда у нас есть прямоугольный треугольник. Но на самом деле теорема Пифагора работает для любого треугольника, только называется она в этом случае теоремой косинусов.
Квадрат длины стороны треугольника равен сумме квадратов длин других сторон минус удвоенное произведение длин этих сторон на косинус угла между ними.
a2 = b2 + c2 – 2bc cos A
Собственно, по формуле сразу становится понятно, почему это соотношение называется теоремой косинусов. Ещё она крайне похожа на разность квадратов с учётом косинуса, поэтому запомнить её не очень сложно. И если вспомнить, что косинус 90 градусов — это 0, то мы увидим знакомую теорему Пифагора.
Теорема синусов
Казалось бы, синус — это что-то про тригонометрию, но на самом деле совсем не только. Планиметрия может с этим смело поспорить, и теорема синусов — явный аргумент в этом воображаемом споре. Если коротко, теорема синусов — это формула связи угла с противолежащей ему стороной в треугольнике.
Для любого треугольника справедливы равенства:
,
где R — радиус описанной около треугольника окружности.
По теореме синусов, во-первых, можно быстро найти радиус описанной окружности по известной стороне и противолежащему ей углу. Во-вторых, если треугольник не прямоугольный, то в нём можно просто найти синус угла по известным стороне и радиусу описанной окружности. Ну и в конце концов, можно использовать отношение двух любых сторон и углов. Формула синусов в ЕГЭ по математике используется нечасто, но иметь её в своем арсенале полезно и обязательно.
Теорема Менелая
Её также называют теоремой о треугольнике и секущей, и звучит она так:
Если на сторонах AB и BC треугольника ABC взяты соответственно точки C1 и A1, а точка B1 взята на продолжении стороны AC за точку C, то точки C1, A1 и B1 лежат на одной прямой тогда и только тогда, когда выполнено равенство:
Теорема Менелая пригодится для решения 2-й части ЕГЭ по математике. Она поможет уменьшить огромную кучу исписанных листочков при решении и сохранить время на экзамене, ведь помогает решать в несколько действий.
Чтобы с лёгкостью запомнить все основные теоремы из геометрии для ЕГЭ по математике, скачайте и распечатайте удобную шпаргалку. Кроме теорем из этой статьи, там есть ещё две редкие — теоремы Чевы и Вариньона, а также задачи на доказательства.
Математика — обязательный для сдачи на ЕГЭ предмет, без которого не получишь аттестат. Это также один из самых сложных экзаменов для выпускников. Делимся типичными ошибками в ЕГЭ по математике, а также ресурсами, которые помогут отработать теорию на практике.
Теорема Менелая, теорема Чевы – нужны на ЕГЭ или нет?
Анна Малкова
Эти две полезные теоремы – теорема Менелая и теорема Чевы — чаще применяются при решении олимпиадных задач, чем на ЕГЭ по математике. Однако в 2020 году в ряде вариантов ЕГЭ обнаружилась задача по планиметрии (№16), которую на первый взгляд невозможно решить без теоремы Менелая или теоремы Чевы. Но на самом деле, конечно, возможно. Например, в Санкт-Петербурге попались такие задачи.
Разберемся, что это за теоремы и как применяются. И действительно ли на ЕГЭ дали задачи на применение теорем, выходящих за рамки школьной программы. И можно ли эти задачи решить по-другому?
Теорема Менелая:
Пусть прямая пересекает произвольный треугольник причем – точка ее пересечения со стороной – точка ее пересечения со стороной и – точка ее пересечения с продолжением стороны
Тогда выполняется равенство:
Как это запомнить? Сначала рисуем треугольник Затем прямую, пересекающую две его стороны и продолжение третьей. На этой прямой лежат точки и причем на стороне должна лежать точка на стороне – точка и на продолжении – точка
Затем записываем равенство так, как будто «обходим» весь треугольник от точки к точкам и и затем возвращаемся в точку Но по дороге нам встречаются точки и – их тоже включаем в формулу.
Один из учащихся нашей ЕГЭ-Студии предложил такое мнемоническое правило: пусть точки и – это города, а точки и – заправки, где можно пополнить запас бензина. Тогда правило звучит так: «Едем из города в город, заезжаем на заправку!»Возможно, вы придумаете свое правило : -)
В некоторых задачах полезна обратная теорема Менелая.
Теорема (Менелая, обратная). Пусть дан треугольник Предположим, что точка лежит на стороне точка лежит на стороне а точка лежит на продолжении стороны причём про эти точки известно, что
Тогда эти точки лежат на одной прямой.
Как правило, не так-то просто бывает доказать, что три точки лежат на одной прямой. Обычно мы используем для доказательства такого факта косвенные методы. Например, если для точек и выполняется равенство: – то это означает, что точка лежит на отрезке Или, если нам удается доказать, что угол – развернутый, это и будет означать, что точки и лежат на одной прямой. Обратная теорема Менелая дает еще один способ доказательства того, что три точки – в данном случае и – лежат на одной прямой.
Теорема Чевы
Пусть точки и лежат соответственно на сторонах и треугольника причем отрезки и пересекаются в одной точке. В этом случае выполняется равенство:
Обратная теорема Чевы:
Теорема (Чевы, обратная). Пусть точки лежат соответственно на сторонах и треугольника причём
Тогда отрезки и пересекаются в одной точке.
Как применяются теоремы Менелая и Чевы?
Вот задача Профильного ЕГЭ по математике 2020 года (№16), Санкт-Петербургский вариант.
На сторонах и треугольника отмечены точки и соответственно, причём Отрезки и пересекаются в точке
а) Докажите, что — параллелограмм.
б) Найдите если отрезки и перпендикулярны,
Докажем пункт (а) с помощью теоремы Менелая:
Пусть
По теореме Чевы,
тогда
тогда
Это значит, что по двум углам и то есть
Рассмотрим треугольник
Прямая пересекает две его стороны и продолжение третьей стороны
По теореме Менелая,
тогда
по углу и двум сторонам, отсюда
Мы получили:
— параллелограмм по определению.
Мы доказали то, что требовалось в пункте (а).
Но что делать, если теоремы Менелая и Чевы вы не проходили в школе? Ничего страшного, докажем без теорем Менелая и Чевы. Их легко заменят подобные треугольники.
Обозначим
Докажем, что — параллелограмм.
Пусть — середина
Тогда
Тогда по углу и двум пропорциональным сторонам,
Проведём
По теореме Фалеса
Пусть
по двум углам;
Пусть
по 2 углам,
тогда
Это значит, что по углу и двум сторонам и
При этом
Получим, что в четырёхугольнике :
Значит, — параллелограмм.
Как видим, эти решения примерно одного уровня сложности.
А вот в пункте (б) нет необходимости применять теоремы Чевы и Менелая. Он легко решается с помощью обычной школьной геометрии.
б) Найдём , если
Поскольку получим, что — прямоугольный.
Мы доказали в пункте (а), что — трапеция, причём
По условию,
Тогда
Пусть
Тогда — параллелограмм (по признаку паралелограмма)
по теореме Пифагора из
Найдём из по теореме косинусов.
Ответ: 17.
Вот еще одна задача, которую можно решить как с помощью теоремы Чевы, так и без нее.
На сторонах прямоугольного треугольника с прямым углом построены во внешнюю сторону квадраты и Докажите, что:
а) прямые и отсекают от катетов треугольника равные отрезки
б) прямые и высота треугольника проведённая из вершины пересекаются в одной точке.
Пункт (а) доказывается легко.
а) Пусть ,
.
Докажем, что .
Обозначим
по 2 углам,
, так как
получим:
(1)
по 2 углам,
(2)
отсюда
Решим пункт (б) с помощью теоремы Чевы:
Запишем, чему равны длины отрезков Для длин и воспользуемся тем, что в прямоугольном треугольнике каждый катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
Проверим выполнение равенства
Равенство выполняется.
Согласно теореме Чевы, это значит, что и пересекаются в одной точке.
А
Применение Теоремы Менелая в задаче 16
28 декабря 2015
Обратите внимание: у меня на сайте есть отдельный урок по теореме Менелая. Сегодня мы будем лишь применять её для решения конкретных задач из ЕГЭ.
Данная теорема в школьном курсе математики относится к категории тех знаний, которые дают далеко не во всех школах, но для успешной сдачи ЕГЭ знать её совершенно необходимо. Потому что эта теорема применяется для решения задачи 16 — сложной планиметрической задачи, состоящей из двух частей.
Сегодня мы рассмотрим, как работает теорема Менелая на примере одной довольно сложной задачи. Видео получилось довольно объёмным и отнюдь не самым простым, но очень полезным для тех, кто действительно хочет набрать много баллов на экзамене.:)
Смотрите также:
- Пробный ЕГЭ 2016: задача 16 с доказательством и окружностями, для решения которой нужно знать пару теорем.:)
- Угол между двумя прямыми
- Тест к уроку «Округление с избытком и недостатком» (1 вариант)
- Так сокращать дроби нельзя!
- Задача B5: площадь сектора
- Задача B4: тарифы на сотовую связь
Регистрация Форум Текущее время: 11 мар 2023, 17:03 Сообщения без ответов | Активные темы Страница 1 из 2 [ Сообщений: 16 ] На страницу 1, 2 След. Начать новую тему»> Ответить Можно ли пользоваться следующими теоремами на ЕГЭ?
Можно ли пользоваться следующими теоремами на ЕГЭ?
Страница 1 из 2 [ Сообщений: 16 ] На страницу 1, 2 След. Текущее время: 11 мар 2023, 17:03 | Часовой пояс: UTC + 3 часа Удалить cookies форума | Наша команда | Вернуться наверх Кто сейчас на форуме
|
Выпускная работа
Тема: «Применение теорем Чевы и Менелая
при решении геометрических задач ЕГЭ»
Содержание
-
Теоретические факты:
-
Теорема Чевы
-
Теорема Менелая
-
Применение теорем Чевы и Менелая при подготовке к ЕГЭ
Теоретические факты
Решение задач с помощью теорем Чевы и Менелая более рационально, чем их решение другими способами, требующими дополнительных действий и построений, которые не всегда оказываются очевидными.
Теорема Чевы.
С
Если на сторонах AB, BC и CA треугольника ABC взяты соответственно точки C1, A1 и B1 (рис.1), то отрезки AA1, BB1 и CC1 пересекаются в одной точке тогда и только тогда, когда выполнено равенство
Теорема Менелая.
Если на сторонах ВС, АВ и продолжении стороны АС треугольника АВС за точку С отмечены соответственно точки А´, С´,В´, лежащие на одной прямой, то
Применение теорем Чевы и Менелая при подготовке к ЕГЭ
Хочу вам предложить два способа решения одной интересной задачи из ЕГЭ. Первый способ довольно длинный, но его нужно знать, поскольку прием, который в нем используется, применяется довольно часто при решении задач, в которых дано отношение отрезков.
Второй способ позволяет решить задачу в одно действие, но в нем используется Теорема Менелая.
Итак задача №1:
На сторонах AB и BC треугольника ABC взяты соответственно точки M и N так, что AM:MB=2:3, BN:NC=2:1. Отрезки AN и CM пересекаются в точке O. Найти отношение CO:OM.
Вот наш треугольник:
Проведем через точку В прямую параллельно отрезку AB, затем продолжим отрезок AN до пересечения с этой прямой и поставим там точку К:
Рассмотрим треугольники ANC и BNK. Эти треугольники подобны, так как AC||BK. Стороны треугольника BNK относятся к сторонам треугольника ANC как 2:1.
Пусть AC=x, BK=2x.
Теперь продолжим отрезок MC до пересечения с прямой BK. Поставим там точку L.
Мы получили подобные треугольники LMB и AMC, сходственные стороны которых относятся как 3:2. Так как AC=x, то LB=1,5x.
Пусть LM=3n, MC=2n. Тогда LC=5n.
Теперь рассмотрим подобные треугольники LOK и AOC.
, следовательно, . Пусть LO=3,5z, OC=z. Тогда LO+OC=LC=4,5z.
Получили, что 5n=4,5z. Тогда MC=2n=z. Отсюда MO=MC-CO=z-z=z
Отсюда CO:OM=z:z=5:4=1,25.
Ответ: 1,25
Применим теорему Менелая к нашей задаче. Рассмотрим треугольник MBC и прямую AN:
Запишем теорему Менелая для этого треугольника:
Ответ: 1,25
Задача №2.
Точки В´ и С´ лежат на сторонах соответственно АС и АВ ∆АВС, причем АВ´:В´С=АС´:С´В. Прямые ВВ´ и СС´ пересекаются в точке О.
а) Доказать, что прямая АО делит пополам сторону ВС.
б) Найти отношение площади четырехугольника АВ´ОС´ к площади ∆АВС, если АВ´:В´С=АС´:С´=1:2.
а)Доказать, что прямая АО делит пополам сторону ВС.
Докажем, что ВК=КС. Используем теорему Чевы.
т.к. , то ВК=КС
б) Найти отношение площади четырехугольника АВ´ОС´ к площади ∆АВС, если АВ´:В´С=АС´:С´В=1:2.
-
Т.к. АВ´:АС= 1:3, то
По теореме Менелая найдем
Для ∆АВВ´ и секущей СС´:
,
Значит
-
, значит =
Найдем .
Ответ:
Используемая литература
-
Учебник «Геометрия»10-11кл.: Л.С. Атанасян, В.Ф. Бутузов и др.-М.: Просвещение, 2011.
-
Атанасян Л.С., Бутузов В.Ф., Кадомцев С. Б., Шестаков С.А., Юдина И.И. Геометрия. Доп. главы к учебнику 8 кл.: Учеб. пособие для учащихся школ и классов с углубл. изуч. математики / Л.С. Атанасян, В.Ф. Бутузов, С.Б.Кадомцев и др.-М.: Вита-пресс, 2008.
-
Математика. ЕГЭ-2014. Типовые тестовые задания. 30 вариантов. Под ред. А.Л.Семенова, И.В.Ященко. 2013г.
-
Математика. ЕГЭ-2014. Под ред. А.Л.Семенова, И.В.Ященко. 2014г.
-
Математика. ЕГЭ-2014. Под ред. А.Л.Семенова, И.В.Ященко. 2015г.
-
Математика. Подготовка к ЕГЭ. Под ред.Ф.Ф.Лысенко. 2014г
-
Математика. Подготовка к ЕГЭ. Под ред.Ф.Ф.Лысенко. 2015г.
-
Математика. Подготовка к ЕГЭ. Под ред.Ф.Ф.Лысенко. 2016г.
-
Журнал математика в школе. М.: 2014
-
Пособие по геометрии. Часть І. Планиметрия, векторы. В помощь учащимся 10-11-х кл.О.В.Нагорнов, А.В.Баскаков и др.М.:НИЯУ МИФИ,2009.
-
Пособие по геометрии. Часть І. Планиметрия, векторы. В помощь учащимся 10-11-х кл.О.В.Нагорнов, А.В.Баскаков и др.М.:НИЯУ МИФИ,2009.
-
http://hijos.ru/2011/03/16/teorema-chevy/
-
http://www.resolventa.ru/demo/inform/demoinform.htm
-
http://fipi.ru/
-
http://alexlarin.net/