Найдите корень уравнения егэ логарифмы

Как решать логарифмические уравнения – подробный разбор

Опубликовано 12.01.2018

Чтобы ответить на вопрос как решать логарифмические уравнения давайте вспомним, что такое логарифм. Логарифм – это показатель степени, в которую нужно возвести основание логарифма, чтобы получить число.

Например,

2^3=8 или число 3 (показатель степени) мы можем записать так  log_2{8}, таким образом log_2{8} =3

Основание логарифма всегда положительное число, не равное 1. Число под знаком логарифма – строго больше нуля.

Теперь переходим непосредственно к вопросу – как решать логарифмические уравнения из профильного и из базового ЕГЭ.

Пример 1 Найдите корень уравнения.

log_2{(7-x)}=5

согласно определению логарифма:

 2^5=7-x

32=7-x

Все неизвестные переносим в левую часть уравнения (слева от =), а известные – переносим в правую сторону.

Получим:

x=7-32

x=-25

Делаем проверку:

log_2{(7-(-25))}=5

 log_2{32}=5

5=5

Ответ: x=-25

Пример 2. Найдите корень уравнения.

log_7{(9-x)}=3log_7{3}

Здесь для решения данного логарифмического уравнения будем использовать свойство логарифма:

mlog_a{b}=log_a{b^m}

То есть внесем число 3 справа под знак логарифма.

log_7{(9-x)}=log_7{3^3}

или

log_7{(9-x)}=log_7{27}

Если показатели степени равны, основания степени равны, то равны числа, получаемые в результате, то есть получим

9-x=27

-x=27-9

-x=18

x=-18

Делаем проверку: log_7{(9+18)}=log_7{27}

Получаем: log_7{27}=log_7{27}

27=27

Ответ: x=-18

Пример 3. Найдите корень уравнения

log_4{(2-x)}=log_{16}{25}

Используем следующее свойство логарифма:

log_{a^n}{b}=frac{1}{n}log_a{b}=log_a{b^{frac{1}{n}}}

Тогда получим:

log_4{(2-x)}=log_4{25^{frac{1}{2}}}

 log_4{(2-x)}=log_4{5}

2-x=5

-x=5-2

-x=3

x=-3

Свойства логарифмов

Делаем проверку:

log_4{(2-(-3))}=log_{16}{25}

log_4{5}=log_4{5}

5=5

Ответ: x=-3

Пример 4. Найдите корень уравнения.

log_2{(4-x)}=8

Используя определение логарифма, получим:

4-x=2^8

4-x=256

-x=256-4

-x=252

x=-252

Проверим: log_2{(4-(-252))}=8

log_2{256}=8

8=8

Ответ: x=-252.

Таким образом, теперь вы можете составить четкую инструкцию, как решать логарифмические уравнения. Она заключается в следующих шагах:

  1. Сделать справа и слева от знака равенства (=) логарифмы по одному основанию, избавившись от коэффициентов перед логарифмами, используя свойства логарифмов.
  2. Избавляемся от логарифмов, используя правило потенцирования. Остаются только числа, которые были под знаком логарифма.
  3. Решаем получившееся обычное уравнение – как найти корень уравнения смотрите здесь.
  4. Делаем проверку
  5. Записываем ответ.

( 4 оценки, среднее 5 из 5 )

Skip to content

ЕГЭ Профиль №5. Логарифмические уравнения

ЕГЭ Профиль №5. Логарифмические уравненияadmin2022-11-29T22:11:41+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №5. Логарифмические уравнения

Задача 1. Найдите корень уравнения    ({log _2}left( { — 5 — x} right) = 1.)

Ответ

ОТВЕТ: — 7.

Решение

({log _2}left( { — 5 — x} right) = 1,,,,,, Leftrightarrow ,,,,,, — 5 — x = 2,,,,,, Leftrightarrow ,,,,,,x =  — 7.)

Ответ: – 7.

Задача 2. Найдите корень уравнения     ({log _5}left( {4 + x} right) = 2.)

Ответ

ОТВЕТ: 21.

Решение

({log _5}left( {4 + x} right) = 2,,,,,, Leftrightarrow ,,,,,,4 + x = {5^2},,,,,, Leftrightarrow ,,,,,,,x = 21.)

Ответ: 21.

Задача 3. Найдите корень уравнения     ({log _{10}}left( {3 — x} right) = {log _{10}}2.)

Ответ

ОТВЕТ: 1.

Решение

({log _{10}}left( {3 — x} right) = {log _{10}}2,,,,,,, Leftrightarrow ,,,,,,,3 — x = 2,,,,,, Leftrightarrow ,,,,,,,x = 1.)

Ответ: 1.

Задача 4. Найдите корень уравнения    ({log _5}left( {9 + x} right) = {log _5}7.)

Ответ

ОТВЕТ: — 2.

Решение

({log _5}left( {9 + x} right) = {log _5}7,,,,,, Leftrightarrow ,,,,,,9 + x = 7,,,,,,, Leftrightarrow ,,,,,,,x =  — 2.)

Ответ: – 2.

Задача 5. Найдите корень уравнения    ({log _4}left( {3 + x} right) = log {}_4left( {4x — 15} right).)

Ответ

ОТВЕТ: 6.

Решение

({log _4}left( {3 + x} right) = {log _4}left( {4x — 15} right),,,,, Leftrightarrow ,,,,,left{ {begin{array}{*{20}{c}}{3 + x = 4x — 15}\{3 + x > 0,,,,,,,,,,,,,}end{array}} right.,,,,,, Leftrightarrow ,,,,,,,left{ {begin{array}{*{20}{c}}{x = 6,,,}\{x >  — 3}end{array}} right.,,,,, Leftrightarrow ,,,,,x = 6.)

Ответ: 6.

Задача 6. Найдите корень уравнения   ({log _{frac{1}{8}}}left( {13 — x} right) =  — 2.)

Ответ

ОТВЕТ: — 51.

Решение

({log _{frac{1}{8}}}left( {13 — x} right) =  — 2,,,,,,, Leftrightarrow ,,,,,,13 — x = {left( {frac{1}{8}} right)^{ — 2}},,,,,,, Leftrightarrow ,,,,,,13 — x = 64,,,,,, Leftrightarrow ,,,,,,x =  — 51.)

Ответ: – 51.

Задача 7. Найдите корень уравнения    ({log _2}left( {12 — 6x} right) = 3{log _2}3.)

Ответ

ОТВЕТ: — 2,5.

Решение

({log _2}left( {12 — 6x} right) = 3{log _2}3,,,,, Leftrightarrow ,,,,,{log _2}left( {12 — 6x} right) = {log _2}{3^3},,,,,, Leftrightarrow ,,,,,,12 — 6x = 27,,,,,, Leftrightarrow ,,,,,x =  — 2,5.)

Ответ: – 2,5.

Задача 8. Решите уравнение    ({log _7}left( {{x^2} + 5x} right) = {log _7}left( {{x^2} + 6} right).)

Ответ

ОТВЕТ: 1,2.

Решение

({log _7}left( {{x^2} + 5x} right) = {log _7}left( {{x^2} + 6} right),,,,, Leftrightarrow ,,,,,left{ {begin{array}{*{20}{c}}{{x^2} + 5x = {x^2} + 6}\{{x^2} + 6 > 0,,,,,,,,,,,,,,}end{array}} right.,,,,,, Leftrightarrow ,,,,,,left{ {begin{array}{*{20}{c}}{x = 1,2}\{x, in ,,R}end{array}} right.,,,,, Rightarrow ,,,,,x = 1,2.)

Ответ: 1,2.

Задача 9. Решите уравнение    ({log _4}left( {6 + 5x} right) = {log _4}left( {3 + x} right) + 1.)

Ответ

ОТВЕТ: 6.

Решение

({log _4}left( {6 + 5x} right) = {log _4}left( {3 + x} right) + 1,,,,, Leftrightarrow ,,,,,{log _4}left( {6 + 5x} right) = {log _4}left( {3 + x} right) + {log _4}4,,,,, Leftrightarrow )

( Leftrightarrow ,,,,,{log _4}left( {6 + 5x} right) = {log _4}left( {4 cdot left( {3 + x} right)} right),,,,,, Leftrightarrow ,,,,,,left{ {begin{array}{*{20}{c}}{3 + x > 0,,,,,,,,,,,,,,,,,}\{6 + 5x = 12 + 4x}end{array}} right.;,,,, Leftrightarrow ,,,,,left{ {begin{array}{*{20}{c}}{x >  — 3}\{x = 6,,,}end{array}} right.,,,,,, Leftrightarrow ,,,,,,x = 6.)

Ответ: 6.

Задача 10. Решите уравнение    ({log _{x + 6}}32 = 5.)    Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

Ответ

ОТВЕТ: — 4.

Решение

({log _{x + 6}}32 = 5,,,,,, Leftrightarrow ,,,,,,left{ {begin{array}{*{20}{c}}{{{left( {x + 6} right)}^5} = 32}\{x + 6 > 0,,,,,,,,,,}\{x + 6 ne 1,,,,,,,,,,,}end{array}} right.,,,,,,, Leftrightarrow ,,,,,,left{ {begin{array}{*{20}{c}}{{{left( {x + 6} right)}^5} = {2^5}}\{x + 6 > 0,,,,,,,,}\{x + 6 ne 1,,,,,,,,}end{array}} right.,,,,,, Leftrightarrow )

( Leftrightarrow ,,,,,,,left{ {begin{array}{*{20}{c}}{x + 6 = 2}\{x + 6 > 0}\{x + 6 ne 1}end{array},,,,,, Leftrightarrow } right.,,,,,,,,x + 6 = 2,,,,,,, Leftrightarrow ,,,,,,,x =  — 4.)

Ответ: – 4.

Задача 11. Найдите корень уравнения    ({log _8}{2^{8x — 4}} = 4.)

Ответ

ОТВЕТ: 2.

Решение

({log _8}{2^{8x — 4}} = 4,,,,,, Leftrightarrow ,,,,,{log _{{2^3}}}{2^{8x — 4}},,,,, Leftrightarrow ,,,,,frac{{8x — 4}}{3} = 4,,,,, Leftrightarrow ,,,,,8x — 4 = 12,,,,, Leftrightarrow ,,,,,x = 2.)

Ответ: 2.

Задача 12. Найдите корень уравнения  ({3^{{{log }_9}left( {5x — 5} right)}} = 5).

Ответ

ОТВЕТ: 6.

Решение

({3^{{{log }_9}left( {5x — 5} right)}} = 5,,,,,, Leftrightarrow ,,,,,,{3^{{{log }_9}left( {5x — 5} right)}} = {3^{{{log }_3}5}},,,,,,, Leftrightarrow ,,,,,,{log _9}left( {5x — 5} right) = {log _3}5,,,,,, Leftrightarrow )

( Leftrightarrow ,,,,,,{log _9}left( {5x — 5} right) = {log _{{3^2}}}{5^2},,,,, Leftrightarrow ,,,,,,{log _9}left( {5x — 5} right) = {log _9}25,,,,,, Leftrightarrow ,,,,,5x — 5 = 25,,,,,, Leftrightarrow ,,,,,,x = 6.)

Ответ: 6.

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Логарифмические уравнения»

Открытый банк заданий по теме логарифмические уравнения. Задания B5 из ЕГЭ по математике (профильный уровень)

Геометрические фигуры на плоскости: вычисление величин с использованием углов

Задание №887

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения 5^{log_{25}(10x-8)}=8.

Показать решение

Решение

Найдем ОДЗ: 10x-8>0.

5^{log_{25}(10x-8)}=5^{log_58},

log_{25}(10x-8)=log_58,

log_{5^2}(10x-8)=log_58,

frac12log_5(10x-8)=log_58,

log_5(10x-8)=2log_58,

log_5(10x-8)=log_58^2,

10x-8=64, значит, условие 10x-8>0 выполняется.

10x=72,

x=7,2.

Ответ

7,2

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №885

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения log_3(28+4x)=log_3(18-x).

Показать решение

Решение

28+4x=18-x,

5x=-10,

x=-2.

Сделаем проверку.

log_3(28+4cdot(-2))=log_3(18-(-2)),

log_3 20=log_3 20. Верно, значит, x=-2 — корень уравнения.

Ответ

-2

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №288

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения log_{x-7}81=2. Если уравнение имеет более одного корня, в ответе укажите меньший из них.

Показать решение

Решение

Согласно определению логарифма x-7>0 и x-7neq1, тогда x>7 и xneq8.

Так как 2=log_{x-7}(x-7)^2 при x>7 и xneq8, то получаем уравнение log_{x-7}81=log_{x-7}(x-7)^2.

Поэтому (x-7)^2=81,

x-7=pm9,

x_1=16,

x_2=-2.

x_2=-2 решением не является, так как x>7.

Ответ

16

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №287

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения log_3(12-x)=4.

Показать решение

Решение

Так как 4=log_33^4=log_381, то log_3(12-x)=log_381,

12-x=81,

x=-69.

Ответ

-69

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №286

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения log_6(5x+27)=log_6(3+x)+1.

Показать решение

Решение

log_6(5x+27)=log_6(3+x)+log_66,

log_6(5x+27)=log_6(6cdot(3+x)),

log_6(5x+27)=log_6(18+6x),

5x+27=18+6x,

x=9.

Проверка:

log_6(5cdot9+27)=log_6(3+9)+1,

log_672=log_612+1,

log_672=log_672.

x=9 — корень уравнения.

Ответ

9

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №284

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения log_{14}(x-3)=log_{14}(8x-31).

Показать решение

Решение

x-3=8x-31,

7x=28,

x=4.

Проверкой убеждаемся, что x=4 действительно является корнем исходного уравнения.

Ответ

4

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №34

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения: log_42^{2x+5}=4.

Показать решение

Решение

Воспользуемся формулой: 

log_{a}b=x Leftrightarrow a^x=b

Значит:

log_{4}2^{2x+5}=log_{4}256

2^{2x+5}=256

2^{2x+5}=2^8

2x+5=8

2x=3

x=frac{3}{2}=1,5

Ответ

1,5

Задание №33

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения: log_4(2-x)=log_{16}25.

Показать решение

Решение

Воспользуемся формулой: 

log_{a^k}x=frac{1}{k}log_{a}x, kneq 0

Получим:

log_{4}(2-x)=log_{4^2}25

log_{4}(2-x)=frac{1}{2}log_{4}25

2log_{4}(2-x)=log_{4}25

log_{4}(2-x)^2=log_{4}25

(2-x)^2=25

|2-x|=5

2-x=5

x=-3

Ответ

-3

Задание №26

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения: log_7(9-x)=3log_73.

Показать решение

Решение

Выполним преобразования:

log_7(9-x)=log_73^3

Раскроем знак логарифма:

9-x=3^3

9-x=27

-x=27-9

x=-18

Ответ

-18

Задание №25

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения: log_2(7-x)=5.

Показать решение

Решение

Раскроем знак логарифма по формуле

log_ab=c Leftrightarrow b=a^c

и выполним преобразования:

7-x=2^5

7-x=32

-x=32-7

x=-25

Ответ

-25

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928

Прежде чем решать логарифмические уравнения, повторим еще раз определение логарифма и основные формулы.

Логарифм положительного числа b по основанию a — это показатель степени, в которую надо возвести a, чтобы получить b.

log _{a}b=cLeftrightarrow a^{c}=b.

При этом b> 0,;a> 0,;aneq 1.

Обратим внимание на область допустимых значений логарифма:

b> 0,;a> 0,;aneq 1.

Основное логарифмическое тождество:

a^{log _{a}b}=b,

log _{a}a^{c}=c.

Основные формулы для логарифмов:

log _{a}left ( bc right )=log _{a}b+log _{a}c (Логарифм произведения равен сумме логарифмов)

log _{a}left ( frac{b}{c}right )=log _{a}b-log _{a}c (Логарифм частного равен разности логарифмов)
log _{a}b^{m}=mlog_{a}b (Формула для логарифма степени)

Формула перехода к новому основанию:

log _{a}b=frac{log _{c}b}{log _{c}a}

log _{a}b=frac{1}{log _{b}a} .

Мы знаем, как выглядит график логарифмической функции. Эта функция монотонна. Если основание логарифма больше единицы, логарифмическая функция монотонно возрастает. Если основание больше нуля и меньше единицы, логарифмическая функция монотонно убывает. И в любом случае каждое свое значение она принимает только один раз. Это значит, что если логарифмы двух чисел по какому-либо основанию равны, то равны и сами числа.

Все это пригодится нам в решении логарифмических уравнений.

Простейшие логарифмические уравнения

1.Решите уравнение: log _{5}left ( 15+x right )=log _{5}3

Основания логарифмов равны, сами логарифмы тоже равны – значит, равны и числа, от которых они берутся.
Обычно ученики запоминают это правило в краткой жаргонной формулировке: «Отбросим логарифмы!» Конечно, мы «отбрасываем» их не просто так, а пользуясь свойством монотонности логарифмической функции.

Получаем: 15+x=3

x=-12.

Решая логарифмические уравнения, не забываем про область допустимых значений логарифма. Помним, что выражение log _{a}b определено при b> 0,;a> 0,;aneq 1.

Очень хорошо, если вы, найдя корень уравнения, просто подставите его в уравнение. Если после такой подстановки левая или правая часть уравнения не имеют смысла – значит, найденное число не является корнем уравнения и не может быть ответом задачи. Это хороший способ проверки на ЕГЭ.

2. Решите уравнение: log _{2}left ( 4-x right )=7

В левой части уравнения – логарифм, в правой – число 7. Применив основное логарифмическое тождество, представим число 7 в виде log _{2}2^{7}. Дальше все просто.

Ответ: -124

3. Решите уравнение: log _{5}left ( 5-x right )=2cdot log _{5}3

Видите число 2 перед логарифмом в правой части уравнения? Сейчас оно мешает вам «отбросить логарифмы». Что с ним сделать, чтобы в левой и правой частях были просто логарифмы по основанию 5? Конечно же, поможет формула для логарифма степени.

log _{5}left ( 5-x right )=log _{5}left ( 3^{2} right );

log _{5}left ( 5-x right )=log _{5}9;

5-x=9;

x=-4

4. Решите уравнение: log _{5}left ( 4+x right )=2

Область допустимых значений: 4+x> 0. Значит, x> -4.

Представим 2 в правой части уравнения как log _{5}25 — чтобы слева и справа в уравнении были логарифмы по основанию 5.

log _{5}left ( 4+x right )=log _{5}25

Функция y=log _{5}x монотонно возрастает и каждое свое значение принимает ровно один раз. Логарифмы равны, их основания равны. «Отбросим» логарифмы! Конечно, при этом x> -4.

4+x=25

x=21.

Ответ: 21.

5. Решите уравнение: log _{8}left ( x^{2}+x right )=log _{8}left ( x^{2}-4 right )

Запишем решение как цепочку равносильных переходов. Записываем ОДЗ и «убираем» логарифмы:

log _{8}left ( x^{2}+x right )=log _{8}left ( x^{2}-4 right )Leftrightarrow left{begin{matrix}	x^{2}+x> 0\ 	x^{2}-4> 0\ 	x^{2}+x=x^{2}-4	end{matrix}right.Leftrightarrow 	left{begin{matrix}	x^{2}+x> 0\ 	x^{2}-4> 0\ 	x=-4	end{matrix}right.Leftrightarrow x=-4
Ответ: –4.

Заметим, что решения логарифмических уравнений лучше всего записывать в виде цепочки равносильных переходов. Это поможет нам не забыть про область допустимых значений.

6.Решите уравнение: 2^{log _{4}left ( 4x+5 right )}=9.

Перейдем от логарифма по основанию 4 (в показателе) к логарифму по основанию 2. Мы делаем это по формуле перехода к другому основанию:

log _{4}b=frac{log _{2}b}{log _{2}4}=frac{log _{2}b}{2}

Запишем решение как цепочку равносильных переходов.

2^{log _{4}left ( 4x+5 right )}=9Leftrightarrow left{begin{matrix} 	2^frac{{log _{2}left ( 4x+5 right )}}{2}=9\  	4x+5> 0 	end{matrix}right.Leftrightarrow left{begin{matrix} 	left (2^{log _{2}left ( 4x+5 right )}  right )^{frac{1}{2}}=9\  	x> -1frac{1}{4} 	end{matrix}right.Leftrightarrow left{begin{matrix} 	left ( 4x+5 right )^{frac{1}{2}}=9\  	x> -1frac{1}{4} 	end{matrix}right.Leftrightarrow  	left{begin{matrix} 	sqrt{4x+5}=9\  	x> -1frac{1}{4} 	end{matrix}right.Leftrightarrow left{begin{matrix} 	4x+5=81\  	x> -1frac{1}{4} 	end{matrix}right.Leftrightarrow left{begin{matrix} 	x=19\  	x> -1frac{1}{4} 	end{matrix}right.

Ответ: 19.

7.Решите уравнение: log _{x}x^{2}=log _{x}left ( 12-x right ).

Обратите внимание: переменная х и под логарифмом, и в основании логарифма. Мы помним, что основание логарифма должно быть положительно и не равно 1.

ОДЗ:
left{begin{matrix}	12-x> 0\ 	x> 0\ 	xneq 1	end{matrix}right.

Теперь можно «убрать» логарифмы.

x^{2}=12-x

x^{2}+x-12=0

x_{1}=3;;x_{2}=-4 — посторонний корень, поскольку должно выполняться условие x> 0.

Ответ: x=3

8. Решите уравнение 6log _{8}^{2}x-5log _{8}x+1=0.

ОДЗ уравнения: x> 0

Сделаем замену log _{8}x=t. Как и в алгебраических уравнениях, мы делаем замену переменной всегда, когда только возможно.

6t^{2}-5t+1=0Leftrightarrow left[ begin{array}{ccc}	t=frac{1}{2}\	t=frac{1}{3}	end{array}	right.

Вернемся к переменной х:

left[ begin{array}{ccc} 	log _{8}x=frac{1}{2}\ 	log _{8}x=frac{1}{3} 	end{array} 	right.Leftrightarrow  	left[ begin{array}{ccc} 	x=8^{frac{1}{2}}\ 	x=8^{frac{1}{3}} 	end{array} 	right.Leftrightarrow  left[ begin{array}{ccc} 	x=sqrt{8}\ 	x=2 	end{array} 	right.

9.Решите уравнение:
1+log _{3}left ( x^{4}+25 right )=log _{sqrt{3}}sqrt{30x^{2}+12}

Выражение под логарифмом всегда положительно – поскольку к неотрицательной величине x^{4} прибавляем 25. Выражение под корнем в правой части также положительно. Значит, х может быть любым действительным числом.

Представим сумму логарифмов в левой части как логарифм произведения. В правой части – перейдем к логарифму по основанию 3. И используем формулу логарифма степени.

log _{3}3left ( x^{4}+25 right )=frac{1}{2}cdot 2cdot log _{3}left (30x^{2}+12  right )

left (30x^{2}+12  right )

«Отбрасываем» логарифмы.

3left ( x^{4}+25 right) = 30x^{2}+12

3 x^{4} - 30x^{2}+63=0

x^{4} - 10x^{2}+21=0

Такое уравнение называется биквадратным. В него входят выражения x^{2} и x^{4}. Сделаем замену x^{2}=t,;tgeq 0

t^{2}-10t+21=0

left[	begin{array}{ccc} 	t_{1}=3\	t_{2}=7	end{array}	right.

Вернемся к переменной х. Получим:

x_{1}=sqrt{3},;x_{2}=-sqrt{3},;x_{3}=sqrt{7},;x_{4}=-sqrt{7} . Мы нашли все корни исходного уравнения.

Ответ: sqrt{3},;-sqrt{3},;sqrt{7},;-sqrt{7}.

Логарифмические уравнения могут встретиться вам и в задании №1 Профильного ЕГЭ по математике, и в задании №12. И если в задании №1 нужно решить простейшее уравнение, то в задаче 12 решение состоит из двух пунктов. Второй пункт – отбор корней на заданном отрезке или интервале.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Логарифмические уравнения» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Задание 971

Найдите корень уравнения $$3^{log_9 (5x-5)}=5$$

Ответ: 6

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$3^{log_9 (5x-5)}=5Leftrightarrow 3^{frac{1}{2}log_3 (5x-5)}=5 Leftrightarrow$$ $$ 3^{log_3 sqrt{5x-5}}=5Leftrightarrow sqrt{5x-5}=5 Leftrightarrow$$ $$ 5x-5=25Leftrightarrow x=6$$

Задание 1010

Найдите корень уравнения $$log _{2} (-x) + log _{2} (2-x) = 3$$ .Если корней несколько, то в ответе укажите их сумму.

Ответ: -2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

 $$log _{2} (-x) + log _{2} (2-x) = 3$$

$$-x > 0 ; 2 — x > 0 Leftrightarrow x<0$$

$$log _{2} ((-x) *(2-x)) = log _{2} 8$$

$$-2x+x^2=8$$

$$x^2-2x-8=0$$

$$x_1=4 — не входит в ОДЗ ; x_2 =-2$$

Задание 3653

Найдите корень уравнения $$log_{0,5}(5-3x)=-5$$

Ответ: -9

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$log_{0,5}(5-3x)=-5$$

ОДЗ: $$5-3x>0$$

$$x<frac{5}{3}$$

$$5-3x=(0,5)^{-5}=2^{5}=32$$

$$-3x=32-5=27$$

$$x=-9$$

Задание 6607

Решите уравнение $$7*5^{log_{5} x}=x^{2}-30$$. Если корней несколько, то в ответе укажите меньший корень

Ответ: 10

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

ОДЗ: x>0(1)

$$7*x=x^{2}-30Leftrightarrow$$$$x^{2}-7x-30=0$$

$$left{begin{matrix}x_{1}+x_{2}=7\x_{1}x_{2}=-30end{matrix}right.Leftrightarrow$$ left{begin{matrix}x_{1}=10\x_{2}=-3notin (1)end{matrix}right.$$

Задание 7051

Найдите корень уравнения $$log_{0,5} (x+5)=log_{2} (x+5)$$

Ответ: -4

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$log_{0,5}(x+5)=log_{2}(x+5)Leftrightarrow$$ $$log_{2^{-1}}(x+5)=log_{2}(x+5)Leftrightarrow$$ $$(-1)log_{2}(x+5)=log_{2}(x+5)Leftrightarrow$$ $$2log_{2}(x+5)=0Leftrightarrow$$ $$x+5=1Leftrightarrow$$ $$x=-4$$

Задание 7314

Найдите корень уравнения $$frac{1}{log_{4} (2x+1)}=-2$$

Ответ: -0,25

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$frac{1}{log_{4}(2x+1)}=-2Leftrightarrow$$ $$left{begin{matrix}log_{4}(2x+1)=-frac{1}{2}\2x+1>0\2x+1neq 1end{matrix}right.$$$$Leftrightarrow$$ $$2x+1=4-frac{1}{2}Leftrightarrow$$ $$2x+1=frac{1}{2}Leftrightarrow$$ $$2x=-frac{1}{2}Leftrightarrow$$ $$x=-0,25$$

Задание 9056

Найдите корень уравнения $$log_{2}(8-x)=2log_{2}(4+x)$$. Если уравнение имеет более одного корня, в ответе запишите наименьший из корней.

Ответ: -1

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 9139

Решите уравнение $$frac{log_{2}4}{x}=frac{3^{log_{3}x}}{2}$$. Если уравнение имеет несколько корней, в ответе укажите меньший из них.

Ответ: 2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 9939

Решите уравнение: $$log_{frac{1}{8}}x+5log_{4}x+log_{sqrt{2}}x=16frac{2}{3}$$

Ответ: 16

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 10125

Решите уравнение $$log_{30-3cdot2^x}(2^x-3)^2=log_{2^x-2}(2^x-3)^2$$. Если корней несколько, в ответе укажите их сумму.

Ответ: 5

Скрыть

Задание 10159

Найдите произведение всех корней уравнения $$sqrt[3]{10+3x-x^2}cdotlg(7-x-x^2)=0$$

Ответ: 12

Скрыть

Задание 10478

Решите уравнение $$ln(frac{pi^{x}}{e^{x}}+2x-10)=x(ln pi-1)$$. Если корней больше одного, то в ответе запишите их сумму.

Ответ: 5

Задание 10488

Решите уравнение $$frac{5}{log_{2}x+3}+frac{4}{log_{2}x}=3$$. Если корней несколько, в ответе укажите их произведение.

Ответ: 1

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 10567

Найдите произведение всех различных корней уравнения: $${{log }_3 x }-6cdot {{log }_x 9 }=3$$

Ответ: 27

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
$${{log }_3 x }-6cdot {{log }_x 9 }=3;
Mleft(xright):left{ begin{array}{c}
x>0 \
xne 1 end{array}
right.$$
Учтем, что $${{log }_x 9 }=2cdot {{log }_x 3 }=frac{2}{{{log }_3 x }}$$; Замена: $${{log }_3 x }=y$$;

$$y-6cdot frac{2}{y}=3to frac{y^2-3cdot y-12}{y}=0to left{ begin{array}{c}
y_1+y_2=3 \
y_1cdot y_2=12 end{array}
right.$$ т.е. $${{log }_3 x_1+{{log }_3 x_2=3to {{log }_3 {(x}_1cdot x_2)=3to x_1cdot x_2=27 } } }$$

Задание 11266

Решить уравнение: $$frac{lg sqrt{x+11}-lg 2}{lg 8 -lg(x-1)}=-1$$

Ответ: 25

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!



1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Логарифмическое уравнение – уравнение, содержащее переменную (x) в основании и/или аргументе логарифма.

Стандартное логарифмическое уравнение:

[{large{log_a{f(x)}=log_a{g(x)} quad Leftrightarrow quad
begin{cases}
f(x)=g(x)\
f(x)>0 (text{или }g(x)>0)
end{cases}}}]

где (a>0, ane 1).

Некоторые важные формулы:

(0) при (a>0, ane 1, b>0) выполняется основное логарифмическое тождество [{large{a^{log_ab}=b}}]

(1) при (a>0, ane 1) [{large{log_a1=0, qquad
log_aa=1}}]

(2) при (a>0, ane 1, b>0) [{large{log_{a^n}{b^m}=frac mnlog_ab}}]

при четных (m) и (n) и (ane 0, ane 1, bne 0) [{large{log_{a^n}{b^m}=dfrac mnlog_{|a|}{|b|}}}]

(3) при (a>0, ane 1, b>0, c>0) [{large{b^{log_ac}=c^{log_ab}}}]

(4) при (a>0, ane 1, bc>0) [{large{log_a{bc}=log_a{|b|}+log_a{|c|} qquad log_a{dfrac
bc}=log_a{|b|}-log_a{|c|}}}]

(5) при (a>0, ane 1, b>0, bne 1, c>0) [{large{log_abcdot log_bc=log_ac Longleftrightarrow
log_bc=dfrac{log_ac}{log_ab}}}]


Задание
8

#415

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (log_{5}(-x) = log_{5}4).

ОДЗ: (-x > 0), что равносильно (x < 0). Решим на ОДЗ:

По определению логарифма (log_{5}(-x)) – показатель степени, в которую нужно возвести 5, чтобы получить (-x), откуда заключаем: (5^{log_5(4)} = -x), что равносильно (4 = -x), что равносильно (x = -4) – подходит по ОДЗ.

Ответ: -4


Задание
9

#416

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (log_{8}(9x — 18) = log_{8}36).

ОДЗ: (9x — 18 > 0), что равносильно (x > 2). Решим на ОДЗ:

По определению логарифма (log_{8}(9x — 18)) – показатель степени, в которую нужно возвести 8, чтобы получить (9x — 18), откуда заключаем: (8^{log_8(36)} = 9x — 18), что равносильно (36 = 9x — 18), что равносильно (x = 6) – подходит по ОДЗ.

Ответ: 6


Задание
10

#417

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (log_{3}(2 — x) = log_{3}(2 + x)).

ОДЗ: (2 — x > 0) и (2 + x > 0), что равносильно (-2 < x < 2). Решим на ОДЗ:

Данное уравнение имеет стандартный вид, оно равносильно (2 — x = 2 + x), что равносильно (x = 0) – подходит по ОДЗ.

Ответ: 0


Задание
11

#418

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (log_{2}(x + 1) = log_{2}(12 — 3x)).

ОДЗ: (x + 1 > 0) и (12 — 3x > 0), что равносильно (-1 < x < 4). Решим на ОДЗ:

Данное уравнение имеет стандартный вид, оно равносильно (x + 1 = 12 — 3x), что равносильно (x = 2,75) – подходит по ОДЗ.

Ответ: 2,75


Задание
12

#419

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (log_{100}(2015x + 1) = log_{100}(2016x + 1)).

ОДЗ: (2015x + 1 > 0) и (2016x + 1 > 0), что равносильно (x > -dfrac{1}{2016}). Решим на ОДЗ:
 
Данное уравнение имеет стандартный вид, оно равносильно (2015x + 1 = 2016x + 1), что равносильно (x = 0) – подходит по ОДЗ.

Ответ: 0


Задание
13

#421

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (log_{frac{1}{3}}(4x + 1) = -3).

ОДЗ: (4x + 1 > 0) , что равносильно (x > -dfrac{1}{4}). Решим на ОДЗ:

По определению логарифма (log_{frac{1}{3}}(4x + 1)) – показатель степени, в которую нужно возвести (dfrac{1}{3}), чтобы получить (4x + 1), откуда заключаем: [left(dfrac{1}{3}right)^{-3} = 4x + 1qquadLeftrightarrowqquad 3^3 = 4x + 1qquadLeftrightarrowqquad x = 6,5] – подходит по ОДЗ.

Ответ: 6,5


Задание
14

#1653

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (log_{pi}(7 — 5x) = 2log_{pi}9).

ОДЗ: (7 — 5x > 0) , что равносильно (x < 1,4). Решим на ОДЗ:

По свойству логарифма исходное уравнение равносильно (log_{pi}(7 —
5x) = log_{pi}(9^2))
, что равносильно (log_{pi}(7 — 5x) =
log_{pi}81)
. Последнее уравнение имеет стандартный вид, оно равносильно (7 — 5x = 81), что равносильно (x = -14,8) – подходит по ОДЗ.

Ответ: -14,8

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Задание №12. Уравнения — профильный ЕГЭ по математике

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть — помним, что он существует, только если

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка . От нее и будем отсчитывать. Получим:

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие промежутку

Упростим левую часть по формуле приведения.

Вынесем за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Видим, что указанному отрезку принадлежат решения

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка От нее и отсчитываем.

2. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

Степени равны, их основания равны. Значит, равны и показатели.

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку

Отметим на тригонометрическом круге отрезок и найденные серии решений.

Видим, что указанному отрезку принадлежат точки и из серии

Точки серии не входят в указанный отрезок.

А из серии в указанный отрезок входит точка

Ответ в пункте (б):

3. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Применим формулу косинуса двойного угла:

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке с помощью двойного неравенства.

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии на отрезке Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Самое сложное здесь — область допустимых значений (ОДЗ). Условие заметно сразу. А условие появляется, поскольку в уравнении есть

Уравнение равносильно системе:

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси .

Ответ в пункте а)

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

5. а) Решите уравнение

б) Найдите корни, принадлежащие отрезку

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых или . Заметим, что среди них находятся и углы, для которых

Числа серии не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие . Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

б) Отберем корни, принадлежащие отрезку любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

Задания по теме «Логарифмические функции»

Открытый банк заданий по теме логарифмические функции. Задания B12 из ЕГЭ по математике (профильный уровень)

Задание №1132

Условие

Найдите наименьшее значение функции y=5x^2-12x+2ln x+37 на отрезке left[frac35; frac75right].

Решение

Найдём производную исходной функции:

Определим нули производной: y'(x)=0;

Расставим знаки производной и определим промежутки монотонности исходной функции на рассматриваемом промежутке.

Из рисунка видно, что на отрезке left[frac35; 1right] исходная функция убывает, а на отрезке left[1; frac75right] возрастает. Таким образом, наименьшее значение на отрезке left[frac35; frac75right] достигается при x=1 и равно y(1)= 5cdot 1^2-12cdot 1+2 ln 1+37= 30.

Ответ

Задание №1124

Условие

Найдите наибольшее значение функции y=4x^2-19x+11ln x+715 на отрезке left[frac34; frac54right].

Решение

Найдём производную исходной функции:

Определим нули производной: y'(x)=0;

x_1in left[frac34; frac54right],

x_2notin left[frac34; frac54right].

Расставим знаки производной и определим промежутки монотонности исходной функции.

Из рисунка видно, что на отрезке left[frac34; 1right] исходная функция возрастает, а на отрезке left[1; frac54right] убывает. Таким образом, наибольшее значение на отрезке left[frac34; frac54right] достигается при x=1 и равно y(1)= 4cdot 1^2-19cdot 1+11 ln 1+715= 700.

Ответ

Задание №1116

Условие

Найдите наименьшее значение функции y=7x-ln(x+11)^7 на отрезке [-10,5;,,0].

Решение

ОДЗ: (x+11)^7>0, x+11>0, x>-11. На ОДЗ исходная функция примет вид: y=7x-7 ln (x+11).

Найдём производную: y’=7-frac<7>. Определим нули производной: 7-frac<7>=0,

Расставим знаки производной и определим промежутки монотонности исходной функции.

Из рисунка видно, что на отрезке [-10,5; -10] исходная функция убывает, а на отрезке [-10; 0] возрастает. Таким образом, наименьшее значение на отрезке [-10,5; 0] достигается при x=-10 и равно y(-10)= 7cdot (-10)-ln (-10+11)^7= -70.

Ответ

Задание №952

Условие

Найдите наибольшее значение функции y=ln(x+7)^9-9x на отрезке [-6,5; 0].

Решение

Так как на ОДЗ ln(x+7)^9=9ln(x+7), то исходная функция примет вид: y=9ln(x+7)-9x. Найдём производную: y’=frac<9>-9.

Определим нули производной

Расставим знаки производной и определим промежутки монотонности исходной функции

Из рисунка видно, что на отрезке [-6,5; -6] исходная функция возрастает, а на отрезке [-6; 0] — убывает. Таким образом, наибольшее значение на отрезке [-6,5; 0] достигается при x=-6 и равно y(-6)=ln(-6+7)^9-9cdot(-6)=54.

Ответ

Задание №336

Условие

Найдите наименьшее значение функции y=12x-ln(12x)+100 на отрезке left [frac<1><36>; frac34 right ].

Решение

y’=0 при x=frac<1><12>, причем y’ меняет знак в этой точке с «−» на «+» . Это означает, что x=frac<1> <12>является точкой минимума.

yleft ( frac<1> <12>right )=12cdotfrac<1><12>-lnleft ( 12cdotfrac<1> <12>right )+100=1-0+100=101.

Ответ

Задание №125

Условие

Найдите наибольшее значение функции y=ln(x+8)^3-3x на отрезке [−7,5; 0]

Решение

Выполним преобразования и вычислим производную.

Найдем точки экстремума, в которых производная функции обращается в нуль.

На числовой оси расставим знаки производной и посмотрим как ведет себя функция.

При переходе через точку x = −7 производная меняет знак с плюса на минус. Значит x = −7 – точка максимума функции.

Найдем наибольшее значение функции в точке x = −7 .

Логарифмические уравнения

Логарифмом положительного числа $b$ по основанию $а$, где $a>0, a ≠ 1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.

$log_<2>8 = 3$, т.к. $2^3 = 8;$

Особенно можно выделить три формулы:

Основное логарифмическое тождество:

Это равенство справедливо при $b> 0, a> 0, a≠ 1$

Некоторые свойства логарифмов

Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любого действительного числа $m$ справедливы равенства:

2. Для решения задач иногда полезно следующее свойство: Если числа $а$ и $b$ на числовой оси расположены по одну сторону от единицы, то $log_b>0$, а если по разные, то $log_b 0$

Представим обе части уравнения в виде логарифма по основанию 2

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

Проверим найденные корни по условиям: $<table x^2-3x-5>0; 7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

4. Уравнения вида $a^x=b$. Решаются логарифмированием обеих частей по основанию $а$.

Решить уравнение $log_5log_2(x+1)=1$

Сделаем в обеих частях уравнения логарифмы по основанию $5$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Далее представим обе части уравнения в виде логарифма по основанию $2$

ОДЗ данного уравнения $x+1>0$

Подставим вместо х в неравенство $31$ и проверим, получиться ли верное условие $32>0$, следовательно, $31$ корень уравнения.

источники:

http://academyege.ru/theme/logarifmicheskie-funkcii.html

http://examer.ru/ege_po_matematike/teoriya/logarifmicheskie_uravneniya

Понравилась статья? Поделить с друзьями:
  • Найдите значение производной функции егэ
  • Наименование мсу это для егэ
  • Найдите значение выражения решу егэ профиль
  • Наименование документа удостоверяющего личность в егэ что писать
  • Найдите значение выражения профиль егэ математика