Найдите корень уравнения решу егэ 5 задание

Тип 5 № 26653

Найдите корень уравнения  левая круглая скобка дробь: числитель: 1, знаменатель: 2 конец дроби правая круглая скобка в степени левая круглая скобка 6 минус 2x правая круглая скобка =4.

Аналоги к заданию № 26653: 510382 510401 2857 13685 505143 505164 2859 2861 2863 2865 … Все

Источник: Пробный экзамен по математике Санкт-Петербург 2015. Вариант 1., ЕГЭ — 2017. Основная волна 02.06.2017. Вариант 301 (C часть)., ЕГЭ по математике 07.06.2021. Основная волна. Санкт-Петербург

Классификатор алгебры: Показательные уравнения

Кодификатор ФИПИ/Решу ЕГЭ: 1.4.2 Преобразования выражений, включающих операцию возведения в степень, 2.1.5 Показательные уравнения

Поиск

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 613    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Найдите корень уравнения  корень из 52 минус 6x=4.


Найдите корень уравнения  корень из 53 минус 4x=7.


Найдите корень уравнения  корень из дробь: числитель: 2, знаменатель: 2x минус 54 конец дроби = дробь: числитель: 1, знаменатель: 3 конец дроби .


Найдите корень уравнения  корень из дробь: числитель: 10, знаменатель: 4x минус 58 конец дроби = дробь: числитель: 1, знаменатель: 7 конец дроби .


Найдите корень уравнения  логарифм по основанию 3 левая круглая скобка 6 минус 4x правая круглая скобка =4 логарифм по основанию 3 2.


Найдите корень уравнения  логарифм по основанию 7 левая круглая скобка 18 минус 4x правая круглая скобка =2 логарифм по основанию 7 2.


Найдите корень уравнения  дробь: числитель: 1, знаменатель: 10x плюс 6 конец дроби =1.


Найдите корень уравнения:  корень из минус 72 минус 17x= минус x. Если уравнение имеет более одного корня, укажите меньший из них.


Найдите корень уравнения:  корень из минус 72 минус 17x= минус x. Если уравнение имеет более одного корня, укажите меньший из них.


Найдите корень уравнения: x= дробь: числитель: 6x минус 15, знаменатель: x минус 2 конец дроби .

Если уравнение имеет более одного корня, в ответе укажите больший из них.


Найдите корень уравнения:  косинус дробь: числитель: Пи левая круглая скобка 2x плюс 9 правая круглая скобка , знаменатель: 3 конец дроби = дробь: числитель: 1, знаменатель: 2 конец дроби . В ответе запишите наибольший отрицательный корень.


Найдите корень уравнения:  косинус дробь: числитель: Пи левая круглая скобка x плюс 1 правая круглая скобка , знаменатель: 4 конец дроби = дробь: числитель: корень из 2, знаменатель: 2 конец дроби . В ответе запишите наибольший отрицательный корень.


Найдите корень уравнения:  косинус дробь: числитель: Пи левая круглая скобка 4x плюс 1 правая круглая скобка , знаменатель: 6 конец дроби = дробь: числитель: корень из 3, знаменатель: 2 конец дроби . В ответе запишите наибольший отрицательный корень.


Найдите корень уравнения:  косинус дробь: числитель: Пи левая круглая скобка 8x плюс 1 правая круглая скобка , знаменатель: 6 конец дроби = дробь: числитель: корень из 3, знаменатель: 2 конец дроби . В ответе запишите наибольший отрицательный корень.


Найдите корень уравнения:  косинус дробь: числитель: Пи x, знаменатель: 6 конец дроби = дробь: числитель: корень из 3, знаменатель: 2 конец дроби . В ответе запишите наибольший отрицательный корень.


Найдите корень уравнения:  косинус дробь: числитель: 2 Пи x, знаменатель: 6 конец дроби = дробь: числитель: корень из 3, знаменатель: 2 конец дроби . В ответе запишите наибольший отрицательный корень.


Найдите корень уравнения  корень 3 степени из левая круглая скобка x минус 4 правая круглая скобка = 3.


Найдите корень уравнения  корень 5 степени из левая круглая скобка x минус 3 правая круглая скобка = минус 2.


Найдите корень уравнения  корень 3 степени из левая круглая скобка x минус 10 правая круглая скобка = 6.


Найдите корень уравнения  корень 3 степени из левая круглая скобка x плюс 4 правая круглая скобка = 3.

Всего: 613    1–20 | 21–40 | 41–60 | 61–80 …

Сегодня мы будем тренировать навык решения задания 5 ЕГЭ – найдите корень уравнения. Будем искать корень уравнения. Рассмотрим примеры решения такого рода заданий. Но для начала, давайте вспомним – что значит – найти корень уравнения?

Это значит найти такое, зашифрованное под х число, которое мы подставим вместо x и наше уравнение будет верным равенством.

Например, 3x=9 – это уравнение, а 3.3=9 – это уже верное равенство. То есть в данном случае, мы вместо x подставили число 3 – получили верное выражение или равенство, это означает, что мы решили уравнение, то есть нашли данное число x=3, которое превращает уравнение в верное равенство.

Вот этим мы и займемся  – будем находить корень уравнения.

Задание 1 – найдите корень уравнения 21-4x=32

Это показательное уравнение. Оно решается следующим образом – нужно чтобы и слева, и справа от знака “равно” была степень с одинаковым основанием.

Слева у нас основание степени 2, а справа – степени нет вовсе. Но мы знаем, что 32 – это 2 в пятой степени. То есть, 32=25

Таким образом, наше уравнение будет выглядеть так: 21-4х=25

Слева и справа у нас основания степени одинаковы, значит, чтобы у нас было равенство, должны быть равны и показатели степени:

1-4х=5

Получаем обыкновенное уравнение. Решаем обычным способом – все неизвестные оставляем слева, а известные переносим вправо, получим:

-4х=5-1

-4х=4

х=-1.

Делаем проверку: 21-4(-1)=32

25=32

32=32

Мы нашли корень уравнение. Ответ: х=-1.

Самостоятельно найдите корень уравнения в следующих заданиях:

а) 25-х=64

б) 21-3х=128

Задание 2 – найдите корень уравнения 25-x = 1/16

Уравнение решаем аналогично – путем приведения левой и правой частей уравнения к одному основанию степени. В нашем случае – к основанию степени 2.

Используем следующее свойство степени:

По этому свойству мы получим для правой части нашего уравнения:

Тогда наше уравнение запишется в виде:

Если равны основания степени, значит, равны и показатели степени:

5-х=-4

-х=-4-5

х=9

Ответ: х=9.

Сделаем проверку – подставим найденное значение х в исходное уравнение – если мы получим верное равенство, значит, мы решили уравнение правильно.

25-9=1/16

2-4=1/16

1/16=1/16

Мы нашли корень уравнения правильно.

Задание 3 – найдите корень уравнения Показательное уравнение 1/2 в степени 3х-12 = 1/8

Заметим, что справа у нас стоит 1/8, а 1/8 – это

Степень 1/8 через 1/2 расписывается так

Тогда наше уравнение запишется в виде:

Если основания степени равны, значит, равны и показатели степени, получим простое уравнение:

3х-12=3

3х=15

х=5

Ответ: х=5. Проверку сделайте самостоятельно.

Задание 4 – найдите корень уравнения log3(15-х)=log32

Это уравнение решается также как и показательное. Нам нужно, чтобы основания логарифмов слева и справа от знака “равно” были одинаковыми. Сейчас они одинаковы, значит, приравниваем те выражения, которые стоят под знаком логарифмов:

15-х=2

-х=2-15

-х=-13

х=13

Ответ: х=13

Задание 5 – найдите корень уравнения log3(3-x)=3

Число 3 – это log327. Чтобы было понятно внизу нижним индексом под знаком логарифма стоит число которое возводится в степень, в нашем случае 3, под знаком логарифма стоит число, которое получилось при возведении в степень – это 27, а сам логарифм – это показатель степени, в которую нужно возвести 3, чтобы получить 27.

Смотрите на картинке:

Что такое логарифм

Таким образом, любое число можно записать в виде логарифма. В данном случае очень удобно записать число 3 в виде логарифма с основанием 3. Получим:

log3(3-x)=log327

Основания логарифмов равны, значит, равны и числа, стоящие под знаком логарифма:

3-х=27

Получим,

-х=27-3

-х=24

х=-24

Сделаем проверку:

log3(3-(-24))=log327

log3(3+24)= log327

log327=log327

3=3

Ответ: x=-24.

Задание 6. Найдите корень уравнения log(x+3)=log2(3x-15).

log2(x+3)=log2(3x-15)

Решение:

x+3=3x-15

x-3x=-3-15

-2x=-18

x=9

Проверка: log2(9+3)=log2(27-15)

log212=log212

Ответ: x=9.

Задание 7. Найдите корень уравнения log2(14-2x)=2log23

log2(14-2x)=2log23

log2(14-2x)=log232

14-2x=32

14-2x=9

-2x=9-14

-2x=-5

x=2,5

Проверка: log2(14-5)=2log23

log29=2log23

log232=2log23

2log23=2log23

Ответ: x=2,5

Подготовьтесь к ЕГЭ и к ОГЭ -посмотрите предыдущие темы Найдите значение выражения и Как решать неравенства .

За это задание ты можешь получить 1 балл. На решение дается около 3 минут. Уровень сложности: базовый.
Средний процент выполнения: 93.6%
Ответом к заданию 5 по математике (профильной) может быть целое число или конечная десятичная дробь.

Разбор сложных заданий в тг-канале

Задачи для практики

Задача 1

Найдите корень уравнения $log_{x+5}{64} = 2$.

Решение

Найдем ОДЗ: ${tablex + 5 > 0; x + 5 ≠ 1;$ ${tablex > -5; x ≠ -4;$ $x ∈ (-5; -4) ∪ (-4; +∞)$.

По определению логарифма если $log_b a=c$, то $b^c=a$

$(x + 5)^2 = 64$,

$x + 5 = 8$ или $x + 5 = -8$,

$x = 3 $ или $x = -13 $

$x = -13$ — не входит в ОДЗ.

Ответ: 3

Задача 2

Найдите корень уравнения $log_{5}{(x^2+26x + 169)}-2 =log_{√5}{(5x-7)}$.

Решение

$log_{5}{(x^2+26x + 169)}-2 =log_{√5}{(5x-7)}$,

$log_{5}{(x+13)^2}-log_{5}{25} =log_{5^{1/2}}{(5x-7)}$,

$log_{5}{(x+13)^2/{25}} =2log_{5}{(5x-7)}$,

$log_{5}{(x+13)^2/{25}} =log_{5}{(5x-7)^2}$,

$(x+13)^2/{25} =(5x-7)^2$,

$(x+13)/{5} =(5x-7)$ или $(x+13)/{5} =-(5x-7)$,

Откуда: $x=2$ или $x=11/13 — $ второй корень не удовлетворяет ОДЗ,

Ответ: 2

Задача 3

Найдите корень уравнения $log_{3}{(4x-15)} =log_{3}{(x+3)}$.

Решение

$log_3 (4x — 15) = log_3 (x + 3)$,

$4x — 15 = x + 3$,

$3x = 18, x = 6$.

Проверка. При $x = 6$ получаем $log_3 (6 · 4 — 15) = log_3 (6 + 3)$ — верное равенство.

$x = 6$ — корень уравнения.

Ответ: 6

Задача 4

Найдите корень уравнения $625^{x+1}={1} / {5}$.

Решение

$(5^4)^{x+1} = 5^{-1}$, применим свойство $(a^b)^c=a^{bc}$

$5^{4x+4} = 5^{-1}$,

$4x + 4 = -1$,

$4x = -5$,

$x = -1.25$.

Ответ: -1.25

Задача 5

Найдите корень уравнения $9^{x-12}={1} / {3}$.

Решение

$(3^2)^{x-12}=3^{-1} $, применим свойство $(a^b)^c=a^{bc}$

$ 3^{2x-24} = 3^{-1} $,

$2x-24=-1 $,

$ 2x=23 $,

$ x=11{,}5$.

Ответ: 11.5

Задача 6

Найдите корень уравнения $(x-12)^3=-27$.

Решение

$(x-12)^3=-27$

$ (x-12)^3=(-3)^3 $,
$ x-12=-3 $,
$x=9$.

Ответ: 9

Задача 7

Найдите корень уравнения $log_{2}{(12+x)} =-2$.

Решение

По определению логарифма $12+x = 2^{-2}, 12+x = 0.25, x = 0.25-12, x = -11.75$.

Ответ: -11.75

Задача 8

Найдите корень уравнения $log_{3}{(4-x)} =5$.

Решение

По определению логарифма если $log_b a=c$, то $b^c=a$

$4-x = 3^5 $,

$ 4-x=243 $,

$x=-239$.

Ответ: -239

Задача 9

Решите уравнение $(x+7)^2 = x^2+7$. Если уравнение имеет более одного корня, в ответе запишите меньший из них.

Решение

Воспользуемся формулой квадрата суммы: $(a+b)^2=a^2+2ab+b^2$
$x^2 + 14x + 49 = x^2 + 7$,
$14x = -42$,
$x = -3$.

Ответ: -3

Задача 10

Решите уравнение $(5x+11)^2 = (5x-2)^2$. Если уравнение имеет более одного корня, в ответе запишите меньший из них.

Решение

Воспользуемся формулами сокращенного умножения:

$(a+b)^2=a^2+2ab+b^2$

$(a-b)^2=a^2-2ab+b^2$
Таким образом:

$25x^2+110x+121=25x^2-20x+4$,

$ 110x+20x=-117$,
$130x=-117$
$x=-117/130$
$x=-0.9$.

Ответ: -0.9

Задача 11

Найдите корень уравнения $√ {14-5x}=-x$. Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

Решение

Так как левая часть уравнения неотрицательна, то и правая тоже неотрицательна:

$-x ⩾ 0$, — домножим обе части на -1, в таком случае знак неравенства меняется

$ x ⩽ 0$.

Возведя обе части в квадрат, получим уравнение $14-5x=x^2$,

$x^2+5x-14=0$,

$ x_1=-7$,

$ x_2=2$ — не удовлетворяет условию $x⩽ 0$.

Пояснение: $(-x)^2=(-x)(-x)=x^2$

Ответ: -7

Задача 12

Найдите корень уравнения ${x+3} / {2x-11}={x+3} / {3x-7}$. Если уравнение имеет более одного корня, в ответе запишите больший из корней.

Решение

Найдем ОДЗ: ${table2x-11 ≠ 0; 3x-7≠ 0;$ ${tablex ≠ 5.5; x ≠7/3;$

Удобно домножить обе стороны равенства на знаменатели, проще говоря «крест накрест»

$(x+3)(3x-7)=(2x-11)(x+3)$

${3x}^2-7x+9x-21={2x}^2+6x-11x-33$

$x^2+7x+12=0$

$x_1=-3, x_2=-4$ — оба корня удовлетворяют ОДЗ

Наибольший корень: $x=-3$

Ответ: -3

Задача 13

Найдите корень уравнения ${9-5x} / {x+3}=x$. Если уравнение имеет более одного корня, в ответе запишите больший из корней.

Решение

При $x ≠ -3$ получим

$x(x + 3) = 9 — 5x$,

$x^2 + 3x + 5x — 9 = 0$,

$x^2 + 8x — 9 = 0$

По теореме Виета $х_1=1$, $х_2=-9$.

Больший корень $x_1=1$

Ответ: 1

Задача 14

Найдите корень уравнения $√ {{4x-21} / {117}}={1} / {3}$.

Решение

ОДЗ: ${4x — 21}/{117}⩾0, 4x-21⩾0, x⩾21/4, x⩾5.25$

$(√{{4x — 21}/{117}})^2 = ({1}/{3})^2$,

${4x — 21}/{117} = {1}/{9}$,

$9(4x — 21) = 117$,

$36x — 189 = 117$,

$36x = 306$,

$x = 8.5$ — удовлетворяет ОДЗ.

Ответ: 8.5

Задача 15

Решите уравнение $log_{{1} / {3}}(13 + x) = — 2$.

Решение

ОДЗ: $13+x>0, x>-13$

По определению логарифма если $log_b a=c$, то $b^c=a$

$(1/3)^(-2)=13+x$
$ 13+x=9$
$ x=-4$ — удовлетворяет ОДЗ

Ответ: -4

Задача 16

Решите уравнение $√^3{5+x}=2$.

Решение

Возведем обе части уравнения в третью степень:
$5+х=2^3$,
$5+х=8$,
$х=3$.

Ответ: 3

Задача 17

Решите уравнение ${x-9} / {3x-1}={x-9} / {x+33}$. Если уравнение имеет несколько корней, в ответ запишите меньший из них

Решение

Допустимые значения переменной: $3х-1≠0$, $х≠1/3$;

$х+33≠0$, $х≠-33$;

Домножим обе части уравнения на $(3х-1)(х+33)≠0 — $ говорят умножим «крест -накрест»

$(х-9)(х+33)=(х-9)(3х-1) — $ вынесем общий множитель

$(х-9)(х+33)-(х-9)(3х-1)=0$

$(х-9)(х+33-(3х-1))=0$

$(х-9)(х+33-3х+1)=0$

$(х-9)(-2х+34)=0$

$ х-9=0$, $х=9$ или

$-2х+34=0$, $х=17$;

$9<17$ — значит наименьший корень $x=9$

Ответ: 9

Рекомендуемые курсы подготовки


Простейшие уравнения


Задание №5 профильного уровня ЕГЭ по математике – решение простейшего уравнения, чаще всего степенного. Обычно, требуется сделать несколько операций и приравнять степени – после этого уравнение становится линейным и решается легко – как и любое линейное уравнение.


Разбор типовых вариантов заданий №5 ЕГЭ по математике профильного уровня


Первый вариант задания (демонстрационный вариант 2018)

[su_note note_color=”#defae6″]

Найдите корень уравнения 3х-5=81

[/su_note]

Алгоритм решения задания:
  1. Определяем вид уравнения.
  2. Представляем правую часть в виде степени.
  3. Отбрасываем основание и решаем уравнение.
  4. Записываем ответ.
Решение:

1. Данное уравнение относится к показательным. Поэтому решаем его, приведя к виду: аf(x)=ag(x).

2. Представляем правую часть уравнения 81 в виде степени с основанием 3: 81=34. Тогда уравнение примет вид: 3х-5=34.

3. Так как основания одинаковы, можно отбросить их. Получаем: х – 5=4.

Решаем полученное уравнение: х=4+5,

х=9.

Ответ: 9.


Второй вариант задания (из Ященко, №1)

[su_note note_color=”#defae6″]

Найдите корень уравнения http://self-edu.ru/htm/2018/ege2018_36/files/1_5.files/image001.gif

[/su_note]

Алгоритм решения задания:
  1. Определяем вид уравнения.
  2. Представляем правую часть в виде степени с основанием 9.
  3. Отбрасываем основание и решаем уравнение.
  4. Записываем ответ.
Решение:

1. Данное уравнение является показательным. Решаем его, приводя к виду: аf(x)=ag(x).

2. Число 81 справа представить в виде http://self-edu.ru/htm/2018/ege2018_36/files/1_5.files/image002.gif , откуда получаем в правой части http://self-edu.ru/htm/2018/ege2018_36/files/1_5.files/image003.gif .

Исходное уравнение принимает вид:

http://self-edu.ru/htm/2018/ege2018_36/files/1_5.files/image004.gif

Так как у степеней в обеих частях уравнения равны, можно перейти к равенству степеней и решить уравнение:

http://self-edu.ru/htm/2018/ege2018_36/files/1_5.files/image005.gif

Ответ: 2.


Третий вариант задания (из Ященко, №4)

[su_note note_color=”#defae6″]

Найдите корень уравнения

[/su_note]

Алгоритм решения задания:
  1. Определяем вид уравнения.
  2. Представляем правую часть в виде степени с основанием 9.
  3. Отбрасываем основание и решаем уравнение.
  4. Записываем ответ.
Решение:

1. Уравнение показательного вида, значит можно решить его приведя к виду: f(x)a=g(x)a

2. Число представляем в виде степени с основанием 8: , тогда исходное уравнение можем записать таким образом:

Поскольку степени равны, должны быть равны и их основания. Имеем:

Ответ: 5.


Четвертый вариант задания (из Ященко, №8)

[su_note note_color=”#defae6″]

Найдите корень уравнения

[/su_note]

Алгоритм решения задания:
  1. Определяем вид уравнения.
  2. Представляем правую часть в виде логарифма с основанием 7.
  3. Отбрасываем логарифм и решаем уравнение.
  4. Проверяем корни.
  5. Записываем ответ.
Решение:

1. Уравнение логарифмическое, приводимое к виду: logag(x)=logag(x).

2. Преобразуем правую часть уравнения так, чтобы там стоял логарифм с основанием 7:

Отбрасываем знак логарифма, получим:

Проверяем полученный корень на принадлежность ОДЗ: 9 – (-18)=27>0, значит, корень принадлежит ОДЗ.

Ответ: -18.


Пятый вариант задания (из Ященко, №18)

[su_note note_color=”#defae6″]

Найдите корень уравнения

[/su_note]

Алгоритм решения задания:
  1. Определяем вид уравнения.
  2. Представляем правую часть в виде логарифма с основанием 7.
  3. Отбрасываем логарифм и решаем уравнение.
  4. Проверяем корни.
  5. Записываем ответ.
Решение:

1. Уравнение логарифмическое, приводимое к виду: logag(x)=logag(x).

2. Преобразуем правую часть уравнения, чтобы там стоял логарифм с основанием 4. Для этого используем свойства логарифмов:

log1625=log4225=1/2∙log425

Получаем уравнение:

2log4(2 – x)=log425

Решаем полученное уравнение:

http://self-edu.ru/htm/ege2016_36/files/12_5.files/image003.gif

Или 2 – x = – 5

x=2+5=7

Проверим на принадлежность ОДЗ: 2 – (-3)=5>0, корень принадлежит ОДЗ.

2 – 7 = -5 < 0, корень не принадлежит ОДЗ.

Ответ: -3.

Даниил Романович | Просмотров: 9.4k

В задании №5 варианта ЕГЭ вам встретятся всевозможные уравнения: квадратные и сводящиеся к квадратным, дробно-рациональные, иррациональные, степенные, показательные и логарифмические и даже тригонометрические. Видите, как много нужно знать, чтобы справиться с заданием! И еще ловушки и «подводные камни», которые ждут вас в самом неожиданном месте.

Вот список тем, которые стоит повторить:

Квадратные уравнения

Арифметический квадратный корень

Корни и степени

Показательная функция

Показательные уравнения

Логарифмическая функция

Логарифмические уравнения

Тригонометрический круг

Формулы приведения

Формулы тригонометрии

Простейшие тригонометрические уравнения 1

Уравнения, сводящиеся к квадратным

1. Решите уравнение frac{6}{13}x^2=19frac{1}{2}. Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

Кажется, что уравнение очень простое. Но иногда здесь ошибаются даже отличники. А вот шестиклассник бы не ошибся.

С левой частью уравнения все понятно. Дробь frac{6}{13} умножается на x^2. А в правой части — смешанное число 19frac{1}{2}. Его целая часть равна 19, а дробная часть равна frac{1}{2}. Запишем это число в виде неправильной дроби:

19frac{1}{2}= frac{19cdot 2+1}{2} = frac{39}{2}.

Получим:

frac{6}{13}x^2=frac{39}{2};

x^2=frac{39cdot 13}{2cdot 6}=frac{13cdot 3cdot 13}{2cdot 6}=frac{{13}^2}{4};

x=pm frac{13}{2};

x_1=-6,5 или x_2=6,5.

Выбираем меньший корень.

Ответ: -6,5.

2. Решите уравнение left ( x-6 right )^2=-24x.

Возведем в квадрат левую часть уравнения. Получим:

left ( x-6 right )^2=-24xLeftrightarrow x^2-12x+36=-24xLeftrightarrow

Leftrightarrow x^2+12x+36=0Leftrightarrow left ( x+6 right )^2=0Leftrightarrow x=-6.

Ответ: -6.

Дробно-рациональные уравнения

3. Найдите корень уравнения

Перенесем единицу в левую часть уравнения. Представим 1 как frac{4x-5}{4x-5} и приведем дроби к общему знаменателю:

frac{5x-3}{4x-5}-frac{4x-5}{4x-5}=0;

frac{x+2}{4x-5}=0;

x= - 2.

Ответ: -2.

Это довольно простой тип уравнений. Главное — внимательность.

Иррациональные уравнения

Так называются уравнения, содержащие знак корня — квадратного, кубического или n-ной степени.

4. Решите уравнение:

sqrt{frac{6}{4{x}-54} } =frac{1}{7}.

Выражение под корнем должно быть неотрицательно, а знаменатель дроби не равен нулю.

Значит, .

Возведём обе части уравнения в квадрат:

frac{6}{4{x}-{ 54}} =frac{1}{49}.

Решим пропорцию:

4{x}-{ 54}={ 6}cdot { 49};

4{x}=348;

{ x}={ 87}.

Условие  при этом выполняется.

Ответ: 87.

5. Решите уравнение sqrt{72-x}=x. Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

А в этом уравнении есть ловушка. Решите его самостоятельно и после этого читайте дальше.

Выражение под корнем должно быть неотрицательно. И сам корень — величина неотрицательная. Значит, и правая часть должна быть больше или равна нуля. Следовательно, уравнение равносильно системе:

left{begin{matrix} 72-x=x^2\72-xgeq 0 hfill \xgeq 0 hfill end{matrix}right..

Решение таких уравнений лучше всего записывать в виде цепочки равносильных переходов:

sqrt{72-x}=x Leftrightarrow left{begin{matrix} 72-x=x^2\72-x geq 0 \x geq 0 end{matrix}right. Leftrightarrow

.

Мы получили, что x=8. Это единственный корень уравнения.

Типичная ошибка в решении этого уравнения такая. Учащиеся честно пишут ОДЗ, помня, что выражение под корнем должно быть неотрицательно:

72-xge 0.

Возводят обе части уравнения в квадрат. Получают квадратное уравнение: x^2+x-72=0. Находят его корни: x=8 или x=-9. Пишут в ответ: -9 (как меньший из корней). В итоге ноль баллов.

Теперь вы знаете, в чем дело. Конечно же, число -9 корнем этого уравнения быть не может.

Ответ: 8.

6. Решите уравнение sqrt{45+4x}=x. Если уравнение имеет более одного корня, в ответе запишите больший из корней.

Запишем решение как цепочку равносильных переходов:

.

Ответ: 9.

Показательные уравнения

При решении показательных уравнений мы пользуемся свойством монотонности показательной функции.

7. Решите уравнение 5^{x-7}=frac{1}{125}.

Вспомним, что 125 = 5{}^{3}. Уравнение приобретает вид: 5{}^{x}{}^{-}{}^{7 }= 5{}^{-}{}^{3}. Функция y = 5^x монотонно возрастает и каждое свое значение принимает только один раз. Степени равны, их основания, значит, и показатели равны.

x - 7 = -3, откуда x = 4.

Ответ: 4.

8. Решите уравнение {left(frac{1}{49}right)}^{x-8}=7.

Представим {left(frac{1}{49}right)}^{ } как 7^{-2};

{left(7^{-2}right)}^{x-8}=7;

7^{-2x+16}=7.

Функция y = 7^x монотонно возрастает и каждое свое значение принимает только один раз. Степени равны, их основания, значит, и показатели равны.

-2x+16=1;

-2x=-15;

x=7,5.

Ответ: 7,5.

9. Решите уравнение left(frac{1}{9} right)^{{ x}-13} =3.

Представим {textstylefrac{1}{9}} в виде степени с основанием 3 и воспользуемся тем, что left({ a}^{{ m}} right)^{{ n}} ={ a}^{{ mn}}.

left(3^{-2} right)^{{ x}-{ 13}} =3;
3^{-2{ x}+{ 26}} =3^{1} ;

-2{ x}+{ 26}={ 1};

{ x}={ 12,5}.

Ответ: 12,5.

Логарифмические уравнения

Решая логарифмические уравнения, мы также пользуемся монотонностью логарифмической функции: каждое свое значение она принимает только один раз. Это значит, что если логарифмы двух чисел по какому-либо основанию равны, значит, равны и сами числа.

И конечно, помним про область допустимых значений логарифма:

Логарифмы определены только для положительных чисел.

Основание логарифма должно быть положительно и не равно единице.

10. Решите уравнение:

{{log}_5 left(4+xright)=2 }.

Область допустимых значений: . Значит, 

Представим 2 в правой части уравнения как {{log}_5 25 }, чтобы слева и справа в уравнении были логарифмы по основанию 5.

{{log}_5 left(4+xright)={{log}_5 25 } }.

Функция y = {{log}_5 x } монотонно возрастает и каждое свое значение принимает ровно один раз. Логарифмы равны, их основания равны. «Отбросим» логарифмы! Конечно, при этом 

4+x=25;
x=21.

Ответ: 21.

11. Решите уравнение: {{log}_8 left(x^2+xright)={{log}_8 left(x^2-4right) } }.

Запишем решение как цепочку равносильных переходов. Записываем ОДЗ и «убираем» логарифмы:

.

Ответ: -4.

12. Решите уравнение: 2^{{{log}_4 left(4x+5right) }}=9.

Перейдем от логарифма по основанию 4 (в показателе) к логарифму по основанию 2. Мы делаем это по формуле перехода к другому основанию:

{{log}_4 b }=frac{{{log}_2 b }}{{{log}_2 4 }}=frac{{{log}_2 b }}{2}.

Записываем решение как цепочку равносильных переходов.

.

Ответ: 19.

13. Решите уравнение. Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

{{log}_{x-5} 49=2 }.

В этом уравнении тоже есть ловушка. Мы помним, что основание логарифма должно быть положительно и не равно единице.

Получим систему:

small left{begin{matrix} left ( x-5 right )^2=49\x-50 \x-5 neq 1 end{matrix}right..

Первое уравнение мы получили просто из определения логарифма.

Квадратное уравнение имеет два корня: x=12 и x=-2.

Очевидно, корень x=-2 является посторонним, поскольку основание логарифма должно быть положительным. Значит, единственный корень уравнения: x=12.

Ответ: 12.

Тригонометрические уравнения (Часть 1 ЕГЭ по математике)

Тригонометрические уравнения? В первой части вариантов ЕГЭ? — Да. Причем это задание не проще, чем задача 13 из второй части варианта Профильного ЕГЭ.

14. Найдите корень уравнения: cos frac{pi (x+1)}{4}=frac{sqrt{2}}{2}. В ответе запишите наибольший отрицательный корень.

Типичная ошибка — решать это уравнение в уме. Мы не будем так делать! Несмотря на то, что это задание включено в первую части варианта ЕГЭ, оно является полноценным тригонометрическим уравнением, причем с отбором решений.

Сделаем замену frac{pi left(x+1right)}{4}=t. Получим: cos t=frac{sqrt{2}}{2}.

Получаем решения: t=pm frac{pi }{4}+2pi n, nin Z. Вернемся к переменной x.

frac{pi (x+1)}{4}=pm frac{pi }{4}+2pi n, nin Z. Поделим обе части уравнения на pi и умножим на 4.

x+1=pm 1+8n, nin Z;

left[ begin{array}{c}x=8n, nin Z \x=-2+8n end{array}right..

Первой серии принадлежат решения -8; 0; 8dots

Вторая серия включает решения -2; 6; 14dots

Наибольший отрицательный корень — тот из отрицательных, который ближе всех к нулю. Это x = -2.

Ответ: -2.

15. Решите уравнение: tg frac{pi left( x+1right)}{4}= -1. В ответе напишите наименьший положительный корень.

Решение:

Сделаем замену frac{pi left(x+1right)}{4}=t. Получим:tgt=-1. Решения этого уравнения:

t=-frac{pi }{4}+pi n, nin Z. Вернемся к переменной х:

frac{pi left(x+1right)}{4}=-frac{pi }{4}+pi n, n in Z. Умножим обе части уравнения на 4 и разделим на pi.

x+1=-1+4n;

x=-2+4n.

Выпишем несколько решений уравнения и выберем наименьший положительный корень:

x=-2 ;2; 6dots Наименьший положительный корень x = 2.

Ответ: 2.

Мы разобрали основные типы уравнений, встречающихся в задании №5 Профильного ЕГЭ по математике. Конечно, это не все, и видов уравнений в этой задаче существует намного больше. Именно поэтому мы рекомендуем начинать подготовку к ЕГЭ по математике не с задания 1, а с текстовых задач на проценты, движение и работу и основ теории вероятностей.
Успеха вам в подготовке к ЕГЭ!

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Задание №5. Простейшие уравнения. Профильный ЕГЭ по математике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

Задача 1

Найдите корень уравнения $9^{log_{81}(5x-2)}=30$.

Задача 2

Найдите корень уравнения $log_2(9-2x)=log_2(6+x)+3$.

Задача 3

Найдите корень уравнения $({1} / {81})^{7+x}=243$.

Задача 4

Найдите корень уравнения $3{2} / {7}x =46$.

Задача 5

Найдите корень уравнения $2^{2x-7}=4{,}5⋅9^{2x-7}$.

Задача 6

Найдите корень уравнения $3^{2+x}=0{,}6⋅5^{2+x}$.

Задача 7

Найдите корень уравнения $log_{216}{6^{2x-11}}=3$.

Задача 8

Найдите корень уравнения $log_{81}{3^{4x+7}}=5$.

Задача 9

Найдите корень уравнения $tg{πx}/{4} = 1$. В ответе напишите наименьший положительный корень.

Задача 10

Найдите корень уравнения $7^{log_{49}{(6x-6)}}=6$.

Задача 11

Найдите корень уравнения $5^{log_{25}{(3x-3)}}=3$.

Задача 12

Найдите корень уравнения $log_{4}{(2x-1)} =log_{4}{(x+3)} — 1$.

Задача 13

Найдите корень уравнения $log_{x-4}{36} = 2$.

Задача 14

Найдите корень уравнения ${2} / {3} x +1{2} / {7} = {5} / {21} x $.

Задача 15

Найдите корень уравнения $(2x+7)^3=-64$.

Задача 16

Найдите корень уравнения $log_{2}{(2x+15)} =log_{2}{3} — 1$.

Задача 17

Найдите корень уравнения $log_{7}{(11-x)} =log_{7}{3} + 1$.

Задача 18

Найдите корень уравнения ${7} / {13}x^2=2{2} / {13}$. Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

Задача 19

Найдите корень уравнения $√ {-23x-120}=-x$. Если уравнение имеет более одного корня, в ответе запишите больший из корней.

Задача 20

Найдите корень уравнения $√ {{36} / {2x-15}}=3$.

Задачи из курса стереометрии впервые появляются в ЕГЭ по математике в задании 5. Вам будут предложены вопросы по вычислению геометрических параметров шара, куба, параллельного параллелепипеда, призмы, пирамиды, цилиндра, конуса, составных многогранников, а также комбинаций нескольких фигур. Составители тестов также внесли в КИМ этого номера отдельно условия, касающиеся вычисления объемов геометрических тел и площади их сторон.

Пятые номера, касающиеся куба, одни из самых простых. Вам будет предложено найти объем фигуры, если известна сумма S всех его граней, и наоборот. Часть вопросов касается диагоналей, сторон. Такие же условия вам возможно дадут в заданиях с призмами, пирамидами. Другая часть может звучать так: «Во сколько раз увеличится V куба, если все ребра тела увеличить в три раза?».

Сложными называют школьники No 5 по математике о составных многогранниках и комбинациях тел. К примеру, вам может попасться вариант экзаменационного билета с поиском V параллельного параллелепипеда, который описан вокруг цилиндра, где d=1 м.

Варианты на тему «Шар» — это обычно поиск объема тела, площади его поверхности, радиуса или диаметра. Есть и мини-задачи такого типа: «Объем первой сферы в 27 раз больше, чем у второй. Сравните S поверхностей. Во сколько раз первая фигура больше второй по этому показателю?». В задачах о конусе вам нужно будет вычислять его V, площадь, образующую, высоту, диаметр или радиус основания.

Понравилась статья? Поделить с друзьями:
  • Найдите корень уравнения егэ логарифмы
  • Найдите значения выражения дроби егэ
  • Наименование предмета егэ
  • Найдите значение производной функции егэ
  • Наименование мсу это для егэ