Векторы на ЕГЭ по математике. Действия над векторами
-
Сложение векторов
-
Вычитание векторов
-
Умножение вектора на число
-
Скалярное произведение векторов
-
Онлайн-курс «Математика 10+11 100 баллов»
Стандартное определение: «Вектор — это направленный отрезок». Обычно этим и ограничиваются знания выпускника о векторах. Кому нужны какие-то «направленные отрезки»?
А в самом деле, что такое векторы и зачем они?
Прогноз погоды. «Ветер северо-западный, скорость 18 метров в секунду». Согласитесь, имеет значение и направление ветра (откуда он дует), и модуль (то есть абсолютная величина) его скорости.
Величины, не имеющие направления, называются скалярными. Масса, работа, электрический заряд никуда не направлены. Они характеризуются лишь числовым значением — «сколько килограмм» или «сколько джоулей».
Физические величины, имеющие не только абсолютное значение, но и направление, называются векторными.
Скорость, сила, ускорение — векторы. Для них важно «сколько» и важно «куда». Например, ускорение свободного падения направлено к поверхности Земли, а величина его равна 9,8 м/с2. Импульс, напряженность электрического поля, индукция магнитного поля — тоже векторные величины.
Вы помните, что физические величины обозначают буквами, латинскими или греческими. Стрелочка над буквой показывает, что величина является векторной:
Вот другой пример.
Автомобиль движется из A в B. Конечный результат — его перемещение из точки A в точку B, то есть перемещение на вектор .
Теперь понятно, почему вектор — это направленный отрезок. Обратите внимание, конец вектора — там, где стрелочка. Длиной вектора называется длина этого отрезка. Обозначается: или .
До сих пор мы работали со скалярными величинами, по правилам арифметики и элементарной алгебры. Векторы — новое понятие. Это другой класс математических объектов. Для них свои правила.
Когда-то мы и о числах ничего не знали. Знакомство с ними началось в младших классах. Оказалось, что числа можно сравнивать друг с другом, складывать, вычитать, умножать и делить. Мы узнали, что есть число единица и число ноль.
Теперь мы знакомимся с векторами.
Понятия «больше» и «меньше» для векторов не существует — ведь направления их могут быть разными. Сравнивать можно только длины векторов.
А вот понятие равенства для векторов есть.
Равными называются векторы, имеющие одинаковые длины и одинаковое направление. Это значит, что вектор можно перенести параллельно себе в любую точку плоскости.
Единичным называется вектор, длина которого равна 1. Нулевым — вектор, длина которого равна нулю, то есть его начало совпадает с концом.
Удобнее всего работать с векторами в прямоугольной системе координат — той самой, в которой рисуем графики функций. Каждой точке в системе координат соответствуют два числа — ее координаты по x и y, абсцисса и ордината.
Вектор также задается двумя координатами: .
Здесь в скобках записаны координаты вектора — по x и по y.
Находятся они просто: координата конца вектора минус координата его начала.
Если координаты вектора заданы, его длина находится по формуле
к оглавлению ▴
Сложение векторов
Для сложения векторов есть два способа.
1. Правило параллелограмма. Чтобы сложить векторы и , помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторов. и
Помните басню про лебедя, рака и щуку? Они очень старались, но так и не сдвинули воз с места. Ведь векторная сумма сил, приложенных ими к возу, была равна нулю.
2. Второй способ сложения векторов — правило треугольника. Возьмем те же векторы и . К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов и .
По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.
Представьте, что вы идете из пункта А в пункт В, из В в С, из С в D, затем в Е и в F. Конечный результат этих действий — перемещение из А в F.
При сложении векторов и получаем:
;
.
к оглавлению ▴
Вычитание векторов
Вектор направлен противоположно вектору . Длины векторов и равны.
Теперь понятно, что такое вычитание векторов. Разность векторов и — это сумма вектора и вектора .
к оглавлению ▴
Умножение вектора на число
При умножении вектора на число k получается вектор, длина которого в k раз отличается от длины . Он сонаправлен с вектором , если k больше нуля, и направлен противоположно , если k меньше нуля.
к оглавлению ▴
Скалярное произведение векторов
Векторы можно умножать не только на числа, но и друг на друга.
Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними.
Обратите внимание — перемножили два вектора, а получился скаляр, то есть число. Например, в физике механическая работа равна скалярному произведению двух векторов — силы и перемещения:
.
Если векторы перпендикулярны, их скалярное произведение равно нулю.
А вот так скалярное произведение выражается через координаты векторов и :
.
Из формулы для скалярного произведения можно найти угол между векторами:
.
Эта формула особенно удобна в стереометрии. Например, в задаче 14 Профильного ЕГЭ по математике нужно найти угол между скрещивающимися прямыми или между прямой и плоскостью. Часто векторным методом задача 14 решается в несколько раз быстрее, чем классическим.
В школьной программе по математике изучают только скалярное произведение векторов.
Оказывается, кроме скалярного, есть еще и векторное произведение, когда в результате умножения двух векторов получается вектор. Кто сдает ЕГЭ по физике, знает, что такое сила Лоренца и сила Ампера. В формулы для нахождения этих сил входят именно векторные произведения.
Векторы — полезнейший математический инструмент. В этом вы убедитесь на первом курсе вуза.
к оглавлению ▴
Онлайн-курс «Математика 10+11 100 баллов»
— Теория: учебник Анны Малковой + 70 ч. видеоразборов.
— 144 ч. мастер-классов: 8 онлайн мастер-классов с Анной Малковой в месяц.
— Тренажер для отработки задач ЕГЭ (800+ задач): автоматическая + ручная проверки.
— Связь с Анной Малковой (чаты и почта).
— 9 репетиционных ЕГЭ: ежемесячно.
— Контроль: страница личных достижений учащегося, отчеты родителям.
— Личный кабинет.
ПОДРОБНЕЕ
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Векторы наu0026nbsp;ЕГЭ поu0026nbsp;математике. Действия над векторами» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
09.03.2023
Тема «Векторы на координатной плоскости» достаточно подробно рассматривается в рамках школьного курса учащихся старших классов. Однако практика показывает, что, сталкиваясь с нетипичным заданием, выпускники часто теряются и не могут быстро найти правильный ответ.
Чтобы задачи, в которых требуется построить векторы на координатной плоскости, не вызывали сложностей при написании профильного уровня ЕГЭ по математике, необходимо понять, как они решаются.
Вместе с образовательным порталом «Школково» подготовка к прохождению аттестационного испытания будет легкой и качественной! Сайт поможет учащимся выявить пробелы в знаниях и успешно справиться с аттестационным испытанием.
Чтобы разобраться в теме «Координаты вектора на координатной плоскости», рекомендуем вначале вспомнить весь базовый материал. Он представлен в разделе «Теоретическая справка». Учащиеся смогут освежить в памяти основные теоремы, свойства координат вектора, определение скалярного произведения векторов и другие понятия, которые помогут при решении заданий ЕГЭ.
Для того чтобы закрепить усвоенный материал, мы рекомендуем попрактиковаться в выполнении соответствующих упражнений. Большая подборка задач по теме «Векторы на координатной плоскости», а также по правилам сложения и вычитания векторов представлена в разделе «Каталог». Для качественной подготовки к ЕГЭ лучше всего переходить от простых упражнений к более сложным. В каждом задании на сайте представлен алгоритм решения и дан правильный ответ.
Практиковаться в выполнении задач выпускники из Москвы и других российских городов могут в онлайн-режиме. В случае необходимости любое упражнение можно сохранить в разделе «Избранное». В дальнейшем к этому заданию можно будет вернуться и, к примеру, обсудить алгоритм его решения с преподавателем.
Скалярное произведение в алгебре
Автор: Белова Виктория Васильевна,
учитель математики МБОУ СШ № 14
г. Нижневартовска
Рассмотрим задачи школьного курса алгебры, при решении которых используется скалярное произведение векторов.
Определение и свойства скалярного произведения.
Скалярным произведением двух ненулевых векторов называется произведение их длин на косинус угла между ними, т.е.
где – угол между векторами
Так как
и
Заметим, что равенство достигается в неравенстве (1), если векторы коллинеарны; в неравенстве (2), если векторы сонаправлены.
Кроме того, напомним, что если известны координаты векторов в прямоугольной системе координат, то скалярное произведение векторов и длина вектора находятся по формулам
и, следовательно, . (3)
Аналогичные формулы справедливы и для трехмерного пространства
(1,a)
(2,a)
. (3,a)
Применение векторов для решения уравнений
№1. Решите уравнение .
Решение. Введем векторы Тогда
Вычислим длины векторов:
Следовательно, и значит , .
Ответ:
№2. Решите уравнение
Решение. Введем векторы Тогда , Найдем Тогда данное уравнение запишется в виде а это выполняется тогда и только тогда, когда коллинеарны, т.е. когда коэффициенты векторов пропорциональны, следовательно,
Ответ:
№3. Решите уравнение
Решение. Введем векторы
Тогда
Пусть значит и Уравнение примет вид что возможно лишь тогда, когда – коллинеарны, тогда координаты этих векторов пропорциональны, т.е.
где
Ответ: где .
№4. Решите уравнение
Решение. Введем векторы Тогда
Но т.е. значит коллинеарны, следовательно, или
. . Из первого уравнения нетрудно заметить, что Подставим найденный корень во второе уравнение: т.е. , следовательно, корней нет.
Ответ: корней нет.
№5. Решите уравнение .
Решение. Введем векторы
то есть – коллинеарны, следовательно,
Подбором нетрудно обнаружить, что один из корней равен Разделив многочлен на выражение , получаем квадратный трехчлен ( – посторонний корень. Тогда окончательно получаем: .
Ответ:
№6. Решите систему
Решение. Введем векторы
Рассмотрим два случая:
Ответ:
№7. Решите систему
Решение. Введем векторы
следовательно, вектора коллинеарны. Тогда: Решая это равенство, получаем:
Ответ:
№8. Решите систему
Решение. Введем векторы
и следовательно, все векторы коллинеарны. Тогда:
Ответ:
№9. Решите систему
Решение. Введем векторы
, следовательно, – коллинеарны. Тогда:
Рассмотрим функцию
тогда (с точки зрения нашего уравнения) (подставили вместо в первое и нашли их значения).
Ответ:
ЛИТЕРАТУРА
- Научно-теоретический и методический журнал «Математика в школе», №8, 2008 г., с.47-51.