Найдите значение выражения егэ профиль тригонометрия

Есть в Профильном ЕГЭ по математике, и даже в первой его части, такие задачи, для решения которых нужно знать ВСЁ. То есть всю школьную программу алгебры, с 5 класса до 11. Или почти всю.

Например, задание №6 Профильного ЕГЭ по математике – вычисления и преобразования. Вам могут встретиться и совсем простые задачи (на сложение дробей), и задания, которые не решить без подготовки. Например, вычисление и преобразование иррациональных выражений, тригонометрических, логарифмических. Задачи на определение модуля и понятие функции. В общем, типов задач здесь множество, по всему курсу алгебры.

И помните, что в ответе в заданиях первой части Профильного ЕГЭ по математике у вас должны получаться целые числа или конечные десятичные дроби.

Дробно-рациональные выражения. Формулы сокращенного умножения

Темы для повторения: Формулы сокращенного умножения, Приемы быстрого счета

Если вам встретится такое задание на ЕГЭ – значит, повезло!

1. Найдите значение выражения frac{2,88cdot 44,5}{0,288cdot 4,45}.

Не спешите перемножать десятичные дроби. Посмотрите на задачу внимательно.

frac{2,88cdot 44,5}{0,288cdot 4,45}=frac{2,88cdot 44,5}{2,88cdot 0,445}=frac{44,5}{0,445}=100.

Первый множитель в знаменателе умножили на 10, а второй поделили на 10, просто передвинув запятую.

Ответ: 100.

2. Найдите значение выражения 7frac{9}{13}:frac{5}{13}.

7frac{9}{13}:frac{5}{13}=frac{100}{13}cdot frac{13}{5}=20.

Ответ: 20.

Корни и степени. Иррациональные выражения

Темы для повторения: Арифметический квадратный корень.

Арифметический квадратный корень из числа a — это такое неотрицательное число, квадрат которого равен a.

left ( sqrt{a} right )^{2}=a;;sqrt{a}geq 0;;ageq 0 .

3. Вычислите sqrt{12+4sqrt{5}}cdot sqrt{12-4sqrt{5}} .

sqrt{12+4sqrt{5}}cdot sqrt{12-4sqrt{5}}=sqrt{left ( 12+4sqrt{5} right )left ( 12-4sqrt{5} right )}=

=sqrt{144-80}=sqrt{64}=8.

Применили одну из формул сокращенного умножения.

Ответ: 8.

4. Вычислите:
left ( sqrt{28}-sqrt{12} right )cdot sqrt{10+sqrt{84}}.

Упростим множители:

sqrt{28}-sqrt{12}=sqrt{4cdot 7}-sqrt{3cdot 4}=2left ( sqrt{7}-sqrt{3} right );

sqrt{84}=sqrt{3cdot 7cdot 4}=2sqrt{3cdot 7};

left ( sqrt{28}-sqrt{12} right )cdot sqrt{10+sqrt{84}}=2left ( sqrt{7}-sqrt{3} right )cdot sqrt{10+2sqrt{3cdot 7}}=

=2left ( sqrt{7}-sqrt{3} right )cdot sqrt{left ( sqrt{7} right )^{2}+2sqrt{3}cdot sqrt{7}+left ( sqrt{3} right )^{2}}=

=2left ( sqrt{7}-sqrt{3} right )cdot sqrt{left ( sqrt{7}+sqrt{3}right )^{2}}=2left ( sqrt{7}-sqrt{3} right )left ( sqrt{7}+sqrt{3} right )=

=2cdot left ( 7-3 right )=8.

Ответ: 8.

Действия со степенями

Темы для повторения:
Вспомним правила действий со степенями.

a^{m}cdot a^{n}=a^{m+n}.

frac{a^{m}}{a^{n}}=a^{m-n}.

left ( a^{m} right )^{n}=left ( a^{n} right )^{m}=a^{mn}.

a^{n}b^{n}=left ( ab right )^{n}.

frac{a^{n}}{b^{n}}=left ( frac{a}{b} right )^{n}.

5. Найдите значение выражения: frac{a^{8,9}}{a^{4,9}} при a=4.

frac{a^{8,9}}{a^{4,9}}=a^{8,9-4,9}=a^{4}=4^{4}=256.

Применили формулу частного степеней frac{a^{m}}{a^{n}}=a^{m-n}.

Ответ: 256.

6. Вычислите left ( frac{2^{frac{1}{3}}cdot 2^{frac{1}{4}}}{sqrt[12]{2}} right )^{2}.

left ( frac{2^{frac{1}{3}}cdot 2^{frac{1}{4}}}{sqrt[12]{2}} right )^{2}=left ( frac{2^{frac{1}{3}}cdot 2^{frac{1}{4}}}{2^{frac{1}{12}}} right )^{2}=left ( 2^{frac{1}{3}+frac{1}{4}-frac{1}{12}} right )^{2}=left ( 2^{frac{4}{12}+frac{3}{12}-frac{1}{12}} right )^{2}=

=left (2^{frac{1}{2}} right )^{2}=2.

Ответ: 2.

7. Вычислите frac{5left ( m^{6} right )^{5}+13left ( m^{10} right )^{3}}{left ( 2m^{15} right )^{2}}, если m=3,7.

Спокойно, не пугаемся. И конечно, не спешим подставлять значение m=3,7. Сначала упростим выражение.

frac{5left ( m^{6} right )^{5}+13left ( m^{10} right )^{3}}{left ( 2m^{15} right )^{2}}=frac{5m^{30}+13m^{30}}{4m^{30}}=frac{18m^{30}}{4m^{30}}=4,5.

Ответ: 4,5.

8. Вычислите 0,75^{frac{1}{8}}cdot 4^{frac{1}{4}}cdot 12^{frac{7}{8}}.

0,75^{frac{1}{8}}cdot 4^{frac{1}{4}}cdot 12^{frac{7}{8}}=left ( frac{3}{4} right )^{frac{1}{8}}cdot 4^{frac{1}{4}}cdot left ( 3cdot 4 right )^{frac{7}{8}}=frac{3^{frac{1}{8}}cdot 4^{frac{1}{4}}cdot 3^{frac{7}{8}}cdot 4^{frac{7}{8}}}{4^{frac{1}{8}}}=3cdot 4=12.

Применили формулу для произведения степеней: a^{m}cdot a^{n}=a^{m+n}.

Ответ: 12.

9. Вычислите frac{sqrt[28]{3}cdot 3cdot sqrt[21]{3}}{sqrt[12]{3}}.

frac{sqrt[28]{3}cdot 3cdot sqrt[21]{3}}{sqrt[12]{3}}=frac{3^{frac{1}{28}}cdot 3cdot 3^{frac{1}{21}}}{3^{frac{1}{12}}}=3^{frac{1}{28}+1+frac{1}{21}-frac{1}{12}}=3^{frac{3}{84}+1+frac{4}{84}-frac{7}{84}}=3.

Записали корни в виде степеней (это удобно!) и применили формулу произведения степеней.

Ответ: 3.

Логарифмические выражения

Темы для повторения:
Логарифмы

Логарифм положительного числа b по основанию a — это показатель степени, в которую надо возвести a, чтобы получить b.

log _{a}b=cLeftrightarrow a^{c}=b.

При этом b> 0, a > 0, aneq 1.

Основные логарифмические формулы:

Основное логарифмическое тождество: boldsymbol{log _{a}a^{c}=c, ; a^{log _{a}b}=b}.

Логарифм произведения равен сумме логарифмов: boldsymbol{log _{a}left ( bc right )=log _{a}b+log _{a}c}.

Логарифм частного равен разности логарифмов: boldsymbol{log _{a}left ( frac{b}{c} right )=log _{a}b-log _{a}c}.

Формула для логарифма степени: boldsymbol{log _{a}b^{m}=mlog_{a}b}.

Формула перехода к новому основанию: boldsymbol{log _{a}b=frac{1}{log _{b}a},; log _{a}b=frac{log _{c}b}{log _{c}a}}.

10. Вычислите: log _{5}7cdot log _{7}25.

log _{5}7cdot log _{7}25=log _{5}7cdot log _{7}5^{2}=2log _{5}7cdot log _{7}5=2.

Снова формула перехода к другому основанию.

log _{a}b=frac{1}{log _{b}a}, поэтому
log _{a}bcdot log _{b};a=1.

11. Найдите log _{a}frac{a^{6}}{b^{4}}, если log _{a}b=-2.

log _{a}frac{a^{6}}{b^{4}}=log _{a}a^{6}-log _{a}b^{6}=6-4log _{a}b=6-4cdot left ( -2 right )=6+8=14.

12. Найдите значение выражения frac{log _{2}80}{3+log _{2}10}.

frac{log _{2}80}{3+log _{2}10}=frac{log _{2}left (8cdot 10 right )}{3+log _{2}10}=frac{log _{2}8+log _{2}10}{3+log _{2}10}=frac{3+log _{2}10}{3+log _{2}10}=1.

13. Найдите значение выражения frac{log _{9}sqrt[10]{8}}{log _{9}8}.

frac{log _{9}sqrt[10]{8}}{log _{9}8}=frac{log _{9}8^{frac{1}{10}}}{log _{9}8}=frac{1}{10}=0,1.

14. Найдите значение выражения left ( 1-log _{3}18 right )left ( log _{6}54 -1right ).

left ( 1-log _{3}18 right )left ( log _{6}54 -1right )=-left ( log _{3}18-log _{3}3 right )cdot left ( log _{6}54-log _{6}6 right )=-log _{3}6cdot log _{6}9=-2log _{3}6cdot log _{6}3=-2.

Тригонометрия. Формулы тригонометрии и формулы приведения

Темы для повторения:
Тригонометрический круг.
Формулы тригонометрии.
Формулы приведения.

15. Вычислите: 44sqrt{3}tgleft ( -480^{circ} right ).

44sqrt{3}tgleft ( -480^{circ} right )=44sqrt{3}cdot frac{sin left ( -480^{circ} right )}{cos left ( -480^{circ} right )}=-44sqrt{3}cdot frac{sin 480^{circ}}{cos 480^{circ}}=-44sqrt{3}cdot frac{sin 120^{circ}}{cos 120^{circ}}=-44sqrt{3}cdot frac{sqrt{3}}{2}:left ( -frac{1}{2} right )=132.

16. Найдите 3cos alpha, если sin alpha =-frac{2sqrt{2}}{3} и alpha in left ( frac{3pi }{2};;2pi right ).

cos ^{2}alpha =1-sin ^{2}alpha =1-left ( -frac{2sqrt{2}}{3} right )^{2}=1-frac{8}{9}=frac{1}{9}.

Т.к. alpha in left ( frac{3pi }{2};;2pi right ), то cos alpha =frac{1}{3}.
3cos alpha =3cdot frac{1}{3}=1.

17. Найдите tgalpha, если sin alpha =-frac{1}{sqrt{5}} и alpha in left ( 1,5pi ;;2pi right ).

cos ^{2}alpha =1-sin ^{2}alpha =1-left ( -frac{1}{sqrt{5}} right )^{2}=1-frac{1}{5}=frac{4}{5}.

Т.к. alpha in left ( 1,5pi ;;2pi right ), то
cos alpha =frac{2}{sqrt{5}}.

tgalpha =frac{sin alpha }{cos alpha }=-frac{1}{sqrt{5}}:frac{2}{sqrt{5}}=-2.

18. Найдите значение выражения: frac{13sin 152^{circ}}{cos 76^{circ}cdot cos 14^{circ}}.

frac{13sin 152^{circ}}{cos 76^{circ}cdot cos 14^{circ}}=frac{13cdot 2sin 76^{circ}cdot cos 76^{circ}}{cos 76^{circ}cdot cos 14^{circ}}=frac{26sin 76^{circ}}{cos 14^{circ}}=frac{26sin left ( 90^{circ}-14^{circ} right )}{cos 14^{circ}}=

=frac{26cos 14^{circ}}{cos 14^{circ}}=26.

Применили формулу приведения.

19. Упростите выражение: frac{3cos(pi - beta)+sin(frac{pi}{2}+beta)}{cos(beta+3pi)}.

frac{3cos left ( pi -beta right )+sin left ( frac{pi }{2}+beta right )}{cos left ( beta +3pi right )}=frac{-3cos beta +cos beta }{-cos beta }=frac{-2cos beta }{-cos beta }=2.

Применили формулу приведения.

20. Найдите 2cos 2alpha, если sin alpha =-0,7..

2cos 2alpha =2left ( 1-2sin ^{2}alpha right )=2-4sin ^{2}alpha =2-4cdot left ( -0,7 right )^{2}=0,04.

21. Вычислите frac{1-cos 2alpha +sin 2alpha }{1+cos 2alpha +sin 2alpha }, если tgalpha =0,3.

frac{1-cos 2alpha +sin 2alpha }{1+cos 2alpha +sin 2alpha }=frac{1-cos ^{2}alpha +sin ^{2}alpha +2sin alpha cos alpha }{1+cos ^{2}alpha -sin ^{2}alpha +2sin alpha cos alpha }=

=frac{2sin ^{2}alpha +2sin alpha cos alpha }{2cos ^{2}alpha +2sin alpha cos alpha }=frac{sin alpha left ( sin alpha +cos alpha right )}{cos alpha left ( cos alpha +sin alpha right )}=frac{sin alpha }{cos alpha }=tgalpha =0,3.

Алгебраические выражения, корни, степени и логарифмы. И еще тригонометрия. Это всё, что может встретиться в задании 6 Профильного ЕГЭ по математике?

Оказывается, и это не всё! Еще нужно знать, что такое модуль. И как найти sqrt{a^{2}}.

Другие типы заданий

Темы для повторения:
Модуль числа.
Что такое функция.

22. Найдите значение выражения
sqrt{left ( a-2 right )^{2}}+sqrt{left ( a-4 right )^{2}} при 2leq aleq 4.

Запомним: sqrt{a^{2}}=left | a right |.

sqrt{left ( a-2 right )^{2}}+sqrt{left ( a-4 right )^{2}}=left | a-2 right |+left | a-4 right |.

Если 2leq aleq 4, то a-2geq 0 и left | a-2 right |=a-2.

При этом a-4leq 0 и left | a-4 right |=4-a.

При 2leq aleq 4 получаем: left | a-2 right |+left | a-4 right |=a-2+4-a=2.

Ответ: 2.

23. Найдите значение выражения

x+sqrt{x^{2}-24x+144} при xleq 12.

При xleq 12 получим:

x+sqrt{x^{2}-24x+144}=x+sqrt{left ( x-12 right )^{2}}=x+left | x-12 right |=x+12-x=12.

Ответ: 12.

24. Найдите frac{gleft ( 5-x right )}{gleft ( 5+x right )}, если gleft ( x right )=sqrt[9]{xleft ( 10-x right )}, при left | x right |neq 5.

Что такое gleft ( x right )? Это функция, каждому числу ставящая в соответствие число sqrt[9]{xleft ( 10-x right )}. Например, gleft ( 0 right )=0;

gleft ( 1 right )=sqrt[9]{1cdot left ( 10-1 right )}=sqrt[9]{9}.

Тогда:

gleft ( 5-x right )=sqrt[9]{left ( 5-x right )left ( 10-5+x right )}=sqrt[9]{left ( 5-x right )left ( 5+x right )};

gleft ( 5+x right )=sqrt[9]{left ( 5+x right )left ( 10-5-x right )}=sqrt[9]{left ( 5+x right )left ( 5-x right )}.

Заметим, что gleft ( 5-x right )=gleft ( 5+x right ).

Значит, при left | x right |neq 5.
frac{gleft ( 5-x right )}{gleft ( 5+x right )}=1.

25. Найдите frac{pleft ( b right )}{pleft ( frac{1}{b} right )}, если pleft ( b right )=left ( b-frac{9}{b} right )left ( -9b+frac{1}{b} right ), при bneq 0.

pleft ( b right )=left ( b-frac{9}{b} right )left ( -9b+frac{1}{b} right ) — функция, каждому числу b ставящая в соответствии число
left ( b-frac{9}{b} right )left ( -9b+frac{1}{b} right ).

Тогда при bneq 0.

pleft ( frac{1}{b} right )=left ( frac{1}{b}-9b right )left ( -frac{9}{b} +bright )=left ( b-frac{9}{b} right )left (-9b +frac{1}{b} right )=pleft ( b right ), и значение выражения frac{pleft ( b right )}{pleft ( frac{1}{b} right )} равно 1.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задание 6 ЕГЭ по математике. Вычисления и преобразования» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Skip to content

ЕГЭ Профиль №6. Вычисление значений тригонометрических выражений

ЕГЭ Профиль №6. Вычисление значений тригонометрических выраженийadmin2022-11-29T17:06:06+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №6. Вычисление значений тригонометрических выражений

Задача 1. Найдите значение выражения      (frac{{50sin {{179}^ circ } cdot cos {{179}^ circ }}}{{sin {{358}^ circ }}})

Ответ

ОТВЕТ: 25.

Решение

Воспользуемся формулой синуса двойного угла: (sin 2alpha  = 2sin alpha cos alpha )

(frac{{50sin {{179}^ circ } cdot cos {{179}^ circ }}}{{sin {{358}^ circ }}} = frac{{50sin {{179}^ circ } cdot cos {{179}^ circ }}}{{sin left( {2 cdot {{179}^ circ }} right)}} = frac{{50sin {{179}^ circ } cdot cos {{179}^ circ }}}{{2sin {{179}^ circ } cdot cos {{179}^ circ }}} = 25.)

Ответ: 25.

Задача 2. Найдите значение выражения      (8sin frac{{5{\pi }}}{{12}} cdot cos frac{{5{\pi }}}{{12}})

Ответ

ОТВЕТ: 2.

Решение

Воспользуемся формулой синуса двойного угла: (sin 2alpha  = 2sin alpha cos alpha )

(8sin frac{{5pi }}{{12}}cos frac{{5pi }}{{12}} = 4 cdot 2 cdot sin frac{{5pi }}{{12}}cos frac{{5pi }}{{12}} = 4 cdot sin left( {2 cdot frac{{5pi }}{{12}}} right) = 4 cdot sin frac{{5pi }}{6} = 4 cdot frac{1}{2} = 2.)

Ответ: 2.

Задача 3. Найдите значение выражения      (frac{{24left( {{{sin }^2}{{17}^ circ } — {{cos }^2}{{17}^ circ }} right)}}{{cos {{34}^ circ }}})

Ответ

ОТВЕТ: — 24.

Решение

Воспользуемся формулой косинус двойного угла: (cos 2alpha  = {cos ^2}alpha  — {sin ^2}alpha )

(frac{{24left( {{{sin }^2}{{17}^ circ } — {{cos }^2}{{17}^ circ }} right)}}{{cos {{34}^ circ }}} = frac{{ — 24left( {{{cos }^2}{{17}^ circ } — {{sin }^2}{{17}^ circ }} right)}}{{cos {{34}^ circ }}} = frac{{ — 24cos {{34}^ circ }}}{{cos {{34}^ circ }}} =  — 24.)

Ответ: — 24.

Задача 4. Найдите значение выражения      (sqrt 3 {cos ^2}frac{{5{pi }}}{{12}} — sqrt 3 {sin ^2}frac{{5pi }}{{12}})

Ответ

ОТВЕТ: — 1,5.

Решение

Воспользуемся формулой косинус двойного угла: (cos 2alpha  = {cos ^2}alpha  — {sin ^2}alpha )

(sqrt 3 {cos ^2}frac{{5pi }}{{12}} — sqrt 3 {sin ^2}frac{{5pi }}{{12}} = sqrt 3 left( {{{cos }^2}frac{{5pi }}{{12}} — {{sin }^2}frac{{5pi }}{{12}}} right) = sqrt 3 cos left( {2 cdot frac{{5pi }}{{12}}} right) = )

( = sqrt 3 cos frac{{5pi }}{6} = sqrt 3  cdot left( { — frac{{sqrt 3 }}{2}} right) =  — 1,5.)

Ответ: — 1,5.

Задача 5. Найдите значение выражения      (sqrt {12} {cos ^2}frac{{5{pi }}}{{12}} — sqrt 3 )

Ответ

ОТВЕТ: — 1,5.

Решение

Воспользуемся формулой косинус двойного угла: (cos 2alpha  = 2{cos ^2}alpha  — 1)

(sqrt {12} {cos ^2}frac{{5pi }}{{12}} — sqrt 3  = sqrt 3 left( {2{{cos }^2}frac{{5pi }}{{12}} — 1} right) = sqrt 3  cdot cos left( {2 cdot frac{{5pi }}{{12}}} right) = )

( = sqrt 3 cos frac{{5pi }}{6} = sqrt 3  cdot left( { — frac{{sqrt 3 }}{2}} right) =  — 1,5.)

Ответ: — 1,5.

Задача 6. Найдите значение выражения      (sqrt 3  — sqrt {12} {sin ^2}frac{{5{pi }}}{{12}})

Ответ

ОТВЕТ: — 1,5.

Решение

Воспользуемся формулой косинус двойного угла: (cos 2alpha  = 1 — 2{sin ^2}alpha )

(sqrt 3  — sqrt {12} {sin ^2}frac{{5pi }}{{12}} = sqrt 3 left( {1 — 2{{sin }^2}frac{{5pi }}{{12}}} right) = sqrt 3 cos left( {2 cdot frac{{5pi }}{{12}}} right) = )

( = sqrt 3 cos frac{{5pi }}{6} = sqrt 3  cdot left( { — frac{{sqrt 3 }}{2}} right) =  — 1,5.)

Ответ: — 1,5.

Задача 7. Найдите    ( — 47cos 2alpha ),     если     (cos alpha  =  — 0,4)

Ответ

ОТВЕТ: 31,96.

Решение

Воспользуемся формулой косинус двойного угла: (cos 2alpha  = 2{cos ^2}alpha  — 1)

( — 47cos 2alpha  =  — 47 cdot left( {2{{cos }^2}alpha  — 1} right) =  — 47 cdot left( {2 cdot {{left( { — 0,4} right)}^2} — 1} right) = )

( =  — 47 cdot left( {0,32 — 1} right) =  — 47 cdot left( { — 0,68} right) = 31,96.)

Ответ: 31,96.

Задача 8. Найдите значение выражения      (frac{{5cos {{29}^ circ }}}{{sin {{61}^ circ }}})

Ответ

ОТВЕТ: 5.

Решение

(frac{{5cos {{29}^ circ }}}{{sin {{61}^ circ }}} = frac{{5cos left( {{{90}^ circ } — {{61}^ circ }} right)}}{{sin {{61}^ circ }}} = frac{{5sin {{61}^ circ }}}{{sin {{61}^ circ }}} = 5.)

При решении воспользовались формулой приведения: (cos left( {{{90}^ circ } — alpha } right) = sin alpha .)

Ответ: 5.

Задача 9. Найдите значение выражения     (36sqrt 3 {text{tg}}frac{{\pi }}{3}sin frac{{\pi }}{6})

Ответ

ОТВЕТ: 54.

Решение

(36sqrt 3 ,,tgfrac{pi }{3} cdot sin frac{pi }{6} = 36sqrt 3  cdot sqrt 3  cdot frac{1}{2} = 18 cdot 3 = 54.)

Ответ: 54.

Задача 10. Найдите значение выражения     (4sqrt 2 cos frac{{\pi }}{4}cos frac{{7{\pi }}}{3})

Ответ

ОТВЕТ: 2.

Решение

(4sqrt 2 cos frac{pi }{4}cos frac{{7pi }}{3} = 4sqrt 2  cdot frac{{sqrt 2 }}{2}cos left( {frac{{7pi }}{3} — 2pi } right) = 4 cdot cos frac{pi }{3} = 4 cdot frac{1}{2} = 2.)

При решении воспользовались периодичностью косинуса: (cos left( {alpha  — 2pi } right) = cos alpha .)

Ответ: 2.

Задача 11. Найдите значение выражения     (frac{8}{{sin left( { — frac{{27{\pi }}}{4}} right)cos left( {frac{{31{\pi }}}{4}} right)}})

Ответ

ОТВЕТ: — 16.

Решение

(sin left( { — frac{{27pi }}{4}} right) = sin left( { — frac{{27pi }}{4} + 8pi } right) = sin frac{{5pi }}{4} =  — frac{{sqrt 2 }}{2})

(cos left( {frac{{31pi }}{4}} right) = cos left( {frac{{31pi }}{4} — 8pi } right) = cos left( { — frac{pi }{4}} right) = cos frac{pi }{4} = frac{{sqrt 2 }}{2})

(frac{8}{{sin left( { — frac{{27pi }}{4}} right) cdot cos left( {frac{{31pi }}{4}} right)}} = frac{8}{{ — frac{{sqrt 2 }}{2} cdot frac{{sqrt 2 }}{2}}} =  — 16.)

Ответ: — 16.

Задача 12. Найдите значение выражения     (33sqrt 2 cos left( {{{495}^ circ }} right))

Ответ

ОТВЕТ: — 33.

Решение

(33sqrt 2 cos left( {{{495}^ circ }} right) = 33sqrt 2 cos left( {{{495}^ circ } — {{360}^ circ }} right) = 33sqrt 2 cos {135^ circ } = 33sqrt 2  cdot left( { — frac{{sqrt 2 }}{2}} right) =  — 33.)

Ответ: — 33.

Задача 13. Найдите значение выражения      (2sqrt 3 {text{tg}}left( { — {{300}^ circ }} right))

Ответ

ОТВЕТ: 6.

Решение

(2sqrt 3 tgleft( { — {{300}^ circ }} right) = 2sqrt 3 tgleft( { — {{300}^ circ } + {{360}^ circ }} right) = 2sqrt 3 tg{60^ circ } = 2sqrt 3  cdot sqrt 3  = 6.)

Ответ: 6.

Задача 14. Найдите значение выражения     ( — 18sqrt 2 sin left( { — {{135}^ circ }} right))

Ответ

ОТВЕТ: 18.

Решение

( — 18sqrt 2 sin left( { — {{135}^ circ }} right) = 18sqrt 2 sin {135^ circ } = 18sqrt 2  cdot frac{{sqrt 2 }}{2} = 18.)

Ответ: 18.

Задача 15. Найдите значение выражения     (24sqrt 2 cos left( { — frac{{\pi }}{3}} right)sin left( { — frac{{\pi }}{4}} right))

Ответ

ОТВЕТ: — 12.

Решение

(24sqrt 2 cos left( { — frac{pi }{3}} right)sin left( { — frac{pi }{4}} right) =  — 24sqrt 2 cos frac{pi }{3}sin frac{pi }{4} =  — 24sqrt 2  cdot frac{1}{2} cdot frac{{sqrt 2 }}{2} =  — 12.)

Ответ: — 12.

Задача 16. Найдите значение выражения     (frac{{14sin {{19}^ circ }}}{{sin {{341}^ circ }}})

Ответ

ОТВЕТ: — 14.

Решение

(frac{{14sin {{19}^ circ }}}{{sin {{341}^ circ }}} = frac{{14sin {{19}^ circ }}}{{sin left( {{{341}^ circ } — {{360}^ circ }} right)}} = frac{{14sin {{19}^ circ }}}{{sin left( { — {{19}^ circ }} right)}} = frac{{14sin {{19}^ circ }}}{{ — sin {{19}^ circ }}} =  — 14.)

Ответ: — 14.

Задача 17. Найдите значение выражения     (frac{{36cos {{93}^ circ }}}{{cos {{87}^ circ }}})

Ответ

ОТВЕТ: — 36.

Решение

(frac{{36cos {{93}^ circ }}}{{cos {{87}^ circ }}} = frac{{ — 36cos left( {{{180}^ circ } — {{93}^ circ }} right)}}{{cos {{87}^ circ }}} = frac{{ — 36cos {{87}^ circ }}}{{cos {{87}^ circ }}} =  — 36.)

Ответ: — 36.

Задача 18. Найдите значение выражения      (frac{{ — 37{text{tg6}}{{text{3}}^ circ }}}{{{text{tg11}}{{text{7}}^ circ }}})

Ответ

ОТВЕТ: 37.

Решение

(frac{{ — 37tg{{63}^ circ }}}{{tg{{117}^ circ }}} = frac{{ — 37tg{{63}^ circ }}}{{ — tgleft( {{{180}^ circ } — {{117}^ circ }} right)}} = frac{{37tg{{63}^ circ }}}{{tg{{63}^ circ }}} = 37.)

Ответ: 37.

Задача 19. Найдите значение выражения     (frac{{14sin {{409}^ circ }}}{{sin {{49}^ circ }}})

Ответ

ОТВЕТ: 14.

Решение

(frac{{14sin {{409}^ circ }}}{{sin {{49}^ circ }}} = frac{{14sin left( {{{409}^ circ } — {{360}^ circ }} right)}}{{sin {{49}^ circ }}} = frac{{14sin {{49}^ circ }}}{{sin {{49}^ circ }}} = 14.)

Ответ: 14.

Задача 20. Найдите значение выражения      (5{text{tg1}}{{text{7}}^ circ } cdot {text{tg10}}{{text{7}}^ circ })

Ответ

ОТВЕТ: — 5.

Решение

(5,tg{17^ circ } cdot tg{107^ circ } = 5,tg{17^ circ } cdot tgleft( {{{90}^ circ } + {{17}^ circ }} right) =  — 5,tg{17^ circ } cdot ctg{17^ circ } =  — 5.)

При решении воспользовались формулой приведения: (tgleft( {{{90}^ circ } + alpha } right) =  — tgalpha ) и формулой: (tgalpha  cdot ctgalpha  = 1.)

Ответ: — 5.

Задача 21. Найдите значение выражения     ( — 6{text{tg3}}{{text{1}}^ circ } cdot {text{tg5}}{{text{9}}^ circ })

Ответ

ОТВЕТ: — 6.

Решение

( — 6,,tg{31^ circ } cdot tg{59^ circ } =  — ,6,tg{31^ circ } cdot tgleft( {{{90}^ circ } — {{59}^ circ }} right) =  — ,6,tg{31^ circ } cdot ctg{31^ circ } =  — 6.)

При решении воспользовались формулой приведения: (tgleft( {{{90}^ circ } — alpha } right) = ctgalpha .)

Ответ: — 6.

Задача 22. Найдите значение выражения      (frac{{ — 12}}{{{{sin }^2}{{131}^ circ } + {{sin }^2}{{221}^ circ }}})

Ответ

ОТВЕТ: — 12.

Решение

(frac{{ — 12}}{{{{sin }^2}{{131}^ circ } + {{sin }^2}{{221}^ circ }}} = frac{{ — 12}}{{{{sin }^2}{{131}^ circ } + {{sin }^2}left( {{{90}^ circ } + {{131}^ circ }} right)}} = frac{{ — 12}}{{{{sin }^2}{{131}^ circ } + {{cos }^2}{{131}^ circ }}} =  — frac{{12}}{1} =  — 12.)

Ответ: — 12.

Задача 23. Найдите значение выражения     (frac{{27}}{{{{cos }^2}{{116}^ circ } + {{cos }^2}{{206}^ circ }}})

Ответ

ОТВЕТ: 27.

Решение

(frac{{27}}{{{{cos }^2}{{116}^ circ } + {{cos }^2}{{206}^ circ }}} = frac{{27}}{{{{cos }^2}{{116}^ circ } + {{cos }^2}left( {{{90}^ circ } + {{116}^ circ }} right)}} = frac{{27}}{{{{cos }^2}{{116}^ circ } + {{left( { — sin {{116}^ circ }} right)}^2}}} = )

( = frac{{27}}{{{{cos }^2}{{116}^ circ } + {{sin }^2}{{116}^ circ }}} = frac{{27}}{1} = 27.)

Ответ: 27.

Задача 24. Найдите значение выражения      (frac{{ — 5}}{{{{sin }^2}{{16}^ circ } + {{cos }^2}{{196}^ circ }}})

Ответ

ОТВЕТ: — 5.

Решение

(frac{{ — 5}}{{{{sin }^2}{{16}^ circ } + {{cos }^2}{{196}^ circ }}} = frac{{ — 5}}{{{{sin }^2}{{16}^ circ } + {{cos }^2}left( {{{180}^ circ } + {{16}^ circ }} right)}} = frac{{ — 5}}{{{{sin }^2}{{16}^ circ } + {{left( { — cos {{16}^ circ }} right)}^2}}} = )

( = frac{{ — 5}}{{{{sin }^2}{{16}^ circ } + {{cos }^2}{{16}^ circ }}} = frac{{ — 5}}{1} =  — 5.)

Ответ: — 5.

Задача 25. Найдите значение выражения      (frac{{ — 14sin {{84}^ circ }}}{{sin {{42}^ circ } cdot sin {{48}^ circ }}})

Ответ

ОТВЕТ: — 28.

Решение

Воспользуемся формулой синуса двойного угла: (sin 2alpha  = 2sin alpha cos alpha )

(frac{{ — 14sin {{84}^ circ }}}{{sin {{42}^ circ } cdot sin {{48}^ circ }}} = frac{{ — 14sin left( {2 cdot {{42}^ circ }} right)}}{{sin {{42}^ circ }sin {{48}^ circ }}} = frac{{ — 14 cdot 2 cdot sin {{42}^ circ } cdot cos {{42}^ circ }}}{{sin {{42}^ circ } cdot cos left( {{{90}^ circ } — {{48}^ circ }} right)}} = frac{{ — 28cos {{42}^ circ }}}{{cos {{42}^ circ }}} =  — 28.)

При решении воспользовались формулой приведения: (cos left( {{{90}^ circ } — alpha } right) = sin alpha .)

Ответ: — 28.

Задача 26. Найдите значение выражения      (frac{{5sin {{74}^ circ }}}{{cos {{37}^ circ } cdot cos {{53}^ circ }}})

Ответ

ОТВЕТ: 10.

Решение

Воспользуемся формулой синуса двойного угла: (sin 2alpha  = 2sin alpha cos alpha )

(frac{{5sin {{74}^ circ }}}{{cos {{37}^ circ } cdot cos {{53}^ circ }}} = frac{{5 cdot sin left( {2 cdot {{37}^ circ }} right)}}{{cos {{37}^ circ }cos {{53}^ circ }}} = frac{{5 cdot 2 cdot sin {{37}^ circ }cos {{37}^ circ }}}{{cos {{37}^ circ } cdot sin left( {{{90}^ circ } — {{53}^ circ }} right)}} = frac{{10sin {{37}^ circ }}}{{sin {{37}^ circ }}} = 10.)

При решении воспользовались формулой приведения: (sin left( {{{90}^ circ } — alpha } right) = cos alpha .)

Ответ: 10.

Задача 27. Найдите значение выражения      (20sin {135^ circ } cdot cos {45^ circ })

Ответ

ОТВЕТ: 10.

Решение

(20sin {135^ circ } cdot cos {45^ circ } = 20frac{{sqrt 2 }}{2} cdot frac{{sqrt 2 }}{2} = 10.)

Ответ: 10.

Задача 28. Найдите    ({text{tg}}alpha ),    если (cos alpha  = frac{1}{{sqrt {10} }})     и    (a in left( {frac{{3{\pi }}}{2};;2{\pi }} right))

Ответ

ОТВЕТ: — 3.

Решение

1 Вариант

Воспользуемся формулой: (1 + t{g^2}alpha  = frac{1}{{{{cos }^2}alpha }}).

Тогда: (1 + t{g^2}alpha  = frac{1}{{{{left( {frac{1}{{sqrt {10} }}} right)}^2}}},,,,,, Leftrightarrow ,,,,,1 + t{g^2}alpha  = 10,,,,,, Leftrightarrow ,,,,,t{g^2}alpha  = 9)

Следовательно, (tgalpha  = 3) или (tgalpha  =  — 3). Так как (alpha ,, in ,,left( {frac{{3pi }}{2};2pi } right)), то есть лежит в четвертой четверти, то его тангенс отрицательный. Поэтому (tgalpha  =  — 3.)

2 Вариант

Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha  + {cos ^2}alpha  = 1)

({sin ^2}alpha  + {left( {frac{1}{{sqrt {10} }}} right)^2} = 1,,,,, Leftrightarrow ,,,,,,{sin ^2}alpha  = 1 — frac{1}{{10}},,,,, Leftrightarrow ,,,,,{sin ^2}alpha  = frac{9}{{10}})

Следовательно, (sin alpha  = frac{3}{{sqrt {10} }}) или (sin alpha  =  — frac{3}{{sqrt {10} }}). Так как (alpha ,, in ,,left( {frac{{3pi }}{2};2pi } right)), то есть лежит в четвертой четверти, то его синус отрицательный. Поэтому (sin alpha  =  — frac{3}{{sqrt {10} }}).

Воспользуемся тем, что: (tgalpha  = frac{{sin alpha }}{{cos alpha }} = frac{{ — frac{3}{{sqrt {10} }}}}{{frac{1}{{sqrt {10} }}}} =  — 3.)

Ответ: — 3.

Задача 29. Найдите    ({text{tg}}alpha ),    если (sin alpha  =  — frac{5}{{sqrt {26} }})     и    (alpha  in left( {{\pi };;frac{{3{\pi }}}{2}} right))

Ответ

ОТВЕТ: 5.

Решение

1 Вариант

Воспользуемся формулой: (1 + ct{g^2}alpha  = frac{1}{{{{sin }^2}alpha }})

Тогда: (1 + ct{g^2}alpha  = frac{1}{{{{left( { — frac{5}{{sqrt {26} }}} right)}^2}}},,,,,,, Leftrightarrow ,,,,,,,1 + ct{g^2}alpha  = frac{{26}}{{25}},,,,,,, Leftrightarrow ,,,,,,,ct{g^2}alpha  = frac{1}{{25}})

Следовательно, (ctgalpha  = frac{1}{5}) или (ctgalpha  =  — frac{1}{5}).

Так как (alpha ,, in ,,left( {pi ;frac{{3pi }}{2}} right)), то есть лежит в третьей четверти, то его котангенс положительный. Поэтому (ctgalpha  = frac{1}{5}.)

Так как  (tgalpha  cdot ctgalpha  = 1),  то (tgalpha  = frac{1}{{ctgalpha }} = frac{1}{{frac{1}{5}}} = 5.)

2 Вариант

Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha  + {cos ^2}alpha  = 1.)

({left( { — frac{5}{{sqrt {26} }}} right)^2} + {cos ^2}alpha  = 1,,,,,, Leftrightarrow ,,,,,,{cos ^2}alpha  = 1 — frac{{25}}{{26}},,,,,, Leftrightarrow ,,,,,,{cos ^2}alpha  = frac{1}{{26}}.)

Следовательно, (cos alpha  = frac{1}{{sqrt {26} }}) или (cos alpha  =  — frac{1}{{sqrt {26} }}).

Так как (alpha ,, in ,,left( {pi ;frac{{3pi }}{2}} right)), то есть лежит в третьей четверти, то косинус отрицательный. Поэтому (cos alpha  =  — frac{1}{{sqrt {26} }}).

Воспользуемся тем, что: (tgalpha  = frac{{sin alpha }}{{cos alpha }} = frac{{ — frac{5}{{sqrt {26} }}}}{{ — frac{1}{{sqrt {26} }}}} = 5.)

Ответ: 5.

Задача 30. Найдите   (3cos alpha ),   если   (sin alpha  =  — frac{{2sqrt 2 }}{3})   и   (alpha  in left( {frac{{3{\pi }}}{2};;2{\pi }} right))

Ответ

ОТВЕТ: 1.

Решение

Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha  + {cos ^2}alpha  = 1.)

({left( { — frac{{2sqrt 2 }}{3}} right)^2} + {cos ^2}alpha  = 1,,,,,, Leftrightarrow ,,,,,{cos ^2}alpha  = 1 — frac{8}{9},,,,,, Leftrightarrow ,,,,,,{cos ^2}alpha  = frac{1}{9})

Следовательно, (cos alpha  = frac{1}{3}) или (cos alpha  =  — frac{1}{3}).

Так как (alpha ,, in ,,left( {frac{{3pi }}{2};2pi } right)), то есть лежит в четвертой четверти, то его косинус положительный. Поэтому (cos alpha  = frac{1}{3}.)  Тогда: (3cos alpha  = 3 cdot frac{1}{3} = 1.)

Ответ: 1.

Задача 31. Найдите   (7sin alpha ),   если   (cos alpha  = frac{{3sqrt 5 }}{7})   и   (alpha  in left( {1,5{\pi };;2{\pi }} right))

Ответ

ОТВЕТ: — 2.

Решение

Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha  + {cos ^2}alpha  = 1.)

({sin ^2}alpha  + {left( {frac{{3sqrt 5 }}{7}} right)^2} = 1,,,,,, Leftrightarrow ,,,,,{sin ^2}alpha  = 1 — frac{{45}}{{49}},,,,,, Leftrightarrow ,,,,,,{sin ^2}alpha  = frac{4}{{49}})

Следовательно: (sin alpha  = frac{2}{7}) или (sin alpha  =  — frac{2}{7}).

Так как (alpha ,, in ,,left( {1,5pi ;2pi } right)), то есть лежит в четвертой четверти, то его синус отрицательный. Поэтому (sin alpha  =  — frac{2}{7}.)

Тогда: (7sin alpha  = 7 cdot left( { — frac{2}{7}} right) =  — 2.)

Ответ: — 2.

Задача 32. Найдите   (24cos 2alpha ),   если   (sin alpha  =  — 0,2)

Ответ

ОТВЕТ: 22,08.

Решение

Воспользуемся формулой косинус двойного угла: (cos 2alpha  = 1 — 2{sin ^2}alpha )

(24cos 2alpha  = 24 cdot left( {1 — 2{{sin }^2}alpha } right) = 24 cdot left( {1 — 2 cdot {{left( { — 0,2} right)}^2}} right) = 24 cdot left( {1 — 0,08} right) = 24 cdot 0,92 = 22,08)

Ответ: 22,08.

Задача 33. Найдите   (frac{{10sin 6alpha }}{{3cos 3alpha }}),   если   (sin 3alpha  = 0,6)

Ответ

ОТВЕТ: 4.

Решение

Воспользуемся формулой синуса двойного угла: (sin 2alpha  = 2sin alpha cos alpha )

(frac{{10sin 6alpha }}{{3cos 3alpha }} = frac{{10 cdot sin left( {2 cdot 3alpha } right)}}{{3cos 3alpha }} = frac{{10 cdot 2 cdot sin 3alpha  cdot cos 3alpha }}{{3cos 3alpha }} = frac{{20 cdot sin 3alpha }}{3} = frac{{20 cdot 0,6}}{3} = 4.)

Ответ: 4.

Задача 34. Найдите значение выражения    (frac{{3cos left( {{\pi } — beta } right) + sin left( {frac{{\pi }}{2} + beta } right)}}{{cos left( {beta  + 3{\pi }} right)}})

Ответ

ОТВЕТ: 2.

Решение

(frac{{3cos left( {pi  — beta } right) + sin left( {frac{pi }{2} + beta } right)}}{{cos left( {beta  + 3pi } right)}} = frac{{ — 3cos beta  + cos beta }}{{ — cos beta }} = frac{{ — 2cos beta }}{{ — cos beta }} = 2.)

Ответ: 2.

Задача 35. Найдите значение выражения    (frac{{2sin left( {alpha  — 7{\pi }} right) + cos left( {frac{{3{\pi }}}{2} + alpha } right)}}{{sin left( {a + {\pi }} right)}})

Ответ

ОТВЕТ: 1.

Решение

(frac{{2sin left( {alpha  — 7pi } right) + cos left( {frac{{3pi }}{2} + alpha } right)}}{{sin left( {alpha  + pi } right)}} = frac{{ — 2sin alpha  + sin alpha }}{{ — sin alpha }} = frac{{ — sin alpha }}{{ — sin alpha }} = 1.)

Ответ: 1.

Задача 36. Найдите значение выражения  (5{text{tg}}left( {5{\pi } — gamma } right) — {text{tg}}left( { — gamma } right)),  если ({text{tg}}gamma {text{ = 7}})

Ответ

ОТВЕТ: — 28.

Решение

(5,tgleft( {5pi  — gamma } right) — tgleft( { — gamma } right) =  — 5,tggamma  + tggamma  =  — 4,tggamma  =  — 4 cdot 7 =  — 28.)

Ответ: — 28.

Задача 37. Найдите   (sin left( {frac{{7{\pi }}}{2} — alpha } right)),   если   (sin alpha  = 0,8)   и   (a in left( {frac{{\pi }}{2};;{\pi }} right))

Ответ

ОТВЕТ: 0,6.

Решение

(sin left( {frac{{7pi }}{2} — alpha } right) =  — cos alpha )

Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha  + {cos ^2}alpha  = 1)

({0,8^2} + {cos ^2}alpha  = 1,,,,, Leftrightarrow ,,,,,{cos ^2}alpha  = 1 — 0,64,,,,, Leftrightarrow ,,,,,{cos ^2}alpha  = 0,36)

Следовательно, (cos alpha  = 0,6) или (cos alpha  =  — 0,6).

Так как (alpha ,, in ,,left( {frac{pi }{2};pi } right)), то есть лежит во второй четверти, то его косинус отрицательный.

Поэтому: (sin left( {frac{{7pi }}{2} — alpha } right) =  — cos alpha  =  — left( { — 0,6} right) = 0,6.)

Ответ:  0,6.

Задача 38. Найдите   (26cos left( {frac{{3{\pi }}}{2} + alpha } right)),   если   (cos alpha  = frac{{12}}{{13}})   и   (alpha  in left( {frac{{3{\pi }}}{2};;2{\pi}} right))

Ответ

ОТВЕТ: — 10.

Решение

(26cos left( {frac{{3pi }}{2} + alpha } right) = 26sin alpha )

Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha  + {cos ^2}alpha  = 1)

({sin ^2}alpha  + {left( {frac{{12}}{{13}}} right)^2} = 1,,,,,, Leftrightarrow ,,,,,,{sin ^2}alpha  = 1 — frac{{144}}{{169}},,,,,,, Leftrightarrow ,,,,,{sin ^2}alpha  = frac{{25}}{{169}})

Следовательно, (sin alpha  = frac{5}{{13}}) или (sin alpha  =  — frac{5}{{13}}).

Так как (alpha ,, in ,,left( {frac{{3pi }}{2};2pi } right)), то есть лежит в четвертой четверти, то его синус отрицательный. Поэтому: (26cos left( {frac{{3pi }}{2} + alpha } right) = 26sin alpha  = 26 cdot left( { — frac{5}{{13}}} right) =  — 10.)

Ответ: — 10.

Задача 39. Найдите   ({text{tg}}left( {alpha  + frac{{5{\pi }}}{2}} right)),   если   ({text{tg}}alpha {text{ = 0}}{text{,4}})

Ответ

ОТВЕТ: — 2,5.

Решение

(tgleft( {alpha  + frac{{5pi }}{2}} right) =  — ctgalpha )

Воспользуемся тем, что: (tgalpha  cdot ctgalpha  = 1.)

Тогда: (ctgalpha  = frac{1}{{tgalpha }} = frac{1}{{0,4}} = 2,5.)  Поэтому:  (tgleft( {alpha  + frac{{5pi }}{2}} right) =  — ctgalpha  =  — 2,5.)

Ответ: — 2,5.

Задача 40. Найдите   ({text{t}}{{text{g}}^2}alpha ),   если   (4{sin ^2}alpha  + 9{cos ^2}alpha  = 6)

Ответ

ОТВЕТ: 1,5.

Решение

Выполним следующее преобразование:  (6 = 6 cdot 1 = 6left( {{{sin }^2}alpha  + {{cos }^2}alpha } right) = 6{sin ^2}alpha  + 6{cos ^2}alpha )

Тогда:

(4{sin ^2}alpha  + 9{cos ^2}alpha  = 6,,,,, Leftrightarrow ,,,,,4{sin ^2}alpha  + 9{cos ^2}alpha  = 6{sin ^2}alpha  + 6{cos ^2}alpha ,,,,, Leftrightarrow )

( Leftrightarrow ,,,,,2{sin ^2}alpha  = 3{cos ^2}alpha ,,,,, Leftrightarrow ,,,,,frac{{{{sin }^2}alpha }}{{{{cos }^2}alpha }}, = frac{3}{2},,,,,, Leftrightarrow ,,,,,t{g^2}alpha  = 1,5.)

Ответ: 1,5.

Задача 41. Найдите   (frac{{3cos alpha  — 4sin alpha }}{{2sin alpha  — 5cos alpha }}),   если   ({text{tg}}alpha {text{ = 3}})

Ответ

ОТВЕТ: — 9.

Решение

1 Вариант

Разделим числитель и знаменатель дроби на (cos alpha ). Тогда:

(frac{{3cos alpha  — 4sin alpha }}{{2sin alpha  — 5cos alpha }} = frac{{frac{{3cos alpha }}{{cos alpha }} — frac{{4sin alpha }}{{cos alpha }}}}{{frac{{2sin alpha }}{{cos alpha }} — frac{{5cos alpha }}{{cos alpha }}}} = frac{{3 — 4,,tgalpha }}{{2,,tgalpha  — 5}} = frac{{3 — 4 cdot 3}}{{2 cdot 3 — 5}} = frac{{ — 9}}{1} =  — 9.)

2 Вариант

Так как (tgalpha  = 3), то (frac{{sin alpha }}{{cos alpha }} = 3) и (sin alpha  = 3cos alpha ). Тогда:

(frac{{3cos alpha  — 4sin alpha }}{{2sin alpha  — 5cos alpha }} = frac{{3cos alpha  — 4 cdot 3cos alpha }}{{2 cdot 3cos alpha  — 5cos alpha }} = frac{{3cos alpha  — 12cos alpha }}{{6cos alpha  — 5cos alpha }} = frac{{ — 9cos alpha }}{{cos alpha }} =  — 9.)

Ответ: — 9.

Задача 42. Найдите   (frac{{10cos alpha  + 4sin alpha  + 15}}{{2sin alpha  + 5cos alpha  + 3}}),   если   ({text{tg}}alpha {text{ = }} — {text{2}}{text{,5}})

Ответ

ОТВЕТ: 5.

Решение

1 Вариант

Разделим числитель и знаменатель дроби на (cos alpha ). Тогда:

(frac{{10cos alpha  + 4sin alpha  + 15}}{{2sin alpha  + 5cos alpha  + 3}} = frac{{frac{{10cos alpha }}{{cos alpha }} + frac{{4sin alpha }}{{cos alpha }} + frac{{15}}{{cos alpha }}}}{{frac{{2sin alpha }}{{cos alpha }} + frac{{5cos alpha }}{{cos alpha }} + frac{3}{{cos alpha }}}} = frac{{10 + 4,,tgalpha  + frac{{15}}{{cos alpha }}}}{{2,,tgalpha  + 5 + frac{3}{{cos alpha }}}} = )

( = frac{{10 + 4 cdot left( { — 2,5} right) + frac{{15}}{{cos alpha }}}}{{2 cdot left( { — 2,5} right) + 5 + frac{3}{{cos alpha }}}} = frac{{10 — 10 + frac{{15}}{{cos alpha }}}}{{ — 5 + 5 + frac{3}{{cos alpha }}}} = frac{{frac{{15}}{{cos alpha }}}}{{frac{3}{{cos alpha }}}} = frac{{15}}{{cos alpha }} cdot frac{{cos alpha }}{3} = 5.)

2 Вариант

Так как  (tgalpha  =  — 2,5),  то (frac{{sin alpha }}{{cos alpha }} =  — 2,5)  и  (sin alpha  =  — 2,5cos alpha ).  Тогда:

(frac{{10cos alpha  + 4sin alpha  + 15}}{{2sin alpha  + 5cos alpha  + 3}} = frac{{10cos alpha  + 4 cdot left( { — 2,5cos alpha } right) + 15}}{{2 cdot left( { — 2,5cos alpha } right) + 5cos alpha  + 3}} = frac{{10cos alpha  — 10cos alpha  + 15}}{{ — 5cos alpha  + 5cos alpha  + 3}} = frac{{15}}{3} = 5.)

Ответ: 5.

Задача 43. Найдите   ({text{tg}}alpha ),   если   (frac{{6sin alpha  — 2cos alpha }}{{4sin alpha  — 4cos alpha }} =  — 1)

Ответ

ОТВЕТ: 0,6.

Решение

Разделим числитель и знаменатель левой части на (cos alpha ):

(frac{{frac{{6sin alpha }}{{cos alpha }} — frac{{2cos alpha }}{{cos alpha }}}}{{frac{{4sin alpha }}{{cos alpha }} — frac{{4cos alpha }}{{cos alpha }}}} =  — 1,,,,, Leftrightarrow ,,,,,frac{{6,,tgalpha  — 2}}{{4,,tgalpha  — 4}} = frac{{ — 1}}{1},,,,, Leftrightarrow ,,,,,6,,tgalpha  — 2 =  — 4,tgalpha  + 4,,,,, Leftrightarrow )

( Leftrightarrow ,,,,,10,,tgalpha  = 6,,,,, Leftrightarrow ,,,,,tgalpha  = 0,6.)

Ответ: 0,6.

Задача 44. Найдите   ({text{tg}}alpha ),   если   (frac{{3sin alpha  — 5cos alpha  + 2}}{{sin alpha  + 3cos alpha  + 6}} = frac{1}{3})

Ответ

ОТВЕТ: 2,25.

Решение

Воспользуемся свойством пропорции:

(frac{{3sin alpha  — 5cos alpha  + 2}}{{sin alpha  + 3cos alpha  + 6}} = frac{1}{3},,,,,, Leftrightarrow ,,,,,,3left( {3sin alpha  — 5cos alpha  + 2} right) = sin alpha  + 3cos alpha  + 6,,,,,, Leftrightarrow )

( Leftrightarrow ,,,,,,9sin alpha  — 15cos alpha  + 6 = sin alpha  + 3cos alpha  + 6,,,,, Leftrightarrow ,,,,,8sin alpha  = 18cos alpha ,,,,, Leftrightarrow )

( Leftrightarrow ,,,,,frac{{sin alpha }}{{cos alpha }} = frac{{18}}{8},,,,, Leftrightarrow ,,,,,tgalpha  = 2,25.)

Ответ: 2,25.

Задача 45. Найдите   значение   выражения   (7cos left( {{\pi } + beta } right) — 2sin left( {frac{{\pi }}{2} + beta } right)),  если   (cos beta  =  — frac{1}{3})

Ответ

ОТВЕТ: 3.

Решение

(7cos left( {pi  + beta } right) — 2sin left( {frac{pi }{2} + beta } right) =  — 7cos beta  — 2cos beta  =  — 9cos beta  =  — 9 cdot left( { — frac{1}{3}} right) = 3.)

Ответ: 3.

Задача 46. Найдите  значение  выражения   (5sin left( {alpha  — 7{\pi }} right) — 11cos left( {frac{{3{\pi }}}{2} + alpha } right)), если   (sin alpha  =  — 0,25)

Ответ

ОТВЕТ: 4.

Решение

(5sin left( {alpha  — 7pi } right) — 11cos left( {frac{{3pi }}{2} + alpha } right) =  — 5sin alpha  — 11sin alpha  =  — 16sin alpha  =  — 16 cdot left( { — 0,25} right) = 4.)

Ответ: 4.

Задача 47. Найдите   (3cos 2alpha ),   если   (cos alpha  = frac{1}{2})

Ответ

ОТВЕТ: — 1,5.

Решение

Воспользуемся формулой косинус двойного угла: (cos 2alpha  = 2{cos ^2}alpha  — 1)

(3cos 2alpha  = 3left( {2{{cos }^2}alpha  — 1} right) = 3 cdot left( {2 cdot {{left( {frac{1}{2}} right)}^2} — 1} right) = 3 cdot left( {2 cdot frac{1}{4} — 1} right) = 3 cdot left( { — frac{1}{2}} right) =  — 1,5.)

Ответ: — 1,5.

9. Преобразование числовых и буквенных выражений


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Числовые тригонометрические выражения

(blacktriangleright) Алгоритм применения формул приведения:

Шаг 1: определить, меняется ли функция на кофункцию: [sin
longleftrightarrow cos]
[mathrm{tg} longleftrightarrow mathrm{ctg}]
Шаг 2: определить знак, который имеет изначальная функция, поняв, в какой четверти тригонометрической окружности находится изначальный угол (предполагая, что (alpha) – острый)

(blacktriangleright) Если угол можно представить в виде ((pi npm
alpha))
, где (n) – натуральное, то функция на кофункцию не меняется.
Пример: (sin (pi npm alpha)=bigodot sin alpha), где на месте (bigodot) должен стоять знак синуса для угла ((pi npm alpha))

(blacktriangleright) Если угол можно представить в виде (left(dfrac{pi}2npm alpharight)), где (n) – нечетное число, то функция на кофункцию меняется
Пример: (sin left(dfrac{pi}2npm alpharight)=bigodot cos
alpha)
, где на месте (bigodot) должен стоять знак синуса для угла (left(dfrac{pi}2npm alpharight))

(blacktriangleright) Основные формулы:

[begin{array}{|ccc|}
hline sin^2 alpha+cos^2 alpha =1&& mathrm{tg} alpha cdot
mathrm{ctg}alpha
=1\ &&\
mathrm{tg} alpha=dfrac{sin alpha}{cos alpha}&&mathrm{ctg}
alpha
=dfrac{cos alpha}{sin alpha}\&&\
cos {2alpha}=cos^2 alpha — sin^2 alpha&&cos
{2alpha}=1-2sin^2
alpha\&&\
cos {2alpha}=2cos^2alpha -1&&sin {2alpha}=2sin alpha cos
alpha\
hline
end{array}]


Задание
1

#573

Уровень задания: Легче ЕГЭ

Найдите значение выражения (2sin^2 30^circ + cos^2 30^circ).

Используя основное тригонометрическое тождество, исходное выражение можно преобразовать следующим образом: [2sin^2 30^circ + cos^2 30^circ = sin^2 30^circ + (sin^2 30^circ + cos^2 30^circ) = sin^2 30^circ + 1.] Так как (sin 30^circ = 0,5), то значение исходного выражения равно (0,5^2 + 1 = 1,25).

Ответ: 1,25


Задание
2

#2958

Уровень задания: Равен ЕГЭ

Найдите значение выражения [dfrac{24}{sin^2127^circ+1+sin^2217^circ}]

Заметим, что (217^circ=90^circ+127^circ). Так как по формуле приведения (sin(90^circ+alpha)=cos alpha), то [sin
217^circ=sin (90^circ+127^circ)=cos 127^circ]
Следовательно, выражение можно переписать в виде: [dfrac{24}{sin^2127^circ+cos^2127^circ+1}=dfrac{24}{1+1}=12,] так как по основному тригонометрическому тождеству (sin^2alpha+cos^2alpha=1) для любого угла (alpha).

Ответ: 12


Задание
3

#2626

Уровень задания: Равен ЕГЭ

Найдите значение выражения

[sqrt{48}-sqrt{192}sin^2dfrac{19pi}{12}]

(Задача от подписчиков.)

Заметим, что (192=48cdot 4), следовательно, (sqrt{192}=2sqrt{48}). Таким образом, выражение примет вид (по формуле косинуса двойного угла (cos2x=1-2sin^2x)):

[sqrt{48}left(1-2sin^2dfrac{19pi}{12}right)=
sqrt{48}cdot cosdfrac{19pi}6]

Т.к. (dfrac{19pi}6=dfrac{18pi+pi}6=3pi+dfrac{pi}6), то по формуле приведения:

[sqrt{48}cosleft(3pi+dfrac{pi}6right)=
sqrt{48}cdot left(-cosdfrac{pi}6right)=-sqrt{48}cdot
dfrac{sqrt3}2=-4sqrt3cdot dfrac{sqrt3}2=-6.]

Ответ: -6


Задание
4

#2434

Уровень задания: Равен ЕГЭ

Найдите значение выражения

[8left(sindfrac{pi}{12}cosdfrac{pi}{12}-1right)]

По формуле синуса двойного угла (sin2alpha=2sinalphacosalpha) имеем: (sinalphacosalpha=frac12sin2alpha). Следовательно,

[8left(dfrac12sin2cdotdfrac{pi}{12}-1right)=8left(dfrac12sindfrac{pi}6-1right)=
8left(dfrac12cdot dfrac12-1right)=-6.]

Ответ: -6


Задание
5

#2625

Уровень задания: Равен ЕГЭ

Найдите значение выражения

[dfrac{32}{sinleft(-dfrac{35pi}4right)cdot cos dfrac{25pi}4}]

(Задача от подписчиков.)

Т.к. синус — нечетная функция, то есть (sin (-alpha)=-sin
alpha)
, то (sinleft(-frac{35pi}4right)=-sin frac{35pi}4).

Заметим, что :

(dfrac{35pi}4=dfrac{36pi
-pi}4=9pi-dfrac{pi}4)
;

(dfrac{25pi}4=dfrac{24pi+pi}4=6pi+dfrac{pi}4).

Таким образом, по формулам приведения:

(sin
dfrac{35pi}4=sinleft(9pi-dfrac{pi}4right)=sindfrac{pi}4)
;

(cos
dfrac{25pi}4=cosleft(6pi+dfrac{pi}4right)=cosdfrac{pi}4)
.

Следовательно, выражение принимает вид:

[dfrac{32}{-sindfrac{pi}4cosdfrac{pi}4}=
-dfrac{32}{dfrac{sqrt2}2cdot dfrac{sqrt2}2}=-64.]

Ответ: -64


Задание
6

#581

Уровень задания: Равен ЕГЭ

Найдите значение выражения (dfrac{7sin{11^circ}}{cos{79^circ}}).

Используя формулу приведения (sin(90^circ pm alpha) = cos alpha), исходное выражение можно преобразовать следующим образом: [dfrac{7sin{11^circ}}{cos{79^circ}} = dfrac{7sin{(90^circ — 79^circ)}}{cos{79^circ}} = dfrac{7cos{79^circ}}{cos{79^circ}} = 7.]

Ответ: 7


Задание
7

#1841

Уровень задания: Равен ЕГЭ

Найдите значение выражения (dfrac{15}{sin{(-frac{20pi}{3})}
cdot cos{(-frac{43pi}{6})}})
.

Используя формулы приведения, а также четность косинуса и нечетность синуса, исходное выражение можно преобразовать следующим образом: [dfrac{15}{-sin{left(6pi + frac{2pi}{3}right)} cdot
cos{left(7pi + frac{pi}{6}right)}} =
dfrac{15}{-sin{left(frac{2pi}{3}right)} cdot
(-cos{left(frac{pi}{6}right)})} =
dfrac{15}{-frac{sqrt{3}}{2} cdot ({-frac{sqrt{3}}{2})}} = 20.]

Ответ: 20

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Задание 975

Вычислите $$frac{sin 35cos 35}{sin ^{2} 10-cos ^{2} 10}$$

Ответ: -0.5

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$frac{sin 35cos 35}{sin ^{2} 10-cos ^{2} 10}=$$ $$frac{0.5sin 70}{-cos 20}=frac{0.5cos 20}{-cos 20}=-0.5$$

Задание 1099

Вычислите $$tg alpha $$, если известно, что $$cos 2alpha =0.6$$ и $$frac{3pi }{4}< alpha < pi $$

Ответ: -0.5

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Воспользуемся формулой косинуса двойного угла: $$cos 2alpha =2cos^{2}alpha-1=0.6$$

С учетом того, что $$alpha$$ — угол второй четверти, то косинус у него отрицательный, а синус положительный.

Значит: $$cos alpha = -sqrt{frac{cos 2alpha+1}{2}}=-sqrt{frac{0.6+1}{2}}=-sqrt{0.8} $$

Воспользуемся основным тригонометрическим тождеством: $$sin alpha = sqrt{1-cos^{2}alpha}=sqrt{0.2}$$

Значит тангенс будет равен: $$tan alpha = frac{sin alpha}{cos alpha}= frac{sqrt{0.2}}{-sqrt{0.8}}=-frac{1}{2}=-0.5$$

Задание 1238

Известно, что $$frac{cos x-sin x}{cos x+sin x}=-0.8$$. Найдите $$ tg x $$

Ответ: 9

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$frac{cos x-sin x}{cos x+sin x}=-0.8=frac{-4}{5}$$ $$(cos x-sin x)*5=-4*(cos x+sin x)$$ $$5cos x-5sin x=-4*cos x-4sin x$$ $$9cos x = sin x $$ Поделим обе части на cos x $$9 = tg x $$

Задание 1279

Известно, что $$ tg x = frac{2}{sqrt{21}}$$ и $$pi < x< frac{3pi }{2}$$. Найдите sin x

Ответ: -0.4

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Угол располагается в третьей четверти, поэтому sin будет отрицательный. Найдем сначала ctg x: $$ ctg x = frac {1}{tg x}= frac {1}{frac{2}{sqrt{21}}}=frac{sqrt{21}}{2}$$ Выразим sin x из формулы $$ 1 + ctg^{2} x = frac{1}{sin^{2} x} $$ $$ frac{1}{1 + ctg^{2} x} =sin^{2} x $$ $$sin x = — sqrt{ frac{1}{1 + ctg^{2} x} } $$ $$sin x = — sqrt{ frac{1}{1 + (frac{sqrt{21}}{2})^{2}} }=- sqrt{ frac{1}{1 + frac{21}{4}}}=-frac{2}{5}=-0.4 $$

Задание 1444

Найдите значение выражения: $$frac{12sin 11^{circ}*cos 11^{circ}}{sin 22^{circ}}$$.

Ответ: 6

Задание 1445

Найдите значение выражения: $$frac{24(sin^2 17^{circ}-cos^2 17^{circ})}{cos 34^{circ}}$$.

Ответ: -24

Задание 1446

Найдите значение выражения: $$frac{5cos 29^{circ}}{sin 61^{circ}}$$.

Ответ: 5

Задание 1447

Найдите значение выражения: $$36sqrt{6}tan frac{pi }{6}sinfrac{pi }{4}$$.

Ответ: 36

Задание 1448

Найдите значение выражения: $$4sqrt{2}cos frac{pi }{4}cosfrac{7pi }{3}$$.

Ответ: 2

Задание 1449

Найдите значение выражения: $$frac{8}{sin (-frac{27pi }{4})cos(frac{31pi }{4})}$$.

Ответ: -16

Задание 1450

Найдите значение выражения: $$-4sqrt{3}cos(-750^{circ})$$.

Ответ: -6

Задание 1451

Найдите значение выражения: $$2sqrt{3}tan(-300^{circ})$$.

Ответ: 6

Задание 1452

Найдите значение выражения: $$-18sqrt{2}sin(-135^{circ})$$.

Ответ: 18

Задание 1453

Найдите значение выражения: $$24sqrt{2}cos(-frac{pi }{3})sin(-frac{pi }{4})$$.

Ответ: -12

Задание 2352

Найдите значение выражения: $$frac{38cos 153^{circ}}{cos 27^{circ}}$$

Ответ: -38

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$frac{38cos 153^{circ}}{cos 27^{circ}}=frac{38cos(180^{circ}-27^{circ})}{cos 27^{circ}}=frac{38 (-cos 27^{circ})}{cos 27^{circ}}=-38$$

1. Алгебраические выражения

2. Выражения с корнями

2.1 Найдите значение выражения sqrt{9-4sqrt{5}}-sqrt{5} Смотреть видеоразбор
2.2 Найдите значение выражения frac{(2sqrt{7})^2}{14} Смотреть видеоразбор
2.3 Найдите значение выражения (sqrt{13}-sqrt{7})(sqrt{13}+sqrt{7}) Смотреть видеоразбор
2.4 Найдите значение выражения frac{sqrt{2,8} cdot sqrt{4,2}}{sqrt{0,24}} Смотреть видеоразбор
2.5 Найдите значение выражения (sqrt{3frac{6}{7}}-sqrt{1frac{5}{7}}):sqrt{frac{3}{28}} Смотреть видеоразбор
2.6 Найдите значение выражения frac{(sqrt{13}+sqrt{7})^2}{10+sqrt{91}} Смотреть видеоразбор

3. Логарифмические выражения

4. Выражения со степенями

4.1 Найдите значение выражения 5^{0,36} cdot 25^{0,32} Смотреть видеоразбор
4.2 Найдите значение выражения frac{3^{6,5}}{9^{2,25}} Смотреть видеоразбор
4.3 Найдите значение выражения 7^{frac{4}{9}} cdot 49^{frac{5}{18}} Смотреть видеоразбор
4.4 Найдите значение выражения frac{2^{3,5} cdot 3^{5,5}}{6^4,5} Смотреть видеоразбор
4.5 Найдите значение выражения 35^{-4,7} cdot 7^{5,7} : 5^{-3,7} Смотреть видеоразбор
4.6 Найдите значение выражения frac{sqrt[9]{7} cdot sqrt[18]{7}}{sqrt[6]{7}} Смотреть видеоразбор
4.7 Найдите значение выражения frac{sqrt[5]{10} cdot sqrt[5]{16}}{sqrt[5]{5}} Смотреть видеоразбор
4.8 Найдите значение выражения (frac{2^{frac{1}{3}} cdot 2^{frac{1}{4}}}{sqrt[12]{2}})^2 Смотреть видеоразбор
4.9 Найдите значение выражения frac{(2^{frac{3}{5}} cdot 2^{frac{2}{3}})^{15}}{10^9} Смотреть видеоразбор
4.10 Найдите значение выражения 0,8^{frac{1}{7}} cdot 5^{frac{2}{7}} cdot 20^{frac{6}{7}} Смотреть видеоразбор
4.11 Найдите значение выражения 5 cdot sqrt[3]{9} cdot sqrt[6]{9} Смотреть видеоразбор
4.12 Найдите значение выражения frac{sqrt[28]{3} cdot 3 cdot sqrt[21]{3}}{sqrt[12]{3}} Смотреть видеоразбор
4.13 Найдите значение выражения frac{sqrt[15]{5} cdot 5 cdot sqrt[10]{5}}{sqrt[6]{5}} Смотреть видеоразбор
4.14 Найдите значение выражения 0,75^{frac{1}{8}} cdot 4^{frac{1}{4}} cdot 12^{frac{7}{8}} Смотреть видеоразбор
4.15 Найдите значение выражения 7^{sqrt{5}-1} cdot 7^{2+sqrt{5}} : 7^{2sqrt{5}-1} Смотреть видеоразбор
4.16 Найдите значение выражения frac{1}{2^{log_{sin{frac{pi}{3}}}sqrt{2}}} Смотреть видеоразбор

5. Тригонометрические выражения

5.1 Найдите значение выражения sqrt{18}-sqrt{72}sin^2{frac{13pi}{8}} Смотреть видеоразбор
5.2 Найдите значение выражения sqrt{128} cdot cos^2{frac{11pi}{8}} — sqrt{32} Смотреть видеоразбор
5.3 Найдите sin{alpha}, если cos{alpha} = 0,6 и pi lt alpha lt 2pi. Смотреть видеоразбор
5.4 Найдите значение выражения frac{4sin{17^{circ}}cos{17^{circ}}}{cos{56^{circ}}} Смотреть видеоразбор
5.5 Найдите значение выражения sin{10^{circ}} cdot sin{50^{circ}} cdot sin{70^{circ}} Смотреть видеоразбор
5.6 Найдите значение выражения 5sqrt{3}-10sqrt{2}cos(-frac{pi}{12}) Смотреть видеоразбор
5.7 Найдите значение выражения sqrt{50}-sqrt{200}cos^2{frac{5pi}{8}} Смотреть видеоразбор

6. Нестандартные задачи (не входят в ЕГЭ)

6.1 Найдите значение выражения sqrt[3]{9+sqrt{80}}+sqrt[3]{9-sqrt{80}} Смотреть видеоразбор
6.2 Докажите равенство cos{36^{circ}} — cos{72^{circ}} = frac{1}{2} Смотреть видеоразбор
6.3 Найдите sin 10 + |sin 10| Смотреть видеоразбор
6.4 Вычислите 4^{sqrt{log_4{5}}} — 5^{sqrt{log_5{4}}} Смотреть видеоразбор
6.5 Вычислите frac{2sin{10^{circ}}+sin{50^{circ}}}{2sin{80^{circ}}-sqrt{3}sin{50^{circ}}} Смотреть видеоразбор

В задании (6) ЕГЭ по профильной математике нужно преобразовать числовое, буквенное, степенное, иррациональное, логарифмическое или тригонометрическое выражение и найти его значение. За это задание можно получить (1) балл.

Пример:

найди значение выражения

−20tg53°⋅tg143°=−20tg53°⋅tg(90°+53°)=−20tg53°⋅ctg53°.

Алгоритм выполнения задания

    1. Определи тип выражения. 
       
    2. Выполни преобразования, соответствующие типу выражения.
       
    3. Если задано значение переменной, подставь это значение в упрощённое выражение. Вычисли его значение.
       
    4. Запиши ответ.

Как решить задание из примера?

    1. Дано тригонометрическое выражение. 
       

    2. Заметим, что

      143°=90°+53°

      . Используем формулу приведения

      tg(90+α)=−ctgα

       и преобразуем выражение:

      −20tg53°⋅tg143°=−20tg53°⋅tg(90°+53°)=−20tg53°⋅ctg53°.
       

    3. Воспользуемся формулой

      tgα⋅ctgα=1

      :

      −20tg53°⋅ctg53°=−20⋅1=−20.
       

    4. Запишем ответ (непосредственно в самом задании — без точки в конце).

      Ответ: (-20).

Обрати внимание!

В заданиях «Как на ЕГЭ» ответы записывай в виде целого числа или десятичной дроби без пробелов и точки в конце.

Если получилась обыкновенная дробь и её нельзя перевести в конечную десятичную дробь — ищи ошибку в решении!

Понравилась статья? Поделить с друзьями:
  • Наилучший день егэ
  • Найдите значение выражения 5tg17 tg107 егэ
  • Наикрасивейшие украшения егэ
  • Наидобрейший человек выслушая замечания егэ
  • Найдите значение выражения 2 log2 6 3 решу егэ