Найти наибольшее значение функции егэ профиль

Всего: 638    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Найдите наибольшее значение функции y=10 синус x минус дробь: числитель: 36, знаменатель: Пи конец дроби x плюс 7 на отрезке  левая квадратная скобка минус дробь: числитель: 5 Пи , знаменатель: 6 конец дроби ;0 правая квадратная скобка .


Найдите наименьшее значение функции y=5 синус x плюс дробь: числитель: 24, знаменатель: Пи конец дроби x плюс 6 на отрезке  левая квадратная скобка минус дробь: числитель: 5 Пи , знаменатель: 6 конец дроби ;0 правая квадратная скобка .


Найдите наименьшее значение функции y=4x минус 4 натуральный логарифм левая круглая скобка x плюс 7 правая круглая скобка плюс 6 на отрезке  левая квадратная скобка минус 6,5;0 правая квадратная скобка .


Найдите наибольшее значение функции y = 12 синус x минус дробь: числитель: 66, знаменатель: Пи конец дроби x плюс 14 на отрезке  левая квадратная скобка минус дробь: числитель: 5 Пи , знаменатель: 6 конец дроби ;0 правая квадратная скобка .


Найдите наибольшее значение функции y = 14 синус x минус дробь: числитель: 48, знаменатель: Пи конец дроби x плюс 22 на отрезке  левая квадратная скобка минус дробь: числитель: 5 Пи , знаменатель: 6 конец дроби ;0 правая квадратная скобка .


Найдите наибольшее значение функции y=13 плюс 30x минус 4x корень из x на отрезке  левая квадратная скобка 23;33 правая квадратная скобка .


Найдите наименьшее значение функции y= левая круглая скобка x минус 8 правая круглая скобка e в степени левая круглая скобка x минус 7 правая круглая скобка на отрезке  левая квадратная скобка 6;8 правая квадратная скобка .


Найдите наименьшее значение функции y=5 косинус x минус 6x плюс 4 на отрезке  левая квадратная скобка минус дробь: числитель: 3 Пи , знаменатель: 2 конец дроби ;0 правая квадратная скобка .


Найдите наибольшее значение функции y= натуральный логарифм левая круглая скобка x плюс 5 правая круглая скобка в степени левая круглая скобка 5 правая круглая скобка минус 5x на отрезке [−4,5; 0].


Найдите наибольшее значение функции y=8 натуральный логарифм левая круглая скобка x плюс 7 правая круглая скобка минус 8x плюс 3 на отрезке  левая квадратная скобка минус 6,5;0 правая квадратная скобка .


Найдите наибольшее значение функции y= натуральный логарифм левая круглая скобка 11x правая круглая скобка минус 11x плюс 9 на отрезке  левая квадратная скобка дробь: числитель: 1, знаменатель: 22 конец дроби ; дробь: числитель: 5, знаменатель: 22 конец дроби правая квадратная скобка .


Найдите наименьшее значение функции y = левая круглая скобка x минус 24 правая круглая скобка e в степени левая круглая скобка x минус 23 правая круглая скобка на отрезке  левая квадратная скобка 22;24 правая квадратная скобка .


Найдите наименьшее значение функции y = 14 синус x плюс дробь: числитель: 72, знаменатель: Пи конец дроби x плюс 26 на отрезке  левая квадратная скобка минус дробь: числитель: 5 Пи , знаменатель: 6 конец дроби ;0 правая квадратная скобка .


Найдите наименьшее значение функции y = 10x минус натуральный логарифм левая круглая скобка x плюс 10 правая круглая скобка в степени левая круглая скобка 10 правая круглая скобка на отрезке  левая квадратная скобка минус 9,5;0 правая квадратная скобка .


Найдите наибольшее значение функции y = натуральный логарифм левая круглая скобка x плюс 11 правая круглая скобка в степени левая круглая скобка 12 правая круглая скобка минус 12x на отрезке  левая квадратная скобка минус 10,5;0 правая квадратная скобка .


Найдите наибольшее значение функции y = 10 натуральный логарифм левая круглая скобка x плюс 5 правая круглая скобка минус 10x минус 21 на отрезке  левая квадратная скобка минус 4,5;0 правая квадратная скобка .


Найдите наименьшее значение функции y = 6x минус натуральный логарифм левая круглая скобка 6x правая круглая скобка плюс 17 на отрезке  левая квадратная скобка дробь: числитель: 1, знаменатель: 12 конец дроби ; дробь: числитель: 5, знаменатель: 12 конец дроби правая квадратная скобка .


Найдите наибольшее значение функции y = натуральный логарифм левая круглая скобка 12x правая круглая скобка минус 12x плюс 16 на отрезке  левая квадратная скобка дробь: числитель: 1, знаменатель: 24 конец дроби ; дробь: числитель: 5, знаменатель: 24 конец дроби правая квадратная скобка .


Найдите наибольшее значение функции y = натуральный логарифм левая круглая скобка 19x правая круглая скобка минус 19x плюс 9 на отрезке  левая квадратная скобка дробь: числитель: 1, знаменатель: 38 конец дроби ; дробь: числитель: 5, знаменатель: 38 конец дроби правая квадратная скобка .


Найдите наибольшее значение функции y= минус 15x в квадрате минус x в кубе плюс 6 на отрезке  левая квадратная скобка минус 0,5;10 правая квадратная скобка .

Всего: 638    1–20 | 21–40 | 41–60 | 61–80 …

Задание 11 первой части Профильного ЕГЭ по математике — это нахождение точек максимума и минимума функции, а также наибольших и наименьших значений функции с помощью производной.

Вот какие типы задач могут встретиться в этом задании:

Нахождение точек максимума и минимума функций

Исследование сложных функций

Нахождение наибольших и наименьших значений функций на отрезке

Нахождение точек максимума и минимума функций

1. Найдите точку максимума функции displaystyle y=-{{x^2+289}over{x}}.

Найдем производную функции.

Приравняем производную к нулю. Получим:

x^2=289Leftrightarrow left[ begin{array}{c}  x=17, hfill \ x=-17. end{array} right.

Исследуем знаки производной.

В точке x = 17 производная y меняет знак с «плюса» на «минус». Значит, x= 17 — точка максимума функции y(x).

Ответ: 17.

2. Найдите точку минимума функции y=2x^2-5x+lnx-3.

Найдем производную функции.

y{

Приравняем производную к нулю.

4x-5+{{1}over{x}}=0Leftrightarrow 4x^2-5x+1=0Leftrightarrow left[ begin{array}{c}  x=1, \ x={{1}over{4}}. end{array} right.

Определим знаки производной.

В точке x = 1 производная y меняет знак с «минуса» на «плюс». Значит, x= 1 — точка минимума функции y(x).

Ответ: 1.

Исследование сложных функций

3. Найдите точку максимума функции y=2^{5-8x-x^2}.

Перед нами сложная функция y=2^{5-8x-x^2}. Возможно, вы знаете формулы производной сложной функции. Но вообще-то их изучают на первом курсе вуза, поэтому мы решим задачу более простым способом.

Так как функция y=2^t монотонно возрастает, точка максимума функции y=2^{5-8x-x^2} будет при том же x_0, что и точка максимума функции tleft(xright)=5-8x-x^2. А ее найти легко.

t^{

t^{ при x=-4. В точке x = -4 производная {{ t}}^{{ меняет знак с «плюса» на «минус». Значит, x= - 4 — точка максимума функции { t}left({ x}right).

Заметим, что точку максимума функции tleft(xright)=5-8x-x^2 можно найти и без производной.

Графиком функции tleft(xright) является парабола ветвями вниз, и наибольшее значение tleft(xright) достигается в вершине параболы, то есть при x=-frac{8}{2}=-4.

Ответ: — 4.

4. Найдите абсциссу точки максимума функции y=sqrt{4-4x-x^2}.

Напомним, что абсцисса — это координата по X.

Снова сложная функция. Применяем тот же прием, что и в предыдущей задаче.

Так как функция y=sqrt{z} монотонно возрастает, точка максимума функции y=sqrt{4-4x-x^2} является и точкой максимума функции tleft(xright)=4-4x-x^2.

Это вершина квадратичной параболы tleft(xright)=4-4x-x^2;x_0=frac{-4}{2}=-2.

Нахождение наибольших и наименьших значений функций на отрезке

5. Найдите наибольшее значение функции y=x^3+2x^2-4x+4 на отрезке [-2;0].

Мы помним, что наибольшее значение функции на отрезке может достигаться либо в точке максимума, либо на конце отрезка. Эти случаи показаны на рисунке.

Будем искать точку максимума функции y=x^3+2x^2-4x+4 с помощью производной. Найдем производную и приравняем ее к нулю.

y

y

{3x}^2+4x-4=0;

D=64;x=frac{-4pm 8}{6};x_1=frac{2}{3},x_2=-2.

Найдем знаки производной.

В точке x = - 2 производная равна нулю и меняет знак с «+» на «-«. Значит, x = — 2 — точка максимума функции y(x). Поскольку при xin [-2;0] функция y(x) убывает, y_{max}left(xright)=yleft(-2right)=12. В этой задаче значение функции на концах отрезка искать не нужно.

Ответ: 12.

6. Найдите наименьшее значение функции y={4x}^2-10x+2lnx-5 на отрезке [0,3;3].

Найдем производную функции y={4x}^2-10x+2lnx-5 и приравняем ее к нулю.

y при x_1=1,x_2=frac{1}{4}.

Найдем знаки производной.

Точка x_1=1 — точка минимума функции yleft(xright). Точка x_2=frac{1}{4} не лежит на отрезке [0,3;1]. Поэтому

 и  Значит, наименьшее значение функции на отрезке left[0,3;1right] достигается при x=1. Найдем это значение.

y_{min}left(xright)=yleft(1right)=4-10-5=-11.

Ответ: -11.

7. Найдите наименьшее значение функции y=9x-{ln left(9xright)}+3 на отрезке left[frac{1}{18};frac{5}{18}right].

Иногда перед тем, как взять производную, формулу функции полезно упростить.

y=9x-{ln left(9xright)}+3=9x-{ln 9-{ln x}}+3.

Мы применили формулу для логарифма произведения. y при x=frac{1}{9}.

Если  то  Если , то 

Значит, x=frac{1}{9} — точка минимума функции y(x). В этой точке и достигается наименьшее значение функции на отрезке left[frac{1}{18};frac{5}{18}right].

y_{min}left(xright)=yleft(frac{1}{2}right)=1+3=4.

Ответ: 4.

8. Найдите наибольшее значение функции y(x)=14x-7tgx-3,5pi +11 на отрезке left[-frac{pi }{3};frac{pi }{3}right].

Найдем производную функции y(x)=14x-7tgx-3,5pi +11. y

Приравняем производную к нулю: 14-frac{7}{{cos}^2x}=0.

{cos}^2x=frac{1}{2}.

{cos}^2x=pm frac{1}{sqrt{2}}=pm frac{sqrt{2}}{2}. Поскольку xin left[-frac{pi }{3};frac{pi }{3}right], y если x=pm frac{pi }{4}.

Найдем знаки производной на отрезке left[-frac{pi }{3};frac{pi }{3}right].

При x=frac{pi }{4} знак производной меняется с «плюса» на «минус». Значит, x=frac{pi }{4} — точка максимума функции y(x).

Мы нашли точку максимума, но это еще не все. Сравним значения функции в точке максимума и на конце отрезка, то есть при x=-frac{pi }{3} и x =frac{pi }{4}.

yleft(frac{pi }{4}right)=-7+11=4;

Мы нашли, что y_{max}left(xright)=yleft(frac{pi }{4}right)=-7+11=4.

Заметим, что если вам попадется такая задача в первой части ЕГЭ по математике, то находить значение функции при -frac{pi }{3} не обязательно. Как мы видим, это значение — число иррациональное. А в первой части ЕГЭ по математике ответом может быть только целое число или конечная десятичная дробь.

Ответ: 4.

9. Найдите наименьшее значение функции y=e^{2x}-{8e}^x+9 на отрезке [0;2].

Снова сложная функция. Запишем полезные формулы:

{{(e}^{-x})}^{

{left(e^{cx}right)}^{

{(e}^{x+a})

Найдем производную функции y=e^{2x}-{8e}^x+9.

y

y если e^x=4. Тогда x=ln4.

 При x=ln4 знак производной меняется с «минуса» на «плюс». Значит, x=ln4 — точка минимума функции y(x). yleft(ln4right)=4^2-8cdot 4+9=16-32+9=-7.

Ответ: -7.

10. Найдите наибольшее значение функции y=12cosx+6sqrt{3}x-2sqrt{3}pi +6 на отрезке left[0;frac{pi }{2}.right]

Как всегда, возьмем производную функции и приравняем ее к нулю.

y

y 12sinx=6sqrt{3};

sinx=frac{sqrt{3}}{2}.

По условию, xin left[0;frac{pi }{2}right]. На этом отрезке условие sinx=frac{sqrt{3}}{2} выполняется только для x=frac{pi }{3}. Найдем знаки производной слева и справа от точки x=frac{pi }{3}.

В точке x_0=frac{pi }{3} производная функции меняет знак с «плюса» на «минус». Значит, точка x_0=frac{pi }{3} — точка максимума функции y(x). Других точек экстремума на отрезке left[0;frac{pi }{2}right] функция не имеет, и наибольшее значение функции { y=12cosx+6}sqrt{{ 3}}{ }{ x}{ -}{ 2}sqrt{{ 3}}{ }pi { +6} на отрезке left[{ 0};frac{pi }{{ 2}}right] достигается при { x=}frac{pi }{{ 3}}.

y_{max}left(xright)=yleft(frac{pi }{3}right)=12.

Ответ: 12.

11.Найдите наименьшее значение функции y=16x-6sinx+6 на отрезке left[0;frac{pi }{2}right].

Найдем производную функции и приравняем ее к нулю.  — нет решений.

Что это значит? Производная функции y=16x-6sinx+6 не равна нулю ни в какой точке. Это значит, что знак производной в любой точке одинаков, а функция не имеет экстремумов и является монотонной.

Поскольку cosxle 1, получим, что  для всех x, и функция yleft(xright)=16x-6sinx+6 монотонно возрастает при xin left[0;frac{pi }{2}right].

Значит, наименьшее свое значение функция принимает в левом конце отрезка left[{ 0};frac{pi }{{ 2}}right], то есть при x=0.

y_{min}left(xright)=yleft(0right)=6.

Ответ: 6

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Задание 11 Профильного ЕГЭ по математике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

1. Элементарные функции

2. Применение формул производной произведения и частного

2.1 Найдите точку минимума функции y=(3-x)cdot e^{3-x}. Смотреть видеоразбор
2.2 Найдите точку максимума функции y=(x^2-10x+10)cdot e^{5-x}. Смотреть видеоразбор
2.3 Найдите наименьшее значение функции y=(x-1)e^x на отрезке [-1;1]. Смотреть видеоразбор
2.4 Найдите наибольшее значение функции y=(10-x)sqrt{x+2} на отрезке [-1; 7]. Смотреть видеоразбор
2.5 Найдите наименьшее значение функции y=2xsqrt{x}-9x+11 на отрезке [2; 9]. Смотреть видеоразбор
2.6 Найдите наибольшее значение функции y=(x-2)^2(x-4)+5 на отрезке [1; 3]. Смотреть видеоразбор
2.7 Найдите точку максимума функции y=(x+5)e^{5-x}. Смотреть видеоразбор
2.8 Найдите точку минимума функции y=(10-x)e^{10-x}. Смотреть видеоразбор
2.9 Найдите наименьшее значение функции y=x^2+frac{25+x^2-x^3}{x} на отрезке [1; 10]. Смотреть видеоразбор

3. Применение формулы производной сложной функции

4. Тригонометрические функции

4.1 Найдите наибольшее значение функции y=8x-4tg;x-2pi+2 на отрезке [-frac{pi}{3}; frac{pi}{3}]. Смотреть видеоразбор
4.2 Найдите наименьшее значение функции y=4sin{x}+3cos{x} на отрезке [0; 7]. Смотреть видеоразбор
4.3 Найдите наибольшее значение функции y=2cos{x}-frac{18}{pi}x+4 на отрезке [-frac{2pi}{3}; 0]. Смотреть видеоразбор
4.4 Найдите наименьшее значение функции y=5sin{x}+frac{24}{pi}x+6 на отрезке [-frac{5pi}{6}; 0]. Смотреть видеоразбор
4.5 Найдите наибольшее значение функции y=3tg{x}-3x+5 на отрезке [-frac{pi}{4}; 0]. Смотреть видеоразбор
4.6 Найдите наименьшее значение функции y=3cos{x}-frac{48}{pi}x+19 на отрезке [-frac{2pi}{3}; 0]. Смотреть видеоразбор
4.7 Найдите наименьшее значение функции f(x)=sin{x}+sqrt{1+sin^2{x}}. Смотреть видеоразбор
4.8 Найдите наибольшее значение функции y=33x-30sin{x}+29 на отрезке [-frac{pi}{2}; 0]. Смотреть видеоразбор
4.9 Найдите точку максимума функции y=(2x-3)cos{x}-2sin{x}+5, принадлежащую промежутку (0; frac{pi}{2}). Смотреть видеоразбор
4.10 Найдите точку максимума функции y=(2x-1)cos{x}-2sin{x}+5, на промежутке (0; frac{pi}{2}). Смотреть видеоразбор
4.11 Найдите наибольшее значение функции y=2sin{x}-frac{36}{pi}x+9 на отрезке [-frac{5pi}{6}; 0]. Смотреть видеоразбор
4.12 Найдите наибольшее значение функции y=7sqrt{2}cos{x}+7x-frac{7pi}{4}+4 на отрезке [0; frac{pi}{2}]. Смотреть видеоразбор
4.13 Найдите наибольшее значение функции y=12cos{x}+6sqrt{3}x-2sqrt{3}pi+6 на отрезке [0; frac{pi}{2}]. Смотреть видеоразбор
4.14 Найдите наибольшее значение функции y=12tg;x -12x+3pi-7 на отрезке [-frac{pi}{4}; frac{pi}{4}]. Смотреть видеоразбор
4.15 Найдите наименьшее значение функции y=6cos{x}+frac{24x}{pi}+5 на промежутке [-frac{2pi}{3}; 0]. Смотреть видеоразбор
4.16 Найдите наименьшее значение функции y=3+frac{5pi}{4}-5x-5sqrt{2}cos{x} на отрезке [0; frac{pi}{2}]. Смотреть видеоразбор
4.17 Найдите наименьшее значение функции y=5cos{x}-6x+4 на отрезке [-frac{3pi}{2}; 0]. Смотреть видеоразбор
4.18 Найдите наибольшее значение функции y=15x-3sin{x}+5 на отрезке [-frac{pi}{2}; 0]. Смотреть видеоразбор
4.19 Найдите наименьшее значение функции y=9cos{x}+14x+7 на отрезке [0; frac{3pi}{2}]. Смотреть видеоразбор
4.20 Найдите наименьшее значение функции y=7sin{x}-8x+9 на отрезке [-frac{3pi}{2}; 0]. Смотреть видеоразбор
4.21 Найдите наименьшее значение функции y=6cos{x}+frac{24}{pi}x+5 на отрезке [-frac{2pi}{3}; 0]. Смотреть видеоразбор
4.22 Найдите наибольшее значение функции y=10sin{x}-frac{36}{pi}x+7 на отрезке [-frac{5pi}{6}; 0]. Смотреть видеоразбор

5. Логарифмическая и показательная функции

5.1 Найдите наименьшее значение функции y=3x-ln(x+3)^3 на отрезке [-2,5; 0]. Смотреть видеоразбор
5.2 Найдите наименьшее значение функции y=9x-ln(9x)+3 на отрезке [frac{1}{18}; frac{5}{18}]. Смотреть видеоразбор
5.3 Найдите наибольшее значение функции y=2x^2-13x+9cdot ln{x}+8 на отрезке [frac{13}{14}; frac{15}{14}]. Смотреть видеоразбор
5.4 Найдите наименьшее значение функции y=5x-ln(x+5)^5 на отрезке [-4,5; 1]. Смотреть видеоразбор
5.5 Найдите наименьшее значение функции y=7x-ln(x-2)^7 на отрезке [-1,5; 0]. Смотреть видеоразбор
5.6 Найдите точку максимума функции y=ln(x+4)^2+2x+7. Смотреть видеоразбор
5.7 Найдите наименьшее значение функции y=log_{sqrt{3}}(x-4sqrt{x-2}+5) на отрезке [5; 10]. Смотреть видеоразбор
5.8 Найдите наименьшее значение функции y=4^x-2^{x+4}+100. Смотреть видеоразбор

6. Функции, в которых присутствует квадратичная в виде «вложенной»

6.1 Найдите наименьшее значение функции y=2^{x^2+100x+2503} Смотреть видеоразбор
6.2 Найдите наибольшее значение функции y=5^{-3x^2+18x-24}. Смотреть видеоразбор
6.3 Найдите точку максимума функции y=-sqrt{x^2-8x+17}. Смотреть видеоразбор
6.4 Найдите наибольшее значение функции y=3^{-7-6x-x^2}. Смотреть видеоразбор
6.5 Найдите наибольшее значение функции y=log_5(4-2x-x^2)+3. Смотреть видеоразбор
6.6 Найдите точку максимума функции y=sqrt{4-4x-x^2}. Смотреть видеоразбор

7. Задачи на первообразную (не входят в ЕГЭ этого года)

7.1 Найдите первообразную F(x) для функции f(x)=frac{3x+2}{5}, если F(4)=5. В ответе укажите значение F(1). Смотреть видеоразбор
7.2 Наименьшее значение первообразной F(x) для функции f(x)=x^2−2x−3 на отрезке [0;6] равно −9. Найдите наибольшее значение первообразной на этом отрезке. Смотреть видеоразбор
7.3 Наименьшее значение первообразной F(x) для функции f(x)=x^2-2x-3 на отрезке [0; 6] равно −9. Найдите наибольшее значение первообразной на этом отрезке. Смотреть видеоразбор
7.4 Найдите первообразную F(x) для функции f(x)=frac{3x+2}{5}, если F(4)=5. В ответе укажите значение F(1). Смотреть видеоразбор
7.5 Один из двух нулей первообразной F(x) для функции f(x)=5x-1 равен -3. Найдите второй нуль. Смотреть видеоразбор

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

Найдем производную этой функции. Представим, что

$$sqrt[3]{(x+5)^{2}}=(x+5)^{frac{2}{3}}$$

$$ sqrt[3]{(x+5)^{5}}=(x+5)^{frac{5}{3}}$$

Тогда $$f_{‘}(x)=frac{2}{3}*(x+5)^{-frac{1}{3}}-frac{5}{3}*(x+5)^{frac{2}{3}}=0$$

$$0=frac{1}{3}*(2(x+5)^{-frac{1}{3}}-5*(x+5)^{frac{2}{3}})$$

$$0=2(x+5)^{-frac{1}{3}}-5*(x+5)^{frac{2}{3}}$$ Вынесем $$(x+5)^{-frac{1}{3}}$$ за скобки:

$$(x+5)^{-frac{1}{3}}(2-5*(x+5))=0$$

Получаем, что x = -4.6 и x = -5. 

Если начертить координатную прямую и расставить на ней знаки производной, то увидим, что на промежутках (-∞;-5] и [-4.6;+∞) производная отрицательна, а на промежутке [-5;-4.6] — положительна. Значит x = -5 точка минимума


Задача 1. Найдите точку максимума функции y=x^3-108x+11.

Решение: + показать


Задача 2. Найдите точку минимума функции y=21x^2-x^3+17.

Решение: + показать


Задача 3. Най­ди­те наи­мень­шее зна­че­ние функ­ции y=x^3-15x^2+19 на от­рез­ке [5;15].

Решение: + показать


Задача 4. Найдите наибольшее значение функции  y=2+9x-frac{x^3}{3} на отрезке [2;6].

Решение: + показать


Задача 5. Найдите наибольшее значение функции y=3x^5-20x^3-54 на отрезке [-4;-1].

Решение: + показать


Задача 6. Найдите наибольшее значение функции y=-3x^5-6x^3+14  на отрезке [-1;8].

Решение: + показать


Задача 7. Най­ди­те точку мак­си­му­ма функ­ции y=6+12x-2x^{frac{3}{2}}.

Решение: + показать


Задача 8. Найдите наибольшее значение функции y=-frac{2}{3}xsqrt x+3x+8 на отрезке [1;9].

Решение: + показать


Задача 9. Най­ди­те точку минимума функ­ции y=-frac{x^2+25}{x}.

Решение: + показать


Задача 10. Най­ди­те наи­мень­шее зна­че­ние функ­ции y=frac{x^2+900}{x} на [3;40].

 Решение: + показать


Задача 11. Найдите точку максимума функции y=frac{441}{x}+x+18.

Решение: + показать


Задача 12. Най­ди­те точку ми­ни­му­ма функ­ции y=(3x^2-15x+15)e^{x-15}.

Решение: + показать


Задача 13. Найдите точку максимума функции y=(x+11)^2cdot e^{3-x}.

Решение: + показать


Задача 14. Най­ди­те наи­мень­шее зна­че­ние функ­ции y=(x-3)^2(x-6)-1 на  отрезке [4;6].

Решение: + показать


Задача 15. Най­ди­те наи­боль­шее зна­че­ние функ­ции y=ln(x+4)^9-9x  на от­рез­ке [-3,5;0].

Решение: + показать


Задача 16. Найдите наименьшее значение функции y=6x-ln(6x)+17  на отрезке [frac{1}{12};frac{5}{12}].

Решение: + показать


Задача 17.  Найдите наименьшее значение функции y=2x^2-3x-lnx+13 на отрезке [frac{3}{4};frac{5}{4}].

Решение: + показать


Задача 18. Най­ди­те наи­мень­шее зна­че­ние функ­ции y=e^{2x}-11e^x-1  на от­рез­ке [-1;2].

Решение: + показать


Задача 19. Най­ди­те наи­боль­шее зна­че­ние функ­ции y=12sqrt{2}cosx+12x-3pi+9  на от­рез­ке [0;frac{pi}{2}].

Решение: + показать


Задача 20. Най­ди­те наи­мень­шее зна­че­ние функ­ции y=-4x+2tgx+pi+16 на от­рез­ке [-frac{pi}{3};frac{pi}{3}].

Решение: + показать


Задача 21. Най­ди­те наи­боль­шее зна­че­ние функ­ции y=9cosx+15x-4  на от­рез­ке [-frac{3pi}{2};0] .

Решение: + показать


Задача 22.  Найдите наименьшее значение функции y=4cosx+frac{15}{pi}x+9  на отрезке [-frac{2pi}{3};0].

Решение: + показать


Задача 23.  Найдите наименьшее значение функции y=5tgx-5x+6  на отрезке [0;frac{pi}{4}].

Решение: + показать


Задача 24. Най­ди­те точку ми­ни­му­ма функ­ции y=(3-2x)cosx+2sinx+19, при­над­ле­жа­щую про­ме­жут­ку (0;frac{pi}{2}).

Решение: + показать


* Замечание. Важно!  

Не следует считать (могло сложиться такое мнение при разборе примеров выше), что наименьшее (наибольшее) значение функции на отрезке совпадает с минимумом (максимумом) на отрезке!

Например, на рисунке ниже наименьшее значение функции  на отрезке [a;b] достигается на конце отрезка [a;b], а именно, в точке x=b.

hj


То есть, вообще говоря, при нахождении наименьшего значения функции на отрезке [a;b] следует выбрать наименьшую из величин:

1) y(x_{min}) (их может быть несколько) из рассматриваемого отрезка [a;b]

2) y(a),  y(b).


При нахождении наибольшего значения функции на отрезке [a;b] следует выбрать большую из величин:

1) y(x_{max}) (их может быть несколько) из рассматриваемого отрезка [a;b]

2) y(a),  y(b).


Но, если, например, на рассматриваемом отрезке функция имеет только один экстремум – минимум и мы ищем наименьшее значение, то отпадает необходимость находить значения функции на концах отрезка.

Аналогично в случае с нахождением наибольшего значения функции на отрезке, на котором содержится только один экстремум – максимум.


В случае же, когда на отрезке рассматриваемом функция не имеет экстремумов, то для нахождения наибольшего/наименьшего значений требуется лишь сравнить эти самые значения функции на концах отрезка и взять наибольшее/наименьшее из них.


тест

Вы можете пройти тест  “Исследование функции при помощи производной”

Наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение ординаты на рассматриваемом интервале.

Чтобы найти наибольшее или наименьшее значение функции необходимо:

  1. Найти производную функции $f'(х)$
  2. Найти стационарные точки, решив уравнение $f'(х)=0$
  3. Проверить, какие стационарные точки входят в заданный отрезок.
  4. Вычислить значение функции на концах отрезка и в стационарных точках из п.3
  5. Выбрать из полученных результатов наибольшее или наименьшее значение.

Чтобы найти точки максимума или минимума необходимо:

  1. Найти производную функции $f'(х)$
  2. Найти стационарные точки, решив уравнение $f'(х)=0$
  3. Разложить производную функции на множители.
  4. Начертить координатную прямую, расставить на ней стационарные точки и определить знаки производной в полученных интервалах, пользуясь записью п.3.
  5. Найти точки максимума или минимума по правилу: если в точке производная меняет знак с плюса на минус, то это будет точка максимума (если с минуса на плюс, то это будет точка минимума). На практике удобно использовать изображение стрелок на промежутках: на промежутке, где производная положительна, стрелка рисуется вверх и наоборот.

Таблица производных некоторых элементарных функций:

Функция Производная
$c$ $0$
$x$ $1$
$x^n, n∈N$ $nx^{n-1}, n∈N$
${1}/{x}$ $-{1}/{x^2}$
${1}/x{^n}, n∈N$ $-{n}/{x^{n+1}}, n∈N$
$√^n{x}, n∈N$ ${1}/{n√^n{x^{n-1}}, n∈N$
$sinx$ $cosx$
$cosx$ $-sinx$
$tgx$ ${1}/{cos^2x}$
$ctgx$ $-{1}/{sin^2x}$
$cos^2x$ $-sin2x$
$sin^2x$ $sin2x$
$e^x$ $e^x$
$a^x$ $a^xlna$
$lnx$ ${1}/{x}$
$log_{a}x$ ${1}/{xlna}$

Основные правила дифференцирования

1. Производная суммы и разности равна производной каждого слагаемого

$(f(x) ± g(x))′= f′(x)± g′(x)$

Пример:

Найти производную функции $f(x) = 3x^5 – cosx + {1}/{x}$

Производная суммы и разности равна производной каждого слагаемого

$f′(x)=(3x^5)′–(cosx)′+({1}/{x})’=15x^4+sinx-{1}/{x^2}$

2. Производная произведения.

$(f(x)∙g(x))′=f′(x)∙g(x)+f(x)∙g(x)′$

Пример:

Найти производную $f(x)=4x∙cosx$

$f′(x)=(4x)′∙cosx+4x∙(cosx)′=4∙cosx-4x∙sinx$

3. Производная частного

$({f(x)}/{g(x)})’={f^'(x)∙g(x)-f(x)∙g(x)’}/{g^2(x)}$

Пример:

Найти производную $f(x)={5x^5}/{e^x}$

$f'(x)={(5x^5)’∙e^x-5x^5∙(e^x)’}/{(e^x)^2}={25x^4∙e^x-5x^5∙e^x}/{(e^x)^2}$

4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

$f(g(x))′=f′(g(x))∙g′(x)$

Пример:

$f(x)= cos(5x)$

$f′(x)=cos′(5x)∙(5x)′= — sin(5x)∙5= -5sin(5x)$

Пример:

Найдите точку минимума функции $y=2x-ln⁡(x+11)+4$

Решение:

1. Найдем ОДЗ функции: $х+11>0; х>-11$

2. Найдем производную функции $y’=2-{1}/{x+11}={2x+22-1}/{x+11}={2x+21}/{x+11}$

3. Найдем стационарные точки, приравняв производную к нулю

${2x+21}/{x+11}=0$

Дробь равна нулю если числитель равен нулю, а знаменатель не равен нулю

$2x+21=0; x≠-11$

$2х=-21$

$х=-10,5$

4. Начертим координатную прямую, расставим на ней стационарные точки и определим знаки производной в полученных интервалах. Для этого подставим в производную любое число из крайней правой области, например, нуль.

$y'(0)={2∙0+21}/{0+11}={21}/{11}>0$

5. В точке минимума производная меняет знак с минуса на плюс, следовательно, точка $-10,5$ — это точка минимума.

Ответ: $-10,5$

Пример:

Найдите наибольшее значение функции $y=6x^5-90x^3-5$ на отрезке $[-5;1]$

Решение:

1. Найдем производную функции $y′=30x^4-270x^2$

2. Приравняем производную к нулю и найдем стационарные точки

$30x^4-270x^2=0$

Вынесем общий множитель $30x^2$ за скобки

$30x^2(x^2-9)=0$

$30x^2(х-3)(х+3)=0$

Приравняем каждый множитель к нулю

$x^2=0 ; х-3=0; х+3=0$

$х=0;х=3;х=-3$

3. Выберем стационарные точки, которые принадлежат заданному отрезку $[-5;1]$

Нам подходят стационарные точки $х=0$ и $х=-3$

4. Вычислим значение функции на концах отрезка и в стационарных точках из п.3

$y(-5)= 6∙(-5)^5-90∙(-5)^3-5=6∙(-3125)+90∙125-5= -18750+11250-5=-7505$

$y(-3)= 6∙(-3)^5-90∙(-3)^3-5=-1458+2430-5=967$

$y(0)= -5$

$y(1)= 6∙1^5-90∙1^3-5=6-90-5= -89$

Наибольшее значение равно $967$

Ответ: $967$

За это задание ты можешь получить 1 балл. На решение дается около 10 минут. Уровень сложности: повышенный.
Средний процент выполнения: 60.8%
Ответом к заданию 11 по математике (профильной) может быть целое число или конечная десятичная дробь.

Разбор сложных заданий в тг-канале

Задачи для практики

Задача 1

Найдите наименьшее значение функции $y=-2ln(x+3)^5+10x$ на отрезке $[-2{,}5 ;-1]$.

Решение

Областью определения функции является интервал $(-3; +∞)$, на котором она дифференцируема. Отрезок $[-2.5; -1]$ принадлежит области определения.

Отметим, что по свойству логарифмов $ln(x + 3)^5 = 5 ln(x + 3)$, поэтому заданная функция имеет вид $y = -10 ln(x + 3) + 10x$.

1. Находим $y′$, пользуясь правилами дифференцирования и формулами производной степенной и логарифмической функций:

$y′ = {-10}/{x+3} + 10 = {-10 + 10x + 30}/{x + 3} = {10 x + 20}/{x + 3} = {10(x + 2)}/{x + 3}, y′ = {10(x + 2)}/{x + 3}$.

2. Заметим, что $y′ = 0$ при $x = -2$. Получаем единственную стационарную точку. $-2 ∈ [-2.5; -1]$.

3. Так как $x + 3 > 0$ в области определения, то $y′ < 0$ при $-2.5 < x < -2, y′ > 0$ при $-2 < x < -1$. Производная меняет знак с «минуса» на «плюс» при переходе через точку $x = -2$. Следовательно, эта точка является точкой минимума и в ней функция достигает наименьшего значения.

$y(-2) = -10 ln(-2 + 3) + 10 · (-2) = -20$, так как $ln 1 = 0$.

Ответ: -20

Задача 2

Найдите наибольшее значение функции $y=ln(x+7)^3-3x$ на отрезке $[-6{,}5 ;-4]$.

Решение

Областью определения функции является промежуток $(-7;+∞ )$, на котором она дифференцируема

Отрезок $[-6{,}5 ;-4]$ принадлежит области определения

Отметим, что по свойству логарифмов в области определения функции выполняется равенство $ln(x+7)^3=3ln(x+7)$, поэтому заданная функция может быть представлена в виде $y=3ln(x+7)-3x$

1. Находим $y^′ $, пользуясь правилами дифференцирования и формулами производной степенной и логарифмической функций: $y^′={3} / {x+7}-3={3-3x-21} / {x+7}={-3x-18} / {x+7}={-3(x+6)} / {x+7}$, $y^′={-3(x+6)} / {x+7}$

2. Заметим, что $y^′ =0$ при $x=-6$. Получаем единственную стационарную точку

3. Так как $x+7>0$ в области определения, то $y^′ >0$ при $x∈(-6,5;-6)$

$y^′ <0$ при $x∈(-6;-4)$. Производная меняет знак с «плюса» на «минус» при переходе через точку $x=-6$

Следовательно, эта точка является точкой максимума и в ней функция достигает наибольшего значения

$y(-6)=3ln(-6+7)-3⋅ (-6)=18$, так как $ln 1=0$.

Ответ: 18

Задача 3

Найдите наибольшее значение функции $y=ln(4-2x)+2x-7$ на отрезке $[0;1{,}7]$.

Решение

Областью определения этой функции будет интервал $(-∞; 2)$, в каждой точке которого функция дифференцируема, причём отрезок $[0; 1.7]$ целиком лежит в области определения.

1. Находим $y′$, пользуясь правилами дифференцирования, формулами производной сложной и логарифмической функций:

$y′ = {1}/{4 — 2x} · (4 — 2x)′ + (2x)′ — (7)’ = {-2}/{4-2x} + 2 = {2x — 3}/{x — 2}$.

$y′ = {2x — 3}/{x — 2}$.

2. Находим стационарные точки из условия $y′ = 0. {2x — 3}/{x — 2} = 0,$

$2x — 3 = 0,$

$x = {3}/{2}$.

Получили одну стационарную точку $x = {3}/{2}$, которая принадлежит промежутку $(0; 1.7)$.

3. Знак производной совпадает со знаком квадратного трёхчлена $(2x — 3)(x — 2) = 2x^2 — 7x + 6$. Его графиком является парабола, ветви которой направлены вверх, и корнями являются числа ${3}/{2}$ и $2$. Поэтому при $0 < x < {3}/{2}$ его знак «плюс», а при ${3}/{2} < x < 1.7$ знак «минус».

При переходе через точку $x = {3}/{2}$ производная меняет знак с «плюса» на «минус». Значит, $x = {3}/{2}$ является точкой максимума и в ней достигается наибольшее значение (так как других точек экстремума нет).

4. $y({3}/{2}) = ln (4 — 2 · {3}/{2}) + 2 · {3}/{2} — 7 = ln 1 + 3 — 7 = -4$.

Ответ: -4

Задача 4

Найдите точку максимума функции $y=-8√ x+12ln(x-4)-11$.

Решение

Областью определения этой функции является интервал $(4; +∞)$, на котором функция дифференцируема. Найдём стационарные точки на указанном интервале и выберем ту из них, в которой производная меняет знак с «плюса» на «минус».

1. Находим $y′$, пользуясь правилами дифференцирования и формулами производной степенной и логарифмической функций.

$y′ = {-8}/{2√x} + {12}/{x — 4} = {-8(x — 4) + 24√x}/{2√x(x — 4)} = {-4x + 16 + 12√x}/{√x(x — 4)}$.

2. Решаем уравнение $y′ = 0, -4x + 16 + 12√x = 0$.

Сделаем замену $√x = t$ $(t > 2)$. Получим уравнение $-4t^2 + 12t + 16 = 0; t^2 — 3t — 4 = 0$. По формуле корней квадратного уравнения получаем:

$t_{1,2} = {3± √{9 + 16}}/{2} = {3±2}/{5}$,

$t_1 = -1, t_2 = 4$.

$t = -1$ не удовлетворяет условию $t > 2$.

Уравнение $√x = 4$ имеет решение $x = 16$. Получили единственную стационарную точку $x = 16$, принадлежащую промежутку $(4; +∞)$.

При $x > 4$ знак производной совпадает со знаком функции $y_1 = -4x+16+12√x$. Для определения её знака на интервале $(4; +∞)$ достаточно найти её знак в двух точках, одна из которых меньше, чем $x = 16$, и другая, больше, чем $x = 16$.

$y_1 (9) = -4 · 9 + 16 + 12√9 = -36 + 16 + 36 > 0$, а $y_1 (25) = -4 · 25 + 16 + 12√25 = -100 + 16 + 60 < 0$.

3. Получаем, что производная меняет знак с «плюса» на «минус» при переходе через единственную экстремальную точку $x = 16$. Поэтому точка $x = 16$ будет точкой максимума.

Ответ: 16

Задача 5

Найдите точку максимума функции $y=2ln x-√ {x}-17$.

Решение

Областью определения этой функции является интервал $(0; +∞)$, в каждой точке которого она дифференцируема. Найдём стационарные точки в области определения и выберем ту из них, проходя через которую, производная меняет знак с «плюса» на «минус».

1. Находим $y′$, пользуясь правилами дифференцирования, формулами производных степенной и логарифмической функций:

$y′ = {2}/{x} — {1}/{2√x} = {4 -√x}/{2x}$.

2. Решаем уравнение $y′ = 0; 4 — √x = 0. √x = 4, x = 16$.

Получили одну стационарную точку.

3. Так как $x > 0$ и $√x > 0$ в области определения, то знак производной совпадает со знаком функции $y_1 = 4 — √x$. Она обращается в ноль в единственной точке $x = 16$.

Находим знак этой функции при $x < 16$ и $x > 16$. Для этого достаточно найти её значения хотя бы в одной точке каждого из указанных промежутков: $y_1 (1) = 4 — √1 = 3 > 0$, а $y_1 (25) = 4 — √{25} = -1 < 0$

Тем самым, производная меняет знак с «плюса» на «минус» при переходе через точку $x = 16$, которая и будет точкой максимума.

Ответ: 16

Задача 6

Найдите наибольшее значение функции $y=√ {-2log_{0{,}5} (5x+1)}$ на отрезке $[12{,}6;51]$.

Решение

Найдём без применения производной, какие значения принимает функция на отрезке $[12.6; 51]$ и выберем из них наибольшее.

1. Пусть $x$ – произвольное число из отрезка $[12.6; 51]$. Тогда $12.6 ≤ x ≤ 51$. Отсюда по свойствам неравенств получаем: $63 ≤ 5x ≤ 255, 64 ≤ 5x + 1 ≤ 256$.

2. Из предыдущего неравенства, по свойству логарифмов с основанием $0.5$, меньшим $1$, получаем $log_{0.5} 64 ≥ log_{0.5}(5x + 1) ≥ log_{0.5}256$. Но, $log_{0.5}64 = log_{{1}/{2}}64 = log_{{1}/{2}}2^6 = log_{{1}/{2}}(({1}/{2})^{-1})^6 = log_{{1}/{2}}({1}/{2})^{-6} = -6$.

Аналогично, $log_{0.5}256 = -8$. Поэтому $-8 ≤ log_{0.5}(5x + 1) ≤ -6, 6 ≤- log_{0.5}(5x + 1) ≤ 8, 12 ≤ -2 log_{0.5}(5x + 1) ≤ 16$.

Теперь, по свойству квадратного корня получаем, $√12 ≤ √{-2log_{0.5}(5x + 1)} ≤ √{16} = 4$.

Но $√{-2 log_{0.5}(5x + 1)} = y$, поэтому $√{12} ≤ y ≤ 4$.

3. Таким образом, функция определена на всём отрезке $[12.6; 51]$ наибольшим значением является $4$ и получается это значение при $x = 51$.

Ответ: 4

Задача 7

Найдите точку минимума функции $y=x^2-21x+6+55ln x$.

Решение

Областью определения функции является промежуток $(0; +∞)$, на котором она дифференцируема. Найдём стационарные точки и выберем ту из них, при переходе через которую, производная меняет знак с «минуса» на «плюс».

1. Находим $y′$, пользуясь правилами дифференцирования и формулами производной логарифмической и степенной функций.

$y′ = 2x − 21 + {55}/{x}, y′ = {2x^2-21x+55}/{x}$.

2. Решаем уравнение $y′ = 0; 2x^2 -21x +55 = 0. x_{1,2} = {21 ± √{441 — 440}}/{4} = {21 ± 1}/{4}. x_1 = 5, x_2 = 5.5$. Получаем две стационарные точки.

3. Знак производной совпадает со знаком квадратного трёхчлена $2x^2 -21x+55$. Графиком этого трёхчлена является парабола, ветви которой направлены вверх и корнями являются числа $x_1=5$ и $x_2=5.5$.

Поэтому при $x < 5$ производная имеет знак «плюс», знак «минус» при $5 < x < 5.5$, и знак «плюс» при $x > 5.5$.

  (0;5) 5 (5; 5.5) 5.5 (5.5;+∞)
y′ + 0 0 +
y

При переходе через точку $5.5$ производная меняет знак с «минуса» на «плюс». Поэтому эта точка и будет точкой минимума.

Ответ: 5.5

Задача 8

Найдите точку максимума функции $y=x^2-11x-17+15ln x$.

Решение

Областью определения функции является промежуток $(0; +∞)$, на котором она дифференцируема. Найдём стационарные точки и выберем ту из них, при переходе через которую, производная меняет знак с «плюса» на «минус».

1. Находим $y′$, пользуясь правилами дифференцирования и формулами производной логарифмической и степенной функций.

$y′ = 2x − 11 + {15}/{x} = {2x^2-11x+15}/{x}, y′ = {2x^2-11x+15}/{x}$.

2. Решаем уравнение $y′ = 0; 2x^2- 11x +15 = 0. x_{1,2} = {11 ± √{121 — 120}}/{4} = {11 ± 1}/{4}. x_1 = 2.5, x_2 = 3$. Получаем две стационарные точки.

3. Знак производной совпадает со знаком квадратного трёхчлена $2x^2 -11x+15$. Графиком этого трёхчлена является парабола, ветви которой направлены вверх и корнями являются числа $x_1=2.5$ и $x_2=3$.

Поэтому при $x < 2.5$ производная имеет знак «плюс», знак «минус» при $2.5 < x < 3$, и знак «плюс» при $x > 3$.

  (0;2.5) 2.5 (2.5; 3) 3 (3;+∞)
y′ + 0 0 +
y

При переходе через точку $2.5$ производная меняет знак с «плюса» на «минус». Поэтому эта точка и будет точкой максимума.

Ответ: 2.5

Задача 9

Найдите точку максимума функции $y=(5x^2-3x-3)e^{x+5}$.

Решение

Заметим, что заданная функция определена и дифференцируема при любом значении $x$. Найдём стационарные точки и выберем ту из них, при переходе через которую, производная меняет знак с «плюса» на «минус».

1. Находим $y′$, пользуясь правилами дифференцирования, формулой производной произведения двух функций, и производной степенной и показательной функции:

$y′ = (10x − 3)e^{x+5} + (5x^2 − 3x − 3)e^{x+5} = e^{x+5}(5x^2 + 7x − 6), y′ = e^{x+5}(5x^2 + 7x − 6)$.

2. Решаем уравнение $y′ = 0$. Так как $e^{x+5} > 0$, то $5x^2 + 7x − 6 = 0. x_{1,2} = {−7 ± √{49 + 120}}/{10} = {−7 ± 13}/{10}. x_1 = −2, x_2 = 0.6$. Получаем две стационарные точки.

3. Знак производной совпадает со знаком квадратного трёхчлена $5x^2 +7x-6$. Графиком этого трёхчлена является парабола, ветви которой направлены вверх и корнями являются числа $x_1=-2$ и $x_2=0.6$.

Поэтому при $x < −2$ производная имеет знак «плюс», знак «минус» при $−2 < x < 0.6$, и знак «плюс» при $x > 0.6$.

  (-∞;-2) -2 (-2; 0.6) 0.6 (0.6;+∞)
y′ + 0 0 +
y

При переходе через точку $x_1 = −2$ производная меняет знак с «плюса» на «минус». Поэтому эта точка и будет точкой максимума.

Ответ: -2

Задача 10

Найдите наименьшее значение функции $y=-4x-4cos x+5$ на отрезке $[- {π} ;0]$.

Решение

Заметим, что заданная функция непрерывна на отрезке $[-π; 0]$ и дифференцируема на интервале $(-π; 0)$. Наименьшее её значение на отрезке $[-π; 0]$ равно наименьшему из всех значений функции в стационарных точках интервала $(-π; 0)$ и концах отрезка $[-π; 0]$.

1. Находим $y′$, пользуясь правилами дифференцирования и формулами производных тригонометрических функций:

$y′ = -4 + 4 sin x = -4(1 — sin x), y′ = -4(1 — sin x)$.

2. Заметим, что $sin x < 0$ на интервале $(-π; 0)$. Поэтому $1 — sin x > 1$ и $-4(1 — sin x) < 0$. Следовательно, на нём $y′ < 0$ и функция $y=-4x — 4 cos x + 5$ убывает.

3. Наименьшее значение функции будет на правом конце промежутка, то есть в точке $x = 0$.

$y(0) = -4 · 0 — 4 cos 0 + 5 = -4 + 5 = 1$.

Ответ: 1

Задача 11

Найдите точку минимума функции $y=(12-5x)sin x-5cos x-10$, принадлежащую интервалу $({π} / {2};π)$.

Решение

Отметим, что функция дифференцируема на заданном интервале. Найдём стационарные точки на указанном интервале и выберем ту из них, в которой производная меняет знак с «минуса» на «плюс». 1. Находим $y^′$, пользуясь правилами дифференцирования, формулами производной произведения функций и производной линейной и тригонометрических функций. $y^′=(12-5x)^′⋅ sin x+(sin x)^′⋅(12-5x)+5sin x$, $y^′=-5sin x+cos x(12-5x)+5sin x=-cos x(5x-12)$, $y^′=-cos x(5x-12)$. 2. Решаем уравнение $y^′=0$. Так как $cos x<0$ на заданном интервале, то $5x-12=0$, $x=2{,}4$. ${π} / {2≈} 1{,} 57$, а $π ≈ 3{,} 14$, поэтому $2{,}4∈ ({π} / {2};π)$. Получили одну стационарную точку на заданном интервале. 3. $cos x<0$ на заданном интервале, поэтому знак производной совпадает со знаком функции $y_1=5x-12$. Эта функция является возрастающей, поэтому она имеет знак «минус» до точки $x=2{,}4$ и знак «плюс» после неё. Тем самым, точка $x=2{,}4$ будет точкой минимума.

Ответ: 2.4

Задача 12

Найдите точку минимума функции $y={x-8} / {x^2+225}$.

Решение

Заметим, что заданная функция определена и дифференцируема при любом значении $x$. Найдём стационарные точки и выберем ту из них, при переходе через которую, производная меняет знак с «минуса» на «плюс».

1. Находим $y′$, пользуясь формулой производной частного двух функций и правилом дифференцирования степенной функции:

$y′ = {(x-8)′·(x^2+225)-(x^2+225)′·(x-8)}/{(x^2+225)^2}$.

$y′ = {x^2+225-2x·(x-8)}/{(x^2+225)^2}={x^2+225-2x^2+16x}/{(x^2+225)^2}$.

$y′ = {-x^2+16x+225}/{(x^2+225)^2}$.

2. Решаем уравнение $y′ = 0, -x^2 + 16x+225 = 0, x^2-16x-225=0, x_{1,2} = 8±√{64+225}=8±√{289}=8±17, x_1=-9, x_2=25$. Получаем две стационарные точки.

3. Знак производной совпадает со знаком квадратного трёхчлена $-x^2 +16x+225$. Графиком этого трёхчлена является парабола, ветви которой направлены вниз и корнями являются числа $-9$ и $25$.

Поэтому на промежутке $(-∞;-9)$ производная меньше нуля, на промежутке $(-9; 25)$ она больше нуля и на промежутке $(25;+∞)$ меньше нуля.

  (-∞;-9) -9 (-9; 25) 25 (25;+∞)
y′ +
y 0 0

Тем самым производная меняет знак с «минуса» на «плюс» при переходе через точку $x = -9$, которая и будет точкой минимума.

Ответ: -9

Задача 13

Найдите точку максимума функции $y={x-5} / {x^2+144}$.

Решение

Заметим, что заданная функция определена и дифференцируема при любом значении $x$. Найдём стационарные точки и выберем ту из них, при переходе через которую, производная меняет знак с «плюса» на «минус».

1. Находим $y′$, пользуясь формулой производной частного двух функций и правилом дифференцирования степенной функции:

$y′ = {(x-5)′·(x^2+144)-(x^2+144)′·(x-5)}/{(x^2+144)^2}$.

$y′ = {x^2+144-2x·(x-5)}/{(x^2+144)^2}={x^2+144-2x^2+10x}/{(x^2+144)^2}$.

$y′ = {-x^2+10x+144}/{(x^2+144)^2}$.

2. Решаем уравнение $y′ = 0, -x^2 + 10x+144 = 0, x^2-10x-144=0, x_{1,2} = 5±√{25+144}=5±√{169}=5±13, x_1=-8, x_2=18$. Получаем две стационарные точки.

3. Знак производной совпадает со знаком квадратного трёхчлена $-x^2 +10x+144$. Графиком этого трёхчлена является парабола, ветви которой направлены вниз и корнями являются числа $-8$ и $18$.

Поэтому на промежутке $(-∞;-8)$ производная меньше нуля, на промежутке $(-8; 18)$ она больше нуля и на промежутке $(18;+∞)$ меньше нуля.

  (-∞;-8) -8 (-8; 18) 18 (18;+∞)
y′ +
y 0 0

Тем самым производная меняет знак с «плюса» на «минус» при переходе через точку $x = 18$, которая и будет точкой максимума.

Ответ: 18

Задача 14

Найдите наименьшее значение функции $y={4x^2+256} / {x}$ на отрезке $[16;98]$.

Решение

Областью определения функции является множество $(-∞;0)∪ (0;+∞)$, в каждой точке которого функция дифференцируема

Промежуток $[16;98]$ содержится в области определения функции

1. Находим $y^′$, представив заданную функцию в виде $y=4x+{256} / {x}$

По правилам дифференцирования и по формуле производной степенной функции получаем: $y^′=4-{256} / {x^2}={4x^2-256} / {x^2}={4(x^2-64)} / {x^2}$, $y^′={4(x^2-64)} / {x^2}$

2. Решаем уравнение $ y^′=0 $, $ x^2-64=0 $, $ x_1=-8 $, $ x_2=8 $

Получаем две стационарные точки на множестве $(-∞;0)∪ (0;+∞)$, но ни одна из них не попадает на промежуток $[16;98]$. Значит, на заданном отрезке стационарных точек нет

3. Так как $x^2>0$ в области определения, то знак производной совпадает со знаком квадратного трёхчлена $ x^2-64 $. Поэтому $ y^′ >0 $ при $ x>8$, а функция $y={4x^2+256} / {x}$ на отрезке $[16;98]$ возрастает

Наименьшее значение она принимает в точке $x=16$

$y(16)=4⋅ 16+{256} / {16}=64+16=80$.

Ответ: 80

Задача 15

Найдите точку минимума функции $y={25x^2+25} / {x}$.

Решение

Областью определения функции является множество $(-∞; 0) ∪ (0;+∞)$, в каждой точке которого функция дифференцируема. Найдём стационарные точки и выберем ту из них, при переходе через которую, производная меняет знак с «минуса» на «плюс».

1. Находим $y′$, представив заданную функцию в виде $y = 25x+{25}/{x}$. По правилам дифференцирования и формуле производной степенной функции получаем: $y′ = 25 — {25}/{x^2} = {25x^2 — 25}/{x^2} = {25(x^2 — 1)}/{x^2}$.

2. Решаем уравнение $y′ = 0, x^2 — 1 = 0, x_1 = -1, x_2 = 1$. Получаем две стационарные точки.

3. Так как $x^2 > 0$ в области определения, то знак производной совпадает со знаком квадратного трёхчлена $x^2 -1$, корнями которого являются числа $-1$ и $1$. Поэтому $y′ > 0$ при $x < -1, y′ < 0$ при $-1 < x < 0, y′ < 0$ при $0 < x < 1$ и $y′ > 0$ при $x > 1$.

  (-∞;-1) -1 (-1; 0) 0 (0; 1) 1 (0;+∞)
y′ + 0 Не сущ. 0 +
y      

При переходе через точку $x = 1$ производная меняет знак с «минуса» на «плюс». Поэтому эта точка и будет точкой минимума.

Ответ: 1

Задача 16

Найдите наименьшее значение функции $y=x^5-5x^3-270x$ на отрезке $[0 ;5]$.

Решение

Заметим, что заданная функция определена и дифференцируема при любом значении $x$.

1. Находим $y′$, пользуясь правилами дифференцирования и формулой производной степенной функции: $y′ = 5x^4 — 15x^2 — 270$.

2. Решаем уравнение $y′ = 0$. Сделаем подстановку $x^2 = t (t ≥ 0)$, получим уравнение $5t^2 — 15t — 270 = 0$ или $t^2 — 3t — 54 = 0$.

$t_1 = -6, t_2 = 9$.

$t_1 = -6$ не удовлетворяет условию $t ≥ 0$. Уравнение $x^2 = 9$ имеет два корня $x_1 = -3, x_2 = 3$. На промежуток (0; 5) попадает лишь одно число $x = 3$. Получаем единственную стационарную точку.

3. Найдем знак производной на двух промежутках (0; 3) и (3; 5), на которые точка $x = 3$ разбивает интервал (0; 5). Для этого найдем значения производной в точке $x = 1$ из первого интервала, и в точке $x = 4$ из другого интервала.

$y′(1) = 5·1^4 — 15·1^2 — 270 = 5 — 15 — 270 < 0$,

$y′(4) = 5·4^4 — 15·4^2 — 270 = 1280- 240 — 270 > 0$.

Производная меняет знак с «минуса» на «плюс» при переходе через точку $x = 3$. Следовательно, эта точка является точкой минимума и в ней функция достигает наименьшего значения.

$y(3) = 3^5 — 5·3^3 — 270·3 = 243-135-810 = -702$.

Ответ: -702

Задача 17

Найдите наибольшее значение функции $y=√ {240-8x-x^2}$ на отрезке $[-18;10]$.

Решение

Преобразуем подкоренное выражение: $240-8x-x^2 = -(x^2+8x-240) = -((x+4)^2-16-240) = 256-(x+4)^2$. Поэтому $y = √{256 — (x + 4)^2}$.

Так как $(x + 4)^2 ≥ 0$, то $y$ принимает наибольшее значение, если $(x + 4)^2 = 0$, то есть при $x = -4$. Точка $x = -4$ принадлежит заданному промежутку [-18; 10]. Это наибольшее значение равно $√{256} = 16$.

Ответ: 16

Задача 18

Найдите наименьшее значение функции $y=√ {x^2+2x+122}$ на отрезке $[-50;150]$.

Решение

Дискриминант квадратного трёхчлена, расположенного под знаком квадратного корня, меньше нуля ($D = 4 — 488$), значит трёхчлен корней не имеет. Ветви параболы, являющейся графиком этого трёхчлена направлены вверх, абсцисса вершины равна $-1$, а ордината $121$. Поэтому $x^2+2x+122 > 0$ при любых x и исходная функция определена при любом значении x из промежутка [-50; 150].

При $-50 ≤ x ≤ -1$ функция $y = x^2 + 2x + 122$ убывает, а значит убывает и функция $y = √{x^2 + 2x + 122}$.

При $-1 ≤ x ≤ 150$ функция $y = x^2 + 2x + 122$ возрастает, а значит возрастает и функция $y = √{x^2 + 2x + 122}$.

Из сказанного следует, что в точке $x = -1$ функция $y = √{x^2 + 2x + 122}$ принимает наименьшее значение на указанном отрезке.

$y(-1) = √{121} = 11$.

Ответ: 11

Задача 19

Найдите точку максимума функции $y=√ {77+4x-x^2}$.

Решение

Дискриминант квадратного трёхчлена $-x^2+4x+77$, расположенного под знаком квадратного корня, больше нуля ($D = 16+308 = 324$), значит этот квадратный трёхчлен имеет два корня.

$x_{1,2} = {-2±√{4 + 77}}/{-1} = {-2±9}/{-1}, x_1 = -7, x_2 = 11$.

Ветви параболы, являющейся его графиком, направлены вниз, поэтому при $x∈[-7; 11]$ он принимает неотрицательные значения. Исходная функция определена и непрерывна на отрезке при любом значении $x ∈ [-7; 11]$, и дифференцируема на интервале (-7; 11).

Найдём стационарные точки на интервале (-7; 11) и выберем ту из них, в которой производная меняет знак с плюса на минус.

1. Находим $y′$, пользуясь правилами дифференцирования и формулой производной сложной функции.

$y′ = {1}/{2√{77 + 4x — x^2}}·(77 + 4x — x^2)′ = {-2x + 4}/{2√{77 + 4x — x^2}} = {-(x — 2)}/{√{77 + 4x — x^2}}, y′ = {-(x — 2)}/{√{77 + 4x — x^2}}$,

2. Решаем уравнение $y′ = 0, x — 2 = 0, x = 2$. Получаем одну стационарную точку.

3. Так как $√{77 + 4x — x^2} > 0$ на интервале (-7; 11), то знак производной совпадает со знаком выражения $-x +2$. Тогда $y′ > 0$ при $-x +2 > 0, x < 2; y′ < 0$ при $-x + 2 < 0, x> 2$.

Следовательно, при переходе через точку $x = 2$ производная меняет знак с плюса на минус. Поэтому эта точка и будет точкой максимума.

Ответ: 2

Задача 20

Найдите точку минимума функции $y=√ {x^2-12x+40}$.

Решение

Дискриминант квадратного трёхчлена, расположенного под знаком квадратного корня, меньше нуля ($D=144-160$), значит, уравнение $x^2-12x+40=0$ корней не имеет. Ветви параболы, являющейся графиком этого трёхчлена, направлены вверх, поэтому все его значения больше нуля. Функция определена и дифференцируема при любом значении $x$. Найдём стационарные точки и выберем ту из них, в которой производная меняет знак с «минуса» на «плюс».

1. Находим $y^′$, пользуясь правилами дифференцирования и формулой производной сложной функции.

$y^′={1} / {2√ {x^2-12x+40}}⋅ (x^2-12x+40)^′={2x-12} / {2√ {x^2-12x+40}}=$
$={x-6} / {√ {x^2-12x+40}}$

$y^′={x-6} / {√ {x^2-12x+40}}$.

2. Решаем уравнение $y^′=0$, $x-6=0$, $x=6$. Получаем одну стационарную точку.

3. Так как $√ {x^2-12x+40}>0$, то знак производной совпадает со знаком выражения $x-6$. Тогда $y’>0$ при $x-6>0$, $x>6$; $y'<0$ при $x-6<0$, $x<6$.

Следовательно, при переходе через точку $x=6$ производная меняет знак с «минуса» на «плюс». Поэтому эта точка и будет точкой минимума.

Ответ: 6

Рекомендуемые курсы подготовки

Понравилась статья? Поделить с друзьями:
  • Найти молитву на сдачу экзамена
  • Найти место для стоянки на экзамене в гибдд
  • Найти место для разворота на экзамене по вождению
  • Найти место для парковки экзамен гибдд
  • Найти корень уравнения егэ профиль математика 2022