Найти скорость течения реки егэ


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Моторная лодка прошла против течения реки 112 км и вернулась в пункт отправления, затратив на обратный путь на 6 часов меньше. Найдите скорость течения, если скорость лодки в неподвижной воде равна 11 км/ч. Ответ дайте в км/ч.


2

Моторная лодка прошла против течения реки 255 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше. Найдите скорость лодки в неподвижной воде, если скорость течения равна 1 км/ч. Ответ дайте в км/ч.


3

Моторная лодка в 10:00 вышла из пункта А в пункт В, расположенный в 30 км от А. Пробыв в пункте В 2 часа 30 минут, лодка отправилась назад и вернулась в пункт А в 18:00 того же дня. Определите (в км/ч) собственную скорость лодки, если известно, что скорость течения реки 1 км/ч.


4

Теплоход проходит по течению реки до пункта назначения 200 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 15 км/ч, стоянка длится 10 часов, а в пункт отправления теплоход возвращается через 40 часов после отплытия из него. Ответ дайте в км/ч.


5

Теплоход проходит по течению реки до пункта назначения 255 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 1 км/ч, стоянка длится 2 часа, а в пункт отправления теплоход возвращается через 34 часа после отплытия из него. Ответ дайте в км/ч.

Источник: Досрочный ЕГЭ по математике (Центр) 30.03.2018

Пройти тестирование по этим заданиям

11. Сюжетные текстовые задачи


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Задачи на движение по воде

Верны те же формулы: [{large{S=vcdot t quad quad quad v=dfrac
St quad quad quad
t=dfrac Sv}}]

(blacktriangleright) Если тело движется по реке по течению:
(v_c) — собственная скорость тела (скорость в неподвижной воде);
(v_t) — скорость течения;
тогда скорость движения тела (v=v_c+v_t).
Значит, [{large{S=(v_c+v_t)cdot t}}]
(blacktriangleright) Если тело движется по реке против течения:
(v_c) — собственная скорость тела (скорость в неподвижной воде);
(v_t) — скорость течения;
тогда скорость движения тела (v=v_c-v_t).
Значит, [{large{S=(v_c-v_t)cdot t}}]
(blacktriangleright) Заметим, что плот — это тело, у которого собственная скорость (v_c=0). Значит, плот может плыть только по течению и со скоростью течения.


Задание
1

#2120

Уровень задания: Легче ЕГЭ

Антон знает, что собственная скорость его лодки равна (10, км/ч). При этом ему надо успеть проплыть (25, км) за (2) часа. Плыть он будет по течению. Какой должна быть скорость течения реки, чтобы Антон успел? Ответ дайте в км/ч. Если в задаче может быть более одного ответа – выберите наименьший.

Чтобы Антон успел, необходимо и достаточно, чтобы его лодка перемещалась со скоростью не меньше, чем (25 : 2 = 12,5, км/ч). То есть для того, чтобы Антон успел, необходимо и достаточно, чтобы скорость течения была не меньше, чем (2,5, км/ч).

Ответ: 2,5


Задание
2

#2124

Уровень задания: Легче ЕГЭ

Лодка прошла (10, км) по течению, а затем (5, км) против течения. На весь путь лодка затратила (3, часа). Найдите среднюю скорость лодки на описанном участке пути, если скорость течения равна (2, км/ч). Ответ дайте в км/ч.

Средняя скорость есть отношение всего пути ко времени, затраченному на этот путь. Независимо от скорости течения, средняя скорость лодки:[v_{ср} = dfrac{10 + 5}{3} = 5, км/ч,.]

Ответ: 5


Задание
3

#826

Уровень задания: Равен ЕГЭ

Катер береговой охраны прошёл по течению реки Конго 120 км и вернулся обратно. Известно, что обратный путь занял на 1 час больше времени, а скорость катера в неподвижной воде равна 27 км/ч. Найдите скорость течения. Ответ дайте в км/ч.

Пусть (v) км/ч – скорость течения, (v > 0), тогда

(27 + v) – скорость перемещения катера по течению,

(27 — v) – скорость перемещения катера против течения,

(dfrac{120}{27 + v}) – время, затраченное катером на перемещение по течению,

(dfrac{120}{27 — v}) – время, затраченное катером на перемещение против течения.

Так как время перемещения против течения на час больше, чем время по течению, то: [dfrac{120}{27 + v} + 1 = dfrac{120}{27 — v}qquadLeftrightarrowqquad v^2 + 240 v — 729 = 0] – при (v neq pm 27), что равносильно (v_1 = 3, v_2 = -243), откуда получаем, что (v = 3) км/ч, так как (v > 0).

Ответ: 3


Задание
4

#3075

Уровень задания: Равен ЕГЭ

Катер прошел 40 км по течению реки и 6 км против течения реки, затратив на весь путь 3 ч. Найдите скорость катера в стоячей воде, если известно, что скорость течения реки равна 2 км/ч.

Пусть (x) км/ч – скорость катера в стоячей воде. Тогда можно составить следующее уравнение: [dfrac{40}{x+2}+dfrac 6{x-2}=3 quadRightarrowquad
dfrac{46x-68}{x^2-4}=3 quadRightarrowquad 3x^2-46x+56=0]
Дискриминант равен (D=4cdot 361=(38)^2), следовательно, корнями будут (x_1=dfrac43) и (x_2=14). Так как скорость катера не может быть меньше скорости течения, то (x_1) не подходит. Следовательно, (x=14).

Ответ: 14


Задание
5

#3864

Уровень задания: Равен ЕГЭ

Теплоход, скорость которого в неподвижной воде равна (24) км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна (3) км/ч, стоянка длится (2) часа, а в исходный пункт теплоход возвращается через (34) часа после отправления из него. Сколько километров прошёл теплоход за весь рейс?

Пусть (S) – расстояние в километрах, которое проходит теплоход, двигаясь в одну сторону. Тогда: [dfrac S{24+3}+dfrac S{24-3}+2=34quadLeftrightarrowquad S=378] Тогда за весь рейс теплоход прошел (2S=2cdot 378=756) километров.

Ответ: 756


Задание
6

#827

Уровень задания: Равен ЕГЭ

От пристани A в направлении пристани В с постоянной скоростью отправился первый теплоход. Через час после этого от пристани В в направлении пристани А отправился второй теплоход, причём скорость второго теплохода на 1 км/ч меньше, чем скорость первого. При этом скорость течения составляет 2 км/ч. Найдите скорость первого теплохода в неподвижной воде, если расстояние от А до В равно 120 км, а встретились теплоходы посередине между пристанями А и В. Ответ дайте в км/ч.

Так как теплоходы встретились посередине, а время, затраченное на это теплоходом с меньшей скоростью в неподвижной воде, меньше, чем время теплохода с большей скоростью в неподвижной воде, то теплоход с большей скоростью в неподвижной воде плыл против течения, то есть течение направлено от В к А.

Пусть (v) км/ч – скорость первого теплохода в неподвижной воде, (v > 0), тогда

(v — 2) км/ч – скорость перемещения первого теплохода,

((v — 1) + 2) км/ч – скорость перемещения второго теплохода,

(dfrac{60}{v — 2}) ч – время, затраченное первым теплоходом,

(dfrac{60}{v + 1}) ч – время, затраченное вторым теплоходом.

Так как время, затраченное первым теплоходом, на час больше, то: [dfrac{60}{v — 2} — dfrac{60}{v + 1} = 1qquadLeftrightarrowqquad v^2 — v — 182 = 0] – при (v neq 2, v neq -1), откуда находим (v_1 = 14, v_2 = -13), значит, (v = 14) км/ч (т.к. (v > 0)).

Ответ: 14


Задание
7

#828

Уровень задания: Равен ЕГЭ

На озере расположены пристани А и В. Расстояние между пристанями равно 90 км. Моторная лодка проплыла от А до В с постоянной скоростью, после чего сразу отправилась обратно со скоростью на 5 км/ч больше прежней. На середине пути из В в А лодка замедлилась и поплыла со скоростью на 2,5 км/ч меньшей, чем по дороге из А в В. В результате лодка затратила на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость лодки на пути из А в В. Ответ дайте в км/ч.

Пусть (v) км/ч – скорость лодки по пути от А до В, тогда

(dfrac{90}{v}) ч – время, затраченное лодкой на путь из А в В,

(dfrac{45}{v + 5}) ч – время, затраченное лодкой на первую половину пути из В в А,

(dfrac{45}{v — 2,5}) – время, затраченное лодкой на вторую половину пути из В в А.

Так как в итоге лодка проплыла из В в А за такое же время, как и из А в В, то: [dfrac{90}{v} = dfrac{45}{v + 5} + dfrac{45}{v — 2,5},] откуда (v = 10) км/ч.

Ответ: 10

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Skip to content

ЕГЭ Профиль №9. Задачи на движение по воде

ЕГЭ Профиль №9. Задачи на движение по водеadmin2022-10-21T17:39:06+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №9. Задачи на движение по воде

Задача 1. Моторная лодка прошла против течения реки 112 км и вернулась в пункт отправления, затратив на обратный путь на 6 часов меньше. Найдите скорость течения, если скорость лодки в неподвижной воде равна 11 км/ч. Ответ дайте в км/ч.

Пусть x км/ч – скорость течения, тогда скорость лодки против течения (11 — x) км/ч, а по течению (11 + x) км/ч.

v (км/ч) t (ч) S (км)
Против течения (11 — x) (frac{{112}}{{11 — x}}) 112
По течению (11 + x) (frac{{112}}{{11 + x}}) 112

Так как, на обратный путь по течению лодка затратила на 6 часов меньше, то:

(frac{{112}}{{11 — x}} — frac{{112}}{{11 + x}} = 6,,,, Leftrightarrow ,,,,frac{{112left( {11 + x} right) — 112left( {11 — x} right)}}{{left( {11 — x} right)left( {11 + x} right)}} = 6,,,, Leftrightarrow ,,,,frac{{112x + 112x}}{{121 — {x^2}}} = 6,,,, Leftrightarrow )

( Leftrightarrow ,,,,224x = 6left( {121 — {x^2}} right),,left| {,:} right.2,,,, Leftrightarrow ,,,,3{x^2} + 112x — 363 = 0;)  

(D = {112^2} + 12 cdot 363 = 16900;,,,,sqrt D  = 130;)   ({x_1} = frac{{ — 112 + 130}}{6} = 3;,,,,{x_2} = frac{{ — 112 — 130}}{6} =  — frac{{121}}{3}.)

Так как (x > 0), то скорость течения реки равна 3 км/ч.

Ответ: 3.

Задача 2. Моторная лодка прошла против течения реки 255 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше. Найдите скорость лодки в неподвижной воде, если скорость течения равна 1 км/ч. Ответ дайте в км/ч

Пусть x км/ч – скорость лодки в неподвижной воде, тогда скорость против течения (x — 1) км/ч, а по течению (x + 1) км/ч.

v (км/ч) t (ч) S (км)
Против течения (x — 1) (frac{{255}}{{x — 1}}) 255
По течению (x + 1) (frac{{255}}{{x + 1}}) 255

Так как на обратный путь по течению реки лодка затратила на 2 часа меньше, то:

(frac{{255}}{{x — 1}} — frac{{255}}{{x + 1}} = 2,,,, Leftrightarrow ,,,,frac{{255left( {x + 1} right) — 255left( {x — 1} right)}}{{left( {x — 1} right)left( {x + 1} right)}} = 2,,,, Leftrightarrow ,,,,,frac{{510}}{{{x^2} — 1}} = 2,,,, Leftrightarrow )

(2left( {{x^2} — 1} right) = 510,,left| {,:} right.,2,,,, Leftrightarrow ,,,,{x^2} = 256,,,, Leftrightarrow ,,,,{x_1} = 16;,,,{x_2} =  — 16,,.)

Так как (x > 0), то скорость лодки в неподвижной воде равна 16 км/ч.

Ответ: 16.

Задача 3. Моторная лодка в 10:00 вышла из пункта А в пункт В, расположенный в 30 км от А. Пробыв в пункте В 2 часа 30 минут, лодка отправилась назад и вернулась в пункт А в 18:00. Определите (в км/ч) собственную скорость лодки, если известно, что скорость течения реки 1 км/ч.

Пусть x км/ч – скорость лодки в неподвижной воде, тогда скорость против течения (x — 1) км/ч, а по течению (x + 1) км/ч.

v (км/ч) t (ч) S (км)
Против течения (x — 1) (frac{{30}}{{x — 1}}) 30
По течению (x + 1) (frac{{30}}{{x + 1}}) 30

Так как лодка вышла из пункта А в 10:00, а вернулась в 18:00, то на весь путь со стоянкой она затратила 8 часов. Следовательно, время в пути равно: (8 — 2,5 = 5,5) часов.

(frac{{30}}{{x — 1}} + frac{{30}}{{x + 1}} = frac{{11}}{2},,,,, Leftrightarrow ,,,,,frac{{30left( {x + 1} right) + 30left( {x — 1} right)}}{{left( {x — 1} right)left( {x + 1} right)}} = frac{{11}}{2},,,,,, Leftrightarrow ,,,,,,frac{{60x}}{{{x^2} — 1}} = frac{{11}}{2},,,,,, Leftrightarrow )

( Leftrightarrow ,,,,,11{x^2} — 11 = 120x,,,,, Leftrightarrow ,,,,,11{x^2} — 120x — 11 = 0;)

(D = {120^2} + 4 cdot 11 cdot 11 = {2^2} cdot {60^2} + {2^2} cdot {11^2} = 4 cdot left( {3600 + 121} right) = 4 cdot 3721;,,,,sqrt D  = 2 cdot 61 = 122;)({x_1} = frac{{120 + 122}}{{22}} = frac{{242}}{{22}} = 11;,,,,{x_2} = frac{{120 — 122}}{{22}} =  — frac{1}{{11}}.)

Так как (x > 0), то скорость лодки в неподвижной воде равна 11 км/ч.

Ответ: 11.

Задача 4. Теплоход проходит по течению реки до пункта назначения 200 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 15 км/ч, стоянка длится 10 часов, а в пункт отправления теплоход возвращается через 40 часов после отплытия из него. Ответ дайте в км/ч.

Пусть x км/ч – скорость течения реки, тогда скорость теплохода против течения (15 — x) км/ч, а скорость по течению (15 + x) км/ч.

v (км/ч) t (ч) S (км)
По течению (15 + x) (frac{{200}}{{15 + x}}) 200
Против течения (15 — x) (frac{{200}}{{15 — x}}) 200

На весь путь теплоход затратил  40–10=30  часов.

(frac{{200}}{{15 + x}} + frac{{200}}{{15 — x}} = 30,,,, Leftrightarrow ,,,,frac{{200left( {15 — x} right) + 200left( {15 + x} right)}}{{left( {15 + x} right)left( {15 — x} right)}} = 30,,,, Leftrightarrow ,,,,frac{{6000}}{{225 — {x^2}}} = 30,,,, Leftrightarrow )

( Leftrightarrow ,,,,6000 = 30left( {225 — {x^2}} right),,left| , right.:30,,,, Leftrightarrow ,,,,200 = 225 — {x^2},,,, Leftrightarrow ,,,{x^2} = 25;,,,,{x_1} = 5;,,,,{x_2} =  — 5.)

Так как (x > 0), то скорость течения реки равна 5 км/ч.

Ответ: 5.

Задача 5. От пристани А к пристани В отправился с постоянной скоростью первый теплоход, а через 1 час после этого следом за ним со скоростью на 1 км/ч большей отправился второй. Расстояние между пристанями равно 420 км. Найдите скорость первого теплохода, если в пункт В оба теплохода прибыли одновременно. Ответ дайте в км/ч.

Пусть x км/ч – скорость первого теплохода, тогда (x + 1) км/ч  скорость второго.

v (км/ч) t (ч) S (км)
Первый теплоход (x) (frac{{420}}{x}) 420
Второй теплоход (x + 1) (frac{{420}}{{x + 1}}) 420

Первый теплоход находился в пути на 1 час больше чем второй. Следовательно:

(frac{{420}}{x} — frac{{420}}{{x + 1}} = 1,,,,, Leftrightarrow ,,,,,frac{{420left( {x + 1} right) — 420x}}{{xleft( {x + 1} right)}} = 1,,,,, Leftrightarrow ,,,,,frac{{420}}{{xleft( {x + 1} right)}} = 1,,,,, Leftrightarrow ,,,,,{x^2} + x = 420,,,, Leftrightarrow )

( Leftrightarrow ,,,,{x^2} + x — 420 = 0;,,,,,,D = 1 + 4 cdot 420 = 1681;,,,,,,sqrt D  = 41;)

({x_1} = frac{{ — 1 + 41}}{2} = 20;,,,,,{x_2} = frac{{ — 1 — 41}}{2} =  — 21.)

Так как (x > 0), то скорость первого теплохода равна 20 км/ч.

Ответ: 20.

Задача 6. Баржа в 10:00 вышла из пункта А в пункт В, расположенный в 15 км от А. Пробыв в пункте В 1 час 20 минут, баржа отправилась назад и вернулась в пункт А в 16:00. Определите (в км/час) скорость течения реки, если известно, что собственная скорость баржи равна 7 км/ч.

Пусть x км/ч – скорость течения реки, тогда скорость баржи против течения(7 — x) км/ч, скорость по течению (7 + x) км/ч.

v (км/ч) t (ч) S (км)
Против течения (7 — x) (frac{{15}}{{7 — x}}) 15
По течению (7 + x) (frac{{15}}{{7 + x}}) 15

Так как баржа вышла из пункта А в 10:00, а вернулась назад в 16:00, то на весь путь со стоянкой она затратила 6 часов. Следовательно, время в пути равно: (6 — 1frac{1}{3} = 4frac{2}{3} = frac{{14}}{3}) часа.

(frac{{15}}{{7 — x}} + frac{{15}}{{7 + x}} = frac{{14}}{3},,,,, Leftrightarrow ,,,,,frac{{15left( {7 + x} right) + 15left( {7 — x} right)}}{{left( {7 — x} right)left( {7 + x} right)}} = frac{{14}}{3},,,,, Leftrightarrow frac{{210}}{{49 — {x^2}}} = frac{{14}}{3},,,,, Leftrightarrow ,,,,,)

( Leftrightarrow ,,,,3 cdot 210 = 14 cdot left( {49 — {x^2}} right),,left| {,:,14,,,, Leftrightarrow ,,,,3 cdot 15 = 49 — {x^2},,,, Leftrightarrow ,,,,{x^2} = 4,,,, Leftrightarrow ,,,,{x_1} = 2;,,,,{x_2} =  — 2.} right.)

Так как (x > 0), то скорость течения реки равна 2 км/ч.

Ответ: 2.

Задача 7. Пристани A и B расположены на озере, расстояние между ними 390 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 3 км/ч больше прежней, сделав по пути остановку на 9 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.

Пусть x км/ч – скорость баржи из А в В, тогда ее скорость из В в А равна(x + 3) км/ч.

v (км/ч) t (ч) S (км)
(A, to ,B) (x) (frac{{390}}{x}) 390
(B, to ,A) (x + 3) (frac{{390}}{{x + 3}}) 390

Так как на обратном пути баржа сделала остановку на 9 часов и в результате затратила столько же времени, то:

(frac{{390}}{x} — frac{{390}}{{x + 3}} = 9,,,,, Leftrightarrow ,,,,,frac{{390left( {x + 3} right) — 390x}}{{xleft( {x + 3} right)}} = 9,,,,, Leftrightarrow frac{{390 cdot 3}}{{xleft( {x + 3} right)}} = 9,,,,, Leftrightarrow ,,,,,)

( Leftrightarrow ,,,,9xleft( {x + 3} right) = 390 cdot 3,,left| {,:,} right.9,,,,, Leftrightarrow ,,,,{x^2} + 3x — 130 = 0,,,,,,,D = 9 + 4 cdot 130 = 529;,)

({x_1} = frac{{ — 3 + 23}}{2} = 10;,,,,,{x_2} = frac{{ — 3 — 23}}{2} =  — 13.)

Так как (x > 0), то скорость баржи из А в В равна 10 км/ч.

Ответ: 10.

Задача 8. Теплоход, скорость которого в неподвижной воде равна 25 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 3 км/ч, стоянка длится 5 часов, а в исходный пункт теплоход возвращается через 30 часов после отплытия из него. Сколько километров прошел теплоход за весь рейс?

Пусть путь теплохода в одну сторону равен x км. Скорость теплохода по течению 25+3=28 км/ч, а скорость против течения 25–3=22 км/ч.

v (км/ч) t (ч) S (км)
По течению 28 (frac{x}{{28}}) x
Против течения 22 (frac{x}{{22}}) x

Время составляет 30 часов, из которых 5 часов – стоянка.

(frac{x}{{28}} + frac{x}{{22}} = 30 — 5,,,,, Leftrightarrow ,,,,,frac{{11x + 14x}}{{28 cdot 11}} = 25,,,,, Leftrightarrow ,,,,frac{{25x}}{{28 cdot 11}} = 25,,,,,, Leftrightarrow ,,,,,,,25x = 25 cdot 28 cdot 11,,left| {,:,,25,,,,, Leftrightarrow ,,,,x = 308.} right.)

Таким образом, весь путь теплохода составляет (2 cdot x = 2 cdot 308 = 616) км.

Ответ: 616.

Задача 9. Расстояние между пристанями A и B равно 120 км. Из A в B по течению реки отправился плот, а через час вслед за ним отправилась яхта, которая, прибыв в пункт B, тотчас повернула обратно и возвратилась в A. К этому времени плот прошел 24 км. Найдите скорость яхты в неподвижной воде, если скорость течения реки равна 2 км/ч. Ответ дайте в км/ч.

Пусть x км/ч – скорость яхты в неподвижной воде, тогда ее скорость по течению (x + 2) км/ч, а против течения (x — 2) км/ч.

v (км/ч) t (ч) S (км)
По течению (x + 2) (frac{{120}}{{x + 2}}) 120
Против течения (x — 2) (frac{{120}}{{x — 2}}) 120

Скорость плота равна скорости течения, то есть 2 км/ч. Следовательно, чтобы проплыть 24 км плот затратил (frac{{24}}{2} = 12) часов. Так как яхта оправилась через 1 час после плота, то она была в пути 12–1=11 часов.

(frac{{120}}{{x + 2}} + frac{{120}}{{x — 2}} = 11,,,, Leftrightarrow ,,,,frac{{120left( {x — 2} right) + 120left( {x + 2} right)}}{{left( {x + 2} right)left( {x — 2} right)}} = 11,,,, Leftrightarrow ,,,,frac{{240x}}{{{x^2} — 4}} = 11,,,, Leftrightarrow )

( Leftrightarrow ,,,,11left( {{x^2} — 4} right) = 240x,,,, Leftrightarrow ,,,,11{x^2} — 240x — 44 = 0;)

(D = {240^2} + 4 cdot 11 cdot 44 = {4^2} cdot {60^2} + {4^2} cdot {11^2} = {4^2} cdot left( {3600 + 121} right) = {4^2} cdot 3721;,,,,sqrt D  = 4 cdot 61 = 244;)({x_1} = frac{{240 + 244}}{{22}} = frac{{484}}{{22}} = 22;,,,,{x_2} = frac{{240 — 244}}{{22}} =  — frac{2}{{11}}.)

Так как (x > 0), то скорость яхты в неподвижной воде равна 22 км/ч.

Ответ: 22.

Задача 10. По морю параллельными курсами в одном направлении следуют два сухогруза: первый длиной 120 метров, второй — длиной 80 метров. Сначала второй сухогруз отстает от первого, и в некоторый момент времени расстояние от кормы первого сухогруза до носа второго составляет 400 метров. Через 12 минут после этого уже первый сухогруз отстает от второго так, что расстояние от кормы второго сухогруза до носа первого равно 600 метрам. На сколько километров в час скорость первого сухогруза меньше скорости второго?

Чтобы перейти из первого положения во второе, второй сухогруз должен пройти больше первого на 400+120+80+600=1200 м = 1,2 км.

Пусть первый сухогруз за 12 минут ((frac{1}{5}) часа) пройдет x км, тогда второй пройдет (x + 1,2) км, а скорости сухогрузов соответственно равны V1 и V2. Тогда:

(left{ {begin{array}{*{20}{c}}  {frac{1}{5}{V_1} = x;} \   {frac{1}{5}{V_2} = x + 1,2.} end{array}} right.)

Вычтем из второго уравнения первое:

(frac{1}{5}{V_2} — frac{1}{5}{V_1} = 1,2,,left| {, cdot 5,,,, Leftrightarrow ,,,,{V_2} — {V_1} = 6.} right.)

Следовательно, скорости сухогрузов отличаются на 6 км/ч.

Ответ: 6.

Задача 11. Весной катер идёт против течения реки в (1frac{2}{3}) раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в (1frac{1}{2}) раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).

Пусть x км/ч – скорость течения реки весной, тогда скорость течения летом (x — 1) км/ч, а (y) км/ч – скорость катера.

ВЕСНА ЛЕТО
По течению (y + x) (y + x — 1)
Против течения (y — x) (y — left( {x — 1} right))

Весной скорость катера по течению в (1frac{2}{3}) раза больше чем против течения, то есть (frac{{y + x}}{{y — x}} = frac{5}{3}), а летом в (1frac{1}{2}) раза больше, то есть (frac{{y + x — 1}}{{y — x + 1}} = frac{3}{2}). Таким образом, получаем систему уравнений:

(left{ {begin{array}{*{20}{c}}  {frac{{y + x}}{{y — x}} = frac{5}{3}} \   {frac{{y + x — 1}}{{y — x + 1}} = frac{3}{2}} end{array},,,,,, Leftrightarrow ,,,,,left{ {begin{array}{*{20}{c}}  {5left( {y — x} right) = 3left( {y + x} right)} \   {3left( {y — x + 1} right) = 2left( {y + x — 1} right)} end{array}} right.} right.,,,,, Leftrightarrow ,)

( Leftrightarrow ,,,,,left{ {begin{array}{*{20}{c}}  {y = 4x} \   {y — 5x + 5 = 0} end{array}} right.,,,,, Leftrightarrow ,,,,4x — 5x + 5 = 0,,,,,, Leftrightarrow ,,,,,x = 5.)

Следовательно, скорость течения весной равна 5 км/ч.

Ответ: 5.

В (9) задании ЕГЭ по математике предлагается решить текстовую задачу. За это задание можно получить (1) балл.

Пример:

группа туристов в 10 часов утра на катере по реке отправилась на экскурсию. До места экскурсии катер плыл (15) км. Экскурсия длилась 4 часа, после этого группа на этом же катере вернулась обратно в 18 часов того же дня. Определи скорость течения реки, если скорость катера в стоячей воде равна 8 км/ч.

Алгоритм выполнения задания

  1. Определим тип задачи.
     
  2. Определим, какую величину удобно обозначить переменной. Заполним таблицу по условию задачи.
     
  3. Выполним все необходимые вычисления, которые можно сделать по явно данным условиям.
     
  4. Составим уравнение и решим его. Если получили два корня, то необходимо отобрать нужный.
     
  5. Вернёмся к условию и вопросу задачи, чтобы понять: найдено нужное значение или нужны дополнительные вычисления. 
     
  6. Запишем ответ без единиц измерения и точки в конце.

Как решить задание из примера?

1. Обозначим искомую скорость течения за (x) км/ч. 

2. По условию скорость лодки по течению — 

(8+x)

 км/ч, против течения —

(8−x)

 км/ч. Занесём данные в таблицу. Время в каждой строчке выразим по формуле

t=Sv

.

 

Скорость

Время

Расстояние

По течению

 (8+x)

 км/ч

158+x

 ч

(15) км

Против течения

(8−x)

 км/ч

158−x

 ч

(15) км

3. Время на движение туда и обратно, исходя из показаний часов, составляет 4 часа, т. к. группа отправилась в 10 часов, вернулась в 18 часов и при этом потратила 4 часа на экскурсию.

4. Составим уравнение. В левой его части окажется сумма времени на путь к месту экскурсии и времени на путь обратно. В правой части уравнения — общее время, полученное при вычислениях в п. (2). Направление течения неважно, так как (15) км пройдено по течению и (15) км — против течения.

158+x+158−x=4;15(8−x)+15(8+x)(8−x)(8+x)=4;15⋅1664−x2=4;15⋅464−x2=1;x2=4;x=±2.

Отрицательный корень не подходит к условию задачи. Его исключаем.

5. В задаче требуется найти скорость течения реки. Это и есть (x), значит, ответ уже найден.

6. Запишем ответ: (2).

Обрати внимание!

В заданиях «Как на ЕГЭ» ответы записывай в виде целого числа или десятичной дроби без пробелов и точки в конце.

Если получилась обыкновенная дробь и её нельзя перевести в конечную десятичную дробь — ищи ошибку в решении!

Текстовые задачи на движение – легко! Алгоритм решения и успех на ЕГЭ

Смотри видео «Текстовые задачи на ЕГЭ по математике».

Почему текстовые задачи относятся к простым?

Во-первых, все такие задачи решаются по единому алгоритму, о котором мы вам расскажем. Во-вторых, многие из них однотипны — это задачи на движение или на работу. Главное — знать к ним подход.

Внимание! Чтобы научиться решать текстовые задачи, вам понадобится всего три-четыре часа самостоятельной работы, то есть два-три занятия. Всё, что нужно, — это здравый смысл плюс умение решать квадратное уравнение. И даже формулу для дискриминанта мы вам напомним, если вдруг забыли.

Прежде чем перейти к самим задачам — проверьте себя.

Запишите в виде математического выражения:

  1. x на 5 больше y;
  2. x в пять раз больше y;
  3. z на 8 меньше, чем x;
  4. z меньше x в 3,5 раза;
  5. t_1 на 1 меньше, чем t_2;
  6. частное от деления a на b в полтора раза больше b;
  7. квадрат суммы x и y равен 7;
  8. x составляет 60 процентов от y;
  9. m больше n на 15 процентов.

Пока не напишете — в ответы не подглядывайте! :-)

Казалось бы, на первые три вопроса ответит и второклассник. Но почему-то у половины выпускников они вызывают затруднения, не говоря уже о вопросах 7 и 8. Из года в год мы, репетиторы, наблюдаем парадоксальную картину: ученики одиннадцатого класса долго думают, как записать, что «x на 5 больше y». А в школе в этот момент они «проходят» первообразные и интегралы :-)

Итак, правильные ответы:

  1. x=y+5.
    x больше, чем y. Разница между ними равна пяти. Значит, чтобы получить большую величину, надо к меньшей прибавить разницу.
  2. x=5y.
    x больше, чем y, в пять раз. Значит, если y умножить на 5, получим x.
  3. z=x-5.
    z меньше, чем x. Разница между ними равна 8. Чтобы получить меньшую величину, надо из большей вычесть разницу.
  4. z=x:3,5.
  5. t_1=t_2-1.
    t_1 меньше, чем t_2. Значит, если из большей величины вычтем разницу, получим меньшую.
  6. a:b=1,5b.
  7. left( x+y right)^2=7.
    На всякий случай повторим терминологию:
    Сумма — результат сложения двух или нескольких слагаемых.
    Разность — результат вычитания.
    Произведение — результат умножения двух или нескольких множителей.
    Частное — результат деления чисел.
  8. x=0,6y.
    Мы помним, что 60%y = left( 60/100 right)cdot y=0,6y.
  9. m=1,15n.
    Если n принять за 100%, то m на 15 процентов больше, то есть m=115%n.

Начнем мы с задач на движение. Они часто встречаются в вариантах ЕГЭ. Здесь всего два правила:

  1. Все эти задачи решаются по одной-единственной формуле: S=v cdot t, то есть расстояние = скорость cdot время. Из этой формулы можно выразить скорость v=S/t или время t=s/v.
  2. В качестве переменной x удобнее всего выбирать скорость. Тогда задача точно решится!

Для начала очень внимательно читаем условие. В нем все уже есть. Помним, что текстовые задачи на самом деле очень просты.


1. Из пункта A в пункт B, расстояние между которыми 50 км, одновременно выехали автомобилист и велосипедист. Известно, что в час автомобилист проезжает на 40 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт B на 4 часа позже автомобилиста. Ответ дайте в км/ч.

Что здесь лучше всего обозначить за x? Скорость велосипедиста. Тем более, что ее и надо найти в этой задаче. Автомобилист проезжает на 40 километров больше, значит, его скорость равна x+40.

Нарисуем таблицу. В нее сразу можно внести расстояние — и велосипедист, и автомобилист проехали по 50 км. Можно внести скорость — она равна x и x+40 для велосипедиста и автомобилиста соответственно. Осталось заполнить графу «время».

Его мы найдем по формуле: t=genfrac{}{}{}{0}{displaystyle S}{displaystyle v}. Для велосипедиста получим t_1=genfrac{}{}{}{0}{displaystyle 50}{displaystyle x}, для автомобилиста t_2=genfrac{}{}{}{0}{displaystyle 50}{displaystyle x + 40}.
Эти данные тоже запишем в таблицу.

Вот что получится:

v t S
велосипедист x t_1=genfrac{}{}{}{0}{displaystyle 50}{displaystyle x} 50
автомобилист x+40 t_2=genfrac{}{}{}{0}{displaystyle 50}{displaystyle x + 40} 50

Остается записать, что велосипедист прибыл в конечный пункт на 4 часа позже автомобилиста. Позже — значит, времени он затратил больше. Это значит, что t_1 на четыре больше, чем t_2, то есть t_2 + 4 = t_1.

genfrac{}{}{}{0}{displaystyle 50}{displaystyle x + 40}+4=genfrac{}{}{}{0}{displaystyle 50}{displaystyle x}.

Решаем уравнение.

genfrac{}{}{}{0}{displaystyle 50}{displaystyle x} - genfrac{}{}{}{0}{displaystyle 50}{displaystyle x + 40} = 4.

Приведем дроби в левой части к одному знаменателю.

Первую дробь домножим на x+4, вторую — на x.

Если вы не знаете, как приводить дроби к общему знаменателю (или — как раскрывать скобки, как решать уравнение…), подойдите с этим конкретным вопросом к вашему учителю математики и попросите объяснить. Бесполезно говорить учительнице: «Я не понимаю математику» — это слишком абстрактно и не располагает к ответу. Учительница может ответить, например, что она вам сочувствует. Или, наоборот, даст какую-либо характеристику вашей личности. И то и другое неконструктивно.

А вот если вы зададите конкретный вопрос: «Как приводить дроби к одному знаменателю?» или «Как раскрывать скобки?» — вы получите нужный вам конкретный ответ. Вам ведь необходимо в этом разобраться! Если педагог занят, договоритесь о времени, когда вы можете с ним (или с ней) встретиться, чтобы получить консультацию. Используйте ресурсы, которые у вас под рукой!

Получим:

genfrac{}{}{}{0}{displaystyle 50left( x+40 right)-50x}{displaystyle xleft( x + 40 right)}=4;

genfrac{}{}{}{0}{displaystyle 50x+2000 -50x}{displaystyle xleft( x + 40 right)}=4;

genfrac{}{}{}{0}{displaystyle 2000}{displaystyle xleft( x + 40 right)}=4.

Разделим обе части нашего уравнения на 4. В результате уравнение станет проще. Но почему-то многие учащиеся забывают это делать, и в результате получают сложные уравнения и шестизначные числа в качестве дискриминанта.

genfrac{}{}{}{0}{displaystyle 500}{displaystyle xleft( x + 40 right)}=1.

Умножим обе части уравнения на xleft( x + 40 right). Получим:

xleft( x + 40 right)=500.

Раскроем скобки и перенесем всё в левую часть уравнения:

x^2+40x=500;

x^2+40x-500=0.

Мы получили квадратное уравнение. Напомним, что квадратным называется уравнение вида ax^2+bx+c=0. Решается оно стандартно — сначала находим дискриминант по формуле D=b^2-4ac, затем корни по формуле x_{1,2} = genfrac{}{}{}{0}{displaystyle -b pm sqrt{D}}{displaystyle 2a}.

В нашем уравнении a=1, b=40, c=-500.

Найдем дискриминант D=1600+2000=3600 и корни:

x_1=10, x_2=-50.

Ясно, что x_2 не подходит по смыслу задачи — скорость велосипедиста не должна быть отрицательной.

Ответ: 10.

Следующая задача — тоже про велосипедиста.


2. Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 70 км. На следующий день он отправился обратно со скоростью на 3 км/ч больше прежней. По дороге он сделал остановку на 3 часа. В результате он затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B. Ответ дайте в км/ч.

Пусть скорость велосипедиста на пути из A в B равна x. Тогда его скорость на обратном пути равна x+3. Расстояние в обеих строчках таблицы пишем одинаковое — 70 километров. Осталось записать время. Поскольку t=genfrac{}{}{}{0}{displaystyle S}{displaystyle v}, на путь из A в B велосипедист затратит время t_1=genfrac{}{}{}{0}{displaystyle 70}{displaystyle x}, а на обратный путь время t_2=genfrac{}{}{}{0}{displaystyle 70}{displaystyle x + 3}.

v t S
туда x t_1=genfrac{}{}{}{0}{displaystyle 70}{displaystyle x} 70
обратно x+3 t_2=genfrac{}{}{}{0}{displaystyle 70}{displaystyle x + 3} 70

На обратном пути велосипедист сделал остановку на 3 часа и в результате затратил столько же времени, сколько на пути из A в B. Это значит, что на обратном пути он крутил педали на 3 часа меньше.

Значит, t_2 на три меньше, чем t_1. Получается уравнение:

genfrac{}{}{}{0}{displaystyle 70}{displaystyle x + 3}+3=genfrac{}{}{}{0}{displaystyle 70}{displaystyle x}.

Как и в предыдущей задаче, сгруппируем слагаемые:

genfrac{}{}{}{0}{displaystyle 70}{displaystyle x} - genfrac{}{}{}{0}{displaystyle 70}{displaystyle x + 3} = 3.

Точно так же приводим дроби к одному знаменателю:

genfrac{}{}{}{0}{displaystyle 70left( x+3 right) - 70x}{displaystyle xleft( x+3 right)}=3;

genfrac{}{}{}{0}{displaystyle 210}{displaystyle xleft( x+3 right)}=3.

Разделим обе части уравнения на 3.

genfrac{}{}{}{0}{displaystyle70}{displaystyle xleft( x+3 right)}=1.

Напомним — если вам непонятны какие-либо действия при решении уравнений, обращайтесь к учительнице! Показывайте конкретную строчку в решении задачи и говорите: «Пожалуйста, объясните, как это делать». Для нее такое объяснение — дело пятнадцати минут, а вы наконец научитесь решать уравнения, что очень важно для сдачи ЕГЭ по математике.

Умножим обе части уравнения на xleft( x+3 right), раскроем скобки и соберем все в левой части.

x^2+3x-70=0.

Находим дискриминант. Он равен 9+4cdot 70=289.

Найдем корни уравнения:

x_1=7. Это вполне правдоподобная скорость велосипедиста. А ответ x_2 = -10 не подходит, так как скорость велосипедиста должна быть положительна.

Ответ: 7.

Следующий тип задач — когда что-нибудь плавает по речке, в которой есть течение. Например, теплоход, катер или моторная лодка. Обычно в условии говорится о собственной скорости плавучей посудины и скорости течения. Собственной скоростью называется скорость в неподвижной воде.

При движении по течению эти скорости складываются. Течение помогает, по течению плыть — быстрее.

Скорость при движении по течению равна сумме собственной скорости судна и скорости течения.

А если двигаться против течения? Течение будет мешать, относить назад. Теперь скорость течения будет вычитаться из собственной скорости судна.


3. Моторная лодка прошла против течения реки 255 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше. Найдите скорость лодки в неподвижной воде, если скорость течения равна 1 км/ч. Ответ дайте в км/ч.

Пусть скорость лодки в неподвижной воде равна x.

Тогда скорость движения моторки по течению равна x+1, а скорость, с которой она движется против течения x-1.

Расстояние и в ту, и в другую сторону одинаково и равно 255 км.

Занесем скорость и расстояние в таблицу.

Заполняем графу «время». Мы уже знаем, как это делать. При движении по течению t_1=genfrac{}{}{}{0}{displaystyle 255}{displaystyle x+1}, при движении против течения t_2=genfrac{}{}{}{0}{displaystyle 255}{displaystyle x-1}, причем t_2 на два часа больше, чем t_1.

v t S
по течению x+1 t_1=genfrac{}{}{}{0}{displaystyle 255}{displaystyle x+1} 255
против течения x-1 t_2=genfrac{}{}{}{0}{displaystyle 255}{displaystyle x-1} 255

Условие «t_2 на два часа больше, чем «t_1» можно записать в виде:

t_1+2=t_2.

Составляем уравнение:

genfrac{}{}{}{0}{displaystyle 255}{displaystyle x+1}+2=genfrac{}{}{}{0}{displaystyle 255}{displaystyle x-1}

и решаем его:

genfrac{}{}{}{0}{displaystyle 255}{displaystyle x-1}-genfrac{}{}{}{0}{displaystyle 255}{displaystyle x+1}=2.

Приводим дроби в левой части к одному знаменателю:

genfrac{}{}{}{0}{displaystyle 255left( x+1 right)-255left( x-1 right)}{displaystyle left( x+1 right)left( x-1 right)}=2.

Раскрываем скобки:

genfrac{}{}{}{0}{displaystyle 510}{displaystyle x^2-1}=2.

Делим обе части на 2, чтобы упростить уравнение:

genfrac{}{}{}{0}{displaystyle 255}{displaystyle x^2-1}=1.

Умножаем обе части уравнения на x^2-1:

x^2-1=255;

x^2=256.

Вообще-то это уравнение имеет два корня: x_1=16 и x_2=-16 (оба этих числа при возведении в квадрат дают 256). Но конечно же, отрицательный ответ не подходит — скорость лодки должна быть положительной.

Ответ: 16.


4. Теплоход проходит по течению реки до пункта назначения 200 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 15 км/ч, стоянка длится 10 часов, а в пункт отправления теплоход возвращается через 40 часов после отплытия из него. Ответ дайте в км/ч.

Снова обозначим за x скорость течения. Тогда скорость движения теплохода по течению равна 15+x, скорость его движения против течения равна 15-x. Расстояния — и туда, и обратно — равны 200 км.

Теперь графа «время».

Поскольку t=genfrac{}{}{}{0}{displaystyle S}{displaystyle v}, время t_1 движения теплохода по течению равно genfrac{}{}{}{0}{displaystyle 200}{displaystyle 15+x}, которое теплоход затратил на движение против течения, равно genfrac{}{}{}{0}{displaystyle 200}{displaystyle 15-x}.

v t S
по течению x+15 genfrac{}{}{}{0}{displaystyle 200}{displaystyle 15+x} 200
против течения 15-x genfrac{}{}{}{0}{displaystyle 200}{displaystyle 15-x} 200

В пункт отправления теплоход вернулся через 40 часов после отплытия из него. Стоянка длилась 10 часов, следовательно, 30 часов теплоход плыл — сначала по течению, затем против.

Значит, t_1+t_2=30;

genfrac{}{}{}{0}{displaystyle 200}{displaystyle 15+x}+ genfrac{}{}{}{0}{displaystyle 200}{displaystyle 15-x}=30.

Прежде всего разделим обе части уравнения на 10. Оно станет проще!

genfrac{}{}{}{0}{displaystyle 20}{displaystyle 15+x}+ genfrac{}{}{}{0}{displaystyle 20}{displaystyle 15-x}=3.

Мы не будем подробно останавливаться на технике решения уравнения. Всё уже понятно — приводим дроби в левой части к одному знаменателю, умножаем обе части уравнения на 255-x^2, получаем квадратное уравнение x^2=25. Поскольку скорость течения положительна, получаем: x=5.

Ответ: 5.

Наверное, вы уже заметили, насколько похожи все эти задачи. Текстовые задачи хороши еще и тем, что ответ легко проверить с точки зрения здравого смысла. Ясно, что если вы получили скорость течения, равную 300 километров в час — задача решена неверно.


5. Баржа в 10:00 вышла из пункта A в пункт B, расположенный в 15 км от A. Пробыв в пункте B 1 час 20 минут, баржа отправилась назад и вернулась в пункт A в 16:00. Определите (в км/час) скорость течения реки, если известно, что собственная скорость баржи равна 7 км/ч.

Пусть скорость течения равна x. Тогда по течению баржа плывет со скоростью 7+x, а против течения со скоростью 7-x.

Сколько времени баржа плыла? Ясно, что надо из 16 вычесть 10, а затем вычесть время стоянки. Обратите внимание, что 1 час 20 минут придется перевести в часы: 1 час 20 минут =1genfrac{}{}{}{0}{displaystyle 1}{displaystyle 3} часа. Получаем, что суммарное время движения баржи (по течению и против) равно 4genfrac{}{}{}{0}{displaystyle 2}{displaystyle 3} часа.

v t S
по течению x+7 t_1 15
против течения 7-x t_2 15

t_1+t_2=4genfrac{}{}{}{0}{displaystyle 2}{displaystyle 3}.

Возникает вопрос — какой из пунктов, A или B, расположен выше по течению? А этого мы никогда не узнаем! :-)
Да и какая разница — ведь в уравнение входит сумма t_1+t_2, равная genfrac{}{}{}{0}{displaystyle 15}{displaystyle 7+x}+genfrac{}{}{}{0}{displaystyle 15}{displaystyle 7-x}.

Итак, genfrac{}{}{}{0}{displaystyle 15}{displaystyle 7+x}+genfrac{}{}{}{0}{displaystyle 15}{displaystyle 7-x}=4genfrac{}{}{}{0}{displaystyle 2}{displaystyle 3}.

Решим это уравнение. Число 4genfrac{}{}{}{0}{displaystyle 2}{displaystyle 3} в правой части представим в виде неправильной дроби: 4genfrac{}{}{}{0}{displaystyle 2}{displaystyle 3}=genfrac{}{}{}{0}{displaystyle 14}{displaystyle 3}.

Приведем дроби в левой части к общему знаменателю, раскроем скобки и упростим уравнение. Получим:

30 cdot 7=genfrac{}{}{}{0}{displaystyle 14}{displaystyle 3} cdot left( 49-x^2 right).

Работать с дробными коэффициентами неудобно! Если мы разделим обе части уравнения на 14 и умножим на 3, оно станет значительно проще:

45=49-x^2;

x^2=4.

Поскольку скорость течения положительна, x=2.

Ответ: 2.

Еще один тип текстовых задач в вариантах ЕГЭ по математике — это задачи на работу.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Текстовые задачи на движение – легко! Алгоритм решения и успех на ЕГЭ» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

16
Окт 2013

Категория: 09 Текстовые задачиТекстовые задачи

09. Задачи на движение по воде

2013-10-16
2022-09-11


Задача 1. Моторная лодка прошла против течения реки 120 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше. Найдите скорость лодки в неподвижной воде, если скорость течения равна 1 км/ч. Ответ дайте в км/ч.

Решение: + показать


Задача 2. Байдарка в 10:00 вышла из пункта А в пункт В, расположенный в 15 км от А. Пробыв в пункте В 1 час 20 минут, байдарка отправилась назад и вернулась в пункт А в 16:00. Определите (в км/ч) собственную скорость байдарки, если известно, что скорость течения реки 2 км/ч.

Решение: + показать


Задача 3. От пристани А к пристани В отправился с постоянной скоростью первый теплоход, а через 2 часа после этого следом за ним со скоростью на 2 км/ч большей отправился второй. Расстояние между пристанями равно 168 км. Найдите скорость первого теплохода, если в пункт В оба теплохода прибыли одновременно. Ответ дайте в км/ч.

Решение: + показать


Задача 4. Пристани A и B расположены на озере, расстояние между ними 234 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.

Решение: + показать


Задача 5. Расстояние между пристанями A и B равно 72 км. Из A в B по течению реки отправился плот, а через 3 часа вслед за ним отправилась яхта, которая, прибыв в пункт B, тотчас повернула обратно и возвратилась в A. К этому времени плот прошел 39 км. Найдите скорость яхты в неподвижной воде, если скорость течения реки равна 3 км/ч. Ответ дайте в км/ч.

Решение: + показать


Задача 6. По морю параллельными курсами в одном направлении следуют два сухогруза: первый длиной 130 метров, второй — длиной 120 метров. Сначала второй сухогруз отстает от первого, и в некоторый момент времени расстояние от кормы первого сухогруза до носа второго составляет 600 метров. Через 11 минут после этого уже первый сухогруз отстает от второго так, что расстояние от кормы второго сухогруза до носа первого равно 800 метрам. На сколько километров в час скорость первого сухогруза меньше скорости второго? Видео*

Решение: + показать


Задача 7. Весной катер идёт против течения реки в 1frac{2}{3} раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в 1frac{1}{2} раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).

Решение: + показать


тест

Вы можете пройти тест “Движение по воде”

Автор: egeMax |

комментария 3

Печать страницы

Понравилась статья? Поделить с друзьями:
  • Найти рост человека егэ
  • Найти сочинение по картинке
  • Найти репетитора по физике онлайн егэ
  • Найти сочинение по картине зимний вечер
  • Найти репетитора по профильной математике для подготовки к егэ