Неравенства теория для егэ

Если в выражении с переменными вы увидели знак = , то это уравнение.

Если знак < или ˃ или ≤ или ≥ — то это, конечно, неравенство.

Как правило, неравенства решаются сложнее, чем аналогичные им уравнения. И знать надо больше – чтобы не наделать ошибок

В этом разделе – все основные способы и приемы решения неравенств на ЕГЭ по математике. Повторите их. Даже такие неравенства, как квадратичные или дробно-рациональные, содержат немало ловушек для неопытного школьника. И тем более — показательные и логарифмические. А иррациональные неравенства и неравенства с модулями вообще считаются одними из самых сложных тем школьного курса алгебры.

Здесь рассказано также о методе замены множителя (еще он называется методом рационализации неравенства). В учебнике вы его не найдете. И еще – об основных ошибках и полезных лайфхаках для решения неравенств.

New 

Решаем задачи из сборника И. В. Ященко, 2021

Квадратичные неравенства

Метод интервалов

Иррациональные неравенства

Задача 15 Репетиционного ЕГЭ онлайн, май 2020, Анна Малкова

Неравенства с модулем

Показательные неравенства

Логарифмические неравенства

Метод замены множителя (рационализации)

Решение неравенств: основные ошибки и полезные лайфхаки

Решаем задачи из сборника И. В. Ященко, 2020. Вариант 8, задача 15

Решаем задачи из сборника И. В. Ященко, 2020. Вариант 32, задача 15

Решаем задачи из сборника И. В. Ященко, 2020. Вариант 36, задача 15

Логарифмические неравенства повышенной сложности

Еще раз повторим основные правила:

Равносильными называются неравенства, множества решений которых совпадают.

— Если обе части неравенства умножить на отрицательное число, знак неравенства поменяется на противоположный. А если на положительное число – знак неравенства останется тем же.

— Возводить обе части неравенства в квадрат можно только если они неотрицательны.

— Извлекать корень из неравенства нельзя. Нет такого действия!

— Если в неравенстве можно сделать замену переменной – сделайте замену переменной. А потом аккуратно вернитесь к той переменной, которая была вначале.

— Если вы решаете простейшее показательное или логарифмическое неравенство – не забудьте сравнить основание степени (или логарифма) с единицей.

— Если в неравенстве есть дроби, корни четной степени или логарифмы – там обязательно будет область допустимых значений.

— Решение неравенства лучше всего записывать в виде цепочки равносильных переходов.

— Если вы воспользовались методом рационализации (замены множителя) – соответствующие формулы лучше доказать.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Решение неравенств» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.03.2023

Рациональное неравенство — это неравенство, которое можно свести к виду [Large{dfrac{P(x)}{Q(x)}lor 0}]где (P(x),
Q(x))
— многочлены.
((lor) — один из знаков (geqslant,
leqslant, >, <)
)
Например, следующие неравенства являются рациональными: [dfrac1{x+1}>0,qquad x+2+dfrac{x-1}{x+3}<1,qquad x^2+x-2leqslant 0]

[{Large{text{Линейные неравенства}}}] Линейные неравенства – это неравенства вида [ax+b lor 0, qquad
lor — text{ один из знаков } geqslant, leqslant, >,
<;quad a,b — text{ числа,}]
или сводящиеся к такому виду.
Область допустимых значений (x) (ОДЗ) таких неравенств — все вещественные числа ((xin mathbb{R})).

Общее правило решения линейных неравенств:

1) Для того, чтобы решить данное неравенство, необходимо привести его к виду (axlor -b), то есть перенести число (b) в правую часть.

2) Если коэффициент (a) перед (x) – положительный, то неравенство равносильно (xlor -dfrac ba), то есть после деления обеих частей неравенства на (a) знак неравенства не меняется.

3) Если коэффициент (a) перед (x) – отрицательный, то неравенство равносильно (xland -dfrac ba), то есть после деления обеих частей неравенства на (a) знак неравенства меняется на противоположный.

4) Если (a=0), то неравенство равносильно (0lor -b), что либо верно при всех значениях переменной (x) (например, если это (0>-1)), либо неверно ни при каких значениях (x) (например, если это (0leqslant -3)).
То есть ответом будут либо (xinmathbb{R}), либо (xin
varnothing)
.

Замечание
Заметим, что знаку (leqslant) противоположен знак (geqslant), а знаку (<) – знак (>). И наоборот.

Пример 1
Решить неравенство (5-3x>-1).

Решение. I способ
Сделаем цепочку преобразований:

[5-3x>-1 Rightarrow -3x>-1-5 Rightarrow -3x>-6
Rightarrow x<dfrac 63 Rightarrow x<2]
Таким образом, ответом будет (xin(-infty;2)).
Заметим, что т.к. мы делили неравенство на (-3), то знак неравенства поменялся.

Решение. II способ
Можно перенести слагаемое (-3x) в правую часть, а (-1) – в левую:

[5-3x>-1 Rightarrow 5+1>3x Rightarrow 3x<6 Rightarrow x<2]

Пример 2
Решить неравенство ((1-sqrt2)x+2leqslant 0).

Решение
Заметим, что перед (x) находится отрицательный коэффициент. Поэтому:

[(1-sqrt2)xleqslant -2 Rightarrow xgeqslant -dfrac 2{1-sqrt2}] Преобразуем число (-dfrac 2{1-sqrt2}): домножим числитель и знаменатель дроби на сопряженное к (1-sqrt2), то есть на (1+sqrt2), чтобы избавиться от иррациональности в знаменателе:

[-dfrac 2{1-sqrt2}=-dfrac{2(1+sqrt2)}{(1-sqrt2)(1+sqrt2)}=
-dfrac{2(1+sqrt2)}{1-2}=2(1+sqrt2)]

Таким образом, ответ (xin [2+2sqrt2;+infty)).
Перейдем к квадратичным неравенствам, которые являются очень важным инструментом в решении задач.

[{Large{text{Метод интервалов}}}]

Приступим к рассмотрению общего метода для решения любого рационального неравенства, то есть неравенства вида

[(**)qquad dfrac{P(x)}{Q(x)}geqslant 0 qquad (text{на месте }geqslant
text{может стоять любой из} leqslant, <, >)]

Область допустимых значений (x) (ОДЗ) таких неравенств — все вещественные числа, кроме нулей знаменателя.

Существует два способа решения таких неравенств:

1 способ: Классический. Т.к. дробь положительна (отрицательна) тогда и только тогда, когда числитель и знаменатель дроби одного знака (разных знаков), то неравенство ((*)) равносильно совокупности: [{large{left[begin{gathered}
begin{aligned}
&begin{cases} P(x)geqslant 0\ Q(x)>0 end{cases}\
&begin{cases} P(x)leqslant 0\ Q(x)<0 end{cases}
end{aligned}
end{gathered}
right.}}]

Такой способ подойдет для решения любого неравенства, где слева стоит дробь, а справа — (0).
Но, как правило, для решения большинства рациональных неравенств он неудобен. Почему? Вы сможете убедиться в этом после того, как мы рассмотрим метод интервалов.

2 способ: Удобный. Метод интервалов (будем рассматривать этот метод на примере конкретного неравенства, чтобы было понятней).
Заметим, что первые три шага созданы для того, чтобы преобразовать неравенство к более простому виду, что поможет вам не допустить ошибку в решении подобных задач. Метод интервалов – это всего лишь удобный инструмент для решения рациональных неравенств, и если вы будете всегда пользоваться одним и тем же алгоритмом, то вероятность допустить ошибку при решении таких неравенств будет минимальной.
Данный алгоритм специально расписан подробно, чтобы у вас не возникло вопросов; всего после нескольких использований этого алгоритма вы будете решать рациональные неравенства очень быстро и без ошибок!

1 ШАГ. Необходимо перенести все слагаемые в одну часть (пусть это будет левая часть) неравенства так, чтобы в другой части неравенства остался (0), и привести эти слагаемые к общему знаменателю так, чтобы в левой части неравенства получилась дробь. Затем нужно разложить числитель и знаменатель полученной дроби, то есть многочлены (P(x), Q(x)), на множители.
 
Например, неравенство (dfrac1{x+1}<1) нужно переписать в виде (dfrac1{x+1}-1<0), затем привести к общему
 
знаменателю (dfrac1{x+1}-dfrac{x+1}{x+1}<0), затем записать в виде одной дроби левую часть: (dfrac{1-(x+1)}{x+1}<0) и
 
привести подобные слагаемые: (dfrac{-x}{x+1}<0).

Итак, пусть после разложения на множители неравенство приняло вид [dfrac{x^2(x-1)^3(x+1)(2x^2+3x+5)(2x-x^2-3)}{(x+1)^3(3-x)(2-3x)^2}
geqslant0]

Заметим, что любой многочлен можно (а в нашем способе НУЖНО) разложить до произведения только линейных скобок ((ax+b)) и квадратичных скобок с отрицательным дискриминантом ((ax^2+bx+c), D<0).

2 ШАГ. Рассмотрим скобки, в которых остался квадратичный трехчлен с (D<0).

(bullet) Если при (x^2) находится положительный коэффициент (a>0), то при всех значениях (x) выражение (ax^2+bx+c) положительно (не может быть равно нулю!). Т.к. мы имеем право делить неравенство на любое число/выражение, не равное (0), то разделим обе части неравенства на такие скобки (в нашем неравенстве такой скобкой является ((2x^2+3x+5))). Причем заметим, что т.к. мы делим на положительное выражение, то знак неравенства не меняется!

(bullet) Если при (x^2) находится отрицательный коэффициент (a<0), то при всех значениях (x) выражение (ax^2+bx+c) отрицательно. Т.к. мы имеем право делить неравенство на любое число/выражение, не равное (0), то разделим обе части неравенства на такие скобки (в нашем неравенстве такой скобкой является ((2x-x^2-3))). Причем заметим, что т.к. мы делим на отрицательное выражение, то знак неравенства должен измениться на противоположный!
 

Итак, обобщим 2 шаг: квадратичные скобки с отрицательным дискриминантом можно просто вычеркнуть, причем при вычеркивании скобок с (a>0) знак неравенства остается прежним, а вот при вычеркивании скобок с (a<0) знак неравенства меняется на противоположный столько раз, сколько было таких скобок. Лучше вычеркивать их последовательно по одной, каждый раз меняя знак неравенства на противоположный.

Таким образом, неравенство примет вид [dfrac{x^2(x-1)^3(x+1)}{(x+1)^3(3-x)(2-3x)^2}
leqslant 0]

3 ШАГ. Рассмотрим линейные скобки ((ax+b)).

Назовем скобку хорошей, если при (x) находится положительный коэффициент (такие скобки мы трогать не будем), и плохой, если при (x) находится отрицательный коэффициент (в таких скобках необходимо поменять все знаки на противоположные, то есть сделать их хорошими).

Для того, чтобы в одной плохой скобке поменять все знаки на противоположные, необходимо домножить правую и левую части неравенства на (-1). Таким образом, после одного такого действия знак неравенства сменится на противоположный. Значит, если плохих скобок четное количество, то знак неравенства не изменится, если нечетное – то знак неравенства изменится на противоположный.

Заметим, что выражение ((ax+b)^n) — это не что иное, как произведение (n) скобок ((ax+b)).

В нашем неравенстве среди плохих одна скобка ((3-x)) и две скобки ((2-3x)) (т.к. ((2-3x)^2=(2-3x)(2-3x))), то есть всего три плохих скобки, следовательно, знак неравенства изменится и неравенство примет вид: [dfrac{x^2(x-1)^3(x+1)}{(x+1)^3(x-3)(3x-2)^2}
geqslant0quad (***)]

Заметим, что множитель (x^2) — это скобка ((x-0)^2), или, что то же самое, ((x-0)(x-0)) – произведение двух одинаковых линейных скобок.

4 ШАГ. Теперь, когда левая часть неравенства состоит из произведения только хороших линейных скобок (в каких-то степенях), можно приступить к самому методу интервалов.

Его суть состоит в том, что левая часть неравенства — всюду непрерывная функция, кроме тех точек, где знаменатель дроби равен нулю. Поэтому точки, в которых эта функция равна нулю (то есть ее числитель равен нулю) и точки, в которых эта функция не существует (то есть ее знаменатель равен нулю), разбивают область определения этой функции на промежутки, причем на каждом промежутке функция принимает значения строго одного знака.

А нам как раз нужно найти те значения (x), при которых функция (geqslant 0). Причем, т.к. наша функция — рациональная, то ее область определения — это все действительные числа ((mathbb{R})), кроме нулей знаменателя. Поэтому отметим нули каждой скобки на вещественной прямой (а ноль каждой скобки – это как раз ноль числителя или знаменателя), причем нули знаменателя – выколотые, нули числителя – закрашенные (если знак неравенства нестрогий, как в примере, то есть (geqslant ) или (leqslant )) или выколотые (если знак неравенства строгий, то есть (>) или (<)).
Заметим, что если мы отметили (n) точек, то числовая прямая разобьется на (n+1) промежутков.

Расставим знак на каждом промежутке (color{red}{{Large{text{справа налево}}}}). Будем ставить “(+)”, если функция на этом промежутке принимает положительные значения, и “(-)” — если отрицательные. Нулю функция равна в закрашенных точках.
Первые три шага мы делали для того, чтобы не подставлять точки из каждого промежутка и не вычислять, какого знака будет левая часть неравенства (что бывает неудобно, если числа, которые нужно отмечать на прямой, “некрасивые”). Знаки мы будем расставлять, выявив некоторую закономерность. Какую – вы узнаете дальше.
Но в любом случае способ расстановки знаков путем подстановки чисел остается в нашем арсенале.

Т.к. все скобки – хорошие, то первый знак всегда будет “(+,)” (именно для этого мы и приводили неравенство к такому виду!). Действительно, если подставить любое число, превышающее самый большой корень (у нас самый большой корень (x=3)), то каждая скобка будет положительна, значит, и произведение таких скобок будет всегда положительно.

Если какой-то корень входит в четное количество скобок, то при переходе через него (справа налево!) знак меняться не будет. В нашем неравенстве это точки (-1, 0, dfrac23) (например, точка (-1) входит в четное количество скобок: одна в числителе ((x+1)) и три в знаменателе ((x+1)^3)).

Если точка входит в нечетное количество скобок, то при переходе через эту точку (справа налево!) знак будет меняться (в нашем неравенстве это точки (3) и (1)).

Объясним, почему так происходит. Каждая линейная скобка в нечетной степени ((x-a)^{2n+1}) имеет ровно один корень (x=a), причем, т.к. мы сделали ее хорошей, то для всех (x>a) она будет положительной, для всех (x<a) она будет отрицательной (а для (x=a), естественно, равной нулю). Значит, когда (xin (1;3)), то все скобки, кроме ((x-3)), будут оставаться положительными, и лишь эта скобка ((x-3)) станет отрицательной. Значит, их произведение также станет отрицательным. Аналогично при переходе через точку (x=1).
Каждая линейная скобка в четной степени ((x-b)^{2n}) также имеет ровно один корень (x=b), но т.к. она в четной степени, то при всех (xne b) она всегда будет положительной! И только при (x=b) она будет равна нулю. Именно поэтому при переходе через точку (x=dfrac23), т.е. на (xin(0;frac23)), скобка ((3x-2)^2) не сменит свой знак на отрицательный, поэтому вся левая часть останется по знаку такой же, как и была на ((frac23;1)) (т.е. положительной). Аналогично при переходе через точки (0, -1).

5 ШАГ. Неравенство практически решено и нам остается только записать ответ. В нашем случае, т.к. знак преобразованного ((***)) неравенства (geqslant 0) (нестрогий), то в ответ пойдут промежутки со знаком “(+,)” (где значение функции больше нуля) и закрашенные точки (где значение функции равно нулю): [xin Big(-infty;-1Big)cup left(-1;dfrac23right)cup
left(dfrac23;1right]cupBig(3;+inftyBig)]
Напоминаем, что если точка не входит в ответ, то она пишется в круглой скобке “(()” или “())”, если входит в ответ – то в квадратной скобке “([)” или “(])”. Бесконечности всегда пишутся в круглых скобках.
 

[{Large{text{Квадратичные неравенства}}}]

Квадратичным неравенством называется любое неравенство вида [ax^2+bx+c lor 0, quad ane 0,]

или сводящееся к такому виду.

Область допустимых значений (x) (ОДЗ) таких неравенств — все вещественные числа ((xin mathbb{R})).

Квадратичные неравенства – это те же самые рациональные неравенства, следовательно, их также можно решать с помощью метода интервалов. Но давайте рассмотрим еще один способ, при помощи которого, как правило, удобнее решать квадратичные неравенства. Для этого нам понадобится вспомнить про параболу.

Замечание

Вспомним, как преобразуется квадратичный трехчлен (ax^2+bx+c) в зависимости от того, сколько корней он имеет.
Если квадратное уравнение (ax^2+bx+c=0)

(bullet) имеет два корня (x_1) и (x_2) (дискриминант (D>0)), то (ax^2+bx+c=a(x-x_1)(x-x_2)).

(bullet) имеет один корень (x_1) ((D=0)), то (ax^2+bx+c=a(x-x_1)^2).

(bullet) не имеет корней ((D<0)), то квадратный трехчлен (ax^2+bc+c) никогда не может быть равен нулю и не разлагается на линейные множители.

Шаг 1. Рассмотрим функцию (f(x)=ax^2+bx+c). Графиком такой функции является парабола.
Для того, чтобы решить квадратичное неравенство, изобразим схематично параболу: то есть определим, куда направлены ее ветви и в каких точках она пересекает ось (Ox).

Если (a>0), то ветви направлены вверх, если (a<0), то ветви направлены вниз. Корни уравнения (ax^2+bx+c=0 (*)) и есть абсциссы точек, в которых парабола пересекает ось (Ox).

Шаг 2. Таким образом, наша парабола будет одного из 6 видов:
((1)) и ((4)) — когда уравнение ((*)) имеет один корень;
((2)) и ((5)) — когда уравнение ((*)) имеет два корня;
((3)) и ((6)) — когда уравнение ((*)) не имеет корней.

Часть параболы, находящая выше оси (Ox), отвечает за (f(x)>0);
часть параболы, находящаяся ниже оси (Ox), отвечает за (f(x)<0);
точки, в которых парабола пересекает ось (Ox), отвечают за (f(x)=0).

Пример 1.
Решить неравенство (x^2+3x+2geqslant 0).

Решение
Решим уравнение (x^2+3x+2=0 Leftrightarrow x_1=-2, x_2=-1). Таким образом, неравенство можно переписать в виде: ((x+1)(x+2)geqslant
0)
. Ветви параболы направлены вверх, следовательно, схематично она выглядит как ((2)). Т.к. знак неравенства (geqslant), то решением неравенства будут те значения (x), для которых график находится выше оси (Ox), а именно (xin (-infty;-2]cup[-1;+infty)).

Заметим, что точки (-2, -1) входят в ответ, потому что знак “больше или равно”.

Пример 2.
Решить неравенство (11x-3x^2-6>0)

Решение
Решим уравнение (11x-3x^2-6=0 quadLeftrightarrowquad
x_1=dfrac23, x_2=3)
. Таким образом, неравенство можно переписать в виде: (-3(x-3)(x-frac23)>0).

1 способ. Ветви параболы направлены вниз, следовательно, схематично она выглядит как ((5)). Т.к. знак неравенства (>), то решением неравенства будут (xin left(dfrac23;3right)).

2 способ. Домножим правую и левую части неравенства на (-1), получим (3(x-3)(x-frac23)<0) (заметим, что знак сменился на противоположный). У новой параболы (Big(f(x)=3(x-3)(x-frac23)Big)) ветви направлены вверх, следовательно, схематично она выглядит как ((2)). Но знак неравенства уже (<). Решением нового неравенства, естественно, будут те же (xin left(dfrac23;3right)).

Таким образом, если в квадратичном неравенстве отрицательный знак при (x^2), то можно сначала домножить неравенство на (-1) (и не забыть поменять знак неравенства), чтобы ветви параболы всегда были направлены вверх.

Пример 3.
Решить неравенство (x^2+4x+4 geqslant 0).

Решение
Вспомнив формулу сокращенного умножения, получаем ((x+2)^2geqslant
0)
(это быстрее, чем находить корни через дискриминант :)). Таким образом, парабола пересекает ось (Ox) в единственной точке (x_1=-2) и выглядит как ((1)). А т.к. нам нужны те (x), для которых график находится не ниже оси (Ox), то решением неравенства будут (xin
mathbb{R})
, то есть выражение ((x+2)^2) всегда больше или равно (0).
 

Неравенства используются для сравнения чисел и выражений. Можно сравнивать числа и делать вывод об их расположении на числовой прямой. Неравенство означает, что 7 лежит правее на координатной оси.

Так же можно сравнивать самые разные выражения, например, или В таком случае говорят о множестве решений неравенства, то есть о всех значениях переменной, для которой данное неравенство выполняется (в некоторых случаях это множество может состоять из одной точки или вообще быть пустым).

Неравенства можно обозначать четырьмя способами:

Если неравенство строгое, то граничная точка в решение не входит (поэтому ее «выкалывают» на координатной оси). У нестрого неравенства граничная точка в решение входит.

Правила преобразований неравенств

1. Любое слагаемое в неравенстве можно перенести из одной части уравнения в другую, изменив его знак на противоположный:

2. Можно умножать и делить левую и правую части уравнения на одно и то же положительное число:

3. Можно умножать и делить левую и правую части уравнения на одно и то же отрицательное число, заменяя при этом знак неравенства на противоположный:

4. Как и в уравнениях можно раскрывать скобки и упрощать выражения в обеих частях или, наоборот, раскладывать на множители.

Решение линейных неравенств

Рассмотрим пример:

1. С помощью разрешенных преобразований преобразуем неравенства так, чтобы с одной стороны было только выражение, содержащее переменную, а с другой только число:

2. Делим на коэффициент перед переменной, при необходимости меняя знак на противоположный:

Ответ:

Решение рациональных неравенств других степеней

Для решения таких неравенств применяется метод интервалов. Рассмотрим его алгоритм.

1. Переносим все слагаемые влево.

2. Раскладываем левую часть на множители.

3. Отмечаем на координатной оси нули числителя и знаменателя. Нули знаменателя всегда «выколотые» точки.

4. Определяем знак неравенства в крайнем правом промежутке (можно подставить пробную точку из каждого промежутка в преобразованное неравенство).

5. Определяем знаки в остальных промежутках, двигаясь влево. Если корень имеет нечетную кратность (то есть встречается нечетное число раз), то при переходе через него знак неравенства меняется. В случае четной кратности (корень встречается четное число раз), знак неравенства остается тем же.

6. Выбираем нужные промежутки и записываем ответ.

На практике решение выглядит следующим образом:

3. Так как пункты 1 и 2 алгоритма уже выполнены, сразу переходим к пункту 3.

Нули числителя:

Нули знаменателя: .

4. Отмечаем полученные точки на координатной прямой.

5. В крайнем правом промежутке можно рассмотреть точку . После подстановки получаем, что выражение больше 0.

6. Определяем знаки в оставшихся промежутках. Так как корни встречаются один раз, то при переходе через них знак неравенства меняется. Корень имеет кратность два, поэтому знак неравенства сохранится.

7. Так как необходимо определить, когда выражение меньше или равно нуля, то решением является множество . Обратите внимание, что точка 0 является решением, так как неравенство нестрогое.

Ответ:

Слайд 1

Решение неравенств Разработала Желтова А.В., учитель математики (подготовка к ЕГЭ) Муниципальное бюджетное общеобразовательное учреждение школа №8 г.Кулебаки , 2021

Слайд 2

Виды неравенств — Линейные + + _ — Квадратные

Слайд 3

Виды неравенств — Рациональные + + _ _

Слайд 4

Виды неравенств — Содержащие чётную степень — Содержащие нечётную степень

Слайд 5

Виды неравенств — Иррациональные (корень чётной степени) — Иррациональные (корень нечётной степени)

Слайд 6

Виды неравенств — Показательные

Слайд 7

Виды неравенств — Логарифмические — Тригонометрические Решаем неравенства, используя тригонометрическую окружность, либо с помощью графика соответствующей функции

Слайд 8

Равносильность неравенств Перенос члена неравенства (с противоположным знаком) из одной части неравенства в другую; 2. Умножение (деление) обеих частей неравенства на положительное число; 3. Применение правил умножения многочленов и формул сокращённого умножения; 4. Приведение подобных членов многочлена; 5. Возведение неравенства в нечётную степень; 6. Логарифмирование неравенства т.е замена этого неравенства неравенством

Слайд 9

Равносильность неравенств на некотором множестве чисел Возведение неравенства в чётную степень; Потенцирование неравенства; 3. Умножение обеих частей неравенства на функцию; 4. Применение некоторых формул (логарифмических, тригонометрических и др.)

Слайд 10

Равносильны ли неравенства?

Слайд 11

Методы решения неравенств функциональный графический алгебраический геометрический

Слайд 12

Алгебраические методы решения неравенств Сведение неравенства к равносильной системе или совокупности систем Метод замены Разбиение области определения неравенства на подмножества

Слайд 13

Сведение неравенства к равносильной совокупности систем неравенств

Слайд 14

Решите неравенство Решение

Слайд 16

Если Квант № 10 1990 г . “Некоторые полезные логарифмические соотношения” Аналогично можно доказать , что если

Слайд 17

Ответ

Слайд 18

Заменяемое выражение Используемое выражение Решите неравенство Метод «рационализации»

Слайд 19

Решение. Решите неравенство

Слайд 21

Домашнее задание — обязательное задание — по желанию 2. Повторите способы решения тригонометрических неравенств 1. Решите неравенство: Решите неравенство:

Слайд 22

Литература Затакавай В. Некоторые полезные показательные и логарифмические соотношения. Журнал Квант, 1990 №10 Математика : ЕГЭ: Учебно-справочные материалы. Ю.М. Нейман, Т.М. Королёва, Е.Г. Маркарян .- М.: СПб.: Просвещение. 2011 Шестаков С. А . ЕГЭ 2018. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень).—М.: МЦНМО, 2018.—352 с. Ященко И.В., Шестаков С.А. Подготовка к ЕГЭ по математике в 2019 году. Профильный уровень. Методические указания . _ М.: МЦНМО , 2019

Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.

Ёжику Понятно

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Неравенства

Что такое неравенство? Если взять любое уравнение и знак     =     поменять на любой из знаков неравенства:

>    больше,

≥    больше или равно,

<    меньше,

≤    меньше или равно,

то получится неравенство.

Линейные неравенства

Линейные неравенства – это неравенства вида:

a x < b a x ≤ b a x > b a x ≥ b

где a и b – любые числа, причем a ≠ 0, x – переменная.

Примеры линейных неравенств:

3 x < 5 x − 2 ≥ 0 7 − 5 x < 1 x ≤ 0

Решить линейное неравенство – получить выражение вида:

x < c x ≤ c x > c x ≥ c

где c – некоторое число.

Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.

  • Если знак неравенства строгий > , < , точка на оси будет выколотой (не закрашенной), а скобка, обнимающая точку – круглой.

Смысл выколотой точки в том, что сама точка в ответ не входит.

  • Если знак неравенства нестрогий ≥ , ≤ , точка на оси будет жирной (закрашенной), а скобка, обнимающая точку – квадратной.

Смысл жирной точки в том, что сама точка входит в ответ.

  • Скобка, которая обнимает знак бесконечности всегда круглая – не можем мы объять необъятное, как бы нам этого ни хотелось.

Таблица числовых промежутков

Неравенство Графическое решение Форма записи ответа
x < c

x<c

x ∈ ( − ∞ ; c )
x ≤ c

x≤c

x ∈ ( − ∞ ; c ]
x > c

x>c

x ∈ ( c ; + ∞ )
x ≥ c

x≥c

x ∈ [ c ; + ∞ )

Алгоритм решения линейного неравенства

  1. Раскрыть скобки (если они есть), перенести иксы в левую часть, числа в правую и привести подобные слагаемые. Должно получиться неравенство одного из следующих видов:

a x < b a x ≤ b a x > b a x ≥ b

  1. Пусть получилось неравенство вида a x ≤ b. Для того, чтобы его решить, необходимо поделить левую и правую часть неравенства на коэффициент a.
  • Если a > 0 то неравенство приобретает вид x ≤ b a .
  • Если a < 0 , то знак неравенства меняется на противоположный, неравенство приобретает вид x ≥ b a .
  1. Записываем ответ в соответствии с правилами, указанными в таблице числовых промежутков.

Примеры решения линейных неравенств:

№1. Решить неравенство    3 ( 2 − x ) > 18.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 − 3 x > 18

− 3 x > 18 − 6 − 3 x > 12 | ÷ ( − 3 )

Делим обе части неравенства на (-3) – коэффициент, который стоит перед  x. Так как    − 3 < 0 ,   знак неравенства поменяется на противоположный. x < 12 − 3 ⇒ x < − 4 Остается записать ответ (см. таблицу числовых промежутков).

Ответ: x ∈ ( − ∞ ; − 4 )

№2. Решить неравество    6 x + 4 ≥ 3 ( x + 1 ) − 14.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x + 4 ≥ 3 x + 3 − 14

6 x − 3 x ≥ 3 − 14 − 4

3 x ≥ − 15         |     ÷ 3 Делим обе части неравенства на (3) – коэффициент, который стоит перед  x. Так как 3 > 0,   знак неравенства после деления меняться не будет.

x ≥ − 15 3 ⇒ x ≥ − 5 Остается записать ответ (см. таблицу числовых промежутков).

Ответ: x ∈ [ − 5 ;     + ∞ )

Особые случаи (в 14 задании ОГЭ 2019 они не встречались, но знать их полезно).

Примеры:

№1. Решить неравенство    6 x − 1 ≤ 2 ( 3 x − 0,5 ).

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x − 1 ≤ 6 x − 1

6 x − 6 x ≤ − 1 + 1

0 ≤ 0

Получили верное неравенство, которое не зависит от переменной x. Возникает вопрос, какие значения может принимать переменная x, чтобы неравенство выполнялось? Любые! Какое бы значение мы ни взяли, оно все равно сократится и результат неравенства будет верным. Рассмотрим три варианта записи ответа.

    Ответ:

    1. x – любое число
    2. x ∈ ( − ∞ ; + ∞ )
    3. x ∈ ℝ

    №2. Решить неравенство    x + 3 ( 2 − 3 x ) > − 4 ( 2 x − 12 ).

    Решение:

    Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

    x + 6 − 9 x > − 8 x + 48

    − 8 x + 8 x > 48 − 6

    0 > 42

    Получили неверное равенство, которое не зависит от переменной x. Какие бы значения мы ни подставляли в исходное неравенство, результат окажется одним и тем же – неверное неравенство. Ни при каких значениях x исходное неравенство не станет верным. Данное неравенство не имеет решений. Запишем ответ.

    Ответ: x ∈ ∅

    Квадратные неравенства

    Квадратные неравенства – это неравенства вида: a x 2 + b x + c > 0 a x 2 + b x + c ≥ 0 a x 2 + b x + c < 0 a x 2 + b x + c ≤ 0 где a, b, c — некоторые числа, причем   a ≠ 0, x — переменная.

    Существует универсальный метод решения неравенств степени выше первой (квадратных, кубических, биквадратных и т.д.) – метод интервалов. Если его один раз как следует осмыслить, то проблем с решением любых неравенств не возникнет.

    Для того, чтобы применять метод интервалов для решения квадратных неравенств, надо уметь хорошо решать квадратные уравнения (см. урок 4).

    Алгоритм решения квадратного неравенства методом интервалов

    1. Решить уравнение a x 2 + b x + c = 0 и найти корни x 1 и x 2 .
    1. Отметить на числовой прямой корни трехчлена.

    Если знак неравенства строгий > , < , точки будут выколотые.

    Решение квадратного неравенства, знак неравенства строгий

    Если знак неравенства нестрогий ≥ , ≤ , точки будут жирные (заштрихованный).

    Решение квадратного неравенства, знак неравенства нестрогий

    1. Расставить знаки на интервалах. Для этого надо выбрать точку из любого промежутка (в примере взята точка A) и подставить её значение в выражение a x 2 + b x + c вместо x.

    Если получилось положительное число, знак на интервале плюс. На остальных интервалах знаки будут чередоваться.

    Точки выколотые, если знак неравенства строгий.

    Решение квадратного неравенства, знаки на интервалах +-+

    Точки жирные, если знак неравенства нестрогий.

    Решение квадратного неравенства, знаки на интервалах +-+

    Если получилось отрицательное число, знак на интервале минус. На остальных интервалах знаки будут чередоваться.

    Точки выколотые, если знак неравенства строгий.

    Решение квадратного неравенства, знаки на интервалах -+-

    Точки жирные, если знак неравенства нестрогий.

    Решение квадратного неравенства, знаки на интервалах -+-

    1. Выбрать подходящие интервалы (или интервал).

    Если знак неравенства > или ≥ в ответ выбираем интервалы со знаком +.

    Если знак неравенства < или ≤ в ответ выбираем интервалы со знаком -.

    1. Записать ответ.

    Примеры решения квадратных неравенств:

    №1. Решить неравенство    x 2 ≥ x + 12.

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    x 2 ≥ x + 12

    x 2 − x − 12 ≥ 0

    x 2 − x − 12 = 0

    a = 1, b = − 1, c = − 12

    D = b 2 − 4 a c = ( − 1 ) 2 − 4 ⋅ 1 ⋅ ( − 12 ) = 1 + 48 = 49

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 1 ) ± 49 2 ⋅ 1 = 1 ± 7 2 = [ 1 + 7 2 = 8 2 = 4 1 − 7 2 = − 6 2 = − 3

    Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 6. Подставляем эту точку в исходное выражение:

    x 2 − x − 1 = 6 2 − 6 − 1 = 29 > 0

    Это значит, что знак на интервале, в котором лежит точка 6 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2≥x+12

    В ответ пойдут два интервала. В математике для объединения нескольких интервалов используется знак объединения: ∪ .

    Точки -3 и 4 будут в квадратных скобках, так как они жирные.

    Ответ:   x ∈ ( − ∞ ; − 3 ] ∪ [ 4 ; + ∞ )

    №2. Решить неравенство    − 3 x − 2 ≥ x 2 .

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    − 3 x − 2 ≥ x 2

    − x 2 − 3 x − 2 ≥ 0

    − x 2 − 3 x − 2 = 0

    a = − 1, b = − 3, c = − 2

    D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ ( − 2 ) = 9 − 8 = 1

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 3 ) ± 1 2 ⋅ ( − 1 ) = 3 ± 1 − 2 = [ 3 + 1 − 2 = 4 − 2 = − 2 3 − 1 − 2 = 2 − 2 = − 1

    x 1 = − 2, x 2 = − 1

    Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0. Подставляем эту точку в исходное выражение:

    − x 2 − 3 x − 2 = − ( 0 ) 2 − 3 ⋅ 0 − 2 = − 2 < 0

    Это значит, что знак на интервале, в котором лежит точка 0 будет   − .

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства -3x-2≥x^2

    Поскольку знак неравенства   ≥ , выбираем в ответ интервал со знаком   +.

    Точки -2 и -1 будут в квадратных скобках, так как они жирные.

    Ответ:   x ∈ [ − 2 ; − 1 ]

    №3. Решить неравенство   4 < x 2 + 3 x .

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    4 < x 2 + 3 x

    − x 2 − 3 x + 4 < 0

    − x 2 − 3 x + 4 = 0

    a = − 1, b = − 3, c = 4

    D = b 2 − 4 a c =   ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ 4 = 9 + 16 = 25

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 3 ) ± 25 2 ⋅ ( − 1 ) = 3 ± 5 − 2 = [ 3 + 5 − 2 = 8 − 2 = − 4 3 − 5 − 2 = − 2 − 2 = 1

    x 1 = − 4, x 2 = 1

    Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение:

    − x 2 − 3 x + 4 = − ( 2 ) 2 − 3 ⋅ 2 + 4 = − 6 < 0

    Это значит, что знак на интервале, в котором лежит точка 2, будет   -.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства 4<x^2+3x

    Поскольку знак неравенства   < ,  выбираем в ответ интервалы со знаком   − .

    Точки -4 и 1 будут в круглых скобках, так как они выколотые.

    Ответ:   x ∈ ( − ∞ ; − 4 ) ∪ ( 1 ; + ∞ )

    №4. Решить неравенство   x 2 − 5 x < 6.

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    x 2 − 5 x < 6

    x 2 − 5 x − 6 < 0

    x 2 − 5 x − 6 = 0

    a = 1, b = − 5, c = − 6

    D = b 2 − 4 a c = ( − 5 ) 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 25 + 25 = 49

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 5 ) ± 49 2 ⋅ 1 = 5 ± 7 2 = [ 5 + 7 2 = 12 2 = 6 5 − 7 2 = − 2 2 = − 1

    x 1 = 6, x 2 = − 1

    Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 10. Подставляем эту точку в исходное выражение:

    x 2 − 5 x − 6 = 10 2 − 5 ⋅ 10 − 6 = 100 − 50 − 6 =   44 > 0

    Это значит, что знак на интервале, в котором лежит точка 10 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2-5x<6

    Поскольку знак неравенства   < , выбираем в ответ интервал со знаком   -.

    Точки -1 и 6 будут в круглых скобках, так как они выколотые

    Ответ:   x ∈ ( − 1 ; 6 )

    №5. Решить неравенство   x 2 < 4.

    Решение:

    Переносим 4 в левую часть, раскладываем выражение на множители по ФСУ и находим корни уравнения.

    x 2 < 4

    x 2 − 4 < 0

    x 2 − 4 = 0

    ( x − 2 ) ( x + 2 ) = 0 ⇔ [ x − 2 = 0 x + 2 = 0   [ x = 2 x = − 2

    x 1 = 2, x 2 = − 2

    Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 3. Подставляем эту точку в исходное выражение:

    x 2 − 4 = 3 2 − 4 = 9 − 4 = 5 > 0

    Это значит, что знак на интервале, в котором лежит точка 3 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2<4

    Поскольку знак неравенства   < ,   выбираем в ответ интервал со знаком   − .

    Точки -2 и 2 будут в круглых скобках, так как они выколотые.

    Ответ:   x ∈ ( − 2 ; 2 )

    №6. Решить неравенство   x 2 + x ≥ 0.

    Решение:

    Выносим общий множитель за скобку, находим корни уравнения   x 2 + x = 0.

    x 2 + x ≥ 0

    x 2 + x = 0

    x ( x + 1 ) = 0 ⇔ [ x = 0 x + 1 = 0 [ x = 0 x = − 1

    x 1 = 0, x 2 = − 1

    Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 1. Подставляем эту точку в исходное выражение:

    x 2 + x = 1 2 + 1 = 2 > 0

    Это значит, что знак на интервале, в котором лежит точка 1 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2+x≥0

    Поскольку знак неравенства   ≥ ,  выбираем в ответ интервалы со знаком   +.

    В ответ пойдут два интервала. Точки -1 и 0 будут в квадратных скобках, так как они жирные.

    Ответ:   x ∈ ( − ∞ ; − 1 ] ∪ [ 0 ; + ∞ )

    Вот мы и познакомились с методом интервалов. Он нам еще пригодится при решении дробно рациональных неравенств, речь о которых пойдёт ниже.

    Дробно рациональные неравенства

    Дробно рациональное неравенство – это неравенство, в котором есть дробь, в знаменателе которой стоит переменная, т.е. неравенство одного из следующих видов:

    f ( x ) g ( x ) < 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

    Дробно рациональное неравенство не обязательно сразу выглядит так. Иногда, для приведения его к такому виду, приходится потрудиться (перенести слагаемые в левую часть, привести к общему знаменателю).

    Примеры дробно рациональных неравенств:

    x − 1 x + 3 < 0 3 ( x + 8 ) ≤ 5 x 2 − 1 x > 0 x + 20 x ≥ x + 3

    Как же решать эти дробно рациональные неравенства? Да всё при помощи того же всемогущего метода интервалов.

    Алгоритм решения дробно рациональных неравенств:

    1. Привести неравенство к одному из следующих видов (в зависимости от знака в исходном неравенстве):

    f ( x ) g ( x ) < 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

    1. Приравнять числитель дроби к нулю   f ( x ) = 0.  Найти нули числителя.
    1. Приравнять знаменатель дроби к нулю   g ( x ) = 0.  Найти нули знаменателя.

    В этом пункте алгоритма мы будем делать всё то, что нам запрещали делать все 9 лет обучения в школе – приравнивать знаменатель дроби к нулю. Чтобы как-то оправдать свои буйные действия, полученные точки при нанесении на ось x будем всегда рисовать выколотыми, вне зависимости от того, какой знак неравенства.

    1. Нанести нули числителя и нули знаменателя на ось x.

    Вне зависимости от знака неравенства
    при нанесении на ось x нули знаменателя всегда выколотые.

    Если знак неравенства строгий,
    при нанесении на ось x нули числителя выколотые.

    Если знак неравенства нестрогий,
    при нанесении на ось x нули числителя жирные.

    1. Расставить знаки на интервалах.
    1. Выбрать подходящие интервалы и записать ответ.

    Примеры решения дробно рациональных неравенств:

    №1. Решить неравенство   x − 1 x + 3 > 0.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду  f ( x ) g ( x ) > 0.
    1. Приравниваем числитель к нулю  f ( x ) = 0.

    x − 1 = 0

    x = 1 — это ноль числителя. Поскольку знак неравенства строгий, ноль числителя при нанесени на ось x будет выколотым. Запомним это.

    1. Приравниваем знаменатель к нулю  g ( x ) = 0.

    x + 3 = 0

    x = − 3 — это ноль знаменателя. При нанесении на ось x точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x.

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данном случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение f ( x ) g ( x ) : x − 1 x + 3   =   2 − 1 2 + 3 = 1 5 > 0,

    Это значит, что знак на интервале, в котором лежит точка 2 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства   > ,  выбираем в ответ интервалы со знаком   +.

    В ответ пойдут два интервала. Точки -3 и 1 будут в круглых скобках, так как обе они выколотые.

    Решение дробно рационального неравенства (x-1)/(x+3)<0

    Ответ:   x ∈ ( − ∞ ; − 3 ) ∪ ( 1 ; + ∞ )

    №2. Решить неравенство   3 ( x + 8 ) ≤ 5.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Привести неравенство к виду  f ( x ) g ( x ) ≤ 0.

    3 ( x + 8 ) ≤ 5

    3 ( x + 8 ) − 5 x + 8 ≤ 0

    3 x + 8 − 5 ( x + 8 ) x + 8 ≤ 0

    3 − 5 ( x + 8 ) x + 8 ≤ 0

    3 − 5 x − 40 x + 8 ≤ 0

    − 5 x − 37 x + 8 ≤ 0

    1. Приравнять числитель к нулю  f ( x ) = 0.

    − 5 x − 37 = 0

    − 5 x = 37

    x = − 37 5 = − 37 5 = − 7,4

    x = − 7,4 — ноль числителя. Поскольку знак неравенства нестрогий, при нанесении этой точки на ось x точка будет жирной.

    1. Приравнять знаменатель к нулю  g ( x ) = 0.

    x + 8 = 0

    x = − 8 — это ноль знаменателя. При нанесении на ось x, точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x.

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства нестрогий, значит нули числителя будут жирными. Ну а нули знаменателя выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0. Подставляем эту точку в исходное выражение  f ( x ) g ( x ) :

    − 5 x − 37 x + 8 = − 5 ⋅ 0 − 37 0 + 8 = − 37 8 < 0

    Это значит, что знак на интервале, в котором лежит точка 0 будет   -.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства   ≤ ,  выбираем в ответ интервалы со знаком   -.

    В ответ пойдут два интервала. Точка -8 будет в круглой скобке, так как она выколотая, точка -7,4 будет в квадратных скобках, так как она жирная.

    Решение дробно рационального неравенства 3/(x+8)≤5

    Ответ:   x ∈ ( − ∞ ; − 8 ) ∪ [ − 7,4 ; + ∞ )

    №3. Решить неравенство   x 2 − 1 x > 0.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду  f ( x ) g ( x ) > 0.
    1. Приравнять числитель к нулю  f ( x ) = 0.

    x 2 − 1 = 0

    ( x − 1 ) ( x + 1 ) = 0 ⇒ [ x − 1 = 0 x + 1 = 0 [ x = 1 x = − 1

    x 1 = 1, x 2 = − 1  — нули числителя. Поскольку знак неравенства строгий, при нанесении этих точек на ось x точки будут выколотыми.

    1. Приравнять знаменатель к нулю g ( x ) = 0.

    x = 0 — это ноль знаменателя. При нанесении на ось x, точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x.

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя и так выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение  f ( x ) g ( x ) :

    x 2 − 1 x = 2 2 − 1 2 = 4 − 1 2 = 3 2 > 0, Это значит, что знак на интервале, в котором лежит точка 2, будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства   > ,  выбираем в ответ интервалы со знаком   +.

    В ответ пойдут два интервала. Все точки будут в круглых скобках, так как они выколотые.

    Решение дробно рационального неравенства (x^2-1)/x>0

    Ответ:   x ∈ ( − 1 ; 0 ) ∪ ( 1 ; + ∞ )

    Системы неравенств

    Сперва давайте разберёмся, чем отличается знак { системы от знака [ совокупности. Система неравенств ищет пересечение решений, то есть те точки, которые являются решением и для первого неравенства системы, и для второго. Проще говоря, решить систему неравенств — это найти пересечение решений всех неравенств этой системы друг с другом. Совокупность неравенств ищет объединение решений, то есть те точки, которые являются решением либо для первого неравенства, либо для второго, либо одновременно и для первого неравенства, и для второго. Решить совокупность неравенств означает объединить решения обоих неравенств этой совокупности. Более подробно об этом смотрите короткий видео-урок.

    Системой неравенств называют два неравенства с одной неизвестной, которые объединены в общую систему фигурной скобкой.

    Пример системы неравенств:

    { x + 4 > 0 2 x + 3 ≤ x 2

    Алгоритм решения системы неравенств

    1. Решить первое неравенство системы, изобразить его графически на оси x.
    1. Решить второе неравенство системы, изобразить его графически на оси x.
    1. Нанести решения первого и второго неравенств на ось x.
    1. Выбрать в ответ те участки, в которых решение первого и второго неравенств пересекаются. Записать ответ.

    Примеры решений систем неравенств:

    №1. Решить систему неравенств   { 2 x − 3 ≤ 5 7 − 3 x ≤ 1

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    2 x − 3 ≤ 5  

    2 x ≤ 8 | ÷ 2 , поскольку  2 > 0,  знак неравенства после деления сохраняется.

    x ≤ 4 ;

    Графическая интерпретация:

    Решение неравенства 2x-3≤5

    Точка 4 на графике жирная, так как знак неравенства нестрогий.

    1. Решаем второе неравенство системы.

    7 − 3 x ≤ 1

    − 3 x ≤ 1 − 7

    − 3 x ≤ − 6 | ÷ ( − 3 ),  поскольку  − 3 < 0,  знак неравенства после деления меняется на противоположный.

    x ≥ 2

    Графическая интерпретация решения:

    Решение неравенства 7-3x<=1

    Точка 2 на графике жирная, так как знак неравенства нестрогий.

    1. Наносим оба решения на ось x.

    Решение системы неравенств 2x-3≤=5; 7-3x≤=1

    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается на отрезке от 2 до 4. Точки 2 и 4 в ответе буду в квадратных скобках, так как обе они жирные.

    Ответ:   x ∈ [ 2 ; 4 ]

    №2. Решить систему неравенств   { 2 x − 1 ≤ 5 1 < − 3 x − 2

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    2 x − 1 ≤ 5

    2 x ≤ 6 | ÷ 2 , поскольку  2 > 0,  знак неравенства после деления сохраняется.

    x ≤ 3

    Графическая интерпретация:

    Решение неравенства 2x-1≤5

    Точка 3 на графике жирная, так как знак неравенства нестрогий.

    1. Решаем второе неравенство системы.

    1 < − 3 x − 2

    3 x < − 1 − 2

    3 x < − 3 | ÷ 3 ,  поскольку  3 > 0,  знак неравенства после деления сохраняется.

    x < − 1

    Графическая интерпретация решения:

    Решение неравенства 1<-3x-2

    Точка -1 на графике выколотая, так как знак неравенства строгий.

    1. Наносим оба решения на ось x.

    Решение системы неравенств 2x-1≤5; 1<-3x-2

    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается на самом левом участке. Точка -1 будет в ответе в круглых скобках, так как она выколотая.

    Ответ:   x ∈ ( − ∞ ; − 1 )

    №3. Решить систему неравенств   { 3 x + 1 ≤ 2 x x − 7 > 5 − x

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    3 x + 1 ≤ 2 x

    3 x − 2 x ≤ − 1

    x ≤ − 1

    Графическая интерпретация решения:

    Решение неравенства 3x+1≤2x-1

    1. Решаем второе неравенство системы

    x − 7 > 5 − x

    x + x > 5 + 7

    2 x > 12 |   ÷ 2 ,  поскольку  2 > 0,  знак неравенства после деления сохраняется.

    x > 6

    Графическая интерпретация решения:

    Решение неравенства x-7>5-x

    1. Наносим оба решения на ось x.

    Решение системы неравенств 3x+1≤2x-1; x-7>5-x

    1. Выбираем подходящие участки и записываем ответ.

    Пересечений решений не наблюдается. Значит у данной системы неравенств нет решений.

    Ответ:   x ∈ ∅

    №4. Решить систему неравенств   { x + 4 > 0 2 x + 3 ≤ x 2

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    x + 4 > 0

    x > − 4

    Графическая интерпретация решения первого неравенства:

    Решение неравенства x+4>0

    1. Решаем второе неравенство системы

    2 x + 3 ≤ x 2

    − x 2 + 2 x + 3 ≤ 0

    Решаем методом интервалов.

    − x 2 + 2 x + 3 = 0

    a = − 1, b = 2, c = 3

    D = b 2 − 4 a c = 2 2 − 4 ⋅ ( − 1 ) ⋅ 3 = 4 + 12 = 16

    D > 0 — два различных действительных корня.

    x 1,2 = − b ± D 2 a = − 2 ± 16 2 ⋅ ( − 1 ) = − 2 ± 4 − 2 = [ − 2 − 4 − 2 = − 6 − 2 = 3 − 2 + 4 − 2 = 2 − 2 = − 1

    Наносим точки на ось x и расставляем знаки на интервалах. Поскольку знак неравенства нестрогий, обе точки будут заштрихованными.

    Решение квадратного неравенства 2x+3≤x^2

    Графическая интерпретация решения второго неравенства:

    Решение квадратного неравенства 2x+3≤x^2

    1. Наносим оба решения на ось x.

    Решение системы неравенств x+4>0; 2x+3<=x^2

    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается в двух интервалах. Для того, чтобы в ответе объединить два интервала, используется знак объединения  ∪ .

    Точка -4 будет в круглой скобке, так как она выколотая, а точки -1 и 3 в квадратных, так как они жирные.

    Ответ:   x ∈ ( − 4 ; − 1 ] ∪ [ 3 ; + ∞ )

    Скачать домашнее задание к уроку 8.

    Что же нужно знать и уметь по теме?
    ЗНАТЬ:

    Числа: натуральные, целые, рациональные, иррациональные; обыкновенные дроби (правильные, неправильные, смешанные числа), десятичные дроби;
    Правила действий с числами и дробями;
    Определение и основные свойства степени;
    Правила действий с корнями;
    Определение и основные свойства логарифма;
    Правила решения линейного неравенства и систем линейных неравенств;
    Правила решения квадратного неравенства;
    Правила решения рационального неравенства;
    Правила решения показательного неравенства;
    Правила решения логарифмического неравенства;
    Правила решения системы неравенств с одной переменной;
    Правила использования графиков при решении неравенств;
    метод интервалов.

    УМЕТЬ:

    Выполнять действия с числами, с дробями; применяя определения и основные свойства; проводить преобразования числовых выражений;
    Проводить преобразования степенных выражений;
    Проводить преобразования иррациональных выражений;
    Проводить преобразования тригонометрических выражений;
    Проводить преобразования логарифмических выражений;
    Решать линейные неравенства и их системы;
    Решать квадратные неравенства;
    Решать рациональные неравенства;
    Решать показательные неравенства;
    Решать логарифмические неравенства;
    Применять метод интервалов при решении неравенств;
    Решать системы неравенств.

    Видеоуроки «Российской электронной школы»:

    Видео уроки Центра Педагогического мастерства https://cpm.dogm.mos.ru/ege_mathem/

    Задание 10. Задачи прикладного содержания. Видео урок. Текстовый урок. Тест.
    Задание 13. Тригонометрические уравнения. Урок 1. Видео урок. Текстовый урок. Тест. 

    Задание 13. Тригонометрические уравнения. Урок 2. Видео урок. Текстовый урок. Тест. 

    Задание 15. Неравенства. Урок 1. Видео урок. Текстовый урок. Тест.

    Задание 15. Неравенства. Урок 2. Видео урок. Текстовый урок. Тест.
    Задание 17. Задачи с экономическим содержанием. Видео урок. Текстовый урок. Тест. Задание 18. Задачи с параметром. Видео урок. Текстовый урок. Тест.

    • Тема урока – «Равносильные уравнения и неравенства
      https://resh.edu.ru/subject/lesson/3798/start/159138/
    • Тема урока – «Иррациональные уравнения и неравенства
      https://resh.edu.ru/subject/lesson/5569/start/159263/
    • Тема урока – «Показательные неравенства
      https://resh.edu.ru/subject/lesson/4731/start/159352/
    • Тема урока – «Логарифмические неравенства
      https://resh.edu.ru/subject/lesson/3852/start/199119/
    • Тема урока – «Тригонометрические неравенства
      https://resh.edu.ru/subject/lesson/4738/start/200420/
    • Тема урока – «Показательные и логарифмические уравнения и неравенства с двумя переменными
      https://resh.edu.ru/subject/lesson/4155/start/38784/
    • Тема урока – «Тригонометрические уравнения и неравенства с двумя переменными
      https://resh.edu.ru/subject/lesson/4124/start/38846/
    • Тема урока – «Уравнения и неравенства с двумя переменными с параметрами
      https://resh.edu.ru/subject/lesson/4145/start/111179/
    • Тема урока – «Нелинейные уравнения и неравенства с двумя переменными
      https://resh.edu.ru/subject/lesson/6123/start/149198/
    • Тема урока – «Понятие о числовом неравенстве. Свойства неравенств
      https://resh.edu.ru/subject/lesson/1119/
    • Тема урока – «Решение задач на доказательство неравенств. Часть 1″
      https://resh.edu.ru/subject/lesson/1082/
    • Тема урока – «Решение задач на доказательство неравенств. Часть 2.»
      https://resh.edu.ru/subject/lesson/950/


    Методические материалы:

  1.  Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра. 8 класс. АО «Издательство

    «Просвещение». Глава 1, §§ 6–10; глава 6, §§ 40–42.

  2.  Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра. 9 класс. АО «Издательство

    «Просвещение». Глава 2, § 10.

  3.  Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. /Под ред. Теляковского С.А. Алгебра.

    7 класс. АО «Издательство «Просвещение». Для тех, кто хочет знать больше, п. 46.

  4.  Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. /Под ред. Теляковского С.А. Алгебра
    8 класс. АО «Издательство «Просвещение». Глава 4, § 10, пп. 28–30, § 11, пп. 32–36.

  5.  Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. /Под ред. Теляковского С.А. Алгебра

    9 класс. АО «Издательство «Просвещение». Глава 2, § 6, пп. 14–16; глава 3, § 6, пп. 21, 22.

  6. Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 8 класс. АО «Издательство

    «Просвещение». Глава 5, § 13, пп. 40–42.

  7. Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 9 класс. АО «Издательство

    «Просвещение». Глава 2, § 5, пп. 12, 13, § 6, п. 15, § 7, пп. 16, 17; глава 3, § 9, пп. 23–26.

  8. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра. 9 класс. ООО Издательский центр «ВЕНТАНА-ГРАФ». Глава 1, §§ 4–6; глава 2, § 12.

  9. Мордкович А.Г., Николаев Н.П. Алгебра 8 в 2 ч. 8 класс. ООО «ИОЦ МНЕМОЗИНА». Глава 5, §§ 29, 30; глава 6, § 39.

  10. Мордкович А.Г., Николаев Н.П. Алгебра 9 в 2 ч. 9 класс. ООО «ИОЦ МНЕМОЗИНА». Глава 1, §§ 1–7; глава 2, § 9.

  11. Никольский С.М., Потапов М.К., Решетников Н.Н. и др. Алгебра 8 класс. АО «Издательство «Просвещение». Глава 1, § 1, п. 1.1.

  12. Никольский С.М., Потапов М.К., Решетников Н.Н. и др. Алгебра 9 класс. АО «Издательство «Просвещение». Глава 1, § 1, пп. 1.1–1.5, § 2, пп. 2.1–2.5, § 3, пп. 3.1–3.5.

  13. Алимов Ш.А., Колягин Ю.М., Ткачёва М.В. и др. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углубленный уровни). 10–11 классы. АО «Издательство «Просвещение». Глава 2, § 10; глава 3, §§ 13, 14; глава 4, § 20; глава 6, § 37; приложение, § 5.

  14. Вернер А.Л., Карп А.П. Математика: алгебра и начала математического анализа, геометрия (базовый уровень). 10 класс. АО «Издательство «Просвещение». Глава 4, § 1, п. 4, § 2, п. 8, § 4.

  15. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углубленный уровни) 10 класс. АО «Издательство «Просвещение». Глава 1, §§ 3, 8; глава 5, §§ 4–6; глава 6, §§ 3, 4; глава 7, § 6.

  16. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углубленный уровни) 11 класс. АО «Издательство «Просвещение». Глава 8, §§ 3–6.

  17. Никольский С.М., Потапов М.К., Решетников Н.Н. и др. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углубленный уровни). 10 класс. АО «Издательство «Просвещение». Глава 1, § 2, пп. 2.8–2.11, § 6, пп. 6.4–6.6; глава 2, § 11, пп. 11.5–11.9.

  18. Никольский С.М., Потапов М.К., Решетников Н.Н. и др. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углубленный уровни). 11 класс. АО «Издательство «Просвещение». Глава 2, § 7, п. 7.2, § 9, пп. 9.5–9.7, § 11, пп. 11.1–11.7, § 12, пп. 12.2, 12.3, § 13, пп. 13.1–13.5, § 15, пп. 15.1–15.4.

  19. Понравилась статья? Поделить с друзьями:
  20. Несдержанный бесшумный через страничный егэ
  21. Неравенства с параметром егэ профиль
  22. Несдаче экзамена как пишется
  23. Неравенства с модулем егэ 11 класс профильный уровень
  24. Несдача экзамена синоним