Олово химические свойства егэ

Олово
Серебристо-белый мягкий, пластичный металл (β-олово) или серый порошок (α-олово)
Олово

Β-олово

Название, символ, номер Олово / Stannum (Sn), 50
Атомная масса
(молярная масса)
118,710(7) а. е. м. (г/моль)
Электронная конфигурация [Kr] 4d10 5s2 5p2
Радиус атома 162 пм
Ковалентный радиус 141 пм
Радиус иона (+4e) 71 (+2) 93 пм
Электроотрицательность 1,96 (шкала Полинга)
Электродный потенциал −0,136
Степени окисления +4, +2
Энергия ионизации
(первый электрон)
 708,2 (7,34) кДж/моль (эВ)
Плотность (при н. у.) 7,31 г/см³
Температура плавления 231,91 °C
Температура кипения 2893 K, 2620 °C
Уд. теплота плавления 7,19; кДж/моль
Уд. теплота испарения 296 кДж/моль
Молярная теплоёмкость 27,11 Дж/(K·моль)
Молярный объём 16,3 см³/моль
Структура решётки тетрагональная
Параметры решётки a=5,831; c=3,181 Å
Отношение c/a 0,546
Температура Дебая 170,00 K
Теплопроводность (300 K) 66,8 Вт/(м·К)
Номер CAS 7440-31-5

Олово (химический символ — Sn; лат. Stannum) — элемент 14-й группы периодической системы химических элементов (по устаревшей классификации — элемент главной подгруппы IV группы), пятого периода, с атомным номером 50. Относится к группе лёгких металлов. При нормальных условиях простое вещество олово — пластичный, ковкий и легкоплавкий блестящий металл серебристо-белого цвета. Известны четыре аллотропические модификации олова: ниже +13,2 °C устойчиво α-олово (серое олово) с кубической решёткой типа алмаза, выше +13,2 °C устойчиво β-олово (белое олово) с тетрагональной кристаллической решёткой. При высоких давлениях обнаружены также γ-олово и σ-олово.

Содержание

  • 1 История
  • 2 Происхождение названия
  • 3 Физические свойства
    • 3.1 Серое и белое олово
    • 3.2 Изотопы
  • 4 Химические свойства
    • 4.1 Металлическое олово
    • 4.2 Олово (II)
    • 4.3 Олово (IV)
  • 5 Нахождение в природе
    • 5.1 Месторождения
    • 5.2 Распространённость в природе
    • 5.3 Формы нахождения
      • 5.3.1 Твёрдая фаза. Минералы
      • 5.3.2 Собственно минеральные формы
        • 5.3.2.1 Самородные элементы, сплавы и интерметаллические соединения
        • 5.3.2.2 Окисные соединения олова
          • 5.3.2.2.1 Касситерит
          • 5.3.2.2.2 Гидроокисные соединения
          • 5.3.2.2.3 Силикаты
          • 5.3.2.2.4 Шпинелиды
        • 5.3.2.3 Сульфидные соединения олова
          • 5.3.2.3.1 Станнин
      • 5.3.3 Коллоидная форма
      • 5.3.4 Формы нахождения олова в жидкой фазе
    • 5.4 Промышленные типы месторождений олова
  • 6 Производство
  • 7 Применение
  • 8 Физиологическое действие
  • 9 Галерея изображений

Олово

История

Олово было известно человеку уже в IV тысячелетии до н. э. Этот металл был малодоступен и дорог, поэтому изделия из него редко встречаются среди римских и греческих древностей. Об олове есть упоминания в Библии, Четвёртой Книге Моисея. Олово является (наряду с медью) одним из компонентов оловяннистой бронзы, изобретённой в конце или середине III тысячелетия до н. э. Поскольку бронза являлась наиболее прочным из известных в то время металлов и сплавов, олово было «стратегическим металлом» в течение всего «бронзового века», более 2000 лет (очень приблизительно: XXXV—XI века до н. э.).

Чистое олово получено не ранее XII в., о нем упоминает в своих трудах Р. Бэкон. До этого олово всегда содержало переменное количество свинца. Хлорид SnCl4 впервые получил А. Либавий в 1597 г. Аллотропию олова и явление «оловянной чумы» объяснил Э. Кохен в 1899 г.

Олово

Происхождение названия

Латинское название stannum, связанное с санскритским словом, означающим «стойкий, прочный», первоначально относилось к сплаву свинца и серебра, а позднее к другому, имитирующему его сплаву, содержащему около 67 % олова; к IV веку н. э. этим словом стали называть собственно олово.

Слово олово — общеславянское, однако в некоторых славянских языках такое же или однокоренное слово (польск. ołów, чеш. olovo, серб. олово и др.) используется для обозначения другого, внешне похожего металла — свинца. Слово олово имеет соответствия в балтийских языках (ср. лит. alavas, alvas, латыш. alva — «олово», прусск. alwis — «свинец»). Оно является суффиксальным образованием от корня ol- (ср. древневерхненемецкое elo — «жёлтый», лат. albus — «белый» и пр.), так что металл назван по цвету.

Физические свойства

Плотность: в твёрдом состоянии при +20 °С — 7,3 г/см³; в жидком состоянии при температуре плавления — 6,98 г/см³.
Температура: плавления — 231,91 °С; кипения — 2620 °С.
Коэффициент линейного расширения:

при температуре 0 °С равен 1,99·10−5 К−1;
при +100 °С равен 2,38·10−5 К−1;
средний в диапазоне 0—100 °C равен 2,62·10−5 К−1.
Удельная теплоёмкость: в твёрдом состоянии при +20 °С — 226 Дж/(кг·К); в жидком состоянии при температуре плавления — 268 Дж/(кг·К).
Молярная теплоёмкость при постоянном давлении: при 0 °C равна 27,11 Дж/(моль·К) (белое олово), 25,79 Дж/(моль·К) (серое олово).
Теплота плавления равна 7,19 кДж/моль.
Теплота испарения равна 296 кДж/моль.
Теплопроводность при +20 °С — 65,26 Вт/(м·К).
Удельное электрическое сопротивление при +20 °С — 0,115 мкОм·м (по другим данным 0,128 мкОм·м при +25 °С).
Термический коэффициент сопротивления равен 4,5·10−3 К−1.
Удельная электропроводность при +20 °С — 8,69 МСм/м.
Температура Дебая равна 200 К (белое олово), 212 К (серое олово).

Механические и технологические свойства:

модуль упругости 55 ГПа при 0 °С и 48 ГПа при 100 °С;
модуль сдвига 16,8—8,1 ГПа;
временное сопротивление разрыву — 20 МПа;
относительное удлинение — 40 %;
твёрдость по Бринеллю — 152 МПа (белое олово), 62 МПа (серое олово);
температура литья — 260—300 °С.

При температуре немного выше 170 °С олово становится хрупким.

Стандартный электродный потенциал E °Sn2+/Sn равен −0,136 В, а E пары °Sn4+/Sn2+ около 0,151 В.

Серое и белое олово

Олово

Простое вещество олово полиморфно. В обычных условиях оно существует в виде β-модификации (белое олово), устойчивой выше +13,2 °C. Белое олово — серебристо-белый, мягкий, пластичный металл, образующий кристаллы тетрагональной сингонии, пространственная группа I4/amd, параметры ячейки a = 0,58197 нм, c = 0,3175 нм, Z = 4. Координационное окружение каждого атома олова в нём — октаэдр. Плотность β-Sn равна 7,228 г/см3. При сгибании прутков олова слышен характерный хруст от взаимного трения кристаллитов.

При охлаждении белое олово переходит в α-модификацию (серое олово). Серое олово образует кристаллы кубической сингонии, пространственная группа Fd3m, параметры ячейки a = 0,646 нм, Z = 8 со структурой типа алмаза. В сером олове координационный полиэдр каждого атома — тетраэдр, координационное число 4. Фазовый переход β-Sn в α-Sn сопровождается увеличением удельного объёма на 25,6 % (плотность α-Sn составляет 5,75 г/см3), что приводит к рассыпанию олова в порошок. Энтальпия перехода α → β ΔH = 2,08 кДж/моль. Одна модификация переходит в другую тем быстрее, чем ниже температура окружающей среды. При −33 °C скорость превращений становится максимальной. Тем не менее белое олово можно переохладить до гелиевых температур. Белое олово превращается в серое также под действием ионизирующего излучения.

Из-за сильного различия структур двух модификаций олова разнятся и их электрофизические свойства. Так, β-Sn — металл, а α-Sn относится к числу полупроводников. Ниже 3,72 К α-Sn переходит в сверхпроводящее состояние. Атомы в кристаллической решётке белого олова находятся в электронном s2p2-состоянии. Серое олово — ковалентный кристалл со структурой алмаза и электронным sp3-состоянием. Белое олово слабо парамагнитно, атомная магнитная восприимчивость χ = +4,5·10−6 (при 303 К), при температуре плавления становится диамагнитным, χ = −5,1·10−6. Серое олово диамагнитно, χ = −3,7·10−5 (при 293 К).

Соприкосновение серого олова и белого приводит к «заражению» последнего, то есть к ускорению фазового перехода по сравнению со спонтанным процессом из-за появления зародышей новой кристаллической фазы. Совокупность этих явлений называется «оловянной чумой». Нынешнее название этому процессу в 1911 году дал Г. Коэн. Начало научного изучения этого фазового перехода было положено в 1870 году работами петербургского учёного, академика Ю. Фрицше. Много ценных наблюдений и мыслей об этом процессе высказано Д. И. Менделеевым в его «Основах химии».

Одним из средств предотвращения «оловянной чумы» является добавление в олово стабилизатора, например висмута. С другой стороны, ускоряет процесс перехода белого олова в серое при не очень низких температурах катализатор хлорстаннат аммония (NH4)2SnCl6.

«Оловянная чума» — одна из причин гибели экспедиции Скотта к Южному полюсу в 1912 году. Она осталась без горючего из-за того, что топливо просочилось из запаянных оловом баков, поражённых «оловянной чумой».

Некоторые историки указывают на «оловянную чуму» как на одно из обстоятельств поражения армии Наполеона в России в 1812 году — сильные морозы привели к превращению оловянных пуговиц на мундирах солдат в порошок.

«Оловянная чума» погубила многие коллекции оловянных солдатиков. Например, в запасниках петербургского музея Александра Суворова превратились в труху десятки фигурок — в подвале, где они хранились, лопнули зимой батареи отопления.

При высоких давлениях обнаружены ещё две модификации олова: γ-олово (переход при температуре 161 °C и давлении около 4 ГПа, при комнатной температуре и давлении 10 ГПа) и σ-олово (переход при температуре около 1000 °C и давлении выше 21 ГПа).

Изотопы

Основная статья: Изотопы олова

Природное олово состоит из десяти стабильных нуклидов с массовыми числами 112 (в смеси 0,96 % по массе), 114 (0,66 %), 115 (0,35 %), 116 (14,30 %), 117 (7,61 %), 118 (24,03 %), 119 (8,58 %), 120 (32,85 %), 122 (4,72 %) и 124 (5,94 %). Для некоторых из них энергетически возможен двойной бета-распад, однако экспериментально он пока (2018 г.) не наблюдался, поскольку предсказываемый период полураспада очень велик (более 1020 лет).

Олово обладает наибольшим среди всех элементов числом стабильных изотопов, что связано с тем, что 50 (число протонов в ядрах олова) является магическим числом — оно составляет заполненную протонную оболочку в ядре и повышает тем самым энергию связи и стабильность ядра. Известны два дважды магических изотопа олова, оба они радиоактивны, так как удалены от полосы бета-стабильности: нейтронодефицитное 100Sn (Z = N = 50) и нейтроноизбыточное 132Sn (Z = 50, N = 82).

Изотопы олова 117Sn и 119Sn являются мёссбауэровскими изотопами и применяются в гамма-резонансной спектроскопии.

Химические свойства

Металлическое олово

При комнатной температуре олово, подобно соседу по группе германию, устойчиво к воздействию воздуха или воды. Такая инертность объясняется образованием поверхностной плёнки оксидов. Заметное окисление олова на воздухе начинается при температурах выше 150 °C:

 Sn + O2 → SnO2 

При нагревании олово реагирует с большинством неметаллов. При этом образуются соединения в степени окисления +4, которая более характерна для олова, чем +2. Например:

 Sn + 2Cl2 → SnCl4 

Растворяется в разбавленных кислотах (HCl, H2SO4):

 Sn + 2HCl → SnCl2 + H2↑ 

Олово реагирует c концентрированной соляной кислотой. При этом белое олово (α-Sn) образует раствор хлорида олова (II), а серое (β-Sn) хлорида олова (IV):

 Sn + 3HCl → H[SnCl3 ] + H2↑ 
 Sn + 4HCl → H2[SnCl6] + H2↑ 

Состав продукта реакции олова с азотной кислотой зависит от концентрации кислоты. В концентрированной азотной кислоте (60%) образуется оловянная кислота β-SnO2·nH2O (иногда её формулу записывают как H2SnO3). При этом олово ведёт себя как неметалл:

 Sn + 4HNO3 →  SnO2 ⋅ H2O + 4NO2 + H2

При взаимодействии с разбавленной азотной кислотой (3-5%) образуется нитрат олова (II):

 4Sn + 10HNO3 → 4Sn(NO3)2 + NH4NO3 + 3H2O

Окисляется растворами щелочей до гидроксостанната (II), который в горячих расстворах склонен к диспропорцианированию:

 Sn + NaOH + 3H2O → Na[Sn(OH)3] + H2
 2Na[Sn(OH)3] → Sn + Na2[Sn(OH)6
 Sn + 2NaOH + 4H2O → Na2[Sn(OH)6] + 2H2

Олово

Олово (II)

Менее устойчивая степень окисления чем (IV). Вещества имеют высокую восстановительную активность и легко диспропорцианируют:

 2SnO →to   SnO2 + Sn

На воздухе соединения быстро окисляются кислородом, как в твердом виде, так и в растворах:

 2SnO + O2 → 2SnO2 
 2Sn2+ + O2 + 4H+ → 2Sn4+ + 2H2O

Сильным восстановителем является «оловянная соль»  SnCl2 ⋅ 2H2O

Оксид можно получить действием аммиака на горячий раствор хлорида олова в атмосфере СO2:

 SnCl2 + 2NH3 + H2O → SnO + 2NH4Cl

Также при слабом нагревании гидроксида олова (II) Sn(OH)2 в вакууме или осторожном нагревании некоторых солей:

 Sn(OH)2 → SnO + H2
 SnC2O4 → SnO + CO↑ + CO2

В растворах солей олова идёт сильный гидролиз:

 [Sn(H2O)3]2+ + H2O → [Sn(H2O)2OH]+ + H3O+

При действии на раствор соли Sn(II) растворами сульфидов выпадает осадок сульфида олова (II):

 Sn2+ + S2− → SnS↓

Этот сульфид может быть легко окислен до сульфидного комплекса раствором полисульфида натрия, при подкислении превращающегося в осадок сульфида олова (IV):

 SnS + Na2S2 → Na2SnS
 Na2SnS3 + 2HCl → SnS2 + 2NaCl + H2S↑

Олово (IV)

Оксид олова(IV) (SnO2) образуется прямым окислением кислородом. При сплавлении с щелочами образует станнаты, при обработке водой образующие гидроксостаннаты:

 SnO2 + 2NaOH →to   Na2SnO3 + H2O

При гидролизе растворов солей олова (IV) образуется белый осадок — так называемая α-оловянная кислота:

 SnCl4 + 4NH3 + 6H2O → H2[Sn(OH)6] + 4NH4Cl 
 H2[Sn(OH)6] →   SnO2 ⋅ nH2O + 3H2O

Свежеполученная α-оловянная кислота растворяется в кислотах и щелочах:

 SnO2 ⋅ nH2O + 2KOH → K2[Sn(OH)6]
 SnO2 ⋅ nH2O + 4HNO3 → Sn(NO3)4 + (n+2)H2O

При хранении α-оловянная кислота стареет, теряет воду и переходит в β-оловянную кислоту, которая отличается большей химической инертностью. Данное изменение свойств связывают с уменьшением числа активных HO-Sn группировок при стоянии и замене их на более инертные мостиковые -Sn-O-Sn- связи.

Гидрид олова — станнан SnH4 — можно получить по реакции:

 SnCl4 + Li[AlH4] → SnH4↑ + LiCl + AlCl3

Этот гидрид весьма нестоек и медленно разлагается уже при температуре 0 °C.

Четырёхвалентное олово образует обширный класс оловоорганических соединений, используемых в органическом синтезе, в качестве пестицидов и др.

Нахождение в природе

Олово — редкий рассеянный элемент, по распространённости в земной коре олово занимает 47-е место. Кларковое содержание олова в земной коре составляет, по разным данным, от 2⋅10−4 до 8⋅10−3 % по массе. Основной минерал олова — касситерит (оловянный камень) SnO2, содержащий до 78,8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) — Cu2FeSnS4 (27,5 % Sn).

Месторождения

Мировые месторождения олова находятся в основном в Китае и Юго-Восточной Азии — Индонезии, Малайзии и Таиланде. Также есть крупные месторождения в Южной Америке (Боливии, Перу, Бразилии) и Австралии.

В России запасы оловянных руд расположены в Хабаровском крае (Солнечный район — месторождения Фестивальное и Соболиное; Верхнебуреинский район — Правоурмийское месторождение), в Чукотском автономном округе (Пыркакайские штокверки; рудник/посёлок Валькумей, Иультин — разработка месторождений закрыта в начале 1990-х годов), в Приморском крае (Кавалеровский район), в Якутии (месторождение Депутатское) и других районах.

Распространённость в природе

Распространённость в природе отражена в следующей таблице:

Геол. объект Камен. метеориты Дуниты и др. Базальты и др. Диориты и др. Гранитоиды Глины и др. Вода океанов Живое вещество(% на живой вес) Почва Зола растений
Содержание, вес. % 001⋅10−4 05⋅10−5 01,5⋅10−4 0000 0003⋅10−4 1⋅10−3 07⋅10−7 00005⋅10−5 1⋅10−3 005⋅10−4

В незагрязнённых поверхностных водах олово содержится в субмикрограммовых концентрациях. В подземных водах его концентрация достигает единиц микрограмм на литр, увеличиваясь в районе оловорудных месторождений, оно попадает в воды за счёт разрушения в первую очередь сульфидных минералов, неустойчивых в зоне окисления. ПДКSn = 2 мг/дм³.

Олово

Кристаллы касситерита — оловянная руда

Олово является амфотерным элементом, то есть элементом, способным проявлять кислотные и основные свойства. Это свойство олова определяет и особенности его распространения в природе. Благодаря этой двойственности олово проявляет литофильные, халькофильные и сидерофильные свойства. Олово по своим свойствам проявляет близость к кварцу, вследствие чего известна тесная связь олова в виде окиси (касситерита) с кислыми гранитоидами (литофильность), часто обогащёнными оловом, вплоть до образования самостоятельных кварц-касситеритовых жил. Щелочной характер поведения олова определяется в образовании довольно разнообразных сульфидных соединений (халькофильность), вплоть до образования самородного олова и различных интерметаллических соединений, известных в ультраосновных породах (сидерофильность).

Формы нахождения

Основная форма нахождения олова в горных породах и минералах — рассеянная (или эндокриптная). Однако олово образует и минеральные формы, и в этом виде часто встречается не только как акцессорий в кислых магматических породах, но и образует промышленные концентрации преимущественно в окисной (касситерит SnO2) и сульфидной (станнин) формах.

Твёрдая фаза. Минералы

Олово

В общем можно выделить следующие формы нахождения олова в природе:

  1. Рассеянная форма; конкретная форма нахождения олова в этом виде неизвестна. Здесь можно говорить об изоморфно рассеянной форме нахождения олова вследствие наличия изоморфизма с рядом элементов (Ta, Nb, W — с образованием типично кислородных соединений; V, Cr, Ti, Mn, Sc — с образованием кислородных и сульфидных соединений). Если концентрации олова не превышают некоторых критических значений, то оно изоморфно может замещать названные элементы. Механизмы изоморфизма различны.
  2. Минеральная форма: олово установлено в минералах-концентраторах. Как правило, это минералы, в которых присутствует железо Fe+2: биотиты, гранаты, пироксены, магнетиты, турмалины и так далее. Эта связь обусловлена изоморфизмом, например, по схеме Sn+4 + Fe+2 → 2Fe+3. В оловоносных скарнах высокие концентрации олова установлены в гранатах (до 5,8 вес. %) (особенно в андрадитах), эпидотах (до 2,84 вес. %) и так далее.

На сульфидных месторождениях олово входит как изоморфный элемент в сфалериты (Силинское месторождение, Россия, Приморье), халькопириты (Дубровское месторождение, Россия, Приморье), пириты. Высокие концентрации олова выявлены в пирротине грейзенов Смирновского месторождения (Россия, Приморье). Считается, что из-за ограниченного изоморфизма происходит распад твёрдых растворов с микровыделениями Cu2+1Fe+2SnS4 или тиллита PbSnS2 и других минералов.

Собственно минеральные формы

Самородные элементы, сплавы и интерметаллические соединения

Хотя концентрации этих минералов в породах очень низки, однако распространены они в широком круге генетических образований. Среди самородных форм вместе с Sn выявлены Fe, Al, Cu, Ti, Cd и так далее, не считая уже известные самородные платиноиды, золото и серебро. Эти же элементы образуют между собой и различные сплавы: (Cu + Sn + Sb), (Pb + Sn + Sb) и другие, а также твёрдые растворы. Среди интерметаллических соединений установлены стистаит SnSb, атакит (Pd,Pt)3Sn, штумырлит Pt(Sn,Bi), звягинцевит (Pd,Pt)3(Pb,Sn), таймырит (Pd,Cu,Pt)3Sn и другие.

Приведённые формы нахождения олова и других элементов встречаются в различных геологических образованиях:

  1. Группа интрузивных и эффузивных магматических пород: траппы, пикриты Сибирской платформы, гипербазиты и габброиды Камчатки, кимберлиты Якутии, лампроиты Алдана и так далее; гранитоиды Приморья, Дальнего Востока, Тянь-Шаня.
  2. Группа метасоматически и гидротермально изменённых пород: медно-никелевые руды Сибирской платформы, золоторудные объекты Урала, Кавказа, Узбекистана и так далее.
  3. Группа современного рудообразования: пелагические осадки Тихого океана, продукты Большого Трещинного Толбачинского извержения, гидротермальная система Узон на Камчатке и прочие.
  4. Группа осадочных пород различного происхождения.
Окисные соединения олова

Наиболее известной формой является главный минерал олова — касситерит SnO2, представляющий собой соединение олова с кислородом. В минерале по данным ядерной гамма-резонансной спектроскопии присутствует Sn+4.

Касситерит

Основная статья: Касситерит

Касситерит (от греч. kassiteros — олово) — главный рудный минерал для получения олова, химическая формула SnO2. Теоретически содержит 78,62 % Sn. Образует отдельные выделения, зерна, сплошные массивные агрегаты, в которых зёрна минерала достигают в размере 3—4 мм и даже больше. В чистом виде бесцветные кристаллы, примеси придают минералу самые различные цвета.

  • Плотность 6040—7120 кг/м³ (наиболее низкая у светлоокрашенных касситеритов).
  • Твёрдость по Моосу 6,5.
  • Блеск — матовый, на гранях — алмазный.
  • Спайность несовершенная.
  • Излом раковистый.

Основные формы выделения касситерита:

  • микровключения в других минералах;
  • акцессорные выделения минерала в породах и рудах;
  • сплошные или вкрапленные руды: игольчатые радиально-лучистые агрегаты (месторождения Приморья), коломорфные и криптокристаллические выделения и скопления (месторождения Приморья); кристаллическая форма — главная форма выделения касситерита.

В России месторождения касситерита имеются на Северо-Востоке, в Приморье, Якутии, Забайкалье; за рубежом — в Малайзии, Таиланде, Индонезии, КНР, Боливии, Нигерии и других странах.

Гидроокисные соединения

Второстепенное место занимают гидроокисные соединения олова, которые можно рассматривать как соли полиоловянных кислот. К ним можно отнести минерал сукулаит Ta2Sn2+2O; твёрдый раствор олова в магнетите вида Fe2SnO4 или Fe3SnO3 (Бретштейн Ю. С., 1974; Воронина Л. Б., 1979); «варламовит» — продукт окисления станнина; считается, что он представляет собой смесь аморфных и полуаморфных соединений Sn, метаоловянной кислоты, поликонденсированной фазы и гидрокасситеритовой фазы. Известны также гидратированные продукты окисления — гидромартит 3SnO·H2O; мушистонит (Cu,Zn,Fe)Sn(OH)6; гидростаннат меди CuSn(OH)6 и другие.

Силикаты

Известна многочисленная группа силикатов олова, представленная малаяитом CaSn[SiO5]; пабститом Ba(Sn, Ti)Si3O9, стоказитом Ca2Sn2Si6O18·4H2O и др. Малаяит образует даже промышленные скопления.

Шпинелиды

Из других окисных соединений известны также шпинелиды, например, минерал нигерит Sn2Fe4Al16O32 (Peterson E. U., 1986).

Сульфидные соединения олова

Включает различные соединения олова с серой. Это вторая по промышленному значению группа минеральных форм нахождения олова. Наиболее важным из них является станнин, второй по значению минерал. Кроме этого, отмечаются франкеит Pb5Sn3Sb2S14, герценбергит SnS, берндтит SnS2, тиллит PbSnS2 и кестерит Cu2ZnSnS4. Выявлены и более сложные сульфидные соединения олова со свинцом, серебром, медью, имеющие в основном минералогическое значение. Тесная связь олова с медью обусловливает частое присутствие на оловорудных месторождениях халькопирита CuFeS2 с образованием парагенезиса касситерит — халькопирит.

Станнин

Основная статья: Станнин

Станнин (от лат. stannum — олово), оловянный колчедан, минерал из класса сульфидов с общей формулой вида Cu2FeSnS4. Она следует из формулы халькопирита путём замены одного атома Fe на Sn. Содержит 29,58 % Cu, 12,99 % Fe, 27,5 % Sn и 29,8 S, а также примеси Zn, Sb, Cd, Pb и Ag. Широко распространённый минерал в оловорудных месторождениях России. На ряде месторождений России (Приморье, Якутия) и Средней Азии (Таджикистан) он является существенным элементов сульфидных минералов и часто вместе с варламовитом составляет 10—40 % общего олова. Часто образует вкрапленность в сфалерите ZnS, халькопирите. Во многих случаях наблюдаются явления распада станнина с выделением касситерита.

Коллоидная форма

Коллоидные и олово-кремнистые соединения играют значительную роль в геохимии олова, хотя детально она не изучена. Значительное место в геологии элемента играют коломорфные соединения и продукты его кристаллических превращений в скрытокристаллические разности. Коломорфный касситерит рассматривается как форма выражения вязких гелеобразных растворов.

Независимые исследования выявили аномально высокую растворимость SnO2 в хлор-кремниевых растворах. Максимальная растворимость достигается при отношении  SnO2SiO2 = 1,5.

Анализ свойств соединения Sn(OH)4 и близость их к соединению Si(OH)4 выявляет способность его к полимеризации с образованием в конечном счёте соединений H2SnkO2k+1, SnkO2k−1(OH)2. В обоих случаях возможно замещение группы (ОН) на анионы F и Cl.

Таким образом, полимеризация молекул Sn(OH)4 и соединение их с молекулами Si(OH)4 ведёт к образованию геля (коллоида) и появлению цепочек HmSn2nSinOp, причём m ≤ 8, или Hs[SiO2n(SnOm)d] (Некрасов И. Я. и др., 1973).

Имеющиеся данные говорят о том, что коллоидная форма является естественным промежуточным звеном при осаждении олова из гидротермальных растворов.

Формы нахождения олова в жидкой фазе

Наименее изученная часть геохимии олова, хотя в газово-жидких включениях установлены касситериты в виде минералов-узников (Кокорин А. М. и др., 1975). Работ по анализу конкретных оловосодержащих природных растворов нет. В основном вся информация основана на результатах экспериментальных исследований, которые говорят только о вероятных формах нахождения олова в растворах. Существенную роль в разработке методики этих исследований принадлежит академику В. Л. Барсукову.

Вся совокупность экспериментально установленных форм нахождения олова в растворах разбивается на группы:

  1. Ионные соединения. Эти соединения и их структура описываются с позиций классических валентных и стереохимических представлений. Выделяются подгруппы:
    1. Простые ионы Sn+2 и Sn+4 в основном обнаружены в магматических расплавах, а также в гидротермальных растворах, обладающих низкими значениями pH. Однако в существующих гидротермальных системах, отражаемых составом газово-жидких включений, такие условия не установлены.
    2. Галогениды — SnF2, SnF40, SnCl40. Считается, что роль хлора в переносе и отложении олова и сопутствующих металлов более значительна, чем роль фтора.
    3. Гидроксильные соединения. В щелочных условиях исходными являются соединения H2SnO2, H2SnO4, H2SnO3. Эти формы часто устанавливаются на основе известных минеральных форм. Часть этих форм имеет как искусственное (CaSnO3, Ca2SnO4), так и природное (FeSnO2, Fe2SnO4) происхождение. В кислых средах эти соединения ведут себя как слабые основания типа Sn(OH)2, Sn(OH)4. Считается, что одной из форм проявления подобных соединений является варламовит. Согласно экспериментальным данным Sn(OH)4 отлагается только при Т < 280 °C в слабокислых или нейтральных условиях при pH = 7—9. Соединения Sn(OH)4 и Sn(OH)3+ устойчивы при pH= 7—9, тогда как Sn(OH)2+2 и Sn(OH)+2 — при pH < 7. Довольно часто группы (ОН)−1 замещаются на F и Cl, создавая галогенозамещённые модификации гидросоединений олова. В общем виде эти формы представлены соединениями Sn(OH)4-kFk или Sn(OH)4−kFk-nCln. В целом соединение Sn(OH)3F устойчиво при Т = +25…+50 °C, а Sn(OH)2F2 — при Т = 200 °C.
    4. Сульфидные соединения. По экспериментальным данным в растворе присутствуют соединения SnS4−4 или SnS3−2 при pH > 9; SnS2O−2 (pH = 8—9) и Sn(SH)4 (pH = 6). Имеется упоминание о существовании соединения типа Na2SnS3, неустойчивого в кислой среде.
  2. Комплексные соединения олова изучены при растворении касситерита во фторированных средах. Эти соединения отличаются высокой растворимостью. Этими же свойствами обладают соединения, полученные в хлоридных растворах. В качестве основных форм комплексных соединений, известных из экспериментов, можно назвать Na2[Sn(OH)6], Na2[SnF6], Na2[Sn(OH)2F4] и пр. Эксперименты показали, что комплекс Sn(OH)4F2−2 будет преобладать при Т = 200 °C.
  3. Коллоидные и олово-кремнистые соединения. Об их существовании говорит присутствие на многих месторождениях коломорфных выделений касситерита.

Промышленные типы месторождений олова

Описанные выше геохимические особенности олова находят косвенное отражение в формационной классификации оловорудных месторождений, предложенной Е. А. Радкевич с последующими дополнениями.

А. Формация оловоносных гранитов. Касситерит установлен в акцессорной части гранитов.
Б. Формация редкометальных гранитов. Это граниты литионит-амазонит-альбитового типа (апограниты по А. А. Беусу). Касситерит в акцессорной части вместе колумбит-татнатлитом, микролитом и прочими.
В. Формация оловоносных пегматитов. Оловянная минерализация характерна для Be-Li-, Be-Ta-, F-Li- типов.
Г. Формация полевошпат-кварц-касситеритовая. Выделена Ив. Ф. Григорьевым. Это кварц-полевошпатовые жилы с касситеритом и другими минералами.
Д. Формация кварц-касситеритовая. Распространена на северо-востоке России. Это жильные зоны, грейзены с кварцем, мусковитом, вольфрамитом, касситеритом и другим.
Е. Формация касситерит-силикатно-сульфидная с турмалиновым и хлоритовым типами. Одна из основных продуктивных формаций Приморья России.
Ж. Формация касситерит-сульфидная. Также основная оловопродуктивная формация. В ней выделяют основные типы:

1) штокверковое олово-вольфрамовое оруденение;
2) рудные тела квар-касситерит-арсенопиритового типа;
3) продуктивные кварцевые жилы сульфидно-касситерит-хлоритового типа.
З. Формация оловянно-скарновая.
И. Формация деревянистого олова (риолитовая формация).
К. Формация основных и ультраосновных пород (по И. Я. Некрасову).
Л. Формация щелочных пород Украины (по В. С. Металлиди, 1988).

Производство

В процессе производства рудоносная порода (касситерит) подвергается дроблению до размеров частиц в среднем ~10 мм, в промышленных мельницах, после чего касситерит за счет своей относительно высокой плотности и массы отделяется от пустой породы вибрационно-гравитационным методом на обогатительных столах. В дополнение применяется флотационный метод обогащения/очистки руды. Таким образом удается повысить содержание олова в руде до 40—70 %. Далее проводят обжиг концентрата в кислороде для удаления примесей серы и мышьяка. Полученный концентрат оловянной руды выплавляется в печах. В процессе выплавки восстанавливается до свободного состояния посредством применения в восстановлении древесного угля, слои которого укладываются поочередно со слоями руды, или алюминием (цинком) в электропечах:  SnO2 + C = Sn + CO2. Особо чистое олово полупроводниковой чистоты готовят электрохимическим рафинированием или методом зонной плавки.

Применение

  • Олово используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова — в белой жести (лужёное железо) для изготовления тары пищевых продуктов, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов. Важнейший сплав олова — бронза (с медью). Другой известный сплав — пьютер — используется для изготовления посуды. Для этих целей расходуется около 33 % всего добываемого олова. До 60 % производимого олова используется в виде сплавов с медью, медью и цинком, медью и сурьмой (подшипниковый сплав, или баббит), с цинком (упаковочная фольга) и в виде оловянно-свинцовых и оловянно-цинковых припоев. В последнее время возрождается интерес к использованию металла, поскольку он наиболее «экологичен» среди тяжёлых цветных металлов. Используется для создания сверхпроводящих проводов на основе интерметаллического соединения Nb3Sn.
  • Дисульфид олова SnS2 применяют в составе красок, имитирующих позолоту («поталь»).
  • Искусственные радиоактивные ядерные изомеры олова 117mSn и 119mSn — источники гамма-излучения, являются мёссбауэровскими изотопами и применяются в гамма-резонансной спектроскопии.
  • Интерметаллические соединения олова и циркония обладают высокими температурами плавления (до 2000 °C) и стойкостью к окислению при нагревании на воздухе и имеют ряд областей применения.
  • Олово является важнейшим легирующим компонентом при получении конструкционных сплавов титана.
  • Двуокись олова — очень эффективный абразивный материал, применяемый при «доводке» поверхности оптического стекла.
  • Смесь солей олова — «жёлтая композиция» — ранее использовалась как краситель для шерсти.
  • Олово применяется также в химических источниках тока в качестве анодного материала, например: марганцево-оловянный элемент, окисно-ртутно-оловянный элемент. Перспективно использование олова в свинцово-оловянном аккумуляторе; так, например, при равном напряжении, по сравнению со свинцовым аккумулятором свинцово-оловянный аккумулятор обладает в 2,5 раза большей ёмкостью и в 5 раз большей энергоплотностью на единицу объёма, внутреннее сопротивление его значительно ниже.
  • Исследуются изолированные двумерные слои олова (станен), созданные по аналогии с графеном.

Физиологическое действие

О роли олова в живых организмах практически ничего не известно. Ежедневное поступление олова с пищей составляет 0,2—3,5 мг, при регулярном потреблении консервированной пищи — до 38 мг. В теле человека содержится примерно (1—2)·10−4 % олова, наибольшая концентрация наблюдается в кишечнике.

Металлическое олово не токсично, что позволяет применять его в пищевой промышленности. Олово представляет опасность для человека в виде паров, различных аэрозольных частиц и пыли. При воздействии паров или пыли олова может развиться станноз — поражение лёгких. Станнан (оловянистый водород) — сильнейший яд. Также очень токсичны некоторые оловоорганические соединения. Временно допустимая концентрация соединений олова в атмосферном воздухе 0,05 мг/м3, ПДК олова в пищевых продуктах 200 мг/кг, в молочных продуктах и соках — 100 мг/кг. Токсическая доза олова для человека — 2 г, интоксикация организма начинается при содержании в организме 250 мг/кг.

Вредные примеси, содержащиеся в олове в обычных условиях хранения и применения, в том числе в расплаве при температуре до 600 °C, не выделяются в воздух в объёмах, превышающих предельно допустимую концентрацию (в частности, определенную по ГОСТ 12.1.005—76. Длительное (в течение 15—20 лет) воздействие пыли олова оказывает фиброгенное воздействие на лёгкие и может вызвать заболевание работающих пневмокониозом.

Галерея изображений

  • Оловянный кубок из г. Гданьска (Польша)

  • Консервная банка с оловянным покрытием

  • Оловянный солдатик в форме после литья

  • Зональный кристалл касситерита в шлифе (поляризованный свет, ширина изображения — 3,3 мм)

  • Кристаллы касситерита (тёмные)

Периодическая система химических элементов Д. И. Менделеева

  1 2                             3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H   He
2 Li Be   B C N O F Ne
3 Na Mg   Al Si P S Cl Ar
4 K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8 Uue Ubn Ubu Ubb Ubt Ubq Ubp Ubh Ubs  

Электрохимический ряд активности металлов

Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu,
Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2,
W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au

Олово

Химические свойства

В соответствии с конфигурацией внешних электронов атома 5s22 Олово имеет две степени окисления: +2 и +4; последняя более устойчива; соединения Sn (II) — сильные восстановители. Сухим и влажным воздухом при температуре до 100 °С олово практически не окисляется: его предохраняет тонкая, прочная и плотная пленка SnO2. По отношению к холодной и кипящей воде олово устойчиво. Стандартный электродный потенциал Олова в кислой среде равен -0,136 в.

При комнатной температуре олово, подобно соседу по группе германию, устойчиво к воздействию воздуха или воды. Такая инертность объясняется образованием поверхностной пленки оксидов. Заметное окисление олова на воздухе начинается при температурах выше 150°C:

Sn + O2 = SnO2.

Из разбавленных НCl и H2SO4 на холоду олово медленно вытесняет водород, образуя соответственно хлорид SnCl2 и сульфат SnSO4. В горячей концентрированной H2SO4 при нагревании Олово растворяется, образуя Sn(SO4)2 и SO2. Холодная (0°С) разбавленная азотная кислота действует на олово по реакции:

4Sn + 10HNO3 = 4Sn(NO3)2 + NH4NO3 + 3H2O.

При нагревании с концентрированной HNO3 (плотность 1,2-1,42 г/мл) олово окисляется с образованием осадка метаоловянной кислоты H2SnO3, степень гидротации которой переменна:

3Sn + 4HNO3 + nH2O = 3H2SnO3·nH2O + 4NO.

При нагревании Олова в концентрированных растворах щелочей выделяется водород и образуется гексагидростаниат:

Sn + 2KOH + 4H2O = K2[Sn(OH)6] + 2H2.

Кислород воздуха пассивирует Олово, оставляя на его поверхности пленку SnO2. Химически оксид (IV) SnO2 очень устойчив, а оксид (II) SnO быстро окисляется, его получают косвенным путем. SnO2 проявляет преимущественно кислотные свойства, SnO — основные.

С водородом олово непосредственно не соединяется; гидрид SnH4 образуется при взаимодействии Mg2Sn с соляной кислотой:

Mg2Sn + 4HCl = 2MgCl2 + SnH4.

Это бесцветный ядовитый газ, tкип -52 °С; он очень непрочен, при комнатной температуре разлагается на Sn и H2 в течение нескольких суток, а выше 150°С — мгновенно. Образуется также при действии водорода в момент выделения на соли Олова, например:

SnCl2 + 4HCl + 3Mg = 3MgCl2 + SnH4.

С галогенами олово дает соединения состава SnX2 и SnX4. Первые солеобразны и в растворах дают ионы Sn2+, вторые (кроме SnF4) гидролизуются водой, но растворимы в неполярных органических жидкостях. Взаимодействием олова с сухим хлором (Sn + 2Cl2 = SnCl4) получают тетрахлорид SnCl4; это бесцветная жидкость, хорошо растворяющая серу, фосфор, иод. Раньше по приведенной реакции удаляли Олово с вышедших из строя луженых изделий. Сейчас способ мало распространен из-за токсичности хлора и высоких потерь олова.

Тетрагалогениды SnX4 образуют комплексные соединения с Н2О, NH3, оксидами азота, РСl5, спиртами, эфирами и многими органическими соединениями. С галогеноводородными кислотами галогениды Олова дают комплексные кислоты, устойчивые в растворах, например H2SnCl4 и H2SnCl6. При разбавлении водой или нейтрализации растворы простых или комплексных хлоридов гидролизуются, давая белые осадки Sn(OH)2 или Н2SnО3·nН2О. С серой Олово дает нерастворимые в воде и разбавленных кислотах сульфиды: коричневый SnS и золотисто-желтый SnS2.

Германий, олово, свинец физические свойства

Символ

Ge

Sn

Pb

цвет

серебристо-белый

серебристый

голубовато-белый

твердость

твердый, хрупкий

мягкий

мягкий

tпл,
°С

937

232

327

ρ,
г/см3

5,32

7,3

11,2

Усиливаются
металлические свойства→

Олово Sn

Олово существует
в двух аллотропных модификациях:

α-олово – белое
олово – серебристо-белый, блестящий
металл.

β-олово – серое
олово – серый порошок.

При температуре
13,2 °С белое олово начинает спонтанно
превращаться в серое. При −33 °C
скорость превращений становится
максимальной (1,5 мм/ч). Олово трескается
и превращается в порошок. Причем
соприкосновение серого олова и белого
приводит к «заражению» последнего.
Совокупность этих явлений называется
«оловянной чумой».

Чтобы превратить
серое олово обратно в белое, его кипятят
с водой, пока оно не побелеет. Затем
плавят.

Одним из средств
предотвращения «оловянной чумы»
является добавление в олово стабилизатора,
например висмута.

Химические свойства олова и его соединений

Олово – амфотерный
металл. Устойчиво на воздухе и в воде.

Возможные степени
окисления – Sn+2
и Sn+4
(более
характерна)

1) Взаимодействует с кислотами-неокислителями

Sn
+ HCl

SnCl2
+ H2

Sn +
H2SO4(р)
Combin
SnSO4
+ H2

2) Взаимодействует с кислотами-окислителями

Sn
+ HNO3(р)


+
NO
+ H2O
олово
реагирует как металл

Sn
+ HNO3(к)

олово
реагирует как неметалл

Sn +
H2SO4(к)

+ SO2
+ H2O

3) Взаимодействует со щелочами

Sn
+ NaOH(к)
+ H2O
Combin

+
H2
образуется
станнат
натрия

Sn
+ NaOH(к)
+ H2O
Combin

+
H2

Соединения олова
также амфотерны:

Sn(OH)2
+ HCl
→ SnCl2
+ H2O
взаимодействуют
с кислотами – образуется хлорид олова(
II)

Sn(OH)2
+ NaOH
Combin

+ H2O
взаимодействуют
со щелочами – образуется станнит натрия

Sn(OH)2
+ NaOH
Combin

+
H2

Соединения Sn+2
– сильные восстановители. Окисляются
до
Sn+4:

SnCl2
+ FeCl3
→ SnCl4
+ FeCl2

SnCl2
+ AuCl3
→ Au↓
+ SnCl4

Свинец Pb

Голубовато-белый
мягкий металл. Режется ножом. Очень
тяжелый. Самый пластичный из всех
тяжелыхметаллов.

На воздухе покрыт
оксидной пленкой. Во влажном воздухе
покрывается слоем гидроксида.

Обладает более
сильными металлическими свойствами,
чем олово.

Более характерна
степень окисления Pb+2.
Pb+4
неустойчив, поэтому является сильнейшим
окислителем.

Химические свойства свинца и его соединений

В соляной и
разбавленной серной кислоте не
растворяется, т.к. образуются пленки
нерастворимых PbCl2
и PbSO4

1) Окисляется
кислородом воздуха

Pb
+ O2
→ PbO

2) Во влажном
воздухе образуется гидроксид

Pb
+ H2O
+ O2
→ Pb(OH)2

3)Взаимодействует с серой

Pb
+ S
Combin
PbS

4) Реагирует
с кислотами-окислителями

Pb +
HNO3(к)

+ NO2
+ H2O

Pb +
HNO3(р)

+ NO + H2O

Pb +
H2SO4(к)

+ SO2
+ H2O

3) Растворяется
в горячих растворах щелочей

Pb
+ NaOH
+ H2O
Combin

+
H2

Гидроксид свинца
также амфотерен – растворяется в
кислотах и в щелочах:

Pb(OH)2
+ HCl
→ PbCl2
+ H2O
хлорид
свинца(
II)

Pb(OH)2
+ NaOH
Combin

+ H2O
плюмбит
натрия

Pb(OH)2
+ NaOH
Combin

+
H2

PbO2
– темно-бурый порошок. Получается при
действии сильных окислителей на соли
Pb+2.

Является сильным
окислителем, как и все соединения Pb+4.
Не реагирует с разбавленными кислотами
и щелочами

PbO2
+ HCl
Combin
PbCl2
+ Cl2
+ H2O

PbO2
+ NaOH(к)
+ H2O
Combin

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Свойства олова

Общее описание

Люди начали добывать руду металла еще в IV веке до нашей эры. Древние греческие и римские предметы изготавливались из оловянистой бронзы, которая была в обиходе в те времена. Сплавы содержали также примесь свинца и меди, а чистый металл научились получать только в VII веке.

Олово химический элемент

Редкий элемент занимает 46-е место по распространенности в коре земли. Он залегает в виде касситерита, в массе которого содержится до 78% олова. Реже встречается оловянный колчедан с примесью меди и железа. Олово относится к группе амфотерных веществ. Элемент способен к проявлению основных и кислотных характеристик.

Металл образует отдельные кварц-касситеритовые жилы благодаря тесной связи кислородных соединений олова с ангидритами гранита. Щелочные свойства проявляются в образовании различных соединений сульфидов, вплоть до возникновения интерметаллических слияний и самородного сплава олова в основных породах.

Белое и серое олово

Различают несколько аллотропных модификаций олова. В обычных условиях существует белое олово, которое является устойчивым при температуре свыше +13,3˚С. Это мягкий металл, образующий кристаллы с элементарными ячейками, где два одинаковых вектора и третий отличный от них располагаются строго перпендикулярно друг другу. Характерный хруст слышится при сгибании прутка. Звук возникает при трении кристаллов.

Охлаждение вещества ведет к образованию серого олова. При этом возникают кубические кристаллы, отличающиеся алмазной структурой. Ионизирующее излучение также способствует переходу из одной модификации в другую и кристаллизации по карбонатному типу.

Температура плавления олова

Трансформация структуры ведет к следующим изменениям:

  • удельный объем увеличивается;
  • плотность олова уменьшается;
  • металл становится порошкообразным.

Электрофизические свойства двух вариаций разнятся из-за отличия структурных решеток и валентности. Белое олово относится к группе металлов, а серое получает характеристики ковалентного кристалла алмазной структуры. Соприкосновение двух модификаций ведет к ускорению электронного фазового перехода, так как зарождаются новые формы кристаллов. Такое явление получило наименование оловянной чумы. Используется стабилизатор (например, висмут) для предотвращения этого процесса. Катализатор гексахлорстаннат аммония, наоборот, ускоряет переход.

Изотопы элемента

Олово в природе содержит 10 неизменных нуклидов с определенным суммарным числом нейтронов, протонов и электронов в молекуле. Атомный заряд также является постоянным и соответствует порядковому номеру элемента в таблице Менделеева в химии.

Массовые числа нуклидов с изменением содержания в массе:

Плотность олова

  1. 112 — 0,96% в смеси.
  2. 114 — 0,66%.
  3. 115 — 0,35%.
  4. 116 — 14,3%.
  5. 117 — 7,61%.
  6. 118 — 24,03%.
  7. 119 — 8,58%.
  8. 120 — 32,85%.
  9. 122 — 4,72%.
  10. 124 — 5,94%.

Некоторые элементы могут подвергаться энергетическому двойному распаду, но такое явление до сегодняшнего дня не наблюдалось из-за величины теоретического времени распада, равного 1020 лет. У олова выделяется самое большее количество стабильных изотопов. Они заполняют протонную капсулу и увеличивают устойчивость ядра.

Аллотропные модификации олова

Олово относится к безопасным для человека веществам. В организм человека оно ежедневно попадает с пищей в минимальных пропорциях (0,25−3,4 мг). В теле содержится около (1−2).10-4% металла. Самая высокая концентрация выявляется в кишечнике. Регулярное вдыхание паров или воздушных частиц может нанести вред и привести к легочным заболеваниям. Людям, работающим с органическими сплавами олова, рекомендуется надевать защитные костюмы.

Причиной отравления может стать употребление старых консервов, в которых органические продукты реагируют с внутренним покрытием из олова, происходит окисление, при этом выделяется оловянистый водород. Роль вещества в организме человека практически не изучена. Металлическое олово считается нетоксичным для человека, поэтому применяется для покрытия жестяных тар для продуктов.

Физические характеристики

Плотность металла в твердой фракции при обычной температуре (+ 20−22˚С) составляет 7,3 г/см3, повышение показателей до температуры плавления олова (+231,8˚С) снижает плотность жидкого металла до 6,97 г/см3. Процесс кипения начинается в условиях температуры +2615˚С.

Другие факты:

Олово свойства

  1. Показатель линейного расширения составляет 1,99.10-5 К-1 (при 0˚С), а при температуре +100˚С равняется 2,38.10-5 К-1.
  2. Удельная теплоемкость твердого вещества в обычном состоянии — 225 Дж/кг.К, а в жидком —в пределах 269 Дж/кг.К.
  3. Молярная теплоемкость белого олова — 27,1Дж/моль.К, серой модификации — 25,8 Дж/моль.К.
  4. Показатель плавления составляет 7,2 кДж/моль.
  5. Для испарения требуется 296 кДж/моль.
  6. Удельное сопротивление электричеству — 0,115−0,128 мкОм.м в условиях температуры +25˚С.

Упругость материала снижается при повышении температуры, при 0˚С модуль равен 55 Гпа, а при +100˚С — 48 Гпа. Временное сопротивление на разрыв равняется 20 Мпа, относительное удлинение при этом составляет 40%. Модуль сдвига находится в пределах 16,9−8,2 Гпа.

Химические показатели

Металл проявляет устойчивость к действию окружающего воздуха или влаги в условиях комнатной температуры. Инертность материала объясняется появлением оксидной пленки на поверхности. Олово начинает окисляться на воздухе при увеличении температуры свыше +150˚С. Металл обладает двумя окислительными степенями, +2 и +4. Первая имеет меньшую устойчивость.

Формулы характерных химических реакций:

Олово таблица менделеева

  1. Холодная азотистая кислота реагирует с оловом, формула следующая: 4 Sn + 10 HNO 3 = NH 4 NO 3 + 4 Sn (NO 3) 2 + 3 H 2 O).
  2. В случае нагревания с концентрированной формой HN О 3 используется свойство окисления олова, при этом выделяется осадок с переменной гидратацией — 3 Sn + n H 2 O + 4 HNO 3 = 4 NO + 3 H 2 S n O 3 . n H 2 O.
  3. Нагревание олова в насыщенном щелочном растворе имеет обозначение по формуле 2 KOH + Sn + 4 H 2 O = 2 H 2 + K 2 (Sn (OH) 6).

Галогенные металлы дают сплавы с содержанием SnX 2 и SnX 4. Первые представляют собой солеобразные растворы с ионами, вторые подлежат водной гидролизации, но могут растворяться в органических жидкостях неполярного типа. При соединении с сухим хлором продуцируется тетрахлорид, который представляет собой жидкость без цвета, растворяющую йод, серу.

Этапы производства

При получении олова рудная порода касситерит дробится в мельницах до появления частиц размером около 1 см. Следующий этап — отделение вещества от пустой породы путем вибрации на гравитационных столах. Затем используется метод очистки и обогащения руды для повышения олова в составе до 45−72%.

Последующий обжиг удаляет мышьяк и серу, а полученный концентрат поступает на обжиг в печи. В жерле древесный уголь укладывается вперемежку с образцами руды и алюминием. Чистый металл полупроводниковой чистоты получают способом расплавления твердых веществ или методом очистки под действием электролиза.

Основные месторождения находятся на юго-востоке Азии и Китае, крупные добычи находятся в Австралии и Америке. Россия славится залежами олова в Хабаровском и Приморском крае, Чукотском АО, Якутии и других регионах.

Олово как делать

Нахождение в природе

Чаще всего олово содержится в горных породах в виде рассеянных форм. Но в кислых образованиях руда встречается в виде минеральных вкраплений и залежей касситерита, который является интересным для производства в промышленных масштабах.

Формы содержания вещества в природе:

  • минеральные вкрапления;
  • окисные соединения;
  • коллоидные формы;
  • жидкие фазы.

Олово добыча

Рассеянные залежи не отличаются конкретной формой содержания. Наблюдается изоморфно разбросанные сульфидные и кислородные сращения. На месторождениях первого вида олово представлено сфалеритами, халькопиритами, пиритами. В результате распада возникают элементы тилита и других минеральных веществ. В России изоморфные рассеивания обнаруживаются в Приморье, например, в Дубровском и Смирновском месторождении.

Минеральные формы

В группу входят самородки и сплавы интерметаллических образований. Концентрации в почве являются низкими, но такие залежи сконцентрированы на широких площадях. Вместе с оловом обнаруживается руда меди, алюминия, железа, не считая характерных самородков серебра, золота и платиноидов.

Эти же элементы участвуют в образовании сплавов олова:

  • атакит;
  • стистаит;
  • звягинцевит;
  • штурмылит.

Приведенные образования встречаются в интрузивных породах магния, например, пикритах и траппах в области Сибирской платформы. Габброиды и гипербазиты располагаются в грунтах Камчатки. Гидротермальные и метасоматические породы находятся в составе никелевых и медных руд в бассейнах Урала, Узбекистана, Кавказа. Пелагические осадочные соединения являются результатом Большого Толбачинского извержения.

Окисные соединения

Наиболее распространены в природе в форме касситеритов (Sn O 2), являющихся оксидами олова. Гамма-резонансное исследование показывает присутствие Sn+4. Соединения включают до 78% олова в форме сплошных вкраплений с отдельными зернами минерала величиной 3−5 мм.

Встречаются формы касситеритов:

Олово

  1. Гидроокисные сплавы представлены в природе осадками полиоловянной кислоты. К ним относят сукулаиты, варламовиты, гидромартиты, гидростаннаты.
  2. Силикаты находятся в форме малаяитов, стоказитов, пабститов. Первый вид минералов встречается в больших масштабах.
  3. Сульфидные образования металла представлены серой в сочетании с оловом и являются второй по значению группой для промышленных разработок. Более сложные соединения имеют в составе медь, свинец. В породах чаще других встречаются халькопириты.
  4. Станнины имеют второе название оловянного колчедана. Минералы широко добываются в Якутии и Приморье. Во многих случаях представляет основу для образования халькопирита.

Касситериты являются отличным материалом для получения чистого олова. В России добываются в Забайкалье, разрабатываются в районах Средней Азии. Мировые бассейны располагаются в Таиланде, Боливии, Малайзии, Китае, Индонезии, Нигерии.

Коллоидные формирования

Кремниево-коллоидные виды играют большую роль в геохимических процессах, хотя их детальное изучение не проводилось. Соединения относятся к вязкой форме выражения коломорфных касситеритов, которые подвергаются кристаллическим преобразованиям. Обнаружена сильная растворимость олова в кремниево-хлористых составах.

Анализ характеристик соединений и их похожесть на Si (OH) 4 показывает способность к получению высокомолекулярного материала (полимера) методом присоединения олигомеров и мономеров к активным молекулам. В результате возникает соединение с замещением анионами хлора и фтора группы ОН. Полимеризация вызывает образование дисперсного геля. Такая форма относится к промежуточным этапам при выделении осадка из гидротермальных веществ.

Кристаллическая решетка олова

Жидкая фаза

В газовых и жидких образованиях горных пород выявляются касситериты в категории заключенных минералов. Природные растворы с включением олова почти не анализировались, информация получена после экспериментальных методов исследования.

Виды содержания олова в природных жидкостях делятся на категории:

  1. Ионные соединения. Их строение изучалось с точки зрения валентных сцеплений и стереохимических сочетаний. Выделяются подкатегории ионов, галогенидов, гидроксильных и сульфидных образований.
  2. Комплексные формирования. Получаются в результате травления касситеритов в среде с высокой концентрацией фтора или хлора.

Редко встречаются олово — кремниевые и дисперсные гелевые вкрапления в жидкой природной среде. Фундаментом этих форм являются минеральные материалы. Соединения проявляют свойства слабых оснований в кислых породах.

1

H

1,008

1s1

2,2

Бесцветный газ

пл=-259°C

кип=-253°C

2

He

4,0026

1s2

Бесцветный газ

кип=-269°C

3

Li

6,941

2s1

0,99

Мягкий серебристо-белый металл

пл=180°C

кип=1317°C

4

Be

9,0122

2s2

1,57

Светло-серый металл

пл=1278°C

кип=2970°C

5

B

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

пл=2300°C

кип=2550°C

6

C

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

пл=3550°C

кип=4830°C

7

N

14,007

2s2 2p3

3,04

Бесцветный газ

пл=-210°C

кип=-196°C

8

O

15,999

2s2 2p4

3,44

Бесцветный газ

пл=-218°C

кип=-183°C

9

F

18,998

2s2 2p5

4,0

Бледно-желтый газ

пл=-220°C

кип=-188°C

10

Ne

20,180

2s2 2p6

Бесцветный газ

пл=-249°C

кип=-246°C

11

Na

22,990

3s1

0,93

Мягкий серебристо-белый металл

пл=98°C

кип=892°C

12

Mg

24,305

3s2

1,31

Серебристо-белый металл

пл=649°C

кип=1107°C

13

Al

26,982

3s2 3p1

1,61

Серебристо-белый металл

пл=660°C

кип=2467°C

14

Si

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

пл=1410°C

кип=2355°C

15

P

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

пл=44°C

кип=280°C

16

S

32,065

3s2 3p4

2,58

Светло-желтый порошок

пл=113°C

кип=445°C

17

Cl

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

пл=-101°C

кип=-35°C

18

Ar

39,948

3s2 3p6

Бесцветный газ

пл=-189°C

кип=-186°C

19

K

39,098

4s1

0,82

Мягкий серебристо-белый металл

пл=64°C

кип=774°C

20

Ca

40,078

4s2

1,0

Серебристо-белый металл

пл=839°C

кип=1487°C

21

Sc

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

пл=1539°C

кип=2832°C

22

Ti

47,867

3d2 4s2

1,54

Серебристо-белый металл

пл=1660°C

кип=3260°C

23

V

50,942

3d3 4s2

1,63

Серебристо-белый металл

пл=1890°C

кип=3380°C

24

Cr

51,996

3d5 4s1

1,66

Голубовато-белый металл

пл=1857°C

кип=2482°C

25

Mn

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

пл=1244°C

кип=2097°C

26

Fe

55,845

3d6 4s2

1,83

Серебристо-белый металл

пл=1535°C

кип=2750°C

27

Co

58,933

3d7 4s2

1,88

Серебристо-белый металл

пл=1495°C

кип=2870°C

28

Ni

58,693

3d8 4s2

1,91

Серебристо-белый металл

пл=1453°C

кип=2732°C

29

Cu

63,546

3d10 4s1

1,9

Золотисто-розовый металл

пл=1084°C

кип=2595°C

30

Zn

65,409

3d10 4s2

1,65

Голубовато-белый металл

пл=420°C

кип=907°C

31

Ga

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

пл=30°C

кип=2403°C

32

Ge

72,64

4s2 4p2

2,0

Светло-серый полуметалл

пл=937°C

кип=2830°C

33

As

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

субл=613°C

(сублимация)

34

Se

78,96

4s2 4p4

2,55

Хрупкий черный минерал

пл=217°C

кип=685°C

35

Br

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

пл=-7°C

кип=59°C

36

Kr

83,798

4s2 4p6

3,0

Бесцветный газ

пл=-157°C

кип=-152°C

37

Rb

85,468

5s1

0,82

Серебристо-белый металл

пл=39°C

кип=688°C

38

Sr

87,62

5s2

0,95

Серебристо-белый металл

пл=769°C

кип=1384°C

39

Y

88,906

4d1 5s2

1,22

Серебристо-белый металл

пл=1523°C

кип=3337°C

40

Zr

91,224

4d2 5s2

1,33

Серебристо-белый металл

пл=1852°C

кип=4377°C

41

Nb

92,906

4d4 5s1

1,6

Блестящий серебристый металл

пл=2468°C

кип=4927°C

42

Mo

95,94

4d5 5s1

2,16

Блестящий серебристый металл

пл=2617°C

кип=5560°C

43

Tc

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

пл=2172°C

кип=5030°C

44

Ru

101,07

4d7 5s1

2,2

Серебристо-белый металл

пл=2310°C

кип=3900°C

45

Rh

102,91

4d8 5s1

2,28

Серебристо-белый металл

пл=1966°C

кип=3727°C

46

Pd

106,42

4d10

2,2

Мягкий серебристо-белый металл

пл=1552°C

кип=3140°C

47

Ag

107,87

4d10 5s1

1,93

Серебристо-белый металл

пл=962°C

кип=2212°C

48

Cd

112,41

4d10 5s2

1,69

Серебристо-серый металл

пл=321°C

кип=765°C

49

In

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

пл=156°C

кип=2080°C

50

Sn

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

пл=232°C

кип=2270°C

51

Sb

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

пл=631°C

кип=1750°C

52

Te

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

пл=450°C

кип=990°C

53

I

126,90

5s2 5p5

2,66

Черно-серые кристаллы

пл=114°C

кип=184°C

54

Xe

131,29

5s2 5p6

2,6

Бесцветный газ

пл=-112°C

кип=-107°C

55

Cs

132,91

6s1

0,79

Мягкий серебристо-желтый металл

пл=28°C

кип=690°C

56

Ba

137,33

6s2

0,89

Серебристо-белый металл

пл=725°C

кип=1640°C

57

La

138,91

5d1 6s2

1,1

Серебристый металл

пл=920°C

кип=3454°C

58

Ce

140,12

f-элемент

Серебристый металл

пл=798°C

кип=3257°C

59

Pr

140,91

f-элемент

Серебристый металл

пл=931°C

кип=3212°C

60

Nd

144,24

f-элемент

Серебристый металл

пл=1010°C

кип=3127°C

61

Pm

146,92

f-элемент

Светло-серый радиоактивный металл

пл=1080°C

кип=2730°C

62

Sm

150,36

f-элемент

Серебристый металл

пл=1072°C

кип=1778°C

63

Eu

151,96

f-элемент

Серебристый металл

пл=822°C

кип=1597°C

64

Gd

157,25

f-элемент

Серебристый металл

пл=1311°C

кип=3233°C

65

Tb

158,93

f-элемент

Серебристый металл

пл=1360°C

кип=3041°C

66

Dy

162,50

f-элемент

Серебристый металл

пл=1409°C

кип=2335°C

67

Ho

164,93

f-элемент

Серебристый металл

пл=1470°C

кип=2720°C

68

Er

167,26

f-элемент

Серебристый металл

пл=1522°C

кип=2510°C

69

Tm

168,93

f-элемент

Серебристый металл

пл=1545°C

кип=1727°C

70

Yb

173,04

f-элемент

Серебристый металл

пл=824°C

кип=1193°C

71

Lu

174,96

f-элемент

Серебристый металл

пл=1656°C

кип=3315°C

72

Hf

178,49

5d2 6s2

Серебристый металл

пл=2150°C

кип=5400°C

73

Ta

180,95

5d3 6s2

Серый металл

пл=2996°C

кип=5425°C

74

W

183,84

5d4 6s2

2,36

Серый металл

пл=3407°C

кип=5927°C

75

Re

186,21

5d5 6s2

Серебристо-белый металл

пл=3180°C

кип=5873°C

76

Os

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

пл=3045°C

кип=5027°C

77

Ir

192,22

5d7 6s2

Серебристый металл

пл=2410°C

кип=4130°C

78

Pt

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

пл=1772°C

кип=3827°C

79

Au

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

пл=1064°C

кип=2940°C

80

Hg

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

пл=-39°C

кип=357°C

81

Tl

204,38

6s2 6p1

Серебристый металл

пл=304°C

кип=1457°C

82

Pb

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

пл=328°C

кип=1740°C

83

Bi

208,98

6s2 6p3

Блестящий серебристый металл

пл=271°C

кип=1560°C

84

Po

208,98

6s2 6p4

Мягкий серебристо-белый металл

пл=254°C

кип=962°C

85

At

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

пл=302°C

кип=337°C

86

Rn

222,02

6s2 6p6

2,2

Радиоактивный газ

пл=-71°C

кип=-62°C

87

Fr

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

пл=27°C

кип=677°C

88

Ra

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

пл=700°C

кип=1140°C

89

Ac

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

пл=1047°C

кип=3197°C

90

Th

232,04

f-элемент

Серый мягкий металл

91

Pa

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

238,03

f-элемент

1,38

Серебристо-белый металл

пл=1132°C

кип=3818°C

93

Np

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

Окислительно-восстановительные свойства олова и свинца

Задание 365
Какая степень окисления наиболее характерна для олова и, какая для свинца? Составьте электронные и молекулярные уравнения реакций олова и свинца с концентрированной азотной кислотой.
Решение:
Для олова в одинаковой степени характерны степени окисления +2 и +4. Для олова в одинаковой степени характерны степени окисления +2 и +4.
Для свинца наиболее характерна степень окисления +2 и в меньшей степени +4.
Уравнения реакций олова и свинца с концентрированной азотной кислотой:
а) При взаимодействии олова с концентрированной азотной кислотой образуются  — оловянная кислота H2SnO3 и оксид азота (IV) NO2:

Sn + 4HNO3 = H2SnO3 + 4NO2↑ + H2O

Уравнения электронного баланса:

олово, свинец

Ионно-молекулярное уравнение:

Sn0 + 4N5+ = Sn4+ + 4N4+

Молекулярное уравнение:

Sn + 4HNO3 = H2SnO3 + 4NO2↑ + H2O

б) При взаимодействии свинца с концентрированной азотной кислотой образуются нитрат свинца Pb(NO3)2 и оксид азота (IV) NO2:

Pb + 2HNO3 = Pb(NO2)2 + NO2↑ + 2H2O

Уравнения электронного баланса:

олово, свинец

Ионно-молекулярное уравнение:

Pb0 + 2N5+ = Pb2+ + 2N4+

Молекулярное уравнение:

Pb + 2HNO3 = Pb(NO2)2 + NO2↑ + 2H2O


Задание 366
Чем можно объяснить восстановительные свойства олова (II) и окислительные свинца (IV)? На основании электронных уравнений составьте уравнения реакций: а) SnCl2 с НgCl2; б) РЬО2 с НСl (конц.).
Решение:
Олово и свинец на внешнем энергетическом уровне содержат по четыре электрона. Так как олово (II) на внешнем энергетическом уровне содержит два электрона, то оно может их отдать, т. е. проявить свойства восстановителя. Свинец (IV) на внешнем энергетическом уровне не содержит электронов, поэтому свинец  (IV) может присоединить недостающие электроны, проявив при этом свойства окислителя. Свинец в степени окисления +4 может только присоединять электроны, поэтому проявляет только свойства окислителя, олово в степени окисления +2 может и отдавать, и присоединять по два электрона, проявляя при этом свойства или восстановителя, или окислителя. 

а) Реакция SnCl2 с НgCl2

SnCl2 +2НgCl2 = SnCl4 + Hg2Cl2

Уравнения электронного баланса:

олово, свинец

Ионно-молекулярное уравнение:

Sn2+ + 2Hg2+ = Sn4+ + 2Hg+

б) Реакция РЬО2 с НСl (конц.).

РЬО2 + 4НСl (конц.) = PbCl2 + Cl2 + 2H2O

Уравнения электронного баланса:

олово, свинец

Ионно-молекулярное уравнение:

Pb4+ + 2Cl = Pb2+ + Cl20

Молекулярное уравнение реакции:

РЬО2 + 4НСl (конц.) = PbCl2 + Cl2 + 2H2O


Задание 367
Какие оксиды и гидроксиды образуют олово и свинец? Как изменяются их кислотно-основные и окислительно-восстановительные свойства в зависимости от степени окисления элементов? Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия раствора гидроксида натрия: а) с оловом; б) с гидроксидом свинца (II). 
Решение:
Олово и свинец образуют оксиды и диоксиды: PbO, PbO2, SnO, SnO2.
SnO и PbO образуют гидроксиды Sn(OH)2 и Pb(OH)2, которые проявляют амфотерные свойства. У Pb(OH)2 преобладают основные свойства, он растворяется только в концентрированном растворе щёлочи. У Sn(OH)2 преобладают кислотные свойства.

Оксидам PbO2 и SnO2 отвечают гидроксиды H2SnO3 и H2PbO3 – слабые кислоты. Причём кислотные свойства их ослабевают в ряду H2SnO3 — H2PbO3. Основные свойства в ряду Sn(OH)2 — Pb(OH)2 усиливаются.

Уравнения реакции взаимодействия раствора гидроксида натрия: а) с оловом; б) с гидроксидом свинца (II):

а) Sn +2NaOH + 4H2O = Na2[Sn(OH)6] + 2H2↑ (молекулярная форма);
    Sn + 2OH + 4H2O = [Sn(OH)6]2- + 2H2↑ (ионно-молекулярная форма)

б) Pb(OH)2 + 2NaOH = Na2[Pb(OH)4] (молекулярная форма);
     Pb(OH)2 + 2OH = [Pb(OH)4]2- (ионно-молекулярная форма).


Щелочные металлы

1. Положение в периодической системе химических элементов
2. Электронное строение и закономерности изменения свойств
3. Физические свойства
4. Нахождение в природе
5. Способы получения
6. Качественные реакции
7. Химические свойства
7.1. Взаимодействие с простыми веществами
7.1.1. Взаимодействие с галогенами
7.1.2. Взаимодействие с серой и фосфором
7.1.3. Взаимодействие с водородом
7.1.4. Взаимодействие с азотом
7.1.5. Взаимодействие с углеродом
7.1.6. Горение
7.2. Взаимодействие со сложными веществами
7.2.1. Взаимодействие с водой
7.2.2. Взаимодействие с минеральными кислотами
7.2.3. Взаимодействие с серной кислотой
7.2.4. Взаимодействие с азотной кислотой
7.2.5. Взаимодействие со слабыми кислотами
7.2.6. Взаимодействие с солями

Оксиды щелочных металлов
 1. Способы получения
 2. Химические свойства
2.1. Взаимодействие с кислотными и амфотерными оксидами
2.2. Взаимодействие с кислотами
2.3. Взаимодействие с водой
2.4. Взаимодействие с кислотами

Пероксиды щелочных металлов
 1. Химические свойства
1.1. Взаимодействие с водой
1.2. Взаимодействие с кислотными и амфотерными оксидами
1.3. Взаимодействие с кислотами
1.4. Разложение
1.5. Взаимодействие с восстановителями
1.6. Взаимодействие с окислителями

Гидроксиды щелочных металлов (щелочи)
 1. Способы получения
 2. Химические свойства
2.1. Взаимодействие щелочей с кислотами
2.2. Взаимодействие щелочей с кислотными оксидами
2.3. Взаимодействие щелочей с амфотерными оксидами и гидроксидами
2.4. Взаимодействие щелочей с кислыми солями
2.5. Взаимодействие щелочей с неметаллами
2.6. Взаимодействие щелочей с металлами
2.7. Взаимодействие щелочей с солями
2.8. Разложение щелочей
2.9. Диссоциация щелочей
2.10. Электролиз щелочей

Соли щелочных металлов 

Щелочные металлы

Положение в периодической системе химических элементов

Щелочные металлы расположены в главной подгруппе первой группы периодической системы химических элементов Д.И. Менделеева (или просто в 1 группе в длиннопериодной форме ПСХЭ). Это литий Li, натрий Na, калий K, цезий Cs, рубидий Rb и франций Fr.

Щелочные металлы

Электронное строение щелочных металлов и основные свойства 

Электронная конфигурация внешнего энергетического уровня щелочных металлов: ns1, на внешнем энергетическом уровне находится 1 s-электрон. Следовательно, типичная степень окисления щелочных металлов в соединениях +1.

Рассмотрим некоторые закономерности изменения свойств щелочных металлов.

В ряду Li-Na-K-Rb-Cs-Fr, в соответствии с Периодическим законом, увеличивается атомный радиус, усиливаются металлические свойства, ослабевают неметаллические свойства, уменьшается электроотрица-тельность.

Физические свойства 

Все щелочные металлы — вещества мягкие, серебристого цвета. Свежесрезанная поверхность их обладает характерным блеском.

Кристаллическая решетка щелочных металлов в твёрдом состоянии — металлическая. Следовательно, щелочные металлы обладают высокой тепло- и электропроводимостью. Кипят и плавятся при низких температурах. Они имеют также небольшую плотность.

Нахождение в природе

Как правило, щелочные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы, в которых присутствуют щелочные металлы:

Поваренная соль, каменная соль, галитNaCl — хлорид натрия

Сильвин KCl — хлорид калия

Сильвинит NaCl · KCl

Глауберова соль Na2SO4⋅10Н2О – декагидрат сульфата натрия

Едкое кали KOH — гидроксид калия

Поташ K2CO3 – карбонат калия

Поллуцит — алюмосиликат сложного состава с высоким содержанием цезия:

Способы получения 

Литий получают в промышленности электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):

2LiCl = 2Li + Cl2

Натрий получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl (расплав) → 2Na + Cl2

Электролитом обычно служит смесь NaCl с NaF и КСl (что позволяет проводить процесс при 610–650°С).

Калий получают также электролизом расплавов солей или расплава гидроксида калия. Также распространены методы термохимического восстановления: восстановление калия из расплавов хлоридов или гидроксидов. В качестве восстановителей используют пары натрия, карбид кальция, алюминий, кремний:

KCl + Na = K↑ + NaCl

KOH + Na = K↑ + NaOH

Цезий можно получить  нагреванием смеси хлорида цезия и специально подготовленного кальция:

Са + 2CsCl → 2Cs + CaCl2

В промышленности используют преимущественно физико-химические методы выделения чистого цезия: многократную ректификацию в вакууме.

Качественные реакции

Качественная реакция на щелочные металлы — окрашивание пламени солями щелочных металлов.

Цвет пламени:
Liкарминно-красный
Na — жѐлтый
Kфиолетовый
Rbбуро-красный
Csфиолетово-красный

Химические свойства

1. Щелочные металлы — сильные восстановители. Поэтому они реагируют почти со всеми неметаллами.

1.1. Щелочные металлы легко реагируют с галогенами с образованием галогенидов:

2K  +  I2  =  2KI

1.2. Щелочные металлы реагируют с серой с образованием сульфидов:

2Na  +  S  =  Na2S

1.3. Щелочные металлы активно реагируют с фосфором и водородом (очень активно). При этом образуются бинарные соединения — фосфиды и гидриды:

3K    +    P    =   K3P

2Na  +  H2  =  2NaH

1.4. С азотом литий реагирует при комнатной температуре с образованием нитрида:

6Li   +  N2  =  2Li3N

Остальные щелочные металлы реагируют с азотом при нагревании.

1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:

2Na   +   2C    =    Na2C2

1.6. При взаимодействии с кислородом каждый щелочной металл проявляет свою индивидуальность: при горении на воздухе литий образует оксид, натрий – преимущественно пероксид, калий и остальные металлы – надпероксид.

4Li   +   O2   =   2Li2O

2Na  +  O2  =  Na2O2

K   +   O2   =   KO2

Цезий самовозгорается на воздухе, поэтому его хранят в запаянных ампулах. Видеоопыт самовозгорания цезия на воздухе можно посмотреть здесь.

2. Щелочные металлы активно взаимодействуют со сложными веществами:

2.1. Щелочные металлы бурно (со взрывом) реагируют с водой. Взаимодействие щелочных металлов с водой приводит к образованию щелочи и водорода. Литий реагирует бурно, но без взрыва.

Например, калий реагирует с водой очень бурно:

2K0 + H2+O = 2K+OH + H20

Видеоопыт: взаимодействие щелочных металлов с водой можно посмотреть здесь.

2.2. Щелочные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.

Например, натрий бурно реагирует с соляной кислотой:

2Na  +  2HCl  =  2NaCl  +  H2

2.3. При взаимодействии щелочных металлов с концентрированной серной кислотой выделяется сероводород.

Например, при взаимодействии натрия с концентрированной серной кислотой образуется сульфат натрия, сероводород и вода:

8Na  +  5H2SO4(конц.)  → 4Na2SO4  +  H2S  +  4H2O

2.4. Щелочные металлы реагируют с азотной кислотой. При взаимодействии с концентрированной азотной кислотой образуется оксид азота (I):

8Na + 10HNO3 (конц) → N2O + 8NaNO3 + 5H2O

С разбавленной азотной кислотой образуется молекулярный азот:

10Na + 12HNO3 (разб)→ N2 +10NaNO3 + 6H2O

При взаимодействии щелочных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:

8Na  +  10HNO3  =  8NaNO3  +  NH4NO3  +  3H2O

2.5. Щелочные металлы могут реагировать даже с веществами, которые проявляют очень слабые кислотные свойства. Например, с аммиаком, ацетиленом (и прочими терминальными алкинами), спиртамифенолом и органическими кислотами.

Например, при взаимодействии лития с аммиаком образуются амиды и водород:

2Li + 2NH3 = 2LiNH2 + H2

 Ацетилен с натрием образует ацетиленид натрия и также водород:

Н ─ C ≡ С ─ Н + 2Na  →  Na ─ C≡C ─ Na + H2

 Фенол с натрием реагирует с образованием фенолята натрия и водорода:

2C6H5OH  +  2Na  →  2C6H5ONa   +  H2

Метанол с натрием образуют метилат натрия и водород:

2СН3ОН   +  2Na   →   2 CH3ONa   +  H2

 Уксусная кислота с литием образует ацетат лития и водород:

2СH3COOH    +   2Li     →  2CH3COOLi    +   H2

Щелочные металлы реагируют с галогеналканами (реакция Вюрца).

Например, хлорметан с натрием образует этан и хлорид натрия:

2CH3Cl + 2Na   →  C2H6 + 2NaCl

2.6. В расплаве щелочные металлы могут взаимодействовать с некоторыми солями. Обратите внимание! В растворе щелочные металлы будут взаимодействовать с водой, а не с солями других металлов.

Например, натрий взаимодействует в расплаве с хлоридом алюминия :

3Na + AlCl3 → 3NaCl + Al

Оксиды щелочных металлов

Способы получения

Оксиды щелочных металлов (кроме лития) можно получить только косвенными методами: взаимодействием натрия с окислителями в расплаве:

1. Оксид натрия можно получить взаимодействием натрия с нитратом натрия в расплаве:

10Na  +  2NaNO3 →  6Na2O  +  N2

2. Взаимодействием натрия с пероксидом натрия:

2Na  +  Na2O2 →  2Na2O

 3. Взаимодействием натрия с расплавом щелочи:

2Na  +  2NaOН → 2Na2O  +  Н2

4. Оксид лития можно получить разложением гидроксида лития:

2LiOН → Li2O  +  Н2O

Химические свойства

Оксиды щелочных металлов — типичные основные оксиды. Вступают в реакции с кислотными и амфотерными оксидами, кислотами, водой.

1. Оксиды щелочных металлов взаимодействуют с кислотными и амфотерными оксидами:

Например, оксид натрия взаимодействует с оксидом фосфора (V):

3Na2O  +  P2O5  → 2Na3PO4

Оксид натрия взаимодействует с амфотерным оксидом алюминия:

Na2O  +  Al2O3  → 2NaAlO2

2. Оксиды щелочных металлов взаимодействуют с кислотами с образованием средних и кислых солей (с многоосновными кислотами).

Например, оксид калия взаимодействует с соляной кислотой с образованием хлорида калия и воды:

K2O  +  2HCl →  2KCl  +  H2O

3. Оксиды щелочных металлов активно взаимодействуют с водой с образованием щелочей.

Например, оксид лития взаимодействует с водой с образованием гидроксида лития:

Li2O  +  H2O →  2LiOH

4. Оксиды щелочных металлов окисляются кислородом (кроме оксида лития): оксид натрия — до пероксида, оксиды калия, рубидия и цезия – до надпероксида.

2Na2O + O2 = 2Na2O2

Пероксиды щелочных металлов

Химические свойства

Свойства пероксидов очень похожи на свойства оксидов. Однако пероксиды щелочных металлов, в отличие от оксидов, содержат атомы кислорода со степенью окисления -1. Поэтому они могут могут проявлять как окислительные, так и восстановительные свойства.

1. Пероксиды щелочных металлов взаимодействуют с водой. При этом на холоде протекает обменная реакция, образуются щелочь и пероксид водорода:

Na2O2   +  2H2O (хол.)  =  2NaOH  +   H2O2

При нагревании пероксиды диспропорционируют в воде, образуются щелочь и кислород:

2Na2O+  2H2O (гор.)  =  4NaOH  +   O2

2. Пероксиды диспропорционируют при взаимодействии с кислотными оксидами.

Например, пероксид натрия реагирует с углекислым газом с образованием карбоната натрия и кислорода:

2Na2O2  +  2CO2  =  2Na2CO3  + O2

3. При взаимодействии с минеральными кислотами на холоде пероксиды вступают в обменную реакцию. При этом образуются соль и перекись водорода:

Na2O2   +  2HCl   =   2NaCl  +   H2O2

При нагревании пероксиды, опять-таки, диспропорционируют:

2Na2O2    +  2H2SO4 (разб.гор.)  =  2Na2SO4  +  2H2O  +  O2

4. Пероксиды щелочных металлов разлагаются при нагревании, с образованием оксида и кислорода:

2Na2O2  =  2Na2O   +  O2

5. При взаимодействии с восстановителями пероксиды проявляют окислительные свойства.

Например, пероксид натрия с угарным газом реагирует с образованием карбоната натрия:

Na2O2  +  CO  =  Na2CO3

Пероксид натрия с сернистым газом также вступает в ОВР с образованием сульфата натрия:

Na2O2  +  SO2  =  Na2SO4

 2Na2O2   +  S   =  Na2SO3  +  Na2O

Na2O2    +   2H2SO4   +  2NaI   =  I2  +  2Na2SO4  +   2H2O

Na2O2   +  2H2SO4   +  2FeSO4 =  Fe2(SO4)3  +  Na2SO4  +   2H2O

3Na2O2  +  2Na3[Cr(OH)6]   =  2Na2CrO4  +  8NaOH  +  2H2O

6. При взаимодействии с сильными окислителями пероксиды проявляют свойства восстановителей и окисляются, как правило, до молекулярного кислорода.

Например, при взаимодействии с подкисленным раствором перманганата калия пероксид натрия образует соль и молекулярный кислород:

5Na2O2   +  8H2SO4   +  2KMnO4   =  5O2  +  2MnSO4  +  8H2O  +  5Na2SO4  +   K2SO4

Гидроксиды щелочных металлов (щелочи)

Способы получения

1. Щелочи получают электролизом растворов хлоридов щелочных метал-лов:

2NaCl + 2H2O → 2NaOH + H2 + Cl2

2. При взаимодействии щелочных металлов, их оксидов, пероксидов, гидридов и некоторых других бинарных соединений с водой также образуются щелочи.

Например, натрий, оксид натрия, гидрид натрия и пероксид натрия при растворении в воде образуют щелочи:

2Na + 2H2O → 2NaOH + H2

Na2O + H2O → 2NaOH

2NaH + 2H2O → 2NaOH + H2

Na2O2 + H2O → 2NaOH + H2O2

3. Некоторые соли щелочных металлов (карбонаты, сульфаты и др.) при взаимодействии с гидроксидами кальция и бария также образуют щелочи.

Например, карбонат калия с гидроксидом кальция образует карбонат кальция и гидроксид калия:

K2CO3 + Ca(OH)2 → CaCO3↓ + 2KOH

Химические свойства

1. Гидроксиды щелочных металлов реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например, гидроксид калия с фосфорной кислотой реагирует с образованием фосфатов, гидрофосфатов или дигидрофосфатов:

3KOH + H3PO4 → K3PO4 + H2O

2KOH + H3PO4 → K2HPO4 + 2H2O

KOH + H3PO4 → KH2PO4 + H2O

2. Гидроксиды щелочных металлов реагируют с кислотными оксидами. При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например, гидроксид натрия  с углекислым газом реагирует с образованием карбонатов или гидрокарбонатов:

2NaOH(избыток)  + CO2 → Na2CO3 + H2O

NaOH + CO2 (избыток)  → NaHCO3

Необычно ведет себя оксид азота (IV) при взаимодействии с щелочами. Дело в том, что этому оксиду соответствуют две кислоты — азотная (HNO3) и азотистая (HNO2). «Своей» одной кислоты у него нет. Поэтому при взаимодействии оксида азота (IV) с щелочами образуются две соли- нитрит и нитрат:

2NO2  +  2NaOH  =  NaNO3 + NaNO+  H2O

А вот в присутствии окислителя, например, молекулярного кислорода, образуется только одна соль — нитрат, т.к. азот +4 только повышает степень окисления:

2KOH  +  2NO2  +  O2  =  2KNO3  +  H2O

3. Гидроксиды щелочных металлов реагируют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются средние соли, а в растворе комплексные соли.

Например, гидроксид натрия  с оксидом алюминия реагирует в расплаве с образованием алюминатов:

2NaOH + Al2O3  → 2NaAlO2 + H2O

в растворе образуется комплексная соль — тетрагидроксоалюминат:

2NaOH + Al2O3 + 3H2O → 2Na[Al(OH)4]

Еще пример: гидроксид натрия с гидроксидом алюминия в растворе образует также комплексную соль:

NaOH + Al(OH)3 → Na[Al(OH)4]

4. Щелочи также взаимодействуют с кислыми солями. При этом образуются средние соли, или менее кислые соли.

Например: гидроксид калия  реагирует с гидрокарбонатом калия с образованием карбоната калия:

KOH + KHCO3 →  K2CO3  +  H2O

5. Щелочи взаимодействуют с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).

При этом кремний окисляется щелочами до силиката и водорода:

2NaOH + Si + H2O → Na2SiO3 + H2

Фтор окисляет щелочи. При этом выделяется молекулярный кислород:

4NaOH + 2F2 → 4NaF + O2 (OF2)+ 2H2O

Другие галогенысера и фосфордиспропорционируют в щелочах:

3KOH +  P4 +  3H2O =  3KH2PO2  +  PH3

2KOH(холодный)  +  Cl2  = KClO  +  KCl  +  H2O

6KOH(горячий)  +  3Cl2  =  KClO3  +  5KCl  +  3H2O

Сера взаимодействует с щелочами только при нагревании:

6NaOH  +  3S  =  2Na2S   +  Na2SO3  +  3H2O

6. Щелочи взаимодействуют с амфотерными металлами, кроме железа и хрома. При этом в расплаве образуются соль и водород:

2KOH + Zn → K2ZnO2 + H2

В растворе образуются комплексная соль и водород:

2NaOH + 2Al  + 6Н2О = 2Na[Al(OH)4] + 3Н2

7. Гидроксиды щелочных металлов вступают в обменные реакции с растворимыми солями.

С щелочами взаимодействуют соли тяжелых металлов.

Например, хлорид меди (II) реагирует с гидроксидом натрия с образованием хлорида натрия и осадка гидроксида меди (II):

2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl

Также с щелочами взаимодействуют соли аммония.

Например, при взаимодействии хлорида аммония и гидроксида натрия образуются хлорид натрия, аммиак и вода:

NH4Cl + NaOH = NH3 + H2O + NaCl

8. Гидроксиды всех щелочных металлов плавятся без разложения, гидроксид лития разлагается при нагревании до температуры 600°С:

2LiOH → Li2O + H2O

9. Все гидроксиды щелочных металлов проявляют свойства сильных оснований. В воде практически нацело диссоциируют, образуя щелочную среду и меняя окраску индикаторов.

NaOH ↔ Na+ + OH

10. Гидроксиды щелочных металлов в расплаве подвергаются электролизу. При этом на катоде восстанавливаются сами металлы, а на аноде выделяется молекулярный кислород:

4NaOH → 4Na + O2 + 2H2O

Соли щелочных металлов 

Нитраты и нитриты щелочных металлов

Нитраты щелочных металлов при нагревании разлагаются на нитриты и кислород. Исключениенитрат лития. Он разлагается на оксид лития, оксид азота (IV)  и кислород.

Например, нитрат натрия разлагается при нагревании на нитрит натрия и молекулярный кислород:

2NaNO3  → 2NaNO2  +  O2 

Нитраты щелочных металлов в реакциях могут выступать в качестве окислителей.

Нитриты щелочных металлов могут быть окислителями или восстановителями.

В щелочной среде нитраты и нитриты — очень мощные окислители.

Например, нитрат натрия с цинком в щелочной среде восстанавливается до аммиака:

NaNO3  +  4Zn  +  7NaOH  +  6H2O  =  4Na2[Zn(OH)4]  +  NH3

Сильные окислители окисляют нитриты до нитратов.

Например, перманганат калия в кислой среде окисляет нитрит натрия до нитрата натрия:

5NaNO2  +  2KMnO4  +  3H2SO4  =  5NaNO3  +  2MnSO4  +  K2SO4  +  3H2O 

Понравилась статья? Поделить с друзьями:
  • Олимпус сдача экзамена по электробезопасности
  • Олимпус подготовка к экзамену
  • Олимпос программа сдачи экзаменов
  • Олимпокс электробезопасность 3 группа до 1000в тесты экзамены ответы
  • Олимпокс экзамен первая помощь