Операции со степенями егэ


Операции со степенями


[su_box title=”Описание задания” style=”soft” box_color=”#c1e8cc” title_color=”#0c0a0a”]

Во задании №2 ЕГЭ по математике необходимо продемонстрировать знания работы со степенными выражениями.

Тематика заданий: операции со степенями

Бал: 1 из 20

Сложность задания: ◊◊

Примерное время выполнения: 3 мин.

[/su_box]

Теория к заданию №2

Правила обращения со степенями можно представить следующим образом:

степени

Кроме этого, следует напомнить об операциях с дробями:

операции с дробями

Теперь можно перейти к разбору типовых вариантов! 🙂


Разбор типовых вариантов заданий №2 ЕГЭ по математике базового уровня


Во всех заданиях, аналогично первому заданию, нам необходимо найти значение выражения.


Вариант 2МБ1

Алгоритм выполнения:
  1. Представить число с отрицательным показателем в виде правильной дроби.
  2. Выполнить первое умножение.
  3. Представить степени чисел в виде простых чисел, заменив степени их умножением.
  4. Выполнить умножение.
  5. Выполнить сложение.
Решение:

Чтобы представить отрицательную степень числа в виде обыкновенной дроби, необходимо 1 разделить на это число, но уже в положительной степени.

То есть: 10-1 = 1/101 = 1/10

Выполним первое умножение, то есть умножение целого числа на правильную дробь. Для этого числитель дроби умножим на целое число, а знаменатель оставим без изменения.

9 · 1/10 = (9 · 1)/10 = 9/10

Первая степень числа всегда есть само число.

101 = 10

Вторая степень числа – это число умноженное само на себя.

102 = 10 · 10 = 100

Вычислим значение выражения, учитывая, чтоimage002

получим:

image003

Ответ: 560,9


Вариант 2МБ2

image001

Алгоритм выполнения:
  1. Представить первую степень числа в виде целого числа.
  2. Представить отрицательные степени чисел в виде правильных дробей.
  3. Выполнить умножение целых чисел.
  4. Выполнить умножение целых чисел на правильные дроби.
  5. Выполнить сложение.
Решение:

Первая степень числа всегда есть само число. (101 = 10)

Чтобы представить отрицательную степень числа в виде обыкновенной дроби, необходимо 1 разделить на это число, но уже в положительной степени.

То есть:

10-1 = 1/101 = 1/10

10-2 = 1/102 = 1/(10 · 10) = 1/100

Выполним умножение целых чисел.

3 · 101 = 3 · 10 = 30

Выполним умножение целых чисел на правильные дроби.

4 · 10-2 = 4 · 1/100 = (4 ·1)/100 = 4/100

2 · 10-1 = 2 · 1/10 = (2 · 1)/10 = 2/10

Вычислим значение выражения, учитывая, что

image002

получим:

image003

Ответ: 30,24


Вариант 2МБ3

image001

Алгоритм выполнения:
  1. Представить степени чисел в виде умножения и вычислить значение степеней чисел.
  2. Выполнить умножение.
  3. Выполнить сложение.
Решение:

Представим степени чисел в виде умножения. Для того чтобы представить степень числа в виде умножения, нужно это число умножить само на себя столько раз сколько содержится в показателе степени.

24 = 2 · 2 · 2 · 2 = 16

23 = 2 · 2 · 2 = 8

Выполним умножение:

4 · 24 = 4 · 16 = 64

3 · 23 = 3 · 8 = 24

Вычислим значение выражения:

image002

Ответ: 88


Вариант 2МБ4

image001

Алгоритм выполнения:
  1. Представим степень числа таким образом, чтобы можно было вынести за скобку общий множитель.
  2. Вынести общий множитель за скобку.
  3. Выполнить действие в скобках.
  4. Представить степень числа в виде умножения и вычислить значение степени числа.
  5. Выполнить умножение.
Решение:

Представим степень числа таким образом, чтобы можно было вынести за скобку общий множитель.

44 = 4 · 43

Вынесем общий множитель за скобку

3 · 43 + 2 · 44 = 43 · (3 + 2 · 4)

Выполним действие в скобках.

(3 + 2 · 4) = (3 + 8) = 11

Представим степень числа в виде умножения. Для того чтобы представить степень числа в виде умножения, нужно это число умножить само на себя столько раз сколько содержится в показателе степени.

43 = 4 · 4 · 4 = 64

Вычислим значение выражения, учитывая, что

image002

 image003

получим:

image004

Ответ: 704


Вариант 2МБ5

image001

Алгоритм выполнения:
  1. Представим степень числа таким образом, чтобы можно было вынести за скобку общий множитель.
  2. Вынести общий множитель за скобку.
  3. Выполнить действие в скобках.
  4. Представить степень числа в виде умножения и вычислить значение степени числа.
  5. Выполнить умножение.
Решение:

Представим степень числа таким образом, чтобы можно было вынести за скобку общий множитель.

53 = 5 · 52

Вынесем общий множитель за скобку

2 · 53 + 3 · 52 = 52 · (2 · 5 + 3)

Выполним действие в скобках.

(2 · 5 + 3) = (10 + 3) = 13

Представим степень числа в виде умножения. Для того чтобы представить степень числа в виде умножения, нужно это число умножить само на себя столько раз сколько содержится в показателе степени.

52 = 5 · 5 = 25

Вычислим значение выражения, учитывая, что

 image002 , а  image003

получим:

image004

Выполняем умножение в столбик, имеем:

Ответ: 325


Вариант 2МБ6

Задание №2 ЕГЭ по математике

Решение:

В данном задании удобней привести значения к более привычному виду, а именно записать числа в числителе и знаменателе в стандартном виде:

После этого можно выполнить деление 24 на 6, в результате получим 4.

Десять в четвертой степени при делении на десять в третьей степени даст десять в первой, или просто десять, поэтому мы получим:

4 • 10 = 40

Ответ: 40


Вариант 2МБ6

Решение:

В данном случае мы должны заметить, что число 6 в знаменателе раскладывается на множители 2 и 3 в степени 5:

После этого можно выполнить сокращения степеней у двойки: 6-5=1, у тройки: 8-5=3.

Теперь возводим 3 в куб и умножаем на 2, получая 54.

Ответ: 54


Вариант 2МБ6

C:UsersКсеньяDesktopматме1.jpg

Алгоритм выполнения
  1. Применяем к числителю св-во степеней х)уху. Получаем 3–6.
  2. Применяем к дроби св-во степеней ax/ay=ax–y.
  3. Возводим 3 в полученную степень.
Решение:

(3–3)2 /3–8 = 3–6 /3–8= 3–6–(–8)) = 3–6+8 = 32 = 9

Ответ: 9


Вариант 2МБ7

C:UsersКсеньяDesktopматме2.jpg

Алгоритм выполнения
  1. Используем для степени в числителе (149) св-во (аb)х=ax·bx. 14 разложим на произведение 2 и 7. Получим произведение степеней с основаниями 2 и 7.
  2. Преобразуем выражение в 2 дроби, каждая из которых будет содержать степени с одинаковыми основаниями.
  3. Применяем к дробям св-во степеней ax/ay=ax–y.
  4. Находим полученное произведение.
Решение:

149 / 27·7= (2·7)9 / 27·7= 29·79 / 27 78 = 29–7·79–8 = 22·71 = 4·7 = 28

Ответ: 28


Вариант 2МБ8

C:UsersКсеньяDesktopматме3.jpg

Алгоритм выполнения
  1. Выносим за скобки общий множитель 52=25.
  2. Выполняем в скобках умножение чисел 2 и 5. Получаем 10.
  3. Выполняем в скобках сложение 10 и 3. Получаем 13.
  4. Выполняем умножение общего множителя 25 и 13.
Решение:

2·53+3·52 = 52·(2·5+3) = 25·(10+3) = 25·13 = 325

Ответ: 325


Вариант 2МБ9

C:UsersКсеньяDesktopматме4.jpg

Алгоритм выполнения
  1. Возводим в квадрат (–1). Получим 1, поскольку происходит возведение в четную степень.
  2. Возводим (–1) в 5-ю степень. Получим –1, т.к. происходит возведение в нечетную степень.
  3. Выполняем действия умножения.
  4. Получаем разность двух чисел. Находим ее.
Решение:

6·(–1)2+4·(–1)5 = 6·1+4·(–1) = 6+(–4) = 6–4 = 2

Ответ: 2


Вариант 2МБ10

C:UsersКсеньяDesktopматме5.jpg

Алгоритм выполнения
  1. Преобразуем множители 103 и 102 в целые числа.
  2. Находим произведения путем переноса десят.запятой вправо на соответствующее число знаков.
  3. Находим результирующую сумму.
Решение:

9,4·103+2,2·102 = 9,4·1000+2,2·100 = 9400+220 = 9620

Ответ: 9620


Вариант 2МБ11

C:UsersКсеньяDesktopматме6.jpg

Алгоритм выполнения
  1. Преобразуем 102 в целое число и выполняем умножение в числителе путем переноса деся.запятой.
  2. Преобразуем 10–2 в десят.дробь и выполняем умножение в знаменателе путем переноса десят.запятой влево.
  3. Домножаем числитель и знаменатель на 100, чтобы избавиться от десят.запятой в знаменателе.
  4. Находим результат путем деления числителя дроби на ее знаменатель.
Решение:

1,6·102 / 4·10–2 = 1,6·100 / 4·0,01 = 160/ 0,04 = 160·100 / 0,04·100 =  16000 / 4 = 4000

Ответ: 40000


Вариант 2МБ12

C:UsersКсеньяDesktopматме7.jpg

Алгоритм выполнения
  1. Применяем к дроби св-ва степеней aay=ax+y и ax/ay=ax–y.
  2. Возводим 3 в полученную степень.
Решение:

3–10·35 / 3–7 = 3–10+5  /3–7 = 3–5 / 3–7 = 3–5–(–7)) = 3–5+7 = 32 = 9

Ответ: 9


Вариант 2МБ13

C:UsersКсеньяDesktopматме8.jpg

Алгоритм выполнения
  1. Представляем выражение в знаменателе как степень с основанием 8. Далее применяем св-во степеней х)уху, получаем 812.
  2. Применяем к дроби св-во степеней ax/ay=ax–y.
Решение:

813 /646 =813 / (82)=813 /812 = 813–12 = 81 = 8

Ответ: 8


Вариант 2МБ14

C:UsersКсеньяDesktopматме9.jpg

Алгоритм выполнения
  1. Преобразуем степени в числителе дроби и в делителе (число 92) так, чтобы получились степени с основанием 3.
  2. Используем св-во степеней х)уху для преобразованных степеней.
  3. Используем св-во степеней ax/ay=ax–y.
  4. Возводим 3 в полученную степень.
Решение:

274 /36 : 9=(33)4 / 36 : (32)2 = 312/36 : 34 = 312–6–4 = 32 = 9

Ответ: 9


Вариант 2МБ15

C:UsersКсеньяDesktopматме10.jpg

Алгоритм выполнения
  1. Возводим каждый из множителей в соответствующую степень. Получим соответственно: 0,01, 1000, 4.
  2. Перемножаем 0,01 и 1000 путем переноса десят.запятой вправо на 3 знака. Получим 10.
  3. Умножаем 10 на 4.
Решение:

(0,1)2·103·22 = 0,01·1000·4 = 10·4 = 40

Ответ: 40

Даниил Романович | Просмотров: 18.6k

Найдите значения выражений

1 2cdot8^2+3cdot8^2 Смотреть видеоразбор >>
2 frac{1,6cdot10^2}{4cdot10^{-2}} Смотреть видеоразбор >>
3 frac{6^{-3}cdot6^7}{6^2} Смотреть видеоразбор >>
4 frac{(4^{-4})^2}{4^{-10}} Смотреть видеоразбор >>
5 frac{4^3}{2^5} Смотреть видеоразбор >>
6 frac{2^4cdot6^6}{12^5} Смотреть видеоразбор >>
7 6cdot(-1)^2+4cdot(-1)^5 Смотреть видеоразбор >>
8 (5cdot10^5 )cdot(1,7cdot10^{-3}) Смотреть видеоразбор >>
9 frac{3^{-10}cdot3^5}{3^{-7}} Смотреть видеоразбор >>
10 frac{3^{-13}}{(3^5)^{-3}} Смотреть видеоразбор >>
11 frac{3^{10}}{27^3} Смотреть видеоразбор >>
12 frac{4^{12}cdot2^7}{8^{10}} Смотреть видеоразбор >>
13 9cdot10^3+5cdot10^2+3cdot10^1 Смотреть видеоразбор >>
14 (5,7cdot10^3):(1,9cdot10^{-2}) Смотреть видеоразбор >>
15 frac{2^{-8}cdot2^8}{2^{-3}} Смотреть видеоразбор >>
16 frac{5^{-2}cdot5^7}{5^3} Смотреть видеоразбор >>
17 frac{9^{10}cdot3^2}{27^7} Смотреть видеоразбор >>
18 9,4cdot10^3+2,2cdot10^2 Смотреть видеоразбор >>
19 (0,1)^2cdot10^3cdot2^2 Смотреть видеоразбор >>
20 frac{2^5}{2^3cdot2^{-1}} Смотреть видеоразбор >>
21 frac{4^{-2}cdot4^3}{4^{-1}} Смотреть видеоразбор >>
22 frac{8^3}{2^4}:2^2 Смотреть видеоразбор >>
23 38cdot10-1,3cdot10^2 Смотреть видеоразбор >>
24 frac{(0,1)^2}{10^{-3}}cdot10^2 Смотреть видеоразбор >>
25 frac{2^7}{2^5cdot2} Смотреть видеоразбор >>
26 frac{2^6cdot2^{-2}}{2^2} Смотреть видеоразбор >>
27 frac{3^5cdot4^6}{12^5} Смотреть видеоразбор >>

Корни и степени

  • Степень с натуральным показателем

  • Степень с целым показателем

  • Кубический корень

  • Корень -ной степени

  • Сравнение арифметических корней

  • Как избавиться от иррациональности в знаменателе

  • Как упрощать иррациональные выражения, пользуясь формулами сокращенного умножения

Степенью называется выражение вида a^c.

Здесь a — основание степени, c  — показатель степени.

к оглавлению ▴

Степень с натуральным показателем

Проще всего определяется степень с натуральным (то есть целым положительным) показателем.

По определению, a^1=a.

Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.

a^2=a cdot a.

Возвести число в куб — значит умножить его само на себя три раза.

a^3=a cdot a cdot a.

Возвести число в натуральную степень n — значит умножить его само на себя n раз:

a^n= underbrace{a cdot a cdot a cdot a cdot ldots cdot a}_{displaystyle n}.

к оглавлению ▴

Степень с целым показателем

Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.

По определению,

a^0=1.

Это верно для aneq 0. Выражение 00 не определено.

Определим также, что такое степень с целым отрицательным показателем.

a^{-1}=genfrac{}{}{}{0}{1}{a};

a^{-2}=genfrac{}{}{}{0}{1}{a^2};

a^{-n}=genfrac{}{}{}{0}{1}{a^n}.

Конечно, все это верно для aneq 0, поскольку на ноль делить нельзя.

Например,

5^{-2}=genfrac{}{}{}{0}{1}{5^2};

left( genfrac{}{}{}{0}{1}{2} right)^{-1}=2;

left( genfrac{}{}{}{0}{2}{7} right)^{-1}=genfrac{}{}{}{0}{7}{2}.

Заметим, что при возведении в минус первую степень дробь переворачивается.

left( genfrac{}{}{}{0}{5}{3} right)^{-2}=1 : left( genfrac{}{}{}{0}{5}{3} right)^{2}=left( genfrac{}{}{}{0}{3}{5} right)^{2}=genfrac{}{}{}{0}{9}{25}.

Показатель степени может быть не только целым, но и дробным, то есть рациональным числом. В статье «Числовые множества» мы говорили, что такое рациональные числа. Это числа, которые можно записать в виде дроби genfrac{}{}{}{0}{p}{q}, где p — целое, q — натуральное.

Здесь нам понадобится новое понятие — корень n-степени. Корни и степени — две взаимосвязанные темы. Начнем с уже знакомого вам арифметического квадратного корня.

Определение.

Арифметический квадратный корень из числа a — это такое неотрицательное число, квадрат которого равен a.

Согласно определению, left (sqrt{a} right )^2=a; , , sqrt{a}geq 0; , , ageq 0.

В школьной математике мы извлекаем корень только из неотрицательных чисел. Выражение  sqrt{a}  для нас сейчас имеет смысл только при ageq 0.

Выражение sqrt{a} всегда неотрицательно, т.е. sqrt{a}geq 0. Например, sqrt{25}=5.

Свойства арифметического квадратного корня:

sqrt{ab}=sqrt{a} cdot sqrt{b}, ; sqrt{a^2}=left|aright| , ; sqrt{a^{2n}}={left|aright|}^n; 

sqrt{genfrac{}{}{}{0}{a}{b}}=genfrac{}{}{}{0}{sqrt{a}}{sqrt{b}}.

Запомним важное правило: sqrt{a^2}=left|aright| .

По определению, .

к оглавлению ▴

Кубический корень

Аналогично, кубический корень из a — это такое число, которое при возведении в третью степень дает число a.

left( sqrt[leftroot{3}scriptstyle 3]{a} right) ^3 = sqrt[leftroot{3}scriptstyle 3]{a} cdot sqrt[leftroot{3}scriptstyle 3]{a} cdot sqrt[leftroot{3}scriptstyle 3]{a}.

Например, sqrt[leftroot{3}scriptstyle 3]{8} = 2, так как 2^3 = 2 cdot 2 cdot 2 = 8 ;

sqrt[leftroot{3}scriptstyle 3]{1000} = 10, так как 10^3 = 1000;

sqrt[leftroot{3}scriptstyle 3]{-genfrac{}{}{}{0}{1}{125}} = -genfrac{}{}{}{0}{1}{5}, так как left( -genfrac{}{}{}{0}{1}{5} right) ^3 = -genfrac{}{}{}{0}{1}{125}.

Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.

Теперь мы можем дать определение корня n-ной степени для любого целого n.

к оглавлению ▴

Корень n-ной степени

Корень n-ной степени из числа a — это такое число, при возведении которого в n-ную степень получается число a.

Например,

sqrt[leftroot{3}scriptstyle 5]{32} = 2;

sqrt[leftroot{3}scriptstyle 4]{81} = 3;

sqrt[leftroot{3}scriptstyle 3]{mathstrut 0,001} = 0,1.

Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.

Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.

Итак, sqrt[leftroot{3}scriptstyle n]{a} — такое число, что left( sqrt[leftroot{3}scriptstyle n]{a} right) ^n = a. Оказывается, корни можно записывать в виде степеней с рациональным показателем. Это удобно.

По определению,

a^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 2}} = sqrt{a},

a^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 3}} = sqrt[leftroot{3}scriptstyle 3]{a},

в общем случае a^{frac{1}{n}} = sqrt[leftroot{3}scriptstyle n]{a}..

Сразу договоримся, что основание степени a больше 0.

Например,

25^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 2}} = 5;

8^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 3}} = 2;

81^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 4}} = 3;

100000^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 5}} = 10;

0,001^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 3}} = 0,1.

Выражение a^{genfrac{}{}{}{3}{scriptstyle m}{scriptstyle n}} по определению равно sqrt[leftroot{3}scriptstyle n]{a^m}.

При этом также выполняется условие, что a больше 0.

a^{genfrac{}{}{}{3}{scriptstyle m}{scriptstyle n}} = sqrt[leftroot{3}scriptstyle n]{a^m} = left( sqrt[leftroot{3}scriptstyle n]{a} right) ^m.

Например,

8^{genfrac{}{}{}{3}{scriptstyle 4}{scriptstyle 3}} = left( sqrt[leftroot{3} scriptstyle 3]{8} right) ^4 = 2^4 = 16;

a^{genfrac{}{}{}{3}{scriptstyle 3}{scriptstyle 5}} = sqrt[leftroot{3} scriptstyle 5]{a^3} = left( sqrt[leftroot{3} scriptstyle n]{a} right) ^m;

b^{-genfrac{}{}{}{3}{scriptstyle 2}{scriptstyle 3}} = genfrac{}{}{}{0}{1}{sqrt[leftroot{3} scriptstyle 3]{b^2}}.

Запомним правила действий со степенями:

a^ma^n = a^{m+n} — при перемножении степеней показатели складываются;

genfrac{}{}{}{0}{a^m}{a^n} = a^{m-n} — при делении степени на степень показатели вычитаются;

left( a^m right) ^n = left( a^n right) ^m = a^{mn} — при возведении степени в степень показатели перемножаются;

a^nb^n = left( ab right) ^n;

genfrac{}{}{}{0}{a^n}{b^n} = left( genfrac{}{}{}{0}{a}{b} right) ^n.

Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:

1. genfrac{}{}{}{0}{sqrt{ mathstrut 2,8} cdot sqrt{ mathstrut 4,2}}{sqrt{ mathstrut 0,24}}= sqrt{ mathstrut genfrac{}{}{}{0}{2,8 cdot 4,2}{0,24}} = sqrt{ mathstrut genfrac{}{}{}{0}{28 cdot 42}{24}}=sqrt{ mathstrut genfrac{}{}{}{0}{7 cdot 4 cdot 7 cdot 6}{4 cdot 6}} =

= sqrt{ mathstrut 7 cdot 7} = 7.

Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.

2. genfrac{}{}{}{0}{left( 2 sqrt{7} right) ^2}{14}= genfrac{}{}{}{0}{ 2^2 cdot left( sqrt{7} right) ^2}{14} = genfrac{}{}{}{0}{4 cdot 7}{14} = 2.

3. genfrac{}{}{}{0}{ sqrt[leftroot{3} scriptstyle 9]{7} cdot sqrt[leftroot{3} scriptstyle 18]{7}}{sqrt[leftroot{3} scriptstyle 6]{7}}=genfrac{}{}{}{0}{7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 9}} cdot 7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 18}}}{7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6}}}=7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 9} + genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 18}- genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6}}= 7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6} - genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6}}=7^0=1.

Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.
4. Найдите значение выражения displaystyle frac{11a^6b^3-{left(3a^2bright)}^3}{4a^6b^6} при b = 2.

Решение:

displaystyle frac{11a^6b^3-{left(3a^2bright)}^3}{4a^6b^6}=displaystyle frac{11a^6b^3-{27a^6b}^3}{4a^6b^6}=displaystyle frac{-16a^6b^3}{4a^6b^6}=-displaystyle frac{4}{b^3}.

При b = 2 получим -displaystyle frac{4}{2^3}=-displaystyle frac{4}{8}=-0,5 .

Ответ: -0,5.

5. Найдите значение выражения displaystyle frac{a^{3,21} cdot  a^{7,36}}{a^{8,57}} при a=12 .

Решение:

displaystyle frac{a^{3,21} cdot  a^{7,36}}{a^{8,57}}=displaystyle frac{a^{3,21+7,36}}{a^{8,57}}=displaystyle frac{a^{10,57}}{a^{8,57}}=a^{10,57-8,57}=a^2.

При a = 12 получим {12}^2=144.

Мы воспользовались свойствами степеней.

Ответ: 144.

6. Найдите значение выражения displaystyle frac{{left(b^{sqrt{3}}right)}^{2sqrt{3}}}{b^4} при b = — 5.

Решение: displaystyle frac{{left(b^{sqrt{3}}right)}^{2sqrt{3}}}{b^3}=displaystyle frac{b^{sqrt{3} cdot  2sqrt{3}}}{b^3}=displaystyle frac{b^6}{b^3}=b^3 .

При b = — 5 получим: {(-5)}^3=-125 .

Ответ: -125.

7. Расположите в порядке возрастания: {left(displaystyle frac{7}{8}right)}^{-3}; displaystyle frac{7}{8}; {left(displaystyle frac{8}{7}right)}^{-3}.

Решение:

Запишем выражения как степени с положительным показателем и сравним.

left(displaystyle frac{7}{8}right)^-3=left(displaystyle frac{8}{7}right)^3. Так как displaystyle frac{8}{7} textgreater 1, то left(displaystyle frac{8}{7}right)^3 textgreater 1.

left(displaystyle frac{8}{7}right)^-3=left(displaystyle frac{7}{8}right)^3. Так как displaystyle frac{7}{8} textless 1, то left(displaystyle frac{7}{8}right)^3 textless 1.

Сравним displaystyle frac{7}{8} и {left(displaystyle frac{7}{8}right)}^3, для этого оценим их разность:

displaystyle frac{7}{8} - {left(displaystyle frac{7}{8}right)}^3=displaystyle frac{7}{8} - displaystyle frac{7^3}{8^3}=displaystyle frac{7 cdot  8^2-7^3}{8^3}=displaystyle frac{7(8^2-7^2)}{8^3}=displaystyle frac{7(64-49)}{8^3} textgreater 0 , значит displaystyle frac{7}{8} textgreater {left(displaystyle frac{7}{8}right)}^3 .

Получим : {left(displaystyle frac{7}{8}right)}^3 textless displaystyle frac{7}{8} textless {left(displaystyle frac{8}{7}right)}^3 , поэтому {left(displaystyle frac{8}{7}right)}^{-3} ; displaystyle frac{7}{8} ; {left(displaystyle frac{7}{8}right)}^{-3} .

Ответ: {left(displaystyle frac{8}{7}right)}^{-3}; displaystyle frac{7}{8} ; {left(displaystyle frac{7}{8}right)}^{-3}.

8. Представьте выражение в виде степени: displaystyle frac{x^{-6}+x^{-4}+x^{-2}}{x^2+x^4+x^6}.

Решение:

Вынесем за скобку степень с меньшим показателем:

displaystyle frac{x^{-6}+x^{-4}+x^{-2}}{x^2+x^4+x^6}=displaystyle frac{x^{-6}(1+x^2+x^4)}{x^2(1+x^2+x^4)}=displaystyle frac{x^{-6}}{x^2}=x^{-6-2}=x^{-8}.

Ответ: x^{-8} .

9. Упростите выражение: displaystyle frac{2^{2n-1} cdot  3^{n+1}}{6 cdot  {12}^n} .

Решение:

Приведем основания 6 и 12 к основаниям 2 и 3:

displaystyle frac{2^{2n-1} cdot  3^{n+1}}{6 cdot  {12}^n}=displaystyle frac{2^{2n-1} cdot  3^{n+1}}{2 cdot 3 cdot  {(2^2 cdot 3 )}^n}= displaystyle frac{2^{2n-1} cdot  3^{n+1}}{2^1cdot 3^1cdot 2^{2n} cdot  3^n} =

(выполним деление степеней с одинаковыми основаниями)

= 2^{2n-1-1-2n}cdot 3^{n+1-1-n}=2^{-2}cdot 3^0=displaystyle frac{1}{2^2}cdot 1=displaystyle frac{1}{4} = 0,25.

Ответ: 0,25.

10. Чему равно значение выражения displaystyle frac{a^{-4}cdot { a}^{-3}}{a^{-5}} при a=displaystyle frac{1}{3}?

Решение:

displaystyle frac{a^{-4}cdot { a}^{-3}}{a^{-5}}=a^{-4+left(-3right)-(-5)}=a^{-2}.

При a=displaystyle frac{1}{3}, получим {left(displaystyle frac{1}{3}right)}^{-2}=3^2=9.

Ответ: 9.

к оглавлению ▴

Сравнение арифметических корней

11. Какое из чисел больше: sqrt{5}+sqrt{6} или 2+sqrt{7}?

Решение:

Возведем в квадрат оба числа (числа положительные):

{left(sqrt{5}+sqrt{6}right)}^2= 5 + 2sqrt{5cdot 6}+6=11+2sqrt{30};

{left(2+7right)}^2={left(sqrt{4}+sqrt{7}right)}^2= 4 + 2sqrt{4cdot 7}+7=11+2sqrt{28}.

Найдем разность полученных результатов:

11+2sqrt{30}-(11+2sqrt{28})=2(sqrt{30}-sqrt{28}) textgreater 0, так как sqrt{30} textgreater sqrt{28}.

Значит, первое число больше второго.

Ответ: sqrt{5}+sqrt{6} textgreater  2+sqrt{7}.

к оглавлению ▴

Как избавиться от иррациональности в знаменателе

Если дана дробь вида displaystyle frac{a}{sqrt{b}}, то нужно умножить числитель и знаменатель дроби на sqrt{b}:

displaystyle frac{a}{sqrt{b}} = displaystyle frac{a cdot sqrt{b}}{sqrt{b}cdot sqrt{b}} = displaystyle frac{a cdot sqrt{b}}{sqrt{b}^2} = displaystyle frac{a cdot sqrt{b}}{b}.

Тогда знаменатель станет рациональным.

Если дана дробь вида displaystyle frac{c}{ a pm  sqrt{b}} или displaystyle frac{c}{  sqrt{a} pm  sqrt{b}}, то нужно умножить числитель и знаменатель дроби на сопряженное выражение, чтобы получить в знаменателе разность квадратов.

Сопряженные выражения — это выражения, отличающиеся только знаками. Например,

a + sqrt{b} и a-sqrt{b}; sqrt{a}+sqrt{b} и sqrt{a}-sqrt{b} — сопряженные выражения.

Пример:

displaystyle frac{c}{sqrt{a}-sqrt{b}}=displaystyle frac{c (sqrt{a}+ sqrt{b})}{ (sqrt{a}- sqrt{b})(sqrt{a}+ sqrt{b})}=

=displaystyle frac{c (sqrt{a}+sqrt{b})}{{ left(sqrt{a}right)}^2-{left(sqrt{b}right)}^2  }=displaystyle frac{c(sqrt{a}+ sqrt{b})}{a-b } .

12. Вот несколько примеров — как избавиться от иррациональности в знаменателе:

Пример 1.

displaystyle frac{2}{sqrt{27}}= displaystyle frac{2 cdot  sqrt{3}}{sqrt{3^3} cdot  sqrt{3}}=displaystyle frac{2 sqrt{3}}{sqrt{3^4} }=displaystyle frac{2 sqrt{3}}{9}.

Пример 2.

displaystyle frac{6}{1+sqrt{3}} = displaystyle frac{6(sqrt{3}-1)}{(sqrt{3}+1)(sqrt{3}-1)}=displaystyle frac{6(sqrt{3}-1)}{3-1}=

=displaystyle frac{6(sqrt{3}-1)}{2}=3(sqrt{3}-1).

Пример 3.

displaystyle frac{33}{7-3sqrt{3}} = displaystyle frac{33(7+3sqrt{3})}{(7-3sqrt{3})(7+3sqrt{3})}= displaystyle frac{33(7+3sqrt{3})}{49 -9 cdot 3}=

displaystyle frac{33(7+3sqrt{3})}{22}=displaystyle frac{3(7+3sqrt{3})}{2}.

Пример 4.

displaystyle frac{12}{sqrt{3}+sqrt{6}}=displaystyle frac{12(sqrt{6}-sqrt{3})}{(sqrt{3}+sqrt{6})(sqrt{6}-sqrt{3})}=displaystyle frac{12(sqrt{6}-sqrt{3})}{6-3}=

=displaystyle frac{12(sqrt{6}-sqrt{3})}{3}=4(sqrt{6}-sqrt{3}).

Совет. Если в знаменателе дана сумма двух корней, то в разности первым числом пишите то, которое больше, и тогда разность квадратов корней будет положительным числом.

Пример 5.

displaystyle frac{5+3sqrt{3}}{sqrt{3}+2}= displaystyle frac{(5+3sqrt{3})(2-sqrt{3})}{(sqrt{3}+2)(2-sqrt{3})}=

=displaystyle frac{10+6sqrt{3}-5sqrt{3}-9}{2^2-{(sqrt{3} )}^2}=displaystyle frac{1+sqrt{3}}{4-3}= 1+sqrt{3}.

13. Сравните sqrt{140} и displaystyle frac{1}{7+4sqrt{3}}+displaystyle frac{1}{7-4sqrt{3}}.

1) displaystyle frac{1}{7+4sqrt{3}}+displaystyle frac{1}{7-4sqrt{3}}=displaystyle frac{7-4sqrt{3}+7+4sqrt{3}}{(7+4sqrt{3})(7-4sqrt{3})}=displaystyle frac{14}{7^2-{(4sqrt{3})}^2}=

=displaystyle frac{14}{49-48}=14.

2) Сравним sqrt{140} и 14.

14 = sqrt{{14}^2}=sqrt{196}, 140 textless 196, то и sqrt{140} textless sqrt{196}, а значит,

sqrt{140} textless displaystyle frac{1}{7+4sqrt{3}}+displaystyle frac{1}{7-4sqrt{3}} .

Ответ: sqrt{140} меньше.

к оглавлению ▴

Как упрощать иррациональные выражения, пользуясь формулами сокращенного умножения

Покажем несколько примеров.

14. Упростите: выражения: sqrt{3-2sqrt{2}}; sqrt{7+4sqrt{3}}; sqrt{19-8sqrt{3}}.

Пример 5.

sqrt{3-2sqrt{2}}=sqrt{2+1-2sqrt{2}}=sqrt{{left(sqrt{2}right)}^2-2cdot 1cdot sqrt{2}+1}=

=sqrt{{left(sqrt{2}-1right)}^2} =  left|sqrt{2}-1right| = sqrt{2}-1, т.к. sqrt{2} textgreater 1.

Пример 6.

sqrt{7+4sqrt{3}} =  sqrt{4+3+4sqrt{3 }}=sqrt{2^2+2cdot 2cdot sqrt{3 }+{(sqrt{3 })}^2} =

= sqrt{{(2+sqrt{3})}^2} = 2+sqrt{3}.

Пример 7.

sqrt{19-8sqrt{3}} =  sqrt{16+3-8sqrt{3 }}=sqrt{4^2-2cdot 4cdot sqrt{3 }+{(sqrt{3 })}^2} =

=sqrt{{(4-sqrt{3})}^2} = 4-sqrt{3},

так как 4-sqrt{3}=sqrt{16}-sqrt{3} textgreater 0 .

Следующие несколько задач решаются с помощью формулы:

sqrt{a^2}=left|aright|.

Решение:

sqrt{{(5-2x)}^2}=left|5-2xright|.

Получим уравнение left|5-2xright|=2x-5, 2x-5ge 0, x geq 2,5.

Ответ: [2,5; + infty ).

19. Вычислите значение выражения: sqrt{{(sqrt{3}-1)}^2}+sqrt{{(sqrt{3}-2)}^2}.

Решение:

sqrt{(sqrt{3}-1)^2}+sqrt{(sqrt{3}-2)^2}=|sqrt{3}-1|+|sqrt{3}-2|=

=sqrt{3}-1+2-sqrt{3}=1.

Ответ: 1.

20. Вычислите значение выражения: sqrt{{(2-sqrt{5})}^2}+sqrt{{(3-sqrt{5})}^2}.

Решение: sqrt{{(2-sqrt{5})}^2}+sqrt{{(3-sqrt{5})}^2}= left|2-sqrt{5}right|+left|3-sqrt{5}right|=

=sqrt{5}-2+3-sqrt{5} = 1.

Ответ: 1.

21. Вычислите значение выражения: (x - 3) sqrt{displaystyle frac{1}{x^2-6x+9}}, если x textless 3.

Решение. (x - 3) sqrt{displaystyle frac{1}{x^2-6x+9}}=left(x - 3right)sqrt{displaystyle frac{1}{{left(x-3right)}^2}}=displaystyle frac{x-3}{left|x-3right|}=

=displaystyle frac{x-3}{3-x}=-1.

Если x textless 3, то x - 3 textless 0, следовательно left|x-3right|=-left(x-3right)=3-x.

Ответ: — 1.

22. Вычислите: (sqrt{3}-2)(sqrt{7+4sqrt{3}}).

Решение: left(sqrt{3}-2right)left(sqrt{7+4sqrt{3}}right) = sqrt{{left(sqrt{3}-2right)}^2(7+4sqrt{3}})=

=sqrt{left(3-4sqrt{3}+4right)left(7+4sqrt{3}right)}=sqrt{left(7-4sqrt{3}right)left(7+4sqrt{3}right)}=sqrt{7^2-{left(4sqrt{3}right)}^2}=

= sqrt{49-48} = 1.

Ответ: 1.

Рассмотрим уравнение вида a^x=a^y, где a textgreater 0.

Это равенство выполняется, только если x = y.

Подробно об таких уравнениях — в статье «Показательные уравнения».

При решении уравнений такого вида мы пользуемся монотонностью показательной функции.

23. Решите уравнение:

а) 2^{3-x}=16;

б) {27}^{displaystyle frac{1}{3}x-1}-3=0;

в) {left(displaystyle frac{1}{sqrt{3}}right)}^{2x+1}={left(3sqrt{3}right)}^x.

Решение.

23. Решите уравнение: 2^{3-x}=16.

Решение:

2^{3-x}=2^4, тогда 3 - x = 4, ; x = - 1.

Ответ: -1.

24. Решите уравнение:

{27}^{displaystyle frac{1}{3}x-1}-3=0.

Решение:

{left(3^3right)}^{left(displaystyle frac{1}{3}x-1right)}=3 , ; 3^{3left(displaystyle frac{1}{3}x-1right)}=3^1;

3left(displaystyle frac{1}{3}x-1right)=1, ; x - 3 = 1, ; x = 4.

Ответ: 4.

25. Решите уравнение: {left(displaystyle frac{1}{sqrt{3}}right)}^{2x+1}={left(3sqrt{3}right)}^x.

Решение:

{left(3^{- displaystyle frac{1}{2}}right)}^{2x+1}={left(3^{1+ displaystyle frac{1}{2}}right)}^x ,; ; 3^{-displaystyle frac{1}{2} cdot (2x+1)}=3^{displaystyle frac{3}{2}x}.

Значит, -displaystyle frac{1}{2} cdot left(2x+1right)=displaystyle frac{3}{2}x, - 2x - 1 = 3x, - 5x = 1 , x = -displaystyle frac{1}{5}.

Ответ: -0,2.

Если вы хотите разобрать большее количество примеров — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Корни и степени» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
09.03.2023

Во задании №2 ЕГЭ по математике необходимо продемонстрировать знания работы со степенными выражениями.

Тематика заданий: операции со степенями

Бал: 1 из 20

Сложность задания: ♦◊◊

Примерное время выполнения: 3 мин.

Теория к заданию №2

Правила обращения со степенями можно представить следующим образом:

степени

Кроме этого, следует напомнить об операциях с дробями:

операции с дробями

Теперь можно перейти к разбору типовых вариантов!


Разбор типовых вариантов заданий №2 ЕГЭ по математике базового уровня


Во всех заданиях, аналогично первому заданию, нам необходимо найти значение выражения.


Вариант 2МБ1

image001Алгоритм выполнения:
  1. Представить число с отрицательным показателем в виде правильной дроби.
  2. Выполнить первое умножение.
  3. Представить степени чисел в виде простых чисел, заменив степени их умножением.
  4. Выполнить умножение.
  5. Выполнить сложение.
Решение:

Чтобы представить отрицательную степень числа в виде обыкновенной дроби, необходимо 1 разделить на это число, но уже в положительной степени.

То есть: 10-1 = 1/101 = 1/10

Выполним первое умножение, то есть умножение целого числа на правильную дробь. Для этого числитель дроби умножим на целое число, а знаменатель оставим без изменения.

9 · 1/10 = (9 · 1)/10 = 9/10

Первая степень числа всегда есть само число.

101 = 10

Вторая степень числа – это число умноженное само на себя.

102 = 10 · 10 = 100

Вычислим значение выражения, учитывая, чтоimage002

получим:

image003

Ответ: 560,9


Вариант 2МБ2

image001

Алгоритм выполнения:
  1. Представить первую степень числа в виде целого числа.
  2. Представить отрицательные степени чисел в виде правильных дробей.
  3. Выполнить умножение целых чисел.
  4. Выполнить умножение целых чисел на правильные дроби.
  5. Выполнить сложение.
Решение:

Первая степень числа всегда есть само число. (101 = 10)

Чтобы представить отрицательную степень числа в виде обыкновенной дроби, необходимо 1 разделить на это число, но уже в положительной степени.

То есть:

10-1 = 1/101 = 1/10

10-2 = 1/102 = 1/(10 · 10) = 1/100

Выполним умножение целых чисел.

3 · 101 = 3 · 10 = 30

Выполним умножение целых чисел на правильные дроби.

4 · 10-2 = 4 · 1/100 = (4 ·1)/100 = 4/100

2 · 10-1 = 2 · 1/10 = (2 · 1)/10 = 2/10

Вычислим значение выражения, учитывая, что

image002

получим:

image003

Ответ: 30,24


Вариант 2МБ3

image001

Алгоритм выполнения:
  1. Представить степени чисел в виде умножения и вычислить значение степеней чисел.
  2. Выполнить умножение.
  3. Выполнить сложение.
Решение:

Представим степени чисел в виде умножения. Для того чтобы представить степень числа в виде умножения, нужно это число умножить само на себя столько раз сколько содержится в показателе степени.

24 = 2 · 2 · 2 · 2 = 16

23 = 2 · 2 · 2 = 8

Выполним умножение:

4 · 24 = 4 · 16 = 64

3 · 23 = 3 · 8 = 24

Вычислим значение выражения:

image002

Ответ: 88


Вариант 2МБ4

image001

Алгоритм выполнения:
  1. Представим степень числа таким образом, чтобы можно было вынести за скобку общий множитель.
  2. Вынести общий множитель за скобку.
  3. Выполнить действие в скобках.
  4. Представить степень числа в виде умножения и вычислить значение степени числа.
  5. Выполнить умножение.
Решение:

Представим степень числа таким образом, чтобы можно было вынести за скобку общий множитель.

44 = 4 · 43

Вынесем общий множитель за скобку

3 · 43 + 2 · 44 = 43 · (3 + 2 · 4)

Выполним действие в скобках.

(3 + 2 · 4) = (3 + 8) = 11

Представим степень числа в виде умножения. Для того чтобы представить степень числа в виде умножения, нужно это число умножить само на себя столько раз сколько содержится в показателе степени.

43 = 4 · 4 · 4 = 64

Вычислим значение выражения, учитывая, что

image002

image003

получим:

image004

Ответ: 704


Вариант 2МБ5

image001

Алгоритм выполнения:
  1. Представим степень числа таким образом, чтобы можно было вынести за скобку общий множитель.
  2. Вынести общий множитель за скобку.
  3. Выполнить действие в скобках.
  4. Представить степень числа в виде умножения и вычислить значение степени числа.
  5. Выполнить умножение.
Решение:

Представим степень числа таким образом, чтобы можно было вынести за скобку общий множитель.

53 = 5 · 52

Вынесем общий множитель за скобку

2 · 53 + 3 · 52 = 52 · (2 · 5 + 3)

Выполним действие в скобках.

(2 · 5 + 3) = (10 + 3) = 13

Представим степень числа в виде умножения. Для того чтобы представить степень числа в виде умножения, нужно это число умножить само на себя столько раз сколько содержится в показателе степени.

52 = 5 · 5 = 25

Вычислим значение выражения, учитывая, что

image002 , а  image003

получим:

image004

Выполняем умножение в столбик, имеем:

Задание №2 ЕГЭ по математике базового уровня

Ответ: 325


Вариант 2МБ6

Задание №2 ЕГЭ по математике

Решение:

В данном задании удобней привести значения к более привычному виду, а именно записать числа в числителе и знаменателе в стандартном виде:

Задание №2 ЕГЭ по математике базового уровня

После этого можно выполнить деление 24 на 6, в результате получим 4.

Десять в четвертой степени при делении на десять в третьей степени даст десять в первой, или просто десять, поэтому мы получим:

4 • 10 = 40

Ответ: 40


Вариант 2МБ6

Задание №2 ЕГЭ по математике базового уровня

Решение:

В данном случае мы должны заметить, что число 6 в знаменателе раскладывается на множители 2 и 3 в степени 5:

Задание №2 ЕГЭ по математике базового уровня

После этого можно выполнить сокращения степеней у двойки: 6-5=1, у тройки: 8-5=3.

Задание №2 ЕГЭ по математике базового уровня

Теперь возводим 3 в куб и умножаем на 2, получая 54.

Ответ: 54


Вариант 2МБ6

C:UsersКсеньяDesktopматме1.jpg

Алгоритм выполнения
  1. Применяем к числителю св-во степеней х)уху. Получаем 3–6.
  2. Применяем к дроби св-во степеней ax/ay=ax–y.
  3. Возводим 3 в полученную степень.
Решение:

(3–3)2 /3–8 = 3–6 /3–8= 3–6–(–8)) = 3–6+8 = 32 = 9

Ответ: 9


Вариант 2МБ7

C:UsersКсеньяDesktopматме2.jpg

Алгоритм выполнения
  1. Используем для степени в числителе (149) св-во (аb)х=ax·bx. 14 разложим на произведение 2 и 7. Получим произведение степеней с основаниями 2 и 7.
  2. Преобразуем выражение в 2 дроби, каждая из которых будет содержать степени с одинаковыми основаниями.
  3. Применяем к дробям св-во степеней ax/ay=ax–y.
  4. Находим полученное произведение.
Решение:

149 / 27·78  = (2·7)9 / 27·7= 29·79 / 27 78 = 29–7·79–8 = 22·71 = 4·7 = 28

Ответ: 28


Вариант 2МБ8

C:UsersКсеньяDesktopматме3.jpg

Алгоритм выполнения
  1. Выносим за скобки общий множитель 52=25.
  2. Выполняем в скобках умножение чисел 2 и 5. Получаем 10.
  3. Выполняем в скобках сложение 10 и 3. Получаем 13.
  4. Выполняем умножение общего множителя 25 и 13.
Решение:

2·53+3·52 = 52·(2·5+3) = 25·(10+3) = 25·13 = 325

Ответ: 325


Вариант 2МБ9

C:UsersКсеньяDesktopматме4.jpg

Алгоритм выполнения
  1. Возводим в квадрат (–1). Получим 1, поскольку происходит возведение в четную степень.
  2. Возводим (–1) в 5-ю степень. Получим –1, т.к. происходит возведение в нечетную степень.
  3. Выполняем действия умножения.
  4. Получаем разность двух чисел. Находим ее.
Решение:

6·(–1)2+4·(–1)5 = 6·1+4·(–1) = 6+(–4) = 6–4 = 2

Ответ: 2


Вариант 2МБ10

C:UsersКсеньяDesktopматме5.jpg

Алгоритм выполнения
  1. Преобразуем множители 103 и 102 в целые числа.
  2. Находим произведения путем переноса десят.запятой вправо на соответствующее число знаков.
  3. Находим результирующую сумму.
Решение:

9,4·103+2,2·102 = 9,4·1000+2,2·100 = 9400+220 = 9620

Ответ: 9620


Вариант 2МБ11

C:UsersКсеньяDesktopматме6.jpg

Алгоритм выполнения
  1. Преобразуем 102 в целое число и выполняем умножение в числителе путем переноса деся.запятой.
  2. Преобразуем 10–2 в десят.дробь и выполняем умножение в знаменателе путем переноса десят.запятой влево.
  3. Домножаем числитель и знаменатель на 100, чтобы избавиться от десят.запятой в знаменателе.
  4. Находим результат путем деления числителя дроби на ее знаменатель.
Решение:

1,6·102 / 4·10–2 = 1,6·100 / 4·0,01 = 160/ 0,04 = 160·100 / 0,04·100 =  16000 / 4 = 4000

Ответ: 40000


Вариант 2МБ12

C:UsersКсеньяDesktopматме7.jpg

Алгоритм выполнения
  1. Применяем к дроби св-ва степеней aay=ax+y и ax/ay=ax–y.
  2. Возводим 3 в полученную степень.
Решение:

3–10·35 / 3–7 = 3–10+5  /3–7 = 3–5 / 3–7 = 3–5–(–7)) = 3–5+7 = 32 = 9

Ответ: 9


Вариант 2МБ13

C:UsersКсеньяDesktopматме8.jpg

Алгоритм выполнения
  1. Представляем выражение в знаменателе как степень с основанием 8. Далее применяем св-во степеней х)уху, получаем 812.
  2. Применяем к дроби св-во степеней ax/ay=ax–y.
Решение:

813 /646 =813 / (82)=813 /812 = 813–12 = 81 = 8

Ответ: 8


Вариант 2МБ14

C:UsersКсеньяDesktopматме9.jpg

Алгоритм выполнения
  1. Преобразуем степени в числителе дроби и в делителе (число 92) так, чтобы получились степени с основанием 3.
  2. Используем св-во степеней х)уху для преобразованных степеней.
  3. Используем св-во степеней ax/ay=ax–y.
  4. Возводим 3 в полученную степень.
Решение:

27/36 : 9=(33)4 / 36 : (32)2 = 312/36 : 34 = 312–6–4 = 32 = 9

Ответ: 9


Вариант 2МБ15

C:UsersКсеньяDesktopматме10.jpg

Алгоритм выполнения
  1. Возводим каждый из множителей в соответствующую степень. Получим соответственно: 0,01, 1000, 4.
  2. Перемножаем 0,01 и 1000 путем переноса десят.запятой вправо на 3 знака. Получим 10.
  3. Умножаем 10 на 4.
Решение:

(0,1)2·103·22 = 0,01·1000·4 = 10·4 = 40

Ответ: 40

Вариант 1 2. Вычисления. Действия со степенями.

1. Най­ди­те зна­че­ние вы­ра­же­ния 

2. Най­ди­те зна­че­ние вы­ра­же­ния 

3. Най­ди­те зна­че­ние вы­ра­же­ния 

4. Най­ди­те зна­че­ние вы­ра­же­ния 

5. Най­ди­те зна­че­ние вы­ра­же­ния 

6. Най­ди­те зна­че­ние вы­ра­же­ния 4 · 72 + 6 · 72.

7.Най­ди­те зна­че­ние вы­ра­же­ния .

8. Най­ди­те зна­че­ние вы­ра­же­ния .

9. Най­ди­те зна­че­ние вы­ра­же­ния .

10.Най­ди­те зна­че­ние вы­ра­же­ния .

Вариант 2 2. Вычисления. Действия со степенями.

1. Най­ди­те зна­че­ние вы­ра­же­ния .

2. Най­ди­те зна­че­ние вы­ра­же­ния .

3. Най­ди­те зна­че­ние вы­ра­же­ния .

4. Най­ди­те част­ное от де­ле­ния  на .

5. Най­ди­те зна­че­ние вы­ра­же­ния 

6. Най­ди­те зна­че­ние вы­ра­же­ния .

7.Най­ди­те зна­че­ние вы­ра­же­ния 

8. Най­ди­те про­из­ве­де­ние чисел  и .

9. Най­ди­те зна­че­ние вы­ра­же­ния 

10. Най­ди­те зна­че­ние вы­ра­же­ния 

Вариант 3 2. Вычисления. Действия со степенями.

1. Най­ди­те зна­че­ние вы­ра­же­ния .

2. Най­ди­те зна­че­ние вы­ра­же­ния 

3. Най­ди­те зна­че­ние вы­ра­же­ния .

4. Най­ди­те зна­че­ние вы­ра­же­ния 

5. Най­ди­те зна­че­ние вы­ра­же­ния .

6. Най­ди­те зна­че­ние вы­ра­же­ния 

7. Най­ди­те зна­че­ние вы­ра­же­ния .

8. Най­ди­те част­ное от де­ле­ния 0,8 · 10−1 на 4 · 102.

9. Най­ди­те зна­че­ние вы­ра­же­ния 

10. Най­ди­те зна­че­ние вы­ра­же­ния .

Вариант 4 2. Вычисления. Действия со степенями.

1. Най­ди­те зна­че­ние вы­ра­же­ния .

2. Най­ди­те зна­че­ние вы­ра­же­ния 

3. Най­ди­те зна­че­ние вы­ра­же­ния .

4. Най­ди­те зна­че­ние вы­ра­же­ния 

5. Най­ди­те зна­че­ние вы­ра­же­ния .

6. Най­ди­те зна­че­ние вы­ра­же­ния 

7. Най­ди­те зна­че­ние вы­ра­же­ния .

8. Най­ди­те част­ное от де­ле­ния 0,8 · 10−1 на 4 · 102.

9. Най­ди­те зна­че­ние вы­ра­же­ния 

10. Най­ди­те зна­че­ние вы­ра­же­ния 

Вариант 5 2. Вычисления. Действия со степенями.

1. Найдите значение выражения 

2. Найдите сумму чисел  и 

3. Найдите зна­че­ние вы­ра­же­ния 

4. Найдите про­из­ве­де­ние чисел  и .

5. Найдите зна­че­ние вы­ра­же­ния .

6. Найдите зна­че­ние вы­ра­же­ния 3,4 · 102 + 1,8 · 103.

7. Найдите зна­че­ние вы­ра­же­ния 

8. Найдите значение выражения .

9. Найдите значение выражения .

10. Найдите значение выражения 

Вариант 6 2. Вычисления. Действия со степенями.

1. Найдите значение выражения .

2. Найдите значение выражения .

3. Найдите зна­че­ние вы­ра­же­ния 4 · 10-3 + 8 · 10-2 + 5 · 10-1.

4. Найдите зна­че­ние вы­ра­же­ния 3 · 101 + 5 · 102 + 9 · 103.

5. Найдите значение выражения 

6. Найдите про­из­ве­де­ние чисел  и .

7. Найдите зна­че­ние вы­ра­же­ния 

8. Найдите значение выражения .

9. Найдите значение выражения 

10. Найдите значение выражения 

Вариант 7 2. Вычисления. Действия со степенями.

1. Найдите значение выражения .

2. Найдите значение выражения 

3. Найдите зна­че­ние вы­ра­же­ния (0,01)2 · 105 : 4−2

4. Найдите значение выражения .

5. Найдите значение выражения .

6. Найдите значение выражения: 

7. Найдите зна­че­ние вы­ра­же­ния 3 · 43 + 2 · 43.

8. Найдите част­ное от де­ле­ния  на .

9. Найдите зна­че­ние вы­ра­же­ния 

10. Найдите зна­че­ние вы­ра­же­ния 

Вариант 8 2. Вычисления. Действия со степенями.

1. Найдите значение выражения 

2. Найдите значение выражения 

3. Найдите значение выражения .

4. Найдите зна­че­ние выражения .

5. Найдите зна­че­ние вы­ра­же­ния .

6. Найдите зна­че­ние вы­ра­же­ния 

7. Найдите значение выражения .

8. Найдите про­из­ве­де­ние чисел  и .

9. Найдите значение выражения .

10. Найдите зна­че­ние вы­ра­же­ния 

Вариант 9 2. Вычисления. Действия со степенями.

1. Найдите значение выражения .

2. Найдите зна­че­ние вы­ра­же­ния 

3. Найдите значение выражения 

4. Найдите значение выражения 

5. Найдите зна­че­ние вы­ра­же­ния 

6. Найдите зна­че­ние вы­ра­же­ния 

7. Найдите зна­че­ние вы­ра­же­ния 

8. Найдите значение выражения 

9. Найдите значение выражения .

10. Найдите значение выражения .

Вариант 10 2. Вычисления. Действия со степенями.

1. Най­ди­те зна­че­ние вы­ра­же­ния .

2. Найдите значение выражения .

3. Найдите значение выражения .

4. Найдите зна­че­ние вы­ра­же­ния .

5. Найдите зна­че­ние вы­ра­же­ния .

6. Найдите зна­че­ние вы­ра­же­ния 3,4 · 102 + 1,8 · 103.

7. Найдите про­из­ве­де­ние чисел  и .

8. Найдите зна­че­ние вы­ра­же­ния 7,9 · 10-2 + 4,5 · 10-1.

9. Найдите значение выражения 

10. Найдите зна­че­ние вы­ра­же­ния (0,01)2 · 105 : 4−2

2. Вычисления. Действия со степенями.

Вариант 1

1.300000

2. 0,25

3. 4560

4. 40

5. 280

6. 490

7. 32

8. 8

9. 27

10. 2

Вариант 2

1. 243

2. 121

3. 7

4. 5000

5. 0,25

6. 5

7.4

8. 0,0075

9. 0,5

10. 5

Вариант 3

1. 1

2.  5

3.  5

4.  9000

5.  7

6.  81

7. 15

8.  0,0002

9.  81

10.  2

Вариант 4

1. 1

2. 5

3. 5

4. 9000

5.  7

6. 81

7. 15

8. 0,0002

9. 81

10. 2

Вариант 5

  1. 25

  2. 3040

  3. 512

  4. 0,066

  5. 32

  6. 2140

  7. 9000

  8. 5

  9. 36

  10. 4

Вариант 6

  1. 1225

  2. 0,008

  3. 0,584

  4. 9530

  5. 4

  6. 0,0075

  7. 36

  8. 2

  9. 600000

  10. 5

Вариант 7

  1. 7

  2. 4

  3. 160

  4. 0,462

  5. 121

  6. 96

  7. 320

  8. 200

  9. 850

10.40

Вариант 8

  1. 7650

  2. 0,091

  3. 2

  4. 21

  5. 34000

  6. 81

  7. 4

  8. 0,066

  9. 64

  10. 4

Вариант 9

  1. 0,529

  2. 9000

  3. 4

  4. 9

  5. 240

  6. 16

  7. 8

  8. 300000

  9. 81

  10. 5

Вариант 10

  1. 10

  2. 1,5

  3. 16

  4. 80

  5. 350,6

  6. 2140

  7. 0,066

  8. 0,529

  9. 4

  10. 160

Инфоурок


Алгебра

Другие методич. материалыКарточки-тренажеры по теме «Степени» (подготовка к ЕГЭ)

Карточки-тренажеры по теме «Степени» (подготовка к ЕГЭ)



Скачать материал



Скачать материал

  • Сейчас обучается 28 человек из 12 регионов

  • Сейчас обучается 20 человек из 12 регионов

  • Сейчас обучается 54 человека из 30 регионов

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 154 790 материалов в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Материал подходит для УМК

  • «Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.

    «Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.

    Тема

    § 5. Степень с рациональным и действительным показателями

    Больше материалов по этой теме

Другие материалы

«Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.

Выражения: степени, корни (подготовка к ЕГЭ)

  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (углублённый уровень)», Муравин Г.К., Муравина О.В.
  • Тема: 5. Степенная функция у = хn при натуральном n

Рейтинг:
4 из 5

  • 11.05.2018
  • 50793
  • 430

«Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (углублённый уровень)», Муравин Г.К., Муравина О.В.

Презентация по математике «Степень числа»

  • Учебник: «Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.
  • Тема: § 5. Степень с рациональным и действительным показателями
  • 23.04.2018
  • 1154
  • 5

«Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.

«Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.

Кроссворд по математике по теме «Степень числа»

  • Учебник: «Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.
  • Тема: § 5. Степень с рациональным и действительным показателями

Рейтинг:
3 из 5

  • 19.03.2018
  • 4940
  • 29

«Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.

Контрольная работа «Степени и корни»

  • Учебник: «Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.
  • Тема: § 5. Степень с рациональным и действительным показателями

Рейтинг:
5 из 5

  • 01.03.2018
  • 6086
  • 22

«Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.

«Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.

Подготовка к ОГЭ по теме «Степень»

  • Учебник: «Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.
  • Тема: § 5. Степень с рациональным и действительным показателями
  • 22.02.2018
  • 489
  • 4

«Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»

  • Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Экскурсоведение: основы организации экскурсионной деятельности»

  • Курс профессиональной переподготовки «Логистика: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Этика делового общения»

  • Курс профессиональной переподготовки «Организация менеджмента в туризме»

  • Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»

  • Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Организация маркетинга в туризме»

  • Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»

  • Курс повышения квалификации «Мировая экономика и международные экономические отношения»

  • Курс повышения квалификации «Актуальные вопросы банковской деятельности»

  • Курс профессиональной переподготовки «Эксплуатация и обслуживание общего имущества многоквартирного дома»



  • Скачать материал


    • 04.10.2018


      10033
    • DOCX
      586.2 кбайт
    • 1298
      скачиваний
    • Рейтинг:
      4 из 5
    • Оцените материал:





  • Настоящий материал опубликован пользователем Катаева Наталия Ивановна. Инфоурок является
    информационным посредником и предоставляет пользователям возможность размещать на сайте
    методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них
    сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с
    сайта, Вы можете оставить жалобу на материал.

    Удалить материал

  • Катаева Наталия Ивановна

    • На сайте: 5 лет и 1 месяц
    • Подписчики: 0
    • Всего просмотров: 15522
    • Всего материалов:

      9

Like this post? Please share to your friends:
  • Операции вов 1941 1945 таблица к егэ
  • Операции во время вов для егэ
  • Операции великой отечественной войны 1941 1945 таблица егэ
  • Операторами инфраструктуры сети железных дорог россии являются оао ржд ошибка егэ
  • Оператор что сдавать на егэ