ЕГЭ по физике пугает многих выпускников. На деле он не такой сложный, главное — разобраться со структурой. В этой статье поговорим о том, как подготовиться к ЕГЭ по физике 2023, из каких разделов состоит экзамен и какие темы нужно изучить, чтобы сдать его.
Изменения в ЕГЭ по физике 2023
В 2023 году ЕГЭ по физике обновился незначительно:
- Изменилось расположение заданий в части с кратким ответом: теперь задания 1 и 2 перешли на позицию 20 и 21. Однако есть сами формулировки и проверяемые темы в части 1 остались прежними.
- В части 2 изменения коснулись только задания 30 — расчетной задачи по механике, оцениваемой в 4 первичных балла (самый высокий балл за задачу). В прошлом году на этой позиции необходимо было применять законы Ньютона, знать тонкости для решения задач со связанными телами, а также использовать законы сохранения энергии импульса. В 2023 здесь также могут встретиться задачи по статике. То есть теперь нужно знать, что такое плечо силы, момент и условие равновесия рычага, чтобы получить максимальный балл на экзамене. Но не забывайте проработать и те законы, которые встречались в прошлом году.
Коротко о структуре ЕГЭ по физике 2023
Экзамен состоит из 2 частей: I часть с кратким ответом и II часть с развернутым ответом. Всего в ЕГЭ 30 заданий, которые разделены на 4 раздела. Чтобы хорошо подготовиться к экзамену, важно ориентироваться в том, как он устроен: какие темы входят в каждый раздел, каких заданий больше, а каких меньше.
Давайте взглянем на таблицу и сделаем выводы:
Максимальное количество первичных баллов — 54
I часть
- Приносит 34 балла, то есть ⅔ баллов всего экзамена.
- 23 задания с кратким ответом
- В ответе нужно указать лишь число
II часть
- Приносит 20 баллов, что составляет ⅓ баллов экзамена
- 7 заданий с развернутым ответом
- Решения нужно подробно расписать по критериям ЕГЭ
Разделы ЕГЭ по физике 2023
- Механика — один из самых больших разделов на ЕГЭ. Он составляет около трети всего экзамена.
- Электродинамика — еще один большой раздел по количеству баллов. Она также составляет около трети всего экзамена.
- Молекулярная физика занимает третье место. Около 25% баллов на ЕГЭ можно получить именно за нее.
- Квантовая физика замыкает наш список. В сумме все задания по квантовой физике могут принести около 10% баллов.
Иными словами, чтобы сдать ЕГЭ по физике на высокий балл, нужно хорошо разбираться и в структуре экзамена, и в каждом из разделов, которые в него входят. Если не знать, как все устроено и что именно требуется для решения заданий, то можно завалить ЕГЭ и не поступить на бюджет.
Чтобы этого не произошло, на своих занятиях по подготовке к ЕГЭ я разбираю с учениками каждый раздел экзамена и все критерии. Мы разбираемся, какие знания проверяют составители в каждом из заданий и учимся правильно оформлять ответы. Очень важная часть подготовки — научиться внимательно читать формулировки заданий и правильно их понимать. Это одна из ловушек экзаменаторов, на которые попадаются очень многие.
Если вы хотите подготовиться к ЕГЭ по физике 2023 на высокий балл, записывайтесь на мои занятия. Мы вместе разберемся со всеми непонятными заданиями, и я сделаю так, что все задачки по физике вы будете щелкать как орешки 😉💪
Какие задания входят в ЕГЭ по физике?
Здесь вам на помощь приходят документы с официального сайта ФИПИ: кодификатор, демоверсия и спецификация.
Кодификатор — это краткий перечень всех тем, законов и формул, которые включены в экзамен. В формулах важно ориентироваться и понимать, какие формулы, в каком разделе и когда используются.
Все формулы из кодификатора нужно знать наизусть.
Демоверсия — типовой вариант ЕГЭ. Он показывает уровень экзамена и ориентировочную сложность заданий.
Спецификация — это документ, описывающий структуру экзамена и разбалловку.
Какие темы на ЕГЭ по физике 2023 самые важные?
В физике есть темы, которые встречаются на каждом шагу. Это тот необходимый минимум знаний, который будет применяться в каждом разделе. Для всех моих учеников, отлично освоивших эти темы, изучение физики стало гораздо легче и приятнее.
1. Силы
В самом начале подготовки к ЕГЭ по физике важно научиться правильно расставлять силы, записывать второй закон Ньютона в векторном виде, а потом проецировать силы на оси и записывать второй закон Ньютона в скалярном виде.
2. Второй закон Ньютона
Без этого закона мы на ЕГЭ по физике будем как без рук. Он будет применяться почти в каждой второй задаче.
3. Энергия и закон сохранения энергии (ЗСЭ)
Перераспределение энергии и закон сохранения энергии встречаются в каждом разделе. Сначала мы знакомимся с ними в механике, а потом встречаем почти в каждой теме.
Приведу примеры:
- I начало термодинамики в молекулярной физике — это вид ЗСЭ
- ЗСЭ встречается в электродинамике в задачах на электрические цепи
- Уравнение Эйнштейна для фотоэффекта в квантовой физике — это тип ЗСЭ
4. Работа
Работа — это форма энергии. Она вам понадобится:
- В механике (механическая работа)
- В молекулярной физике (работа газа и работа над газом)
- В электродинамике (работа электрического поля)
Поэтому советую вам основательно разобраться с этим понятием.
5. Движение по окружности
На эту тему стоит обратить особое внимание. Она появляется в задачах:
- На магнетизм и силу Лоренца
- На гравитацию
- На астрофизику
Есть частый тип задания с развернутым ответом на фотоэффект. В такой задаче электрон попадает в магнитное поле и начинает двигаться по окружности.
План успешной подготовки к ЕГЭ по физике
При подготовке к экзамену не пренебрегайте ничем. Решайте и первую часть, и вторую.
Двигайтесь по материалу в соответствие с кодификатором:
- Механика
- Молекулярная физика
- Электродинамика
- Квантовая физика
Одновременно с изучением теории. Как только вы выучили одну тему, сразу же начинайте тренироваться на задачах. Именно так вы запоминаете формулы и законы.
ЕГЭ — это сугубо практический экзамен, поэтому важно практиковаться, практиковаться и еще раз практиковаться. Всю теорию нужно уметь применять на практике.
I часть ЕГЭ по физике
Многие школьники готовятся только ко второй части экзамена. Думают, если вторую часть они могут решать, то и первая просто решится… Такие ученики ошибаются в простых заданиях, а для поступления в вуз мечты важен каждый балл! Ни в коем случае не стоит недооценивать первую часть.
Не стоит считать, что первая часть слишком простая и к ней можно не готовиться. Если пренебрежительно относиться к первой части, экзамен можно завалить, даже если вы решите всю вторую часть. Помните, что первая тестовая часть — это ⅔ всего экзамена.
В этой статье мы уже рассказывали, что можно набрать 80+ баллов, если сделать полностью первую часть, а вторую решить лишь на 40%.
Первую часть нужно атаковать постепенно. Начать с изучения механики, потом приниматься за молекулярную физику, за электродинамику, и в последнюю очередь за квантовую физику.
В первой части есть задания базового уровня на 1 балл и повышенного уровня на 2 балла.
Задания базового уровня на 1 балл
Обычно такие задания решаются применением 1-2 физических законов и формул. Именно с заданий базового уровня я советую начинать. Как только вы прошли одну тему по физике, сразу же приступайте к решению задач формата ЕГЭ по этой теме!
Задания повышенного уровня на 2 балла
Первая часть ЕГЭ по физике включает в себя задания трех типов:
- Выбор 2 из 5 утверждений
- Анализ изменения величин
- Установление соответствия
Подробные разборы каждого типа заданий читайте в нашей предыдущей статье.
Стоит отметить, что в ЕГЭ можно все аргументировать, объяснить или опровергнуть. Как на дебатах. Только способ объяснения — это формулы и математические вычисления.
II часть ЕГЭ по физике
Распространенный миф: «II часть ЕГЭ по физике очень сложная, и у меня не получится к ней подготовиться». Часто мои новые ученики думают именно так, и я всегда развеиваю этот миф.
В задачах с развернутым ответом есть приемы и алгоритмы, которые часто встречаются. Побольше практикуйтесь и запоминайте эти приемы. Задачи второй части можно и нужно решать.
Когда начать решать задачи с развернутым ответом из II части? После освоения теории. Чем раньше — тем лучше. Сначала отработайте знания на более легких заданиях. Как только научитесь применять формулы в задачах на 1 балл, сразу же переходите ко второй части.
Обычно при решении задач с развернутым ответом нужно применить от 2 до 4 формул и законов. Каждый из этих законов по отдельности использовать просто, но применить их в комбинации — это уже довольно сложная задача для учеников.
Лайфхаки решения II части
Во второй части ЕГЭ по физике есть стандартных приемов к решению задач, которые нужно знать каждому. Если вы их поймете и запомните, то будете решать часть КИМа стабильно хорошо.
1. Закон сохранения импульса + закон сохранения энергии
В механике эти два закона часто применяются вместе. Эти законы помогают решить задачи на соударения, на слипание и на взрывы тел. Пример:
2. Закон сохранения энергии + второй закон Ньютона
Эта связка особенно часто встречается. Например, она помогает решать задачи на аттракционы трюк «мертвую петлю». Еще понадобятся знания движения по окружности. Пример:
3. Второй закон Ньютона + уравнение Менделеева-Клапейрона
Эти законы связывают механику и молекулярную физику. Они помогают решать задачи на цилиндры с поршнями. Пример:
4. Уравнение Менделеева-Клапейрона + сила Архимеда + второй закон Ньютона
С помощью этой связки решаются задачки на воздушные шарики. Пример:
5. Фотоэффект + сила Лоренца в магнитном поле + движение по окружности
Обычно задания на электродинамику и квантовую физику пугают школьников, поэтому рекомендую прочитать статью, где мы подробно разбираем этот тип задач.
На самом деле, все это — лишь малая часть лайфхаков, которые нужно знать, чтобы сдать ЕГЭ по физике 2023 на высокий балл.
Когда я готовлю своих учеников к ЕГЭ, мы разбираем все из них. Причем сюда можно отнести не только лайфхаки по решению заданий, но и лучшие способы оформления решений. Часто бывает, что формулировка ответов может стоить выпускнику нескольких баллов — а все из-за того, что он или она недостаточно четко сформулировал(а) мысль.
Чтобы этого не случилось с вами, приходите на мои занятия по подготовке к ЕГЭ по физике 2023. Мы еще подробнее разберем структуру экзамена и научимся быстро и правильно решать все задачи. Жду вас!
Готовиться к ЕГЭ по физике 2023 необходимо заранее. В идеале вы должны знать теорию, уметь читать графики и схемы, решать практические задачи.
Структура итогового испытания
Госэкзамен состоит из 30 заданий, которые поделены на две части. Чтобы вы имели представление о структуре тестов, мы предлагаем вам обратить к следующей таблице.
Задания | Тип ответа |
3–5, 9–11, 14-16, 20 | Целое число или десятичная дробь |
1, 2, 6, 7, 12, 13, 17, 18 | Последовательность |
8, 19, 21-23 | Две цифры |
24–30 | Требует развернутого ответа с описанием алгоритма решения |
Блоки теории единого государственного экзамена по физике:
- Механика.
- Физика молекулярная.
- Квантовая физика и составные части астрофизики.
- Электродинамика и спецтеория относительности.
Конечно, выпускнику придется выучить большое количество материала. Для сдачи ЕГЭ по физике необходимо хорошо знать всю учебную программу, поэтому подготовку следует начинать как можно раньше.
Важно не только хорошо разбираться в физике, но еще и отлично знать математику. Данная дисциплина значительно упростит решение практических заданий.
Принципы подготовки
Начинайте с теоретических материалов, а затем переходите изучению понятий и принципов. Разобравшись с какой-то определенной темой, переходите к решению практических задач. Большим подспорьем будут онлайн-тесты, позволяющие проверить знания и выявить явные пробелы.
ЕГЭ по физике состоит из 31 задания в двух частях.
Первая часть содержит 23 задания с кратким ответом:
- 13 заданий с кратким ответом в виде числа, слова или двух чисел
- 10 заданий на установление соответствия и множественный выбор
Вторая часть состоит из восьми заданий — решение задач. Для трех задач необходимо привести краткий ответ (задания с 24 по 26) и для пяти оставшихся заданий ответ должен быть развернутый (с решением).
В ЕГЭ по физике нас будут ждать следующие темы:
- Механика (кинематика, динамика, статика, законы сохранения в механике, механические колебания и волны)
- Молекулярная физика (молекулярно-кинетическая теория, термодинамика)
- Электродинамика и основы СТО (электрическое поле, постоянный ток, магнитное поле, электромагнитная индукция, электромагнитные колебания и волны, оптика, основы СТО)
- Квантовая физика (корпускулярно-волновой дуализм, физика атома, физика атомного ядра)
Общее количество заданий в экзаменационной работе по каждому из разделов приблизительно пропорционально его содержательному наполнению и учебному времени, отводимому на изучение данного раздела в школьном курсе физики.
Части работы | Количество заданий | Максимальный первичный бал | Тип заданий |
1 часть | 24 | 34 | Краткий ответ |
2 часть | 8 | 18 | Развернутый ответ |
Итого | 32 | 52 |
Время
На выполнение работы отводится 235 минут. Рекомендуемое время на выполнение заданий различных частей работы составляет:
- для каждого задания с кратким ответом 3–5 минут
- для каждого задания с развернутым ответом 15–25 минут
По общему мнению экспертов и школьников, экзамен по физике – один из самых сложных для одиннадцатиклассников. Он требует глубокого понимания материала, умения применять полученные знания на практике и мыслить логически. И, конечно же, формулы по физике для ЕГЭ очень важны, поскольку без них не удастся разобраться с заданиями КИМ, особенно с наиболее сложными из них.
Сейчас существует множество бесплатных инструментов, которые позволяют подготовиться к ЕГЭ и увеличить балл на 40% с минимальными временными затратами.
Наиболее эффективными являются подписки на видеокурсы. Попробовать можно с
компанией Twostu
,
тем более здесь это ничего не стоит.
Содержание
- Распределение заданий по разделам курса физики
- Механика
- Молекулярная физика
- Электродинамика, оптика и СТО
- Квантовая физика и элементы астрофизики
- Видео по теме
- Комментарии
Распределение заданий по разделам курса физики
Разработчики контрольно-измерительных материалов ориентируются на школьную программу и включают в них задания из всех пройденных разделов физики. Количество упражнений чаще всего зависит от объема материала, количества изученных тем и времени, затраченного на их освоение. Таблица ниже демонстрирует, как представлены разные разделы дисциплины в КИМ.
Раздел физики | Число заданий | ||
---|---|---|---|
Вся работа | Первая часть | Вторая часть | |
Механика | 9–11 | 7–9 | 2 |
Молекулярная физика | 7–8 | 5–6 | 2 |
Электродинамика | 9–11 | 6–8 | 3 |
Квантовая физика и элементы астрофизики | 5–6 | 4–5 | 1 |
Всего | 32 | 24 | 8 |
Если говорить о том, что требуется от учащихся для выполнения тех или иных заданий, то здесь ситуация выглядит так:
- на проверку знания и понимания основных физических законов, величин, постулатов, понятий и принципов направлено 11 упражнений из первой части;
- еще 11 заданий из первой части предполагают умение участников ЕГЭ описывать и объяснять свойства тел, физические явления и результаты экспериментов, а также приводить конкретные примеры использования знаний по физике на практике;
- 2 упражнения первой части посвящены способности отличать научную гипотезу от теории, а также умению делать правильные выводы из проведенного эксперимента;
- все 8 заданий второй части КИМ направлены на умение решать физические задачи;
- в некоторых вариантах также может быть задание на способность применить полученные умения и знания в жизни.
В экзаменационную работу включают вопросы с разным уровнем сложности. 21 задание базового уровня трудности – на проверку владения основными понятиями и законами. 7 усложненных упражнений, помимо основных теоретических понятий, требуют умения решать задачи с использованием 1-2 основных понятий по физике из конкретной темы. Для выполнения 4 наиболее трудных заданий участнику необходимо знать все формулы по физике для ЕГЭ, поскольку эти задачи находятся на стыке двух, а то и трех разделов дисциплины.
Механика
На изучение раздела «Механика» в школьной программе выделяется больше всего времени. Здесь изучают движение материальных тел, а также взаимодействие между ними. Главной задачей механики считается возможность в любой момент времени определить положение тела в пространстве.
Школьники знакомятся с некоторыми основными направлениями механики, такими как статика, динамика, кинематика, законы сохранения, механические волны и колебания. Этот раздел учащиеся в большинстве своем хорошо понимают и не испытывают серьезных трудностей на экзамене.
Основные элементы содержания проверяют на экзамене путем выполнения ряда заданий. Кратко остановимся на том, каким темам посвящены те или иные упражнения КИМ.
Подраздел * | Элементы содержания |
---|---|
Кинематика | Движение (прямолинейное равномерное и равноускоренное, движение по окружности). |
Динамика | Законы Ньютона и Гука, закон всемирного тяготения, сила трения, давление. |
Статика | Сила Архимеда, закон Паскаля, момент силы, давление в жидкости. |
Законы сохранения | Потенциальная и кинетическая энергия, законы сохранения импульса и механической энергии, мощность силы и работа. |
Механические волны и колебания | Колебания, их амплитуда и фаза, период и частота, резонанс. Маятник, звук, механические волны. |
* Теория и формулы по каждому из подразделов открываются по ссылкам.
Вопросам механики посвящены задания №1–7 первой части. 6 из них базового уровня сложности, а 1 – повышенного. Два упражнения (№22 и №23) находятся на стыке механики и квантовой физики. Еще 2 задачи включены во вторую часть.
Молекулярная физика
Молекулярная физика изучает свойства тел с точки зрения их молекулярного строения и взаимодействия частиц (ионов, молекул, атомов). Она рассматривает строение вещества, а также его изменение под воздействием внешних факторов: электромагнитного поля, давления, температуры. Проверяемые на экзамене элементы содержания перечислены в таблице ниже.
Подраздел * | Элементы содержания |
---|---|
Молекулярная физика |
Строение твердых тел, жидкостей и газов, движение частиц, диффузия. Связь кинетической энергии с давлением и температурой газа. Уравнение Менделеева – Клайпертона. Закон Дальтона. Изопроцессы. Влажность воздуха. Агрегатные состояния вещества, их изменение. |
Термодинамика |
Температура и тепловое равновесие. Удельная теплота и теплоемкость. Законы термодинамики (первый и второй). Принцип действия и КПД тепловых машин. Тепловой баланс. |
* Теория и формулы по каждому из подразделов открываются по ссылкам.
В КИМ вопросам молекулярной физики посвящены задания №8–12 первой части и задачи №25 и №30 второй части. Теория для ЕГЭ по физике по этим заданиям подробно расписана в школьных учебниках, а навык работы с практическими задачами необходимо развивать путем их активного решения из печатных пособий и интернет-ресурсов.
Электродинамика, оптика и СТО
Еще один раздел физики, по объему сопоставимый с механикой, – электродинамика. Он достаточно сложен и дается учащимся нелегко. Электродинамика изучает взаимодействие тел с электромагнитными полями, излучение и свойства тока. На экзамене одиннадцатиклассникам необходимо будет подтвердить свои знания по таким темам.
Подраздел | Элементы содержания |
---|---|
Электрическое поле |
Электрозаряд и электрополе. Закон Кулона. Потенциальность и напряжение. Проводники, диэлектрики, конденсаторы. |
Постоянный ток |
Сила тока. Законы Ома для полной цепи и участка цепи. Сопротивление. Работа и мощность тока. Закон Джоуля – Ленца. Полупроводники. |
Магнитное поле |
Магнитная индукция. Суперпозиция магнитных полей. Силы Ампера и Лоренца. Опыт Эрстеда. |
Электромагнитная индукция |
Закон Фарадея. Правило Ленца. Индуктивность. Энергия магнитного поля. |
Электромагнитные волны и колебания |
Колебательный контур и сохранение в нем энергии. Формула Томсона. Переменный ток. Производство электроэнергии, ее производство и потребление. Свойства и использование в быту электромагнитных волн. |
Оптика |
Распространение, преломление и отражение света. Линзы рассеивающие и собирающие. Интерференция, дифракция и дисперсия света. Устройство фотоаппарата. Глаз. |
К этому разделу примыкают и темы, посвященные основам теории относительности. Это скорость света в вакууме, открытия Эйнштейна, энергия и импульс частицы. В КИМ владение материалом по электродинамике и СТО проверяется при помощи упражнений №13–18 первой части, а также №26, 31 и 32 второй части.
Для глубокой проработки курса электродинамики целесообразней использовать специальные пособия. В сжатом виде основные формулы из этого раздела представлены в кодификаторе (см. рисунки ниже).
Квантовая физика и элементы астрофизики
Наиболее трудна для понимания старшеклассниками квантовая физика, изучающая квантовую теорию поля, квантовую механику и математическое описание процессов. Разрабатываться это направление начало только в XX веке, благодаря работам Эйнштейна, Планка, Шредингера, Гейзенберга и других ученых. В школьной программе оно занимает не так много места, как другие разделы, поэтому количество заданий по квантовой физике несколько меньше.
Остановимся на некоторых элементах содержания, которые необходимо знать, чтобы успешно пройти испытание.
Подраздел | Элементы содержания |
---|---|
Корпускулярно-волновой дуализм |
Гипотеза и формула Планка. Фотон, его энергия и импульс. Фотоэффект, уравнение Эйнштейна. Волны де Бройля. Дифракция электронов. Давление света. |
Физика атома |
Модель атома. Работы Бора. Фотоны, их поглощение и излучение. Линейчатые спектры. Лазер. |
Физика атомного ядра |
Массовое число и заряд ядра. Изотопы. Ядерные силы. Радиоактивность и радиоактивный распад. Гамма-излучение. Ядерные реакции. |
Элементы астрофизики |
Строение Солнечной системы. Характеристики звезд и наука об их происхождении. Галактики. Вселенная, ее масштабы и эволюция. |
В экзаменационной работе квантовой физике и астрофизике посвящены задания №19–21 и №24 первой части. Задачи №26, 27 и 32 основаны на знании школьниками нескольких разделов: кроме квантовой физики, еще механики и электродинамики. Основные формулы, имеющие отношение к этой теме, вынесены в отдельную таблицу кодификатора.
Изучения одной теории по физике для подготовки к ЕГЭ недостаточно, нужно еще применять эти знания на практике, поэтому важную роль играет умение решать задачи. Участники должны быть способны анализировать графики и таблицы, интерпретировать результаты экспериментов, выявлять соответствия, разбираться в изменении физических величин в процессах.
Перед выпускниками школ с хорошим знанием физики и высоким баллом ЕГЭ открываются неплохие перспективы дальнейшего образования. А талантливый студент или аспирант вполне может трудоустроиться в крупную компанию и в полной мере реализовать свой потенциал.
Автор курса — профессиональный репетитор по физике и математике, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев. Оригиналы статей находятся на сайте автора .
Автор статей о секретах решения задач ЕГЭ по физике — В. З. Шапиро.
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Полный онлайн курс по физике ЕГЭ + Секреты решения заданий ЕГЭ по физике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
09.03.2023
Как сдать ЕГЭ по физике? Безусловно, усердно готовиться! Вполне возможно самостоятельное углублённое повторение материала, начиная с 7 класса, усваивая теорию, и запоминая формулы по темам и сверяя их с кодификатором на сайте ФИПИ.
Для упешной сдачи ЕГЭ по физике необходимо научиться решать задачи по основным разделам физики, входящим в программу полной средней школы. На нашем сайте вы можете самостоятельно пройти тестирование по тематическим тестам ЕГЭ по физике. В них включены задания базового и повышенного уровня сложности. Пройдя их, вы определите необходимость более подробного повторения того или иного раздела физики и совершенствования навыков решения задач для успешной сдачи ЕГЭ по физике.
Важным этапом подготовки к ЕГЭ по физике 2023 года является ознакомление с демонстрационным вариантом ЕГЭ по физике 2023 года. Демоверсия 2023 года опубликована на сайте Федерального института педагогических измерений (ФИПИ). Демонстрационный вариант составляется с учетом всех поправок и особенностей предстоящего экзамена по предмету в будущем 2023 году.
Что же представляет собой демонстрационный вариант ЕГЭ по физике? Демоверсия содержит типовые задания, которые по своей структуре, качеству, тематике, уровню сложности и объёму полностью соответствуют заданиям будущих реальных вариантов КИМ по физике 2023 года. Ознакомиться с демонстрационным вариантом ЕГЭ по физике 2023 можно на сайте ФИПИ: www.fipi.ru
В содержании теоретического материала ЕГЭ 2023 по физике произошли незначительные изменения: в кодификаторе появилось определение центра масс и закон Кулона для двух точечных тел в диэлектрике.
В первой части интегрированные задания, включающие в себя элементы содержания не менее чем из трёх разделов курса физики, которые располагались под номерами 1 и 2 в КИМ ЕГЭ 2022 г. перенесены на номера 20 и 21 соответственно, а 1 и 2 задания вернулись к тем, какими и были всегда: кинематика и динамика базового уровня.
Во второй части задание 24 электростатика ( была механика ), 25 — термодинамика, 26 — оптика, 28 — комбинированная на электродинамику и механику, 29 — фотоэффект.
Расширена тематика 30 заданий — расчетных задач высокого уровня по механике. Кроме задач на применение законов Ньютона и законов сохранения в механике добавлены задачи по статике.
Целесообразно при участии в основном потоке сдачи ЕГЭ ознакомиться с экзаменационными материалами досрочного периода ЕГЭ по физике, публикуемыми на сайте ФИПИ после проведения досрочного экзамена. При подготовке следовать «Методическим рекомендациям для выпускников по самостоятельной подготовке к ЕГЭ по физике», ежегодно публикуемым на сайте ФИПИ.
Для выпускников, достойно подготовленных к экзамену, будет хорошим решение принять участие в досрочном ЕГЭ 2023: немногочисленность участников, спокойная обстановка и шанс на участие в основном этапе ЕГЭ
Фундаментальные теоретические знания по физике крайне необходимы для успешной сдачи ЕГЭ по физике. Важно, чтобы эти знания были систематизированы. Достаточным и необходимым условием освоения теории является овладение материалом, изложенным в школьных учебниках по физике. Для этого требуются систематические занятия, направленные на изучение всех разделов курса физики. Особое внимание следует уделить подготовке к расчётным и качественным задачам, входящих в ЕГЭ по физике в части задач повышенной и высокой сложности с развёрнутым ответом, решение которых необходимо для получения высокого балла за экзамен 75+
Только глубокое, вдумчивое изучение материала с осознанным его усвоением: знание физических законов, процессов и явлений в совокупности с навыком решения задач обеспечат успешную сдачу ЕГЭ по физике и возможность поступления в выбранный Вами университет
Если Вам нужна подготовка к ЕГЭ или ОГЭ по физике, вам будет рада помочь репетитор по физике — Виктория Витальевна.
Формулы ЕГЭ по физике 2023
- Кинематика
- Динамика
- Молекулярная физика и термодинамика
- Электродинамика
- Оптика
- Квантовая физика
- Ядерная физика
Механика — один из самых значимых и наиболее широко представленных в заданиях ЕГЭ раздел физики. Подготовка по этому разделу занимает значительную часть времени подготовки к ЕГЭ по физике
Кинематика
Равномерное движение:
v = const Sx = vx t
x = x0 + Sx x = x0 + vx t
Равноускоренное движение:
ax = (vx — v0x)/t
vx = v0x + axt
Sx = v0xt + axt2/2 Sx =( vx2 — v0x2)/2ax
x = x0 + Sx x = x0 + v0xt + axt2/2
Свободное падение:
y = y0 + v0yt + gyt2/2 vy = v0y + gyt Sy = v0yt + gyt2/2
Путь, пройденный телом, численно равен площади фигуры под графиком скорости.
Средняя скорость:
vср = S/t S = S1 + S2 +…..+ Sn t = t1 + t2 + …. + tn
Закон сложения скоростей:
Вектор скорости тела относительно неподвижной системы отсчёта равен геометрической сумме скорости тела относительно подвижной системы отсчёта и скорости самой подвижной системы отсчёта относительно неподвижной.
Движение тела, брошенного под углом к горизонту
Уравнения скорости:
vx = v0x = v0cosa
vy = v0y + gyt = v0sina — gt
Уравнения координат:
x = x0 + v0xt = x0 + v0cosa t
y = y0 + v0yt + gyt2/2 = y0 + v0sina t + gyt2/2
Ускорение свободного падения: gx = 0 gy = — g
Движение по окружности
aц = v2/R =ω 2R v =ω R T = 2πR/v
Статика
Момент силы М = Fl , где l — плечо силы F — кратчайшее расстояние от точки опоры до линии действия силы
Условия равновесия рычага:
Сумма моментов сил, вращающих рычаг по часовой стрелке, равна сумме моментов сил, вращающих против часовой стрелки
М1 + М2 +… + Мn = Мn+1 + Мn+2+ …..
Равнодействующая всех сил, приложенных к рычагу равна нулю
Закон Паскаля: Давление, производимое на жидкость или газ передаётсяв любую точку одинаково во всех напрвлениях
Давление жидкости на глубине h : p = ρgh , учитывая давление атмосферы: p = p0 + ρgh
Закон Архимеда : FАрх = P вытесн — Сила Архимеда равна весу жидкости в объёме погружённого тела
Сила Архимеда FАрх = ρg Vпогруж — выталкивающая сила
Подъёмная сила F под = FАрх — mg
Условия плавания тел:
FАрх > mg — тело всплывает
FАрх = mg — тело плавает
FАрх < mg — тело тонет
Динамика
Первый закон Ньютона:
Существуют инерциальные системы отсчёта, относительно которых свободные тела сохраняют свою скорость.
Второй закон Ньютона: F = ma
Второй закон Ньютона в импульсной форме: FΔt = Δp Импульс силы равен изменению импульса тела
Третий закон Ньютона: Сила действия равна силе противодействи. Силы равны по модулю и противоположны по направлению F1 = F2
Сила тяжести Fтяж = mg
Вес тела P = N ( N — сила реакции опоры)
Сила упругости Закон Гука Fупр = kΙΔxΙ
Сила трения Fтр = µ N
Давление p = Fд/S [ 1 Па ]
Плотность тела ρ = m/V [ 1 кг/м3 ]
Закон Всемирного тяготения F = G m1 m2/R2
Fтяж = GMзm/Rз2 = mg g = GMз/Rз2
По Второму закону Ньютона: maц = GmMз/(Rз + h)2
mv2/(Rз + h) = GmMз/(Rз + h)2
— первая космическая скорость
— вторая космическая скорость
Работа силы A = FScosα
Мощность N = A/t = Fvcosα
Кинетическая энергия Eк = m ʋ2/2 = P2/2m
Теорема о кинетической энергии: A = ΔЕк
Потенциальная энергия Eп = mgh — энергия тела над Землёй на высоте h
Еп = kx2/2 — энергия упруго деформированного тела
А = — Δ Eп — работа потенцильных сил
Закон сохранения механической энергии
ΔЕ = 0 ( Ек1 + Еп1 = Ек2 + Еп2 )
Закон сохранения энергии
ΔЕ = Асопр ( Асопр — работа всех непотенциальных сил )
Колебания и волны
Механические колебания
Т — период колебаний — время одного полного колебания [ 1с ]
ν — частота колебаний — число колебаний за единицу времени [ 1Гц ]
T = 1/ ν
ω — циклическая частота [1 рад/с ]
ω = 2πν = 2π/T T = 2π/ω
Период колебаний математического маятника: T = 2π(l/g)1/2
Период колебаний пружинного маятника: T = 2π(m/k)1/2
Уравнение гармонических колебаний: x = xm sin(ωt +φ0)
Уранение скорости: ʋ = x, = xmωcos(ωt + φ0 ) = ʋmcos(ωt + φ0) ʋm = xmω
Уравнение ускорения: a = ʋ, = — xmω2sin(ωt + φ0 ) am = xmω2
Энергия гармонических колебаний m ʋm2/2 = kxm2/2 = m ʋ2/2 + kx2/2 = const
Волна — распространение колебаний в пространстве
скорость волны ʋ = λ /T
Уранение бегущей волны
x = xmsinωt — уравнение колебаний
x — смещение в любой момент времени, xm — амплитуда колебаний
ʋ — скорость распространения колебаний
Ϯ — время, через которое придут колебания в точку x: Ϯ = x/ʋ
Уранение бегущей волны: x = xm sin(ω( t — Ϯ )) = xm sin(ω( t — x/ʋ ))
x — смещение в любой момент времени
Ϯ — время запаздывания колебаний в данной точке
Молекулярная физика и термодинамика
Количество вещества v = N/NA
Молярная масса M = m0NA
Число молей v = m/M
Число молекул N = vNA = NAm/M
Основное уравнение МКТ p = m0nvср2/3
Температура — мера средней кинетической энергии молекул Eср = 3kT/2
Зависимость давления газа от концентрации и температуры p = nkT
Связь давления со средней кинетической энергией молекул p = 2nEср/3
Связь температур T = t + 273
Уравнение состояния идеального газа pV = mRT/M = vRT = NkT — уравнение Менделеева
p = ρRT/M
p1V1//T1 = p2V2/T2 = const для постоянной массы газа — уравнение Клапейрона
Закон Дальтона: Давление смеси газов равно сумме давлений газов, находящихся в сосуде
p = p1 + p2 + …
Газовые законы
Закон Бойля-Мариотта: pV = const если T = const m = const
Закон Гей-Люссака: V/T = const если p = const m = const
Закон Шарля: p/T = const если V = const m = const
Относительная влажность воздуха
φ = ρ/ρ0· 100%
Внутренняя энергия U = 3mRT/2M
Изменение внутренней энергии ΔU = 3mRΔT/2M
Об изменении внутренней энергии судим по изменению абсолютной температуры!!!
Работа газа в термодинамике A‘ = pΔV
Работа внешних сил над газом A = — A’
Расчёт количества теплоты
Количество теплоты, необходимое для нагревания вещества (выделяющееся при его охлаждении) Q = cm(t2 — t1)
с — удельная теплоёмкость вещества
Количество теплоты, необходимое для плавления кристаллического вещества при температуре плавления Q = λm
λ — удельная теплота плавления
Количество теплоты необходимое для превращения жидкости в пар Q = Lm
L — удельная теплота парообразования
Количество теплоты, выделяющееся при сгорании топлива Q = qm
q — удельная теплота сгорания топлива
Перый закон термодинамики ΔU = Q + A
Q = ΔU + A’
Q — количество теплоты, полученное газом
Перый закон термодинамики для изопроцессов:
Изотермический процесс: T = const
Q = A’
Изохорный процесс: V = const
ΔU =Q
Изобарный процесс: p = const
ΔU = Q + A
Адиабатный процесс: Q = 0 (в теплоизолированной системе)
ΔU = A
КПД тепловых двигателей
η = (Q1 — Q2) /Q1 = A’/Q1= 1 — Q2/Q1
Q1 — количество теплоты, полученное от нагревателя
Q2 — количество теплоты, отданное холодильнику
Максимальное значение КПД теплового двигателя (цикл Карно:) η =(T1 — T2)/T1
T1 — температура нагревателя
T2 — температура холодильника
Уравнение теплового балланса: Q1 + Q2 + Q3 + … = 0 ( Qполуч = Qотд )
Электродинамика
Наряду с механикой электординамика занимает значительную часть заданий ЕГЭ и требует интенсивной подготовки для успешной сдачи экзамена по физике.
Электростатика
Закон сохранения электрического заряда:
В замкнутой системе алгебраическая сумма электрических зарядов всех частиц сохраняется
Закон Кулона F = kq1q2/R2 = q1q2/4πε0R2 — сила взаимодействия двух точечных зарядов в вакууме
Одноимённые заряды отталкиваются, а разноимённые притягиваются
Напряжённость — силовая характеристика электрического поля точечного заряда
E = F/q
E = kq0/R2 — модуль напряжённости поля точечного заряда q0 в вакууме
Направление вектора Е совпадает с направлением силы, действующей на положительный заряд в данной точке поля
Принцип суперпозиций полей: Напряжённость в данной точке поля равна векторной сумме напряжённостей полей, действующих в этой точке:
φ = φ1 + φ2 + …
Работа электрического поля при перемещении заряда A = qE( d1 — d2) = — qE(d2 — d1) =q(φ1 — φ2) = qU
A = — ( Wp2 — Wp1)
Wp = qEd = qφ — потенциальная энергия заряда в данной точке поля
Потенциал φ = Wp/q =Ed
Разность потенциалов — напряжение: U = A/q
Связь напряжённости и разности потенциалов E = U/d
Электроёмкость
C = q/U
C =εε0S/d — электроёмкость плоского конденсатора
Энергия плоского конденсатора: Wp = qU/2 = q2/2C = CU2/2
Параллельное соединение конденсаторов: q = q1 +q2 + … , U1 = U2 = …, С = С1 + С2 + …
Последовательное соединение соединение конденсаторов: q1 = q2 = …, U = U1 + U2 + …, 1/С =1/С1 +1/С2 + …
Законы постоянного тока
Определение силы тока: I = Δq/Δt
Закон Ома для участка цепи: I = U/R
Расчёт сопротивления проводника: R = ρl/S
Законы полследовательного соединения проводников:
I = I1 = I2 U = U1 + U2 R = R1 + R2
U1/U2 = R1/R2
Законы параллельного соединения проводников:
I = I1 + I2 U = U1 = U2 1/R = 1/R1 +1/R2 + … R = R1R2/(R1 + R2) — для 2-х проводников
I1/I2 = R2/R1
Работа электрического поля A = IUΔt
Мощность электрического тока P = A/Δt = IU I2R = U2/R
Закон Джоуля-Ленца Q = I2RΔt — количество теплоты, выделяемое проводником с током
ЭДС источника тока ε = Aстор/q
Закон Ома для полной цепи
IR = Uвнеш — напряжение на внешней цепи
Ir = Uвнутр — напряжение внутри источника тока
Электромагнетизм
Магнитное поле — особая форма материя, вознкающая вокруг движущихся зарядов и действующая на движущиеся заряды
Магнитная индукция — силовая характеристика магнитного поля
B = Fm/IΔl
Fm = BIΔl
Сила Ампера — сила, действуюшая на проводник с током в магнитном поле
F= BIΔlsinα
Направление силы Ампера определяется по правилу левой руки:
Если 4 пальца левой руки направить по направлению тока в проводнике так, чтобы линии магнитной индукции входили в ладонь, тогда большой палец, отогнутый на 90 градусов укажет направление действия силы Ампера
Сила Лоренца- сила, действующая на электрический заряд, движущийся в магнитном поле
Fл = qBʋsinα
Направление силы Лоренца определяется по правилу левой руки:
Если 4 пальца левой руки направить по направлению движения положительного заряда ( против движения отрицательного), так, чтобы магнитные линии входили в ладонь, тогда отгнутый на 90 градусов большой палец укажет направление силы Лоренца
Магнитный поток Ф = BScosα [ Ф ] = 1 Вб
Правило Ленца:
Возникающий в замкнутом контуре индукционный ток своим магнитным полем препятствует тому изменению магнитного потока, котрым он вызван
Закон электромагнитной индукции:
ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через повернхность, ограниченную контуром
ЭДС индукции в движушихся проводниках:
Индуктивность L = Ф/I [ L ] = 1 Гн
Ф = LI
ЭДС самоиндукции:
Энергия магнитного поля тока : Wm = LI2/2
Энергия электрического поля: Wэл = qU/2 = CU2/2 = q2/2C
Электромагнитные колебания — гармонические колебания заряда и тока в колебательном контуре
q = qm sinω0t — колебания заряда на конденсаторе
u = Umsinω0t — колебания напряжения на конденсаторе
Um = qm/C
i = q’ = qmω0cosω0t — колебания силы тока в катушке
Imax = qmω0 — амплитуда силы тока
Формула Томсона
Закон сохранения энергии в колебательном контуре
CU2/2 + LI2/2 = CU2max/2 = LI2max/2 = Const
Переменный электрический ток:
Ф = BScosωt
e = — Ф’ = BSωsinωt = Emsinωt
u = Umsinωt
i = Imsin(ωt +π/2)
Свойства электромагнитных волн
Оптика
Закон отражения: Угол отражения равен углу падения
Закон преломления: sinα/sinβ = ʋ1/ ʋ2 = n
n — относительный показатель преломления второй среды к первой
n = n2/n1
n1 — абсолютный показатель преломления первой среды n1 = c/ʋ1
n2 — абсолютный показатель преломления второй среды n2 = c/ʋ2
При переходе света из одной среды в другую меняется его длина волны, частота остаётся неизменной v1 = v2 n1 λ1 = n1 λ2
Полное отражение
Явление полного внутреннего отражения наблюдается при переходе света из более плотонй среды в менее плотную, когда угол преломления достигает 90°
Предельный угол полного отражения: sinα0 = 1/n = n2/n1
Формула тонкой линзы 1/F = 1/d + 1/f
d — расстояние от предмета до линзы
f — расстояние от линзы до изображения
F — фокусное расстояние
Оптическая сила линзы D = 1/F
Увеличение линзы Г = H/h = f/d
h — высота предмета
H — высота изображения
Дисперсия — разложение белого цвета в спектр — зависимость показателя преломления света от его цвета
Интерференция — сложение волн в пространстве
Условия максимумов: Δd = k λ — целое число длин волн
Условия минимумов: Δd = ( 2k + 1) λ/2 — нечётное число длин полуволн
Δd — разность хода двух волн
Дифракция — огибание волной препятствия
Дифракционная решётка
dsinα = k λ — формула дифракционной решётки
d — постоянная решётки
dx/L = k λ
x — расстояние от центрального максимума до изображения
L — расстояние от решётки до экрана
Квантовая физика
Энергия фотона E = hv
Уравнение Эйнштейна для фотоэффекта hv = Aвых + mʋ2/2
mʋ2/2 = eUз Uз — запирающее напряжение
Красная граница фотоэффекта: hv = Aвых vmin = Aвых/h λmax = c/vmin
Энергия фотоэлектронов определяется частотой света и не зависит от интенсивности света. Интенсивность пропорциональна числу квантов в пучке света и определяет число фотоэлектронов
Импульс фотонов
E = hv = mc2
m = hv/c2 p = mc = hv/c = h/ λ — импульс фотонов
Квантовые постулаты Бора:
Атом может находиться только в определённых квантовых состояниях, в которых не излучает
Энергия излучённого фотона при переходе атома из стационарного состояния с энергией Еk в стационарное состояние с энергией Еn :
hv = Ek — En
Энергетические уровни атома водорода En = — 13,55/n2 эВ, n =1, 2, 3,…
Ядерная физика
Закон радиоактивного распада. Период полураспада T — время, за которое распадается половина из большого числа имеющихся радиоактивных ядер
N = N0 · 2 -t/T
Энергия связи атомных ядер Есв = ΔMc2 = ( ZmP +Nmn — Mя )с2
Радиоактивность
Альфа-распад:
Бетта-распад: электронный
Бетта-распад: позитронный
Астрофизика
Физическая природа тел солнечной системы
Физическая природа звёзд
Связь между физическими характеристиками звёзд
Диаграмма Герцшпрунга-Рессела
Ускорние свободного падения вблизи поверхности планеты:
g = GM/R2
G — гравитационная постоянная
M — масса планеты
R — радиус планеты
Первая космическая скорость:
Вторая космическая скорость:
Ускорение свободного падения g = v22/2R = v12/R
Второй закон Ньютона :
maц = mv12/R = mg = GMm/R2
Тесты для подготовки к ЕГЭ по механике представлены по разделам:
- кинематика
- динамика
- законы сохранения
- статика и гидростатика
Тесты для подготовки к ЕГЭ по молекулярной физике и термодинамике:
- молекулярная физика и термодинамика
Тесты для подготовки к ЕГЭ по электродинамике:
- электродинамика
Тесты для подготовки к ЕГЭ по оптике:
- оптика
Тесты для подготовки к ЕГЭ по квантовой физике:
- квантовая физика
Механика
Кинематика
1.1.1 Механическое движение и его виды
1.1.2 Относительность механического движения
1.1.3 Скорость
1.1.4 Ускорение
1.1.5 Равномерное движение
1.1.6 Прямолинейное равноускоренное движение
1.1.7 Свободное падение (ускорение свободного падения)
1.1.8 Движение по окружности с постоянной по модулю скоростью. Центростремительное ускорение
Динамика
1.2.1 Инерциальные системы отсчета. Первый закон Ньютона
1.2.2 Принцип относительности Галилея
1.2.3 Масса тела
1.2.4 Плотность вещества
1.2.5 Сила
1.2.6 Принцип суперпозиции сил
1.2.7 Второй закон Ньютона
1.2.8 Третий закон Ньютона
1.2.9 Закон всемирного тяготения. Искусственные спутники Земли
1.2.10 Сила тяжести
1.2.11 Вес и невесомость
1.2.12 Сила упругости. Закон Гука
1.2.13 Сила трения.
1.2.14 Давление
Статика
1.3.1 Момент силы
1.3.2 Условия равновесия твердого тела
1.3.3 Давление жидкости
1.3.4 Закон Паскаля
1.3.5 Закон Архимеда
1.3.6 Условия плавания тел
Закон сохранения в механике
1.4.1 Импульс тела
1.4.2 Импульс системы тел
1.4.3 Закон сохранения импульса
1.4.4 Работа силы
1.4.5 Мощность
1.4.6 Работа как мера изменения энергии
1.4.7 Кинетическая энергия
1.4.8 Потенциальная энергия
1.4.9 Закон сохранения механической энергии
Механические колебания и волны
1.5.1 Гармонические колебания
1.5.2 Амплитуда и фаза колебаний
1.5.3 Период колебаний
1.5.4 Частота колебаний
1.5.5 Свободные колебания (математический и пружинный маятники)
1.5.6 Вынужденные колебания
1.5.7 Резонанс
1.5.8 Длина волны
1.5.9 Звук
Молекулярная физика. Термодинамика.
Молекулярная физика
2.1.1 Модели строения газов, жидкостей и твердых тел
2.1.2 Тепловое движение атомов и молекул вещества
2.1.3 Броуновское движение
2.1.4 Диффузия
2.1.5 Экспериментальные доказательства атомистической теории. Взаимодействие частиц вещества
2.1.6 Модель идеального газа
2.1.7 Связь между давлением и средней кинетической энергией теплового движения молекул идеального газа
2.1.8 Абсолютная температура
2.1.9 Связь температуры газа со средней кинетической энергией его частиц
2.1.10 Уравнение
2.1.11 Уравнение Менделеева – Клапейрона
2.1.12 Изопроцессы: изотермический, изохорный, изобарный, адиабатный процессы
2.1.13 Насыщенные и ненасыщенные пары
2.1.14 Влажность воздуха
2.1.15 Изменение агрегатных состояний вещества: испарение и конденсация, кипение жидкости
2.1.16 Изменение агрегатных состояний вещества: плавление и кристаллизация
2.1.17 Изменение энергии в фазовых переходах
Термодинамика
2.2.1 Внутренняя энергия
2.2.2 Тепловое равновесие
2.2.3 Теплопередача
2.2.4 Количество теплоты. Удельная теплоемкость вещества
2.2.5 Работа в термодинамике
2.2.6 Уравнение теплового баланса
2.2.7 Первый закон термодинамики
2.2.8 Второй закон термодинамики
2.2.9 КПД тепловой машины
2.2.10 Принципы действия тепловых машин
2.2.11 Проблемы энергетики и охрана окружающей среды
Электродинамика
Электрическое поле
3.1.1 Электризация тел
3.1.2 Взаимодействие зарядов. Два вида заряда
3.1.3 Закон сохранения электрического заряда
3.1.4 Закон Кулона
3.1.5 Действие электрического поля на электрические заряды
3.1.6 Напряженность электрического поля
3.1.7 Принцип суперпозиции электрических полей
3.1.8 Потенциальность электростатического поля
3.1.9 Потенциал электрического поля. Разность потенциалов
3.1.10 Проводники в электрическом поле
3.1.11 Диэлектрики в электрическом поле
3.1.12 Электрическая емкость. Конденсатор
3.1.13 Энергия электрического поля конденсатора
Законы постоянного тока
3.2.1 Постоянный электрический ток. Сила тока
3.2.2 Постоянный электрический ток. Напряжение
3.2.3 Закон Ома для участка цепи
3.2.4 Электрическое сопротивление
3.2.5 Электродвижущая сила. Внутреннее сопротивление источника тока
3.2.6 Закон Ома для полной электрической цепи
3.2.7 Параллельное и последовательное соединение проводников
3.2.8 Смешанное соединение проводников
3.2.9 Работа электрического тока. Закон Джоуля – Ленца
3.2.10 Мощность электрического тока
3.2.11 Носители свободных электрических зарядов в металлах, жидкостях и газах
3.2.12 Полупроводники. Собственная и примесная проводимость полупроводников
Магнитное поле
3.3.1 Взаимодействие магнитов
3.3.2 Магнитное поле проводника с током
3.3.3 Сила Ампера
3.3.4 Сила Лоренца
Электромагнитная индукция
3.4.1 Явление электромагнитной индукции
3.4.2 Магнитный поток
3.4.3 Закон электромагнитной индукции Фарадея
3.4.4 Правило Ленца
3.4.5 Самоиндукция
3.4.6 Индуктивность
3.4.7 Энергия магнитного поля
Электромагнитные колебания и волны
3.5.1 Свободные электромагнитные колебания. Колебательный контур
3.5.2 Вынужденные электромагнитные колебания. Резонанс
3.5.3 Гармонические электромагнитные колебания
3.5.4 Переменный ток. Производство, передача и потребление электрической энергии
3.5.5 Электромагнитное поле
3.5.6 Свойства электромагнитных волн
3.5.7 Различные виды электромагнитных излучений и их применение
Оптика
3.6.1 Прямолинейное распространение света
3.6.2 Закон отражения света
3.6.3 Построение изображений в плоском зеркале
3.6.4 Закон преломления света
3.6.5 Полное внутреннее отражение
3.6.6 Линзы. Оптическая сила линзы
3.6.7 Формула тонкой линзы
3.6.8 Построение изображений в линзах
3.6.9 Оптические приборы. Глаз как оптическая система
3.6.10 Интерференция света
3.6.11 Дифракция света
3.6.12 Дифракционная решетка
3.6.13 Дисперсия света
Основы специальной теории относительности
4.1 Инвариантность скорости света. Принцип относительности Эйнштейна
4.2 Полная энергия
4.3 Связь массы и энергии. Энергия покоя
Квантовая физика
Корпускулярно-волновой дуализм
5.1.1 Гипотеза М. Планка о квантах
5.1.2 Фотоэффект
5.1.3 Опыты А.Г. Столетова
5.1.4 Уравнение Эйнштейна для фотоэффекта
5.1.5 Фотоны
5.1.6 Энергия фотона
5.1.7 Импульс фотона
5.1.8 Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм
5.1.9 Дифракция электронов
Физика атома
5.2.1 Планетарная модель атома
5.2.2 Постулаты Бора
5.2.3 Линейчатые спектры
5.2.4 Лазер
Физика атомного ядра
5.3.1 Радиоактивность. Альфа-распад. Бетта-распад. Гамма-излучение
5.3.2 Закон радиоактивного распада
5.3.3 Нуклонная модель ядра. Заряд ядра. Массовое число ядра
5.3.4 Энергия связи нуклонов в ядре. Ядерные силы
5.3.5 Ядерные реакции. Деление и синтез ядер