На уроке рассматривается разбор 2 задания ЕГЭ по информатике, дается подробное объяснение того, как решать подобные задачи
Содержание:
- Объяснение задания 2 ЕГЭ по информатике
- Таблицы истинности и порядок выполнения логических операций
- Решение заданий 2 ЕГЭ по информатике
- Задания для тренировки
2-е задание: «Таблицы истинности»
Уровень сложности
— базовый,
Требуется использование специализированного программного обеспечения
— нет,
Максимальный балл
— 1,
Примерное время выполнения
— 3 минуты.
Проверяемые элементы содержания: Умение строить таблицы истинности и логические схемы
Типичные ошибки и рекомендации по их предотвращению:
«Игнорирование прямо указанного в условии задания требования, что заполненная таблица истинности не должна содержать одинаковых строк. Это приводит к внешне правдоподобному, но на самом деле неверному решению»
ФГБНУ «Федеральный институт педагогических измерений»
Таблицы истинности и порядок выполнения логических операций
Для логических операций приняты следующие обозначения:
операция | пояснение | в программировании |
---|---|---|
¬ A, A | не A (отрицание, инверсия) | not(A) |
A ∧ B, A ⋅ B | A и B (логическое умножение, конъюнкция) | A and B |
A ∨ B, A + B | A или B (логическое сложение, дизъюнкция) | A or B |
A → B | импликация (следование) | A <= B |
A ↔ B, A ≡ B, A ∼ B | эквиваленция (эквивалентность, равносильность) | A==B (python) A=B(pascal) |
A ⊕ B | строгая дизъюнкция | A != B (python) A <> B (pascal) |
Егифка ©:
Отрицание (НЕ):
Таблица истинности операции НЕ
Конъюнкция (И):
Таблица истинности операции И (конъюнкция)
Дизъюнкция (ИЛИ):
Таблица истинности операции ИЛИ (дизъюнкция)
Импликация (если…, то…):
Таблица истинности операции Импликация (если…, то…)
Эквивалентность (тогда и только тогда, …):
Таблица истинности операции Эквивалентность (тогда и только тогда, …)
Сложение по модулю 2 (XOR):
A | B | A ⊕ B |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
Порядок выполнения операций:
- если нет скобок, сначала выполняются все операции «НЕ», затем – «И», затем – «ИЛИ», импликация, равносильность
Еще о логических операциях:
- логическое произведение X∙Y∙Z∙… равно 1, т.е. выражение является истинным, только тогда, когда все сомножители равны 1 (а в остальных случаях равно 0)
- логическая сумма X+Y+Z+… равна 0, т.е. выражение является ложным только тогда, когда все слагаемые равны 0 (а в остальных случаях равна 1)
О преобразованиях логических операций читайте здесь.
Егифка ©:
Решение заданий 2 ЕГЭ по информатике
Задание 2_11: Решение 2 задания ЕГЭ по информатике:
Логическая функция F задается выражением
(¬x ∨ y ∨ z) ∧ (x ∨ ¬z ∨ ¬w)
Ниже приведен фрагмент таблицы истинности функции F, содержащей все наборы аргументов, при которых функция F ложна.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
Перем.1 | Перем.2 | Перем.3 | Перем.4 | F |
??? | ??? | ??? | ??? | F |
0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
В ответе запишите буквы в том порядке, в котором идут соответствующие им столбцы.
✍ Решение:
✎ Способ 1. Электронные таблицы Excel + Логические размышления:
- Отобразим перебор всех значений использующихся в выражении переменных (всю таблицу истинности). Поскольку в выражении используются 4 переменных, то строк таблицы будет 24=16:
- Далее обе скобки исходного выражения необходимо записать в виде логического выражения, каждую — в отдельном столбце. Также в отдельном столбце добавьте формулу итоговой функции F:
xwzy
-
✎ Способ 2. Программирование:
- В результате будут выведены значения для
F=0
:
Язык python:
print('x y z w') for x in 0, 1: for y in 0, 1: for z in 0, 1: for w in 0, 1: F = (not(x) or y or z) and (x or not(z) or not(w)) if not(F): print(x, y, z, w)
x y z w 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1
xwzy
Язык pascalAbc.net:
begin writeln('x':7, 'y':7, 'z':7,'w':7); for var x:=false to true do for var y:=false to true do for var z:=false to true do for var w:=false to true do if not((not x or y or z) and (x or not z or not w)) then writeln(x:7, y:7, z:7,w:7); end.
F=0
:x y z w False False True True False True True True True False False False True False False True
false
= 0, True
= 1Ответ:
xwzy
-
✎ Способ 3. Логические размышления:
- Внешняя операция выражения — конъюнкция (∧). Во всех указанных строках таблицы истинности функция принимает значение 0 (ложь). Конъюнкция ложна аж в трех случаях, поэтому проверить на ложь очень затруднительно. Тогда как конъюнкция истинна (= 1) только в одном случае: когда все операнды истинны. Т.е. в нашем случае:
(¬x ∨ y ∨ z) ∧ (x ∨ ¬z ∨ ¬w) = 1 когда: 1. (¬x ∨ y ∨ z) = 1 И 2. (x ∨ ¬z ∨ ¬w) = 1
x | y | z | результат |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 |
x | z | w | результат |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 |
x | y | z | w | F |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
x | y | z | w | F |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
x | ??? | ??? | ??? | F |
0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
x | y | z | w | F |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
x | ??? | ??? | y | F |
0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
x | y | z | w | F |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
x | w | z | y | F |
0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
Результат: xwzy
🎦 Видеорешение (бескомпьютерный вариант):
📹 здесь
📹 Видеорешение на RuTube здесь
Задание 2_12: Разбор 2 задания ЕГЭ:
Миша заполнял таблицу истинности функции:
(¬z ∧ ¬(x ≡ y)) → ¬(y ∨ w)
но успел заполнить лишь фрагмент из трех различных ее строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z:
Перем.1 | Перем.2 | Перем.3 | Перем.4 | F |
??? | ??? | ??? | ??? | F |
1 | 1 | 0 | ||
1 | 0 | 0 | ||
1 | 1 | 0 | 0 |
Определите, какому столбцу таблицы соответствует каждая из переменных x, y, z, w.
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы.
Подобные задания для тренировки
✍ Решение:
✎ Способ 1. Логические размышления (бескомпьютерный вариант):
- Решим задание методом построения полной таблицы истинности.
- Посчитаем общее количество строк в таблице истинности и построим ее:
4 переменных -> 24 = 16 строк
(¬z ∧ ¬(x ≡ y)) → ¬(y ∨ w) 1. Избавимся от импликации: ¬(¬z ∧ ¬(x ≡ y)) ∨ ¬(y ∨ w) 2. Внесем знак отрицания в скобки (закон Де Моргана): (z ∨ (x ≡ y)) ∨ (¬y ∧ ¬w) = 0 1 часть = 0 2 часть = 0 * Исходное выражение должно быть = 0. Дизъюнкция = 0, когда оба операнда равны 0.
(z ∨ (x ≡ y)) = 0 когда z = 0 и x ≡ y = 0 ¬y ∧ ¬w = 0 когда: 1. ¬y = 0 ¬w = 0 2. ¬y = 1 ¬w = 0 3. ¬y = 0 ¬w = 1
x | y | w | z | F |
0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 0 |
y | w | x | z | F |
1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
Результат: ywxz
✎ Способ 2. Программирование:
- В результате будут выведены значения для F=0:
Язык PascalAbc.net:
begin writeln('x':7, 'y':7, 'z':7,'w':7); for var x:=false to true do for var y:=false to true do for var z:=false to true do for var w:=false to true do if not((not z and (x xor y)) <= not(y or w)) then writeln(x:7, y:7, z:7,w:7); end.
x y z w False True False False False True False True True False False True
false
= 0, True
= 1Сопоставив их с исходной таблицей, получим результат: ywxz
Язык Python:
print ('x y z w') for x in 0,1: for y in 0,1: for z in 0,1: for w in 0,1: F=(not z and not(x==y))<=(not(y or w)) if not F: print (x,y,z,w)
F=0
:x y z w 0 1 0 0 0 1 0 1 1 0 0 1
Сопоставив их с исходной таблицей, получим результат:
Результат: ywxz
🎦 Доступно видео решения этого задания (бескомпьютерный вариант):
📹 здесь
📹 Видеорешение на RuTube здесь
🎦 Видео (решение 2 ЕГЭ в Excel):
📹 здесь
📹 Видеорешение на RuTube здесь
📹 Видеорешение на RuTube здесь (Программирование)
Задание 2_10: Решение 2 задания ЕГЭ по информатике:
Логическая функция F задается выражением
¬a ∧ b ∧ (c ∨ ¬d)
Ниже приведен фрагмент таблицы истинности функции F, содержащей все наборы аргументов, при которых функция F истинна.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a, b, c, d.
Перем.1 | Перем.2 | Перем.3 | Перем.4 | F |
??? | ??? | ??? | ??? | F |
0 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 1 |
В ответе запишите буквы в том порядке, в котором идут соответствующие им столбцы.
✍ Решение:
🎦 (Бескомьютерный вариант) Предлагаем подробный разбор посмотреть на видео:
📹 здесь
📹 Видеорешение на RuTube здесь
Задание 2_3: Решение задания 2. Демоверсия ЕГЭ 2018 информатика:
Логическая функция F задаётся выражением ¬x ∨ y ∨ (¬z ∧ w).
На рисунке приведён фрагмент таб. ист-ти функции F, содержащий все наборы аргументов, при которых функция F ложна.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных w, x, y, z.
Перем. 1 | Перем. 2 | Перем. 3 | Перем. 4 | F |
??? | ??? | ??? | ??? | F |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 |
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала – буква, соответствующая первому столбцу; затем – буква, соответствующая второму столбцу, и т.д.) Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Подобные задания для тренировки
✍ Решение:
-
✎ Логические размышления (бескомпьютерный вариант):
- Внешним действием (последним выполняемым) в исходном выражении является дизъюнкция:
¬x ∨ y ∨ (¬z ∧ w)
x1 | x2 | F |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
¬x
= 1 или 0, y
= 1 или 0, ¬z ∧ w
= 1 или 0).¬x
= 0, иными словами x
= 1. Значит первый столбец соответствует переменной x
. Перем. 1 | Перем. 2 | Перем. 3 | Перем. 4 | F |
x | ??? | ??? | ??? | F |
1 | 0 | 0 | 0 | 0 |
y
= 0. Значит четвертый столбец соответствует переменной y
. Перем. 1 | Перем. 2 | Перем. 3 | Перем. 4 | F |
x | ??? | ??? | y | F |
1 | 1 | 1 | 0 | 0 |
¬z ∧ w
должно равняться 0, чтобы функция была ложной. Конъюнкция истинна только тогда, когда оба операнда истинны (=1); в нашем случае функция должна быть ложной, но пойдем от обратного. Если ¬z
= 1, т.е. z
= 0, а w
= 1, то это неверно для нашего случая. Значит всё должно быть наоборот: z
= 1, а w
= 0. Таким образом столбец второй соответствует z
, а столбец третий — w
. x | z | w | y | F |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 |
Результат: xzwy
✎ Способ 2. Программирование:
Язык pascalABC.NET:
begin writeln('x ','y ','z ','w '); for var x:=false to true do for var y:=false to true do for var z:=false to true do for var w:=false to true do if not(not x or y or(not z and w)) then writeln(x:7,y:7,z:7,w:7); end.
🎦 (бескомпьютерный вариант) Подробное решение данного 2 задания из демоверсии ЕГЭ 2018 года смотрите на видео:
📹 здесь
📹 Видеорешение на RuTube здесь
Задание 2_13: Разбор досрочного егэ по информатике 2019
Логическая функция F задаётся выражением
(x ∧ ¬y) ∨ (y ≡ z) ∨ ¬w
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.
Перем.1 | Перем.2 | Перем.3 | Перем.4 | F |
??? | ??? | ??? | ??? | F |
0 | 0 | 0 | ||
0 | 1 | 0 | 1 | 0 |
1 | 0 | 0 |
✍ Решение:
🎦 Видеорешение (бескомпьютерный вариант):
📹 здесь
📹 Видеорешение на RuTube здесь
Задания для тренировки
Задание 2_2: Задание 2 ЕГЭ по информатике:
Каждое из логических выражений F и G содержит 5 переменных. В табл. истинности для F и G есть ровно 5 одинаковых строк, причем ровно в 4 из них в столбце значений стоит 1.
Сколько строк таблицы истинности для F ∨ G содержит 1 в столбце значений?
Подобные задания для тренировки
✍ Решение:
- Поскольку в каждом из выражений присутствует 5 переменных, то эти 5 переменных порождают таблицу истинности из 32 строк: т.к. каждая из переменных может принимать оно из двух значений (0 или 1), то различных вариантов с пятью переменными будет 25=32, т.е. 32 строки.
- Из этих 32 строк и для F и для G мы знаем наверняка только о 5 строках: 4 из них истинны (=1), а одна ложна (=0).
- Вопрос стоит о количестве строк = 1 для таб. истинности F ∨ G. Данная операция — дизъюнкция, которая ложна только в одном случае — если F = 0 и одновременно G = 0
- В исходных таблицах для F и G мы знаем о существовании только одного 0, т.е. в остальных строках может быть 1. Т.о., и для F и для G в 31 строке могут быть единицы (32-1=31), а лишь в одной — ноль.
- Тогда для F ∨ G только в одном случае будет 0, когда и F = 0 и G = 0:
- Соответственно, истинными будут все остальные строки:
№ | F | G | F ∨ G |
---|---|---|---|
1 | 0 | 0 | 0 |
2 | 0 | 1 | 1 |
… | … | … | 1 |
32 | … | … | 1 |
32 - 1 = 31
Результат: 31
Подробное объяснение данного задания смотрите на видео:
📹 здесь
Задание 2_6: Решение 2 задания ЕГЭ по информатике:
Каждое логическое выражение A и B зависит от одного и того же набора из 7 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 4 единицы.
Каково максимально возможное число единиц в столбце значений таблицы истинности выражения A ∨ B?
✍ Решение:
- Полная таблица истинности для каждого из выражений A и B состоит из 27 = 128 строк.
- В четырех из них результат равен единице, значит в остальных — 0.
- A ∨ B истинно в том случае, когда либо A = 1 либо B = 1, или и A и B = 1.
- Поскольку А = 1 только в 4 случаях, то чтобы получить максимальное количество единиц в результирующей таблице истинности (для A ∨ B), расположим все единицы т.и. для выражения A так, чтобы они были в строках, где B = 0, и наоборот, все строки, где B = 1, поставим в строки, где A = 0:
- Итого получаем 8 строк.
- Если бы в задании требовалось найти минимальное количество единиц, то мы бы совместили строки со значением = 1, и получили бы значение 4.
A | B |
1 | 0 |
1 | 0 |
1 | 0 |
1 | 0 |
0 | 1 |
0 | 1 |
0 | 1 |
0 | 1 |
0 | 0 |
… | … |
Результат: 8
Задание 2_7: Решение 2 задания ЕГЭ по информатике:
Каждое логическое выражение A и B зависит от одного и того же набора из 8 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 6 единиц.
Каково максимально возможное число нулей в столбце значений таблицы истинности выражения A ∧ B?
✍ Решение:
- Полная таблица истинности для каждого из выражений A и B состоит из 28 = 256 строк.
- В шести из них результат равен единице, значит в остальных — 0.
- A ∧ B ложно в том случае, когда:
A ∧ B = 0 если: 1. A = 0, B = 1 2. B = 0, A = 1 3. A = 0 и B = 0
- Во всех случаях там где А=1 может стоять B=0, и тогда результат F = 0. Поскольку нам необходимо найти максимально возможное число нулей, то как раз для всех шести А=1 сопоставим B=0, и наоборот, для всех шести возможных B=1 сопоставим A=0
- Поскольку строк всего 256, то вполне возможно, что все 256 из них возвратят в результате 0
A | B | F |
1 | 0 | 0 |
1 | 0 | 0 |
1 | 0 | 0 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 1 | 0 |
0 | 1 | 0 |
0 | 1 | 0 |
0 | 0 | 0 |
… | … | … |
Результат: 256
Задание 2_4: 2 задание:
Дан фрагмент таблицы истинности выражения F.
x1 | x2 | x3 | x4 | x5 | x6 | x7 | F |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
Каким из приведённых ниже выражений может быть F?
1) ¬x1 ∧ x2 ∧ ¬x3 ∧ ¬x4 ∧ x5 ∧ ¬x6 ∧ x7
2) x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ ¬x6 ∨ ¬x7
3) x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7
4) x1 ∨ ¬x2 ∨ x3 ∨ x4 ∨ ¬x5 ∨ ¬x6 ∨ x7
✍ Решение:
- В первом внешняя операция (выполняется последней) — конъюнкция. Начнем рассмотрение с нее. Соответственно, проверяем по второй строке таб. ист-ти, там где F = 1, так как в таком случае все аргументы должны быть истинными (см. таб. истинности для конъюнкции).
- Если мы подставим в нее все аргументы выражения, то функция действительно возвращает истину. Т.е. пункт первый подходит:
- Но проверим на всякий случай остальные.
- Второй пункт проверяем по первой и третьей строке, так как основная операция — дизъюнкция — ложна только в том случае, если все аргументы ложны (см. таб. истинности для дизъюнкции). Проверяя по первой строке, сразу видим, что x1 в ней равен 1. В таком случаем функция будет = 1. Т.е. этот пункт не подходит:
- Третий пункт проверяем по второй строке, так как основная операция — конъюнкция — возвратит истину только тогда, когда все операнды равны 1. Видим, что x1 = 0, соответственно функция будет тоже равна 0. Т.е. выражение нам не подходит:
- Четвертый пункт проверяем по первой и третьей строкам. В первой — x1 = 1, т.е. функция должна быть равна 1. Т.е. пункт тоже не подходит:
- Таким образом, ответ равен 1.
Результат: 1
Решение 2 задания ГВЭ по информатике смотрите на видео:
📹 здесь
Задание 2_8: Решение 2 задания ЕГЭ по информатике:
Дано логическое выражение, зависящее от 5 логических переменных:
(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5)
Сколько существует различных наборов значений переменных, при которых выражение истинно?
1) 0
2) 30
3) 31
4) 32
Подобные задания для тренировки
✍ Решение:
- Поскольку выражение включает 5 переменных, то таб. ист-ти состоит из 25 = 32 строк.
- Внешней операцией (последней) является конъюнкция (логическое умножение), а внутри скобок — дизъюнкция (логическое сложение).
- Обозначим первую скобку за А, а вторую скобку за B. Получим A ∧ B.
- Найдем сколько нулей существует для таб. истинности:
A B F 1. 0 0 0 2. 0 1 0 3. 1 0 0
Теперь рассмотрим каждый случай отдельно:
¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ x5 = 0
и
x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 = 0.
32 - 2 = 30, что соответствует номеру 2
Результат: 2
Подробное решение задания смотрите в видеоуроке:
📹 здесь
Задание 2_5: Решение 2 задания ЕГЭ по информатике:
Дан фрагмент таблицы истинности для выражения F:
x1 | x2 | x3 | x4 | x5 | x6 | F |
0 | 0 | 1 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 0 |
Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x3 не совпадает с F.
Подобные задания для тренировки
✍ Решение:
- Полная таблица истинности будет иметь 26 = 64 строк (т.к. 6 переменных).
- 4 из них нам известны: в них x3 два раза не совпадает с F.
- Неизвестных строк:
64 - 4 = 60
60 + 2 = 62
Результат: 62
Задание 2_9: Решение 2 задания ЕГЭ по информатике:
Дан фрагмент таблицы истинности для выражения F:
x1 | x2 | x3 | x4 | x5 | x6 | x7 | F |
0 | 0 | 0 | |||||
0 | 0 | 1 | |||||
1 | 1 | 1 |
Каким выражением может быть F?
1) x1 ∧ (x2 → x3) ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7
2) x1 ∨ (¬x2 → x3) ∨ ¬x4 ∨ ¬x5 ∨ x6 ∨ ¬x7
3) ¬x1 ∧ (x2 → ¬x3) ∧ x4 ∧ ¬x5 ∧ x6 ∧ x7
4) ¬x1 ∨ (x2 → ¬x3) ∨ x4 ∨ x5 ∨ x6 ∧ x7
✍ Решение:
- Рассмотрим отдельно каждый пункт и найдем последнюю операцию, которая должна быть выполнена (внешнюю).
1 пункт:
(((x1 ∧ (x2 → x3) ∧ ¬x4) ∧ x5) ∧ x6) ∧ ¬x7
2 пункт:
(((x1 ∨ (¬x2 → x3) ∨ ¬x4) ∨ ¬x5) ∨ x6) ∨ ¬x7
3 пункт:
(((¬x1 ∧ (x2 → ¬x3) ∧ x4) ∧ ¬x5) ∧ x6) ∧ x7
Результат: 4
В видеоуроке рассмотрено подробное решение 2 задания:
📹 здесь
Задание 2_1: Задание 2 ЕГЭ по информатике:
Логическая функция F задается выражением
(y → x) ∧ (y → z) ∧ z.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.
№ | Перем. 1 | Перем. 2 | Перем. 3 | F |
---|---|---|---|---|
??? | ??? | ??? | F | |
1 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1 | 0 |
3 | 0 | 1 | 0 | 1 |
4 | 0 | 1 | 1 | 1 |
5 | 1 | 0 | 0 | 0 |
6 | 1 | 0 | 1 | 0 |
7 | 1 | 1 | 0 | 0 |
8 | 1 | 1 | 1 | 1 |
В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.
✍ Решение:
- Сначала необходимо рассмотреть логическую операцию, которую мы будем выполнять в последнюю очередь — это логическое И (конъюнкция) или ∧. То есть внешнюю операцию:
(y → x) ∧ (y → z) ∧ z
(y → x) ∧ (y → z) ∧ z = 1 если: 1. (y → x) = 1 2. (y → z) = 1 3. z = 1
№ | Перем. 1 | Перем. 2 | Перем. 3 | F |
---|---|---|---|---|
3 | 0 | 1 | 0 | 1 |
№ | Перем. 1 | Перем. 2 | Перем. 3 | F |
---|---|---|---|---|
_ | ??? | z | ??? | F |
№ | Перем. 1 | z | Перем. 3 | F |
---|---|---|---|---|
4 | 0 | 1 | 1 | 1 |
Результат: yzx
Детальный разбор данного задания 2 ЕГЭ по информатике предлагаем посмотреть в видео:
📹 здесь
Тема: «Основы логики при подготовке
учащихся к ЕГЭ по информатике»
Оглавление
Введение
Глава
1. Теоретический анализ раздела «Основы логики»
1.1.
Формы мышления. Алгебра высказываний.
1.2.
Логические выражения и функции
1.3.
Логические законы
1.4.
Базовые логические элементы
Глава
2. Методика подготовки к ЕГЭ по теме «Основы логики»
2.1.
Кодификатор
2.2.
Разбор заданий
2.3.
Основные трудности при решении заданий
2.4.
Анализ выполнения заданий этой темы
Глава
3. Решения задач ЕГЭ по теме «Основы логики»
Заключение
Список
литературы
Введение
Подготовка
к ЕГЭ по информатике стала актуальной с введением экзамена по информатике по
выбору при окончании средней школы и введением в некоторых ВУЗах, включая и
гуманитарные, вступительных экзаменов по информатике.
Тема
«Логика. Логические основы компьютера» – один из разделов, изучаемых в рамках
учебной дисциплины «Информатика и ИКТ» на профильном уровне. В силу своей
предельной общности и абстрактности логика имеет отношение буквально ко всем
конкретным отраслям науки и техники. Потому, что как бы ни были различны и
своеобразны эти отрасли, все же законы и правила мышления, на которых они
основываются, едины.
Изучение
логики развивает: ясность и четкость мышления; способность предельно уточнять
предмет мысли; внимательность, аккуратность, обстоятельность, убедительность в
суждениях; умение абстрагироваться от конкретного содержания и сосредоточиться
на структуре своей мысли.
Предмет исследования
– методы подготовки к ЕГЭ по информатике по теме «Основы логики».
Объект исследования
– раздел «Основы логики» школьного курса информатики.
Цель: комплексное, системное
изучение методики подготовки к ЕГЭ по информатике по теме «Основы логики».
Достижение
поставленной цели требует постановки и решения следующих задач:
1.
провести теоретический анализ раздела «Основы
логики»;
2.
рассмотреть возможные трудности при
решении задач данной темы.
Глава 1. Теоретический анализ раздела
«Основы логики»
1.1. Формы мышления. Алгебра высказываний.
Логика
— наука о способах и формах мышления, которая возникла в Древнем Китае и
Индии.
Основоположником
формальной логики по праву считается Аристотель. Логика позволяет, отвлекаясь
от содержательной стороны, строить формальные модели окружающего мира.
Свойства, связи, и отношения объектов окружающего мира в сознании человека
отражают законы логики.
Мышление
всегда осуществляется в следующих формах: понятие, высказывание и
умозаключение.
Алгебра
высказываний позволяет определять истинность или ложность составных
высказываний.
В
алгебре высказываний простым высказываниям или суждениям соответствуют логические
переменные. Истинному высказыванию соответствует значение логической
переменной 1, а ложному — значение 0. Над высказываниями можно производить
определенные логические операции, в результате которых получаются новые,
составные высказывания[14, 98 c.].
Для
образования новых высказываний наиболее часто используются базовые логические
операции, выражаемые с помощью логических связок «и» (логическое умножение
(конъюнкция)), «или» (логическое сложение (дизъюнкция)), «не» (логическое
отрицание (инверсия)).
Конъюнкция. Операцию
логического умножения (конъюнкцию) принято обозначать значком «&» либо «/»:
F
= А / В.
Функция
логического умножения F может принимать лишь два значения «истина» (1) и
«ложь» (0). Значение логической функции определяется с помощью таблицы
истинности:
А |
В |
А |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
Дизъюнкция. Операцию
логического сложения обозначают «v» либо «+».
F
= A/B
Таблица
истинности:
A |
B |
A/B |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
Инверсия. Операцию
логического отрицания обозначают F = ¬A.
Таблица
истинности логического отрицания:
Равносильными
логическими выражениями называются логические выражения, у которых совпадают
последние столбцы таблиц истинности.
Логическое следование (импликация)
— это логическая функция, которую можно описать помощью оборота «если…,
то…», и обозначается:
А
–> В.
Таблица
истинности:
A |
B |
А–>В |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
Логическое равенство (эквивалентность)
— это логическая функция, которую можно описать помощью оборота «тогда и только
тогда, когда …» и обозначается А<–>В.
Таблица
истинности:
A |
B |
А<–>В |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1.2. Логические выражения и функции
Логические
выражения. Составные высказывания можно представить в виде логического
выражения или формулы, которая состоит из логических переменных, обозначающих
высказывания, и знаков логических операций.
Логические
операции выполняются в следующем порядке: инверсия, конъюнкция, дизъюнкция.
Скобки позволяют этот порядок изменить:
F
= (A/B) / (A/B)
Таблицу
истинности можно построить для каждого логического выражения. Она определяет
его значение при всех возможных комбинациях значений логических переменных [14,
99 c.].
Построение
таблицы истинности:
1.
Количество строк N в таблице истинности
равно количеству возможных комбинаций значений логических переменных n
и определяется по формуле: N = 2n.
2.
Количество столбцов в таблице истинности
равно количеству логических переменных плюс количество логических операций.
3.
Построить таблицу истинности с необходимым
количеством строк и столбцов и записать значения исходных логических
переменных.
4.
Заполнить таблицу истинности по столбцам,
в соответствии с таблицами истинности.
1.3. Логические законы
Закон тождества.
Всякое высказывание тождественно самому себе:
А
= А.
Закон непротиворечия.
Высказывание не может быть одновременно истинным и ложным:
А
/ ¬А = 0.
Закон исключенного третьего.
Высказывание может быть либо истинным, либо ложным:
A
/ ¬A = 1.
Закон двойного отрицания.
Двойное отрицание дает в итоге исходное высказывание:
¬¬А
= А
Законы де Моргана:
¬(A
/ B)
= ¬A
/ ¬B
¬(A
/ B)
= ¬A
/ ¬B
Закон коммутативности.
А
/ В = В / А
A
/ B = B / A
Закон ассоциативности:
(А
/ В) / С = А / (В / С)
(A
/ B) / C = A / (B / C)
Закон дистрибутивности.
Отличается от подобного закона в алгебре — за скобки можно выносить не только
общие множители, но и общие слагаемые:
(A
/ B) / (A / C)=A / (B / C)
(A
/ B) / (A / C) = A / (B / C)
1.4. Базовые логические элементы
В
основе обработки компьютером информации лежит алгебра логики, разработанная
английским математиком Дж. Булем. Схемные реализации логических операций
называются логическими элементами.
Логический
элемент НЕ преобразует сигнал в противоположный, например, если на вход
элемента подана логическая единица, то на выходе этого элемента будет
логический ноль и наоборот.
X |
НЕ |
0 |
1 |
1 |
0 |
Логический
элемент ИЛИ преобразует два сигнала, поданных на вход, в один сигнал на выходе
по следующему принципу. Если на любой вход логического элемента ИЛИ будет
подана логическая единица, то на выходе элемента будет логическая единица. Если
на оба входа подан логический ноль, то на выходе элемента ИЛИ также будет ноль.
X |
Y |
Z |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
Логический
элемент И преобразует два сигнала, поданных на вход, в один сигнал на выходе по
следующему принципу. Если на любой вход логического элемента И будет подана
логическая единица, а на другой вход логический ноль, то на выходе элемента
будет логический ноль. Если на оба входа подана логическая единица, то на
выходе элемента И также будет единица.
X |
Y |
Z |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
Из
тысяч и миллионов таких элементов строится ЭВМ [14, 103 c.].
Рассмотрим,
как из логических элементов можно сконструировать устройство для сложения двух
двоичных чисел — так называемый одноразрядный сумматор или полусумматор. Это
устройство должно давать на выходе следующие сигналы:
0
+ 0 = 00
0
+ 1 = 01
1
+ 0 = 01
1
+ 1 = 10
Многоразрядный
сумматор состоит из полных одноразрядных сумматоров, соединенных следующим
образом: на каждый разряд ставится одноразрядный сумматор, причем выход
(перенос) сумматора младшего разряда подключается ко входу сумматора старшего
разряда.
Глава 2. Методика подготовки к ЕГЭ по
теме «Основы логики»
2.1. Кодификатор
Код |
Код |
Элементы |
1 |
1.5 |
Логика и алгоритмы |
1 |
1.5.1 |
Высказывания, логические операции, |
3 |
3.5.2 |
Использование инструментов поисковых систем (формирование |
Материал, проверяемый ЕГЭ
На
уровне воспроизведения знаний проверяется такой фундаментальный теоретический
материал, как: основные элементы математической логики.
Материал
на проверку сформированности умений применять свои знания в стандартной ситуации:
·
создавать и преобразовывать логические
выражения;
·
формировать для логической функции таблицу
истинности и логическую схему.
Материал
на проверку сформированности умений применять свои знания в новой ситуации:
решать логические задачи.
2.2. Разбор заданий
По
теме «Основы логики» в экзаменационной работе содержалось четыре задания: два с
выбором ответа и два с кратким ответом. Эти задания включали в себя проверку
умения строить таблицы истинности и логические схемы, преобразовывать
логические выражения, решение логического уравнения. Уровень сложности,
максимальный первичный балл и время выполнения определяется по спецификации. Обозначения:
Б – базовый уровень сложности, П – повышенный уровень сложности, В – высокий
уровень сложности.
Обозначение |
Проверяемые |
Коды |
Коды требований к уровню подготовки выпускников по кодификато ру |
Коды |
Уровень |
Макс. |
Примерное |
А3 |
Умения строить таблицы истинности и логические схемы |
1.5.1 |
1.1.6 |
2 |
Б |
1 |
2 |
А10 |
Знание основных понятий и законов математической логики |
1.5.1 |
1.1.7 |
2 |
П |
1 |
2 |
В12 |
Умение |
3.5.2 |
2.1 |
3 |
П |
1 |
2 |
В15 |
Умение строить и преобразовывать логические |
1.5.1 |
1.1.7 |
3 |
В |
1 |
10 |
В
экзаменационных заданиях используются следующие соглашения:
1.
Обозначения для логических связок (операций):
a)
отрицание (инверсия) обозначается ¬ (например,
¬А);
b)
конъюнкция (логическое умножение,
логическое И) обозначается / (например, А / В);
c)
дизъюнкция (логическое сложение,
логическое ИЛИ) обозначается / (например, A / В);
d)
следование (импликация) обозначается –>
(например, А –> В);
e)
символ 1 используется для обозначения
истины (истинного высказывания); символ 0 — для обозначения лжи (ложного
высказывания).
2.
Два логических выражения, содержащих переменные, называются равносильными
(эквивалентными), если значения этих выражений совпадают при любых
значениях переменных. Так, выражения А –> В и (¬А) / В равносильны, а А /
В и А / В – нет (значения выражений разные, например, при А = 1, В = 0).
3.
Приоритеты логических операций: инверсия (отрицание), конъюнкция
(логическое умножение), дизъюнкция (логическое сложение), импликация
(следование), эквивалентность (равносильность). Таким образом, ¬А / В / С /
D совпадает с ((¬А) / В) / (С / D). Возможна запись А / В / С вместо (А /
В) / С. То же относится и к дизъюнкции: возможна запись А / В / С вместо (А
/ В) / С.
2.3. Основные трудности при решении заданий
Задание А10 повышенного уровня на
проверку знания основных понятий и законов математической логики. Задание А3 базового
уровня на умение строить таблицы истинности и логические
схемы, задания В12, повышенного уровня, проверяют умение осуществлять
поиск информации в Интернет, используя логические операции. Задание В15
относится к высокому уровню сложности, требует от экзаменуемого умения
строить и преобразовывать логические выражения.
А3. Умение строить
таблицы истинности и логические схемы.
Типичные
ошибки:
· серьезные сложности представляет применяемая в заданиях ЕГЭ форма
записи логических выражений с «закорючками», поэтому рекомендуется сначала внимательно
перевести их в «удобоваримый» вид;
· расчет на то, что ученик перепутает значки Ù
и Ú (неверный ответ 1);
·
в некоторых случаях заданные
выражения-ответы лучше сначала упростить, особенно если они содержат импликацию
или инверсию сложных выражений.
А10. Знание основных
понятий и законов математической логики.
Типичные
ошибки:
·
можно «забыть» отрицание
(помните, что правильный ответ – всего один!);
·
можно перепутать порядок
операций (скобки, «НЕ», «И», «ИЛИ», «импликация»);
·
нужно помнить таблицу истинности
операции «импликация»;
·
нужно помнить законы логики
(например, формулы де Моргана);
·
при использовании формул де
Моргана нужно не забыть заменить «И» на «ИЛИ» и наоборот;
·
нужно не забыть, например, что
инверсией (отрицанием) для выражения X > 3 является X ≤ 3, а не X < 3;
· иногда для решения нужно упростить не только исходное выражение,
но и заданные ответы, если они содержат импликацию или инверсию сложных
выражений.
В12. Умение осуществлять
поиск информации в Интернет.
Типичные
ошибки:
· нужно внимательно читать условие, так как в некоторых задачах
требуется перечислить запросы в порядке убывания количества результатов, а в
некоторых – в порядке возрастания;
· можно ошибиться в непривычных значках: «И» = &, «ИЛИ» = | (эти
обозначения привычны для тех, кто программирует на языке Си);
· можно перепутать значение операций «И» и «ИЛИ», а также порядок
выполнения цепочки операций (сначала – «И», потом – «ИЛИ»);
· для сложных запросов не всегда удастся так просто расположить
запросы по возрастанию (или убыванию) ограничений;
· решение достаточно громоздко, хотя позволяет с помощью простых
операций решить задачу, не рискуя ошибиться при вычислениях «в уме» в сложных
случаях;
· внимательнее с индексами переменных, очень легко по невнимательности
написать, например, N5 вместо N6 и получить совершенно другой результат.
В15. Умение строить и
преобразовывать логические выражения.
Типичные
ошибки:
·
Плохое знание таблиц истинности;
·
Ошибки из-за невнимательности к значкам,
которыми в выражениях обозначают логические операции. Это происходит от того,
что в разных учебниках эти значки отличаются по написанию;
·
нужно помнить правила
преобразования логических выражений и хорошо владеть этой техникой;
·
легко запутаться в
многочисленных столбцах с однородными данными (нулями и единицами);
·
длинное запутанное условие, из
которого нужно выделить действительно существенную информацию и формализовать
ее;
·
легко по невнимательности перепутать
порядок букв в ответе.
2.4. Анализ выполнения заданий этой темы
По
разделу «Основы логики» в экзаменационной работе содержится четыре задания: два
с выбором ответа и два с кратким ответом. Одно задание базового, два
повышенного и одно – высокого уровня сложности. Экзаменуемые хорошо справились
с заданием А3 базового уровня на проверку умения строить таблицы истинности и
логические схемы: 79% выполнения в среднем. Результат практически эквивалентен предыдущим
годам. Результат выполнения задания А10 повышенного уровня на проверку знания
основных понятий и законов математической логики также выше результатов прошлых
лет: 74% [2, 90 c.].
Как
и в прошлые годы задание В12 повышенного уровня сложности на умение
осуществлять поиск информации в Интернете с использованием логических операций дало
результат в среднем 51%. Результат выполнения задания В15 высокого уровня сложности
с кратким ответом на умение строить и преобразовывать логические выражения
составил 69%.
В
целом в 2013 году по теме «Основы логики» результаты полностью соответствуют и
иногда даже превосходят результаты, прогнозировавшиеся комиссией. Можно сделать
окончательный вывод о том, что повышенное внимание, уделенное этому разделу при
разборе результатов ЕГЭ предыдущих лет, дало свои плоды: результат усвоения
этой темы не выбивается из общего ряда.
Глава 3. Решения задач ЕГЭ по теме
«Основы логики»
А3. Символом
F
обозначено одно из указанных ниже логических выражений от трех аргументов: X,
Y,
Z.
Дан фрагмент таблицы истинности выражения F:
Какое выражение
соответствует F?
1)
¬X Ù ¬Y Ù
¬Z 2)
X Ù Y Ù
Z
3) X Ù
¬Y Ù ¬Z
4) X Ú
¬Y Ú ¬Z
Решение:
1)
перепишем ответы в других
обозначениях: 1) 2) 3) 4)
2)
в столбце F есть единственная единица для
комбинации , простейшая функция, истинная (только)
для этого случая, имеет вид , она есть среди
приведенных ответов (ответ 3)
3)
таким образом, правильный ответ – 3.
А 10. На
числовой прямой даны два отрезка: P
=[10?30] и Q=[25,55]. Определите
наибольшую возможную длину отрезка A,
при котором формула (xÎA)→((xÎP)
Ú(xÎQ))
тождественна истинна, то есть принимает значение 1 при любом значении
переменной x.
1)
10 2) 20 3) 30 4) 45
Решение:
1)
для того, чтобы упростить понимание
выражения, обозначим отдельные высказывания буквами
A: x Î
А, P: x Î
P, Q: x Î
Q
2)
перейдем к более простым обозначениям
A
→ (P + Q)
3)
раскроем импликацию через операции НЕ и
ИЛИ ():
4)
для того, чтобы выражение было истинно при
всех x, нужно, чтобы было истинно там, где
ложно (жёлтая область на рисунке)
5)
поэтому максимальный отрезок, где A
может быть истинно (и, соответственно, ложно)
– это отрезок [10,55], имеющий длину 45
6)
Ответ: 4.
В12. В таблице приведены запросы и
количество страниц, которые нашел поисковый сервер по этим запросам в некотором
сегменте Интернета:
Запрос |
Количество страниц (тыс.) |
Динамо & Рубин |
320 |
Спартак & Рубин |
280 |
(Динамо | Спартак) & Рубин |
430 |
Сколько
страниц (в тысячах) будет найдено по запросу Рубин & Динамо &
Спартак?
Решение (вариант 1, круги Эйлера, полная диаграмма):
1)
в этой задаче неполные данные, так как они
не позволяют определить размеры всех областей; однако их хватает для того,
чтобы ответить на поставленный вопрос
2)
обозначим области, которые соответствуют
каждому запросу
Запрос |
Области |
Количество страниц (тыс.) |
Динамо & Рубин |
1+2 |
320 |
Спартак & Рубин |
2+3 |
280 |
(Динамо | Спартак) & Рубин |
1+2+3 |
430 |
Рубин & Динамо & |
2 |
? |
3)
из таблицы следует, что в суммарный
результат первых двух запросов область 2 входит дважды (1 + 2 + 2 + 3),
поэтому, сравнивая этот результат с третьим запросом (1 + 2 + 3), сразу находим
результат четвертого:
N2
= (320 + 280) – 430 = 170
4)
таким образом, ответ – 170.
В 15.
Сколько различных решений имеет система логических уравнений
(x1®x2)
® (x3®x4)=1
(x3®x4) ®
(x5®x6)=1
Где x1,
x2,…,x6
– логические переменные? В ответе не нужно перечислять все различные наборы
значений переменных, при которых выполнено данное равенство. В качестве ответа
нужно указать количество таких наборов.
Решение (метод замены переменных):
1)
используем замену переменных (заметим, что
каждая из новых переменных независима от других, это важно!):
Y1
= x1
® x2,
Y2
= x3
® x4,
Y3
= x5
® x6
тогда система запишется в виде
Y1 ®
Y2 = 1
Y2 ®
Y3 = 1
2)
можно объединить эти уравнения в одно
(Y1 ®
Y2)
Ù (Y2 ®
Y3)
= 1
для того, чтобы это равенство было
выполнено, ни одно из импликаций не должна быть ложной, то есть в битовой
цепочке, составленной из значений переменных Y1, Y2,
Y3,
не должно быть последовательности «10»; вот все возможные варианты:
Y1 |
Y2 |
Y3 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
3)
теперь вернемся к исходным переменным;
импликация x1
® x2
дает 0 при одном наборе исходных переменных (x1,x2)
= (1,0) и 1 при трёх наборах (x1,x2)
= {(0,0), (0,1), (1,1)}
4)
учитывая, что каждая из новых переменных Y1,
Y2,
Y3,
независима от других; для каждой строки полученной таблицы просто перемножаем
количество вариантов комбинация исходных переменных:
Y1 |
Y2 |
Y3 |
вариантов |
0 |
0 |
0 |
1*1*1=1 |
0 |
0 |
1 |
1*1*3=3 |
0 |
1 |
1 |
1*3*3=9 |
1 |
1 |
1 |
3*3*3=27 |
5)
складываем все результаты: 1 + 3 + 9 + 27
= 40
6)
Ответ: 40.
Заключение
Тема
«Логика. Логические основы компьютера» – один из разделов, изучаемых в рамках
учебной дисциплины «Информатика и ИКТ» на профильном уровне.
Изучение
логики развивает: ясность и четкость мышления; способность предельно уточнять
предмет мысли; внимательность, аккуратность, обстоятельность, убедительность в
суждениях; умение абстрагироваться от конкретного содержания и сосредоточиться
на структуре своей мысли.
Важна
роль задач в изучении этого раздела. Ученики должны понимать, что логика в силу
своей предельной общности и абстрактности имеет отношение буквально ко всем
конкретным отраслям науки и техники.
В
работе представлены решения задач по теме «Основы логики», взятые из
демо-версий ЕГЭ по информатике разных лет.
Таким
образом, в результате проделанной работы были достигнута цель и решены
поставленные задачи.
Список литературы
1.
Бочкин А. И. Методика преподавания
информатики. – Минск: Высшая школа, 2007. – 431 с.
2.
ЕГЭ 2013. Информатика.
Федеральный банк экзаменационных материалов / Авт.-сост. П. А. Якушкин, С. С.
Крылов. — М. : Эксмо, 2013. — 160 с.
3.
Информатика : ЕГЭ-2013 : Самые
новые задания/авт.-сост. О.В. Ярцева, Е.Н. Цикина. — М.: ACT: Астрель, 2013. — 126 с.
4.
Информатика и ИКТ: Учебник.
Начальный уровень / Под ред. Н. В. Макаровой. — СПб.: Питер, 2011.
5.
Информатика и ИКТ: Учебник.
8-9 класс / Под ред. Н. В. Макаровой. — СПб.: Питер, 2011.
6.
Информатика и ИКТ: Практикум.
8-9 класс. / Под ред. Н. В. Макаровой. — СПб.: Питер, 2011.
7.
Информатика и ИКТ: Учебник. 10
класс. Базовый уровень / Под ред. Н. В. Макаровой. — СПб.: Питер, 2011.
8.
Информатика и ИКТ: Учебник. 11
класс. Базовый уровень / Под ред. Н. В. Макаровой — СПб.: Питер, 2011.
9.
Информатика и ИКТ:
Методическое пособие для учителей. Т. 1. / Под ред. проф. Н. В. Макаровой. —
СПб.: Питер, 2011.
10.
Информатика и ИКТ: Методическое
пособие для учителей. Т. 2. / Под ред. проф. Н. В. Макаровой. СПб.: Питер, 2011.
11.
Информатика и ИКТ:
Методическое пособие для учителей. Т. 3. / Под ред. проф. Н. В. Макаровой.
СПб.: Питер, 2011.
12.
Лапчик М. П. и др. Методика
преподавания информатики. – М.: Академия, 2011. – 624 с.
13.
Лыскова В. Ю., Ракитина Е. А.
Логика в информатике. – М.: ЛБЗ, 2011. – 160 с.
14.
Молодцов В.А. Информатика :
тесты, задания, лучшие методики / Молодцов В.А., Рыжикова Н.Б. — Ростов н/Д :
Феникс, 2008. — 217 с.
15.
Подготовка к ЕГЭ по
дисциплине «Информатика и ИКТ» / Под ред. Н. В. Макаровой. — СПб.: Питер, 2011.
16.
Семакин И. Г., Шеина Т. Ю.
Преподавание базового курса информатики в средней школе. Методическое пособие.
– М.: БИНОМ. ЛБЗ, 2012.
17.
Софронова Н. В. Теория и методика
обучения информатике. – М.: Высшая школа, 2009. – 223 с.
Алгебра логики (англ. algebra of logic) — один из основных разделов математической логики, в котором методы алгебры используются в логических преобразованиях.
Основоположником алгебры логики является английский математик и логик Дж. Буль (1815–1864), положивший в основу своего логического учения аналогию между алгеброй и логикой. Любое высказывание он записывал с помощью символов разработанного им языка и получал «уравнения», истинность или ложность которых можно было доказать, исходя из определенных логических законов, таких как законы коммутативности, дистрибутивности, ассоциативности и др.
Современная алгебра логики является разделом математической логики и изучает логические операции над высказываниями с точки зрения их истинностного значения (истина, ложь). Высказывания могут быть истинными, ложными или содержать истину и ложь в разных соотношениях.
Логическое высказывание — это любое повествовательное предложение, в отношении которого можно однозначно утверждать, что его содержание истинно или ложно.
Например, «3 умножить на 3 равно 9», «Архангельск севернее Вологды» — истинные высказывания, а «Пять меньше трех», «Марс — звезда» — ложные.
Очевидно, что не всякое предложение может быть логическим высказыванием, т. к. не всегда есть смысл говорить о его ложности или истинности. Например, высказывание «Информатика — интересный предмет» неопределенно и требует дополнительных сведений, а высказывание «Для ученика 10-А класса Иванова А. А. информатика — интересный предмет» в зависимости от интересов Иванова А. А. может принимать значение «истина» или «ложь».
Кроме двузначной алгебры высказываний, в которой принимаются только два значения — «истинно» и «ложно», существует многозначная алгебра высказываний. В такой алгебре, кроме значений «истинно» и «ложно», употребляются такие истинностные значения, как «вероятно», «возможно», «невозможно» и т. д.
В алгебре логики различаются простые (элементарные) высказывания, обозначаемые латинскими буквами (A, B, C, D, …), и сложные (составные), составленные из нескольких простых с помощью логических связок, например таких, как «не», «и», «или», «тогда и только тогда», «если … то». Истинность или ложность получаемых таким образом сложных высказываний определяется значением простых высказываний.
Обозначим как А высказывание «Алгебра логики успешно применяется в теории электрических схем», а через В — «Алгебра логики применяется при синтезе релейно-контактных схем».
Тогда составное высказывание «Алгебра логики успешно применяется в теории электрических цепей и при синтезе релейно-контактных схем» можно кратко записать как А и В; здесь «и» — логическая связка. Очевидно, что поскольку элементарные высказывания А и В истинны, то истинно и составное высказывание А и В.
Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение.
Логических значений всего два: истина (TRUE) и ложь (FALSE). Это соответствует цифровому представлению — 1 и 0. Результаты каждой логической операции можно записать в виде таблицы. Такие таблицы называют таблицами истинности.
Основные операции алгебры логики
1. Логическое отрицание, инверсия (лат. inversion — переворачивание) — логическая операция, в результате которой из данного высказывания (например, А) получается новое высказывание (не А), которое называется отрицанием исходного высказывания, обозначается символически чертой сверху ($A↖{-}$) или такими условными обозначениями, как ¬, ‘not’, и читается: «не А», «А ложно», «неверно, что А», «отрицание А». Например, «Марс — планета Солнечной системы» (высказывание А); «Марс — не планета Солнечной системы» ($A↖{-}$); высказывание «10 — простое число» (высказывание В) ложно; высказывание «10 — не простое число» (высказывание B ) истинно.
Операция, используемая относительно одной величины, называется унарной. Таблица значений данной операции имеет вид
A | ¬A |
истина | ложь |
ложь | истина |
или
Высказывание $A↖{-}$ ложно, когда А истинно, и истинно, когда А ложно.
Геометрически отрицание можно представить следующим образом: если А — это некоторое множество точек, то $A↖{-}$ — это дополнение множества А, т. е. все точки, которые не принадлежат множеству А.
2. Конъюнкция (лат. conjunctio — соединение) — логическое умножение, операция, требующая как минимум двух логических величин (операндов) и соединяющая два или более высказываний при помощи связки «и» (например, «А и В»), которая символически обозначается с помощью знака ∧ (А ∧ В) и читается: «А и В». Для обозначения конъюнкции применяются также следующие знаки: А ∙ В; А & В, А and В, а иногда между высказываниями не ставится никакого знака: АВ. Пример логического умножения: «Этот треугольник равнобедренный и прямоугольный». Данное высказывание может быть истинным только в том случае, если выполняются оба условия, в противном случае высказывание ложно.
Таблица истинности операции имеет вид
A | B | A ∧ B |
истина | ложь | ложь |
ложь | истина | ложь |
ложь | ложь | ложь |
истина | истина | истина |
или
A | B | A ∧ B |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 0 |
1 | 1 | 1 |
Высказывание А ∧ В истинно только тогда, когда оба высказывания — А и В истинны.
Геометрически конъюнкцию можно представить следующим образом: если А, В — это некоторые множества точек, то А ∧ В есть пересечение множеств А и В.
3. Дизъюнкция (лат. disjunction — разделение) — логическое сложение, операция, соединяющая два или более высказываний при помощи связки «или» (например, «А или В»), которая символически обозначается с помощью знака ∨ (А ∨ В) и читается: «А или В». Для обозначения дизъюнкции применяются также следующие знаки: А + В; А or В; А | B. Пример логического сложения: «Число x делится на 3 или на 5». Это высказывание будет истинным, если выполняются оба условия или хотя бы одно из условий.
Таблица истинности операции имеет вид
A | B | A ∨ B |
истина | ложь | истина |
ложь | истина | истина |
ложь | ложь | ложь |
истина | истина | истина |
или
A | B | A ∨ B |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
1 | 1 | 1 |
Высказывание А ∨ В ложно только тогда, когда оба высказывания — А и В ложны.
Геометрически логическое сложение можно представить следующим образом: если А, В — это некоторые множества точек, то А ∨ В — это объединение множеств А и В, т. е. фигура, объединяющая и квадрат, и круг.
4. Дизъюнкция строго-разделительная, сложение по модулю два — логическая операция, соединяющая два высказывания при помощи связки «или», употребленной в исключающем смысле, которая символически обозначается с помощью знаков ∨ ∨ или ⊕ (А ∨ ∨ В, А ⊕ В) и читается: «либо А, либо В». Пример сложения по модулю два — высказывание «Этот треугольник тупоугольный или остроугольный». Высказывание истинно, если выполняется какое-то одно из условий.
Таблица истинности операции имеет вид
А | В | А ⊕ B |
истина | ложь | истина |
ложь | истина | истина |
ложь | ложь | ложь |
истина | истина | ложь |
или
А | В | А ⊕ B |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
1 | 1 | 0 |
Высказывание А ⊕ В истинно только тогда, когда высказывания А и В имеют различные значения.
5. Импликация (лат. implisito — тесно связываю) — логическая операция, соединяющая два высказывания при помощи связки «если…, то» в сложное высказывание, которое символически обозначается с помощью знака → (А → В) и читается: «если А, то В», «А влечет В», «из А следует В», «А имплицирует В». Для обозначения импликации применяется также знак ⊃ (A ⊃ B). Пример импликации: «Если полученный четырехугольник квадрат, то около него можно описать окружность». Эта операция связывает два простых логических выражения, из которых первое является условием, а второе — следствием. Результат операции ложен только тогда, когда предпосылка есть истина, а следствие — ложь. Например, «Если 3 * 3 = 9 (А), то Солнце — планета (В)», результат импликации А → В — ложь.
Таблица истинности операции имеет вид
А | В | А → В |
истина | ложь | ложь |
ложь | истина | истина |
ложь | ложь | истина |
истина | истина | истина |
или
А | В | А → В |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
1 | 1 | 1 |
Для операции импликации справедливо утверждение, что из лжи может следовать все что угодно, а из истины — только истина.
6. Эквивалентность, двойная импликация, равнозначность (лат. aequalis — равный и valentis — имеющий силу) — логическая операция, позволяющая из двух высказываний А и В получить новое высказывание А ≡ В, которое читается: «А эквивалентно B». Для обозначения эквивалентности применяются также следующие знаки: ⇔, ∼. Эта операция может быть выражена связками «тогда и только тогда», «необходимо и достаточно», «равносильно». Примером эквивалентности является высказывание: «Треугольник будет прямоугольным тогда и только тогда, когда один из углов равен 90 градусам».
Таблица истинности операции эквивалентности имеет вид
А | В | А ∼ В |
истина | ложь | ложь |
ложь | истина | ложь |
ложь | ложь | истина |
истина | истина | истина |
или
А | В | А ∼ В |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 1 | 1 |
Операция эквивалентности противоположна сложению по модулю два и имеет результат «истина» тогда и только тогда, когда значения переменных совпадают.
Зная значения простых высказываний, можно на основании таблиц истинности определить значения сложных высказываний. При этом важно знать, что для представления любой функции алгебры логики достаточно трех операций: конъюнкции, дизъюнкции и отрицания.
Сложение по модулю два | А ⊕ В | $(A↖{-} ∧B) ∧ (A ∧ B↖{-})$ |
Импликация | А → В | $A↖{-} ∨ B$ |
Эквивалентность | А ∼ В | $(A↖{-} ∧ B↖{-}) ∨ (A ∧ B)$ |
Приоритет выполнения логических операций следующий: отрицание («не») имеет самый высокий приоритет, затем выполняется конъюнкция («и»), после конъюнкции — дизъюнкция («или»).
С помощью логических переменных и логических операций любое логическое высказывание можно формализовать, т. е. заменить логической формулой. При этом элементарные высказывания, образующие составное высказывание, могут быть абсолютно не связаны по смыслу, но это не мешает определять истинность или ложность составного высказывания. Например, высказывание «Если пять больше двух (А), то вторник всегда наступает после понедельника (В)» — импликация А → В, и результат операции в данном случае — «истина». В логических операциях смысл высказываний не учитывается, рассматривается только их истинность или ложность.
Рассмотрим, например, построение составного высказывания из высказываний А и В, которое было бы ложно тогда и только тогда, когда оба высказывания истинны. В таблице истинности для операции сложения по модулю два находим: 1 ⊕ 1 = 0. А высказывание может быть, например, таким: «Этот мяч полностью красный или полностью синий». Следовательно, если утверждение А «Этот мяч полностью красный» — истина, и утверждение В «Этот мяч полностью синий» — истина, то составное утверждение — ложь, т. к. одновременно и красным, и синим мяч быть не может.
Примеры решения задач
Пример 1. Определить для указанных значений X значение логического высказывания ((X > 3) ∨ (X < 3)) → (X < 4) :
1) X = 1; 2) X = 12; 3) X = 3.
Решение. Последовательность выполнения операций следующая: сначала выполняются операции сравнения в скобках, затем дизъюнкция, и последней выполняется операция импликации. Операция дизъюнкции ∨ ложна тогда и только тогда, когда оба операнда ложны. Таблица истинности для импликации имеет вид
A | B | A → B |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
1 | 1 | 1 |
Отсюда получаем:
1) для X = 1:
((1 > 3) ∨ (1 < 3)) → (1 < 4) = ложь ∨ истина → истина = истина → истина = истина;
2) для X = 12:
((12 > 3) ∨ (12 < 3) → (12 < 4) = истина ∨ ложь → ложь = истина → ложь = ложь;
3) для X = 3:
((3 > 3) ∨ (3 < 3)) → (3<4) = ложь ∨ ложь → истина = ложь → истина = истина.
Пример 2. Указать множество целых значений X, для которых истинно выражение ¬((X > 2) → (X > 5)) .
Решение. Операция отрицания применена ко всему выражению ((X > 2) → (X > 5)) , следовательно, когда выражение ¬((X > 2) → (X > 5)) истинно, выражение ((X > 2) →(X > 5)) ложно. Поэтому необходимо определить, для каких значений X выражение ((X > 2) → (X > 5)) ложно. Операция импликации принимает значение «ложь» только в одном случае: когда из истины следует ложь. А это выполняется только для X = 3; X = 4; X = 5.
Пример 3. Для каких из приведенных слов ложно высказывание ¬(первая буква гласная ∧ третья буква гласная) ⇔ строка из 4 символов? 1) асса; 2) куку; 3) кукуруза; 4) ошибка; 5) силач.
Решение. Рассмотрим последовательно все предложенные слова:
1) для слова асса получим: ¬(1 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;
2) для слова куку получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;
3) для слова кукуруза получим: ¬ (0 ∧ 0) ⇔ 0, 1 ⇔ 0 — высказывание ложно;
4) для слова ошибка получим: ¬ (1 ∧ 1) ⇔ 0, 0 ⇔ 0 — высказывание истинно;
5) для слова силач получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 0 — высказывание ложно.
Построение таблиц истинности логических выражений
Для логической формулы всегда можно записать таблицу истинности, т. е. представить заданную логическую функцию в табличном виде. В этом случае таблица должна содержать все возможные комбинации аргументов функции (формулы) и соответствующие значения функции (результаты формулы на заданном наборе значений).
Удобной формой записи при нахождении значений функции является таблица, содержащая, кроме значений переменных и значений функции, также значения промежуточных вычислений. Рассмотрим пример построения таблицы истинности для формулы ${X1}↖{-} ∧ X2 ∨ {X1 ∨ X2}↖{-} ∨ X1$.
X1 | X2 | ${X1}↖{-}$ | ${X1}↖{-}$ X2 | X1 ∧ X2 | ${X1 ∨ X2}↖{-}$ | ${X1}↖{-}$ ∧ X2 ∨ ${X1 ∨ X2}↖{-}$ | ${X1}↖{-}$ ∧ X2 ∨ ${X1 ∨ X2}↖{-}$ ∨ X1 |
1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
Если функция принимает значение 1 при всех наборах значений переменных, она является тождественно-истинной; если при всех наборах входных значений функция принимает значение 0, она является тождественно-ложной; если набор выходных значений содержит как 0, так и 1, функция называется выполнимой. Приведенный выше пример является примером тождественно-истинной функции.
Зная аналитическую форму логической функции, всегда можно перейти к табличной форме логических функций. С помощью заданной таблицы истинности можно решить обратную задачу, а именно: для заданной таблицы построить аналитическую формулу логической функции. Различают две формы построения аналитической зависимости логической функции по таблично заданной функции.
1. Дизъюнктивно нормальная форма (ДНФ) — сумма произведений, образованных из переменных и их отрицаний для ложных значений.
Алгоритм построения ДНФ следующий:
- в таблице истинности функции выбирают наборы аргументов, для которых логические формы равны 1 («истина»);
- все выбранные логические наборы как логические произведения аргументов записывают, последовательно соединив их между собой операцией логической суммы (дизъюнкции);
- для аргументов, которые являются ложными, в построенной записи проставляют операцию отрицания.
Пример. Построить функцию, определяющую, что первое число равно второму, используя метод ДНФ. Таблица истинности функции имеет вид
X1 | X2 | F(X1, X2) |
1 | 1 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
0 | 0 | 1 |
Решение. Выбираем наборы значений аргументов, в которых функция равна 1. Это первая и четвертая строки таблицы (строку заголовка при нумерации не учитываем).
Записываем логические произведения аргументов этих наборов, объединив их логической суммой: X1 ∧ X2 ∨ X1 ∧ X2 .
Записываем отрицание относительно аргументов выбранных наборов, имеющих ложное значение (четвертая строка таблицы; второй набор в формуле; первый и второй элементы): X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ ${X2}↖{-}$.
Ответ: F(X1, X2) = X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ ${X2}↖{-}$.
2. Конъюнктивно нормальная форма (КНФ) — произведение сумм, образованных из переменных и их отрицаний для истинных значений.
Алгоритм построения КНФ следующий:
- в таблице истинности выбирают наборы аргументов, для которых логические формы равны 0 («ложь»);
- все выбранные логические наборы как логические суммы аргументов записывают последовательно, соединив их между собой операцией логического произведения (конъюнкции);
- для аргументов, которые являются истинными, в построенной записи проставляют операцию отрицания.
Примеры решения задач
Пример 1. Рассмотрим предыдущий пример, т. е. построим функцию, определяющую, что первое число равно второму, используя метод КНФ. Для заданной функции ее таблица истинности имеет вид
X1 | X2 | F(X1, X2) |
1 | 1 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
0 | 0 | 1 |
Решение. Выбираем наборы значений аргументов, в которых функция равна 0. Это вторая и третья строки (строку заголовка при нумерации не учитываем).
Записываем логические суммы аргументов этих наборов, объединив их логическим произведением: X1 ∨ X2 ∧ X1 ∨ X2 .
Записываем отрицание относительно аргументов выбранных наборов, имеющих истинное значение (вторая строка таблицы, первый набор формулы, второй элемент; для третьей строки, а это второй набор формулы, первый элемент): X1 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ X2.
Таким образом, получена запись логической функции в КНФ.
Ответ: X1 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ X2.
Полученные двумя методами значения функций являются эквивалентными. Для доказательства этого утверждения используем правила логики: F(X1, X2) = X1 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ X2 = X1 ∧ ${X1}↖{-}$ ∨ X1 ∧ X2 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ ${X2}↖{-}$ ∧ X2 = 0 ∨ X1 ∨ X2 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ 0 = X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ ${X2}↖{-}$.
Пример 2. Построить логическую функцию для заданной таблицы истинности:
X1 | X2 | F(X1, X2) |
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 0 |
Решение. Используем алгоритм ДНФ для построения исходной функции:
X1 | X2 | F(X1, X2) | ||
1 | 1 | 1 | • | X1 ∧ X2 |
1 | 0 | 0 | ||
0 | 1 | 1 | • | ${X1}↖{-}$ ∧ X2 |
0 | 0 | 0 |
Искомая формула: X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ X2 .
Ее можно упростить: X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ X2 = X2 ∧ (X1 ∨ ${X1}↖{-}$) = X2 ∧ 1 = X2.
Пример 3. Для приведенной таблицы истинности построить логическую функцию, используя метод ДНФ.
X1 | X2 | X3 | F(X1, X2, X3) | ||
1 | 1 | 1 | 1 | • | X1 ∧ X2 ∧ X3 |
1 | 0 | 1 | 0 | ||
0 | 1 | 1 | 1 | • | ${X1}↖{-}$ ∧ X2 ∧ X3 |
0 | 0 | 1 | 0 | ||
1 | 1 | 0 | 1 | • | X1 ∧ X2 ∧ ${X3}↖{-}$ |
1 | 0 | 0 | 1 | • | X1 ∧ ${X2}↖{-}$ ∧ ${X3}↖{-}$ |
0 | 1 | 0 | 0 | ||
0 | 0 | 0 | 0 |
Искомая формула: X1 ∧ X2 ∧ X ∨ ${X1}↖{-}$ ∧ X2 ∧ X3 ∨ X1 ∧ X2 ∧ ${X3}↖{-}$ ∪ X1 ∧ ${X2}↖{-}$ ∧ ${X3}↖{-}$.
Формула достаточно громоздка, и ее следует упростить:
X1 ∧ X2 ∧ X3 ∨ ${X1}↖{-}$ ∧ X2 ∧ X3 ∨ X1 ∧ X2 ∧ ${X3}↖{-}$ ∨ X1 ∧ ${X2}↖{-}$ ∧ ${X3}↖{-}$ = X2 ∧ X3 ∧ (X1 ∨ ${X1}↖{-}$) ∨ X1 ∧ ${X3}↖{-}$ ∧ (X2 ∨ ${X2}↖{-}$) = X2 ∧ X3 ∨ X1 ∧ ${X3}↖{-}$.
Таблицы истинности для решения логических задач
Составление таблиц истинности — один из способов решения логических задач. При использовании такого способа решения, условия, которые содержит задача, фиксируются с помощью специально составленных таблиц.
Примеры решения задач
Пример 1. Составить таблицу истинности для охранного устройства, которое использует три датчика и срабатывает при замыкании только двух из них.
Решение. Очевидно, что результатом решения будет таблица, в которой искомая функция Y(X1, X2, X3) будет иметь значение «истина», если какие-либо две переменные имеют значение «истина».
X1 | X2 | X3 | Y(X1, X2, X3) |
1 | 1 | 1 | 0 |
1 | 1 | 0 | 1 |
1 | 0 | 1 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 1 | 1 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 |
Пример 2. Составить расписание уроков на день, учитывая, что урок информатики может быть только первым или вторым, урок математики — первым или третьим, а физики — вторым или третьим. Возможно ли составить расписание, удовлетворив всем требованиям? Сколько существует вариантов расписания?
Решение. Задача легко решается, если составить соответствующую таблицу:
1-й урок | 2-й урок | 3-й урок | |
Информатика | 1 | 1 | 0 |
Математика | 1 | 0 | 1 |
Физика | 0 | 1 | 1 |
Из таблицы видно, что существуют два варианта искомого расписания:
- математика, информатика, физика;
- информатика, физика, математика.
Пример 3. В спортивный лагерь приехали трое друзей — Петр, Борис и Алексей. Каждый из них увлекается двумя видами спорта. Известно, что таких видов спорта шесть: футбол, хоккей, лыжи, плавание, теннис, бадминтон. Также известно, что:
- Борис — самый старший;
- играющий в футбол младше играющего в хоккей;
- играющие в футбол и хоккей и Петр живут в одном доме;
- когда между лыжником и теннисистом возникает ссора, Борис мирит их;
- Петр не умеет играть ни в теннис, ни в бадминтон.
Какими видами спорта увлекается каждый из мальчиков?
Решение. Составим таблицу и отразим в ней условия задачи, заполнив соответствующие клетки цифрами 0 и 1 в зависимости от того, ложно или истинно соответствующее высказывание.
Так как видов спорта шесть, получается, что все мальчики увлекаются разными видами спорта.
Из условия 4 следует, что Борис не увлекается ни лыжами, ни теннисом, а из условий 3 и 5, что Петр не умеет играть в футбол, хоккей, теннис и бадминтон. Следовательно, любимые виды спорта Петра — лыжи и плавание. Занесем это в таблицу, а оставшиеся клетки столбцов «Лыжи» и «Плавание» заполним нулями.
Футбол | Хоккей | Лыжи | Плавание | Бадминтон | Теннис | |
Петр | 0 | 0 | 1 | 1 | 0 | 0 |
Борис | 0 | 0 | 0 | |||
Алексей | 0 | 0 |
Из таблицы видно, что в теннис может играть только Алексей.
Из условий 1 и 2 следует, что Борис не футболист. Таким образом, в футбол играет Алексей. Продолжим заполнять таблицу. Внесем в пустые ячейки строки «Алексей» нули.
Футбол | Хоккей | Лыжи | Плавание | Бадминтон | Теннис | |
Петр | 0 | 0 | 1 | 1 | 0 | 0 |
Борис | 0 | 0 | 0 | 0 | ||
Алексей | 1 | 0 | 0 | 0 | 0 | 1 |
Окончательно получаем, что Борис увлекается хоккеем и бадминтоном. Итоговая таблица будет выглядеть следующим образом:
Футбол | Хоккей | Лыжи | Плавание | Бадминтон | Теннис | |
Петр | 0 | 0 | 1 | 1 | 0 | 0 |
Борис | 0 | 1 | 0 | 0 | 1 | 0 |
Алексей | 1 | 0 | 0 | 0 | 0 | 1 |
Ответ: Петр увлекается лыжами и плаванием, Борис играет в хоккей и бадминтон, а Алексей занимается футболом и теннисом.
Всего: 191 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
Обозначим через m&n поразрядную конъюнкцию неотрицательных целых чисел m и n.
Так, например, 14&5 = 11102&01012 = 01002 = 4.
Для какого наибольшего целого числа А формула
x&51 = 0 ∨ (x&41 = 0 → x&А = 0)
тождественно истинна (т. е. принимает значение 1 при любом неотрицательном целом значении переменной x)?
Обозначим через m&n поразрядную конъюнкцию неотрицательных целых чисел m и n.
Так, например, 14&5 = 11102&01012 = 01002 = 4.
Для какого наименьшего неотрицательного целого числа А формула
x&51 = 0 ∨ (x&41 = 0 → x&А = 0)
тождественно истинна (т. е. принимает значение 1 при любом неотрицательном целом значении переменной x)?
На числовой прямой даны два отрезка: P = [17, 46] и Q = [22, 57]. Отрезок A таков, что приведённая ниже формула истинна при любом значении переменной х:
¬(x ∈ A) →(((x ∈ P) ⋀ (x ∈ Q)) → (x ∈ A))
Какова наименьшая возможная длина отрезка A?
На числовой прямой даны два отрезка: Р = [30, 45] и Q = [40, 55]. Какова наименьшая возможная длина интервала A, что обе приведённые ниже формулы истинны при любом значении переменной х:
( ¬(x ∈ A) → (¬(x ∈ P)) )
((x ∈ Q)→ (x ∈ A))
На числовой прямой даны два отрезка: Р = [3, 38] и Q = [21, 57]. Какова наибольшая возможная длина интервала A, что логическое выражение
((х ∈ Q) → (х ∈ Р)) → ¬(х ∈ A)
тождественно истинно, то есть принимает значение 1 при любом значении переменной х.
На числовой прямой даны два отрезка: P = [1, 39] и Q = [23, 58]. Какова наибольшая возможная длина интервала A, что логическое выражение
((x ∈ P) → ¬(x ∈ Q)) → ¬(x ∈ А)
тождественно истинно, то есть принимает значение 1 при любом значении переменной х.
На числовой прямой даны два отрезка: D = [17; 58] и C = [29; 80]. Укажите наименьшую возможную длину такого отрезка A, для которого логическое выражение
(x ∈ D) → ((¬(x ∈ C)∧ ¬(x ∈ A)) → ¬(x ∈ D))
истинно (т. е. принимает значение 1) при любом значении переменной х.
Источник: Демонстрационная версия ЕГЭ−2022 по информатике
На числовой прямой даны два отрезка: P = [4, 15] и Q = [12, 20].
Укажите наименьшую возможную длину отрезка A, для которого выражение
((x ∈ P) ∧ (x ∈ Q)) → (x ∈ A)
тождественно истинно, то есть принимает значение 1 при любом значении переменной х.
На числовой прямой даны два отрезка: P = [20, 50] и Q = [30,65]. Отрезок A таков, что формул
¬(x ∈ A) → ((x ∈ P) →¬ (x ∈ Q))
истинна при любом значении переменной x. Какова наименьшая возможная длина отрезка A?
Источник: ЕГЭ по информатике 23.03.2016. Досрочная волна
На числовой прямой задан отрезок A. Известно, что формула
((x ∈ A) → (x2 ≤ 100)) ∧ ((x2 ≤ 64) → (x ∈ A))
тождественно истинна при любом вещественном x. Какую наименьшую длину может иметь отрезок A?
На числовой прямой даны два отрезка: P = [2, 10] и Q = [6, 14]. Какова наибольшая возможная длина интервала A, что формула
( (x ∈ А) → (x ∈ P) ) ∨ (x ∈ Q)
тождественно истинна, то есть принимает значение 1 при любом значении переменной х.
На числовой прямой даны три отрезка: P = [10, 40], Q = [5, 15] и R = [35, 50]. Какова наименьшая возможная длина промежутка A, что формула
( (x ∈ А) ∨ (x ∈ P) ) ∨ ((x ∈ Q)→ (x ∈ R))
тождественно истинна, то есть принимает значение 1 при любом значении переменной х.
На числовой прямой даны два отрезка: P = [12, 62] и Q = [32, 92].
Какова наименьшая возможная длина интервала A, что формула
(¬(x ∈ А) ∧ (x ∈ Q)) → (x ∈ P)
тождественно истинна, т. е. принимает значение 1 при любом значении переменной х.
На числовой прямой даны два отрезка: P = [8, 39] и Q = [23, 58].
Какова наименьшая возможная длина интервала A, при которой выражение
((x ∈ P) ∨ (x ∈ А)) → ((x ∈ Q) ∨ (x ∈ А))
тождественно истинно, то есть принимает значение 1 при любом значении переменной х.
На числовой прямой даны два отрезка: P = [17, 54] и Q = [37, 83]. Какова наименьшая возможная длина интервала A, что формула
(x ∈ P) → (((x ∈ Q) ∧ ¬(x ∈ A)) → ¬(x ∈ P))
тождественно истинна, то есть принимает значение 1 при любом значении переменной х.
Источник: ЕГЭ по информатике 2021. Досрочная волна
Элементами множества А являются натуральные числа. Известно, что выражение
(x ∈ {2, 4, 6, 8, 10, 12}) → (((x ∈ {3, 6, 9, 12, 15}) ∧ ¬(x ∈ A)) → ¬(x ∈ {2, 4, 6, 8, 10, 12}))
истинно (т. е. принимает значение 1) при любом значении переменной х. Определите наименьшее возможное значение суммы элементов множества A.
Элементами множества А являются натуральные числа. Известно, что выражение
(x ∈ {2, 4, 6, 8, 10, 12}) → (((x ∈ {4, 8, 12, 16}) ∧ ¬(x ∈ A)) → ¬(x ∈ {2, 4, 6, 8, 10, 12}))
истинно (т. е. принимает значение 1) при любом значении переменной х. Определите наименьшее возможное значение суммы элементов множества A.
На числовой прямой даны два отрезка: Р = [22, 72] и Q = [42, 102]. Какова наименьшая возможная длина интервала A, что логическое выражение
¬(¬(х ∈ А) ∧ (х ∈ Р)) ∨ (х ∈ Q)
тождественно истинно, то есть принимает значение 1 при любом значении переменной х.
На числовой прямой даны два отрезка: Р = [12, 62] и Q = [52, 92]. Какова наименьшая возможная длина интервала A, что логическое выражение
¬(¬(х ∈ А) ∧ (х ∈ Р)) ∨ (х ∈ Q)
тождественно истинно, то есть принимает значение 1 при любом значении переменной х.
На числовой прямой даны два отрезка: P = [3, 13] и Q = [12, 22]. Какова наибольшая возможная длина интервала A, что формула
((х ∈ A) → (х ∈ Р)) ∨ (х ∈ Q)
тождественно истинна, то есть принимает значение 1 при любом значении переменной х.
Всего: 191 1–20 | 21–40 | 41–60 | 61–80 …
-
Главная
-
Теория ЕГЭ
-
Информатика — теория ЕГЭ
-
Основы логики, таблицы истинности
Основы логики, таблицы истинности
- 29.01.2015
Раздел информатики «Основы логики и таблицы истинности» посвящён подготовке к ЕГЭ.
Рассмотрена вся полная теория, необходимая для успешной подготовки и даны практические задания, необходимые для усвоения данной темы.
Вы можете выбрать иные разделы информатики:
- Измерение и кодирование информации
- Моделирование и компьютерный эксперимент
- Системы счисления
- Основы логики, таблицы истинности
- Теория алгоритмов
- Архитектура компьютеров и сетей
- Обработка звука и графики
- Электронные таблицы Excel
- Поиска и хранение информации
- Программирование
- Теория игр
Смотреть в PDF:
Или прямо сейчас: cкачать в pdf файле.
Сохранить ссылку:
Комментарии (0)
Добавить комментарий
Добавить комментарий
Комментарии без регистрации. Несодержательные сообщения удаляются.
Имя (обязательное)
E-Mail
Подписаться на уведомления о новых комментариях
Отправить
За это задание ты можешь получить 1 балл. На решение дается около 3 минут. Уровень сложности: базовый.
Средний процент выполнения: 65.9%
Ответом к заданию 2 по информатике может быть цифра (число) или слово.
Задача 1
Дано логическое выражение, зависящее от 6 логических переменных:
¬(A → F) ∧ B ∧ ¬C ∧ (D → E).
Сколько существует различных наборов значений переменных, при которых выражение ложно?
Решение
Заметим, что все скобки и выражения связаны конъюнкцией, для которой сложно получить единицу. Поэтому будет решать от обратного. Посчитаем количество наборов, когда выражение истинно, тогда:
¬(A → F) = 1, тогда $A → F = 0$, следовательно, A = 1, F = 0.
B = 1.
¬C = 1, значит C = 0.
(D → E) = 1, тогда возможно 3 варианта: D = 0, E = 0; D = 0, E = 1; D = 1, E = 1.
Перемножим количество подходящих значений для каждой переменной: A, B, C, F — по одному набору, D и E — 3 набора. Итого:
1 х 3 = 3 набора, для которых вся функция истинна. Но нам нужно, чтобы функция была ложна. Найдём общее количество наборов по формуле $k = 2^N$, где N — количество переменных. У нас 6 переменных, значит всего наборов 64. Из них 3 нам не подходят. Тогда количество подходящих (ложных) наборов:
64 — 3 = 61.
Или при помощи программы на С++:
#include <iostream>
#include <algorithm>
#include <fstream>using namespace std;
bool f(int A, int B, int C, int D, int E, int F){
return (!(!A || F) && B && !C && (!D || E));
}int main() {
int count = 0;
for (int A = 0; A <= 1; ++A)
for (int B = 0; B <= 1; ++B)
for (int C = 0; C <= 1; ++C)
for (int D = 0; D <= 1; ++D)
for (int E = 0; E <= 1; ++E)
for (int F = 0; F <= 1; ++F)
if (f(A, B, C, D, E, F) == false)
count++;
cout << count;
return 0;
}
Ответ: 61.
Ответ: 61
Задача 2
Дано логическое выражение, зависящее от 5 логических переменных:
$(A ∨ ¬B) ∧ (¬C ∨ D ∨ ¬E)$.
Сколько существует различных наборов значений переменных, при которых выражение ложно?
Решение
В первой скобке 2 переменных, значит для неё будет 4 набора. Поскольку переменные соединяются дизъюнкцией, выражение ложно ровно в одном случае, а в трёх оставшихся — истинно.
Во второй скобке 3 переменных, значит для неё будет 8 наборов. Поскольку переменные соединяются дизъюнкцией, выражение ложно ровно в одном случае, а в семи оставшихся — истинно.
Конъюнкция ложна, когда хотя бы одна скобка ложна. Рассмотрим 3 случая:
Первая скобка ложна, вторая истинна. Первая скобка ложна в 1 случае из 4, вторая истинна в 7 случаях из 8. Итого 7 · 1 = 7.
Первая скобка истинна, вторая ложна. Первая скобка истинна в 3 случаях из 4, вторая ложна в 1 случае из 4. Итого 1 · 3 = 3.
Первая скобка ложна, вторая ложна. Первая скобка ложна в 1 случае из 4, вторая ложна в 1 случае из 8. Итого 1 · 1 = 1.
Суммарно: 7 + 3 + 1 = 11.
Ответ: 11.
Ответ: 11
Задача 3
Дано логическое выражение, зависящее от 5 логических переменных:
(¬A ∧ B ∧ C) ∨ (¬D ∧ ¬E).
Сколько существует различных наборов значений переменных, при которых выражение истинно?
Решение
В первой скобке 3 переменных, значит для неё будет 8 наборов. Поскольку переменные соединяются конъюнкцией, выражение истинно ровно в одном случае, а в семи оставшихся — ложно.
Во второй скобке 2 переменных, значит для неё будет 4 набора. Поскольку переменные соединяются конъюнкцией, выражение истинно ровно в одном случае, а в трёх оставшихся — ложно.
Дизъюнкция истинна, когда хотя бы одна скобка истинна. Рассмотрим 3 случая:
Первая скобка ложна, вторая истинна. Первая скобка ложна в 7 случаях из 8, вторая истинна в 1 случае из 4. Итого 7 · 1 = 7.
Первая скобка истинна, вторая ложна. Первая скобка истинна в 1 случае из 8, вторая ложна в 3 случаях из 4. Итого 1 · 3 = 3.
Первая скобка истинна, вторая истинна. Первая скобка истинна в 1 случае из 8, вторая истинна в 1 случае из 4. Итого 1 · 1 = 1.
Суммарно: 7 + 3 + 1 = 11.
Ответ: 11.
Ответ: 11
Задача 4
Логическая функция F задаётся выражением ((x∧z)∨¬x)∧¬w∧y. Во фрагменте таблицы истинности приведены все строки, при которых значение функции F является истиной. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
F | ||||
1 | 0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 0 | 1 |
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Решение
Строим таблицу истинности для логической функции любым способом и находим наборы, при которых функция ложна. Например, при помощи программы:
bool f(int x, int y, int z, int w){
return (((x && z) || !x) && !w && y);
}int main() {
cout << "x y z w F" << endl;
for (int x = 0; x <= 1; ++x)
for (int y = 0; y <= 1; ++y)
for (int z = 0; z <= 1; ++z)
for (int w = 0; w <= 1; ++w)
if (f(x, y, z, w) == true)
cout << x << " " << y << " "
<< z << " " << w << " " << f(x, y, z, w) << endl;
return 0;
}
Получили наборы:
x y z w F
0 1 0 0 1
0 1 1 0 1
1 1 1 0 1
Начинаем сопоставление с исходной тбалицей:
1) столбец без единиц четвёртый в таблице из условия — это W
2) столбец с одной единицей третий в исходной таблице — это X
3) столбей с тремя единицами — это Y
4) столбец с двумя единицами — это Z
Результат: YZXW
Ответ: yzxw
Задача 5
Логическая функция F задаётся выражением (y → w) ∨ (¬x ∧ z). Во фрагменте таблицы истинности приведены все строки, при которых значение функции F ложно. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
F | ||||
0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 0 |
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Решение
Строим таблицу истинности для логической функции любым способом и находим наборы, при которых функция ложна. Например, при помощи программы:
bool f(int x, int y, int z, int w){
return ((!y || w) || (!x && z));
}int main() {
cout << "x y z w F" << endl;
for (int x = 0; x <= 1; ++x)
for (int y = 0; y <= 1; ++y)
for (int z = 0; z <= 1; ++z)
for (int w = 0; w <= 1; ++w)
if (f(x, y, z, w) == false)
cout << x << " " << y << " "
<< z << " " << w << " " << f(x, y, z, w) << endl;
return 0;
}
Получили наборы:
x y z w F
0 1 0 0 0
1 1 0 0 0
1 1 1 0 0
Начинаем сопоставление с исходной тбалицей:
1) столбец без единиц второй в таблице из условия — это W
2) столбец с одной единицей третий в исходной таблице — это Z
3) столбей с тремя единицами — это Y
4) столбец с двумя единицами — это X
Результат: xwzy
Ответ: xwzy
Задача 6
Дан фрагмент таблицы истинности выражения F:
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | F |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
Сколько строк таблицы удовлетворяют выражению: F = (x1 ∨ x2 ∨ x3) ∧ x4 ∧ (x5 ∨ x6 ∨ x7) ∧ x8?
Решение
Данное выражение является конъюнкцией четырёх выражений. Конъюнкция нескольких высказываний истинна тогда и только тогда, когда истинными являются все входящие в неё высказывания. Следовательно, x4 = 1, x8 = 1 и в наборах значений переменных (x1, x2, x3), (x5, x6, x7) должна быть хотя бы одна 1.
Этим условиям удовлетворяют три последние строки таблицы. В каждой из этих строк значение функции F = 1. Следовательно, эти строки удовлетворяют заданному логическому выражению.
Чтобы остальные строки удовлетворяли заданному выражению, значение F должно быть равно 0. В таблице количество таких строк равно 5.
Всего значения 8 строк таблицы удовлетворяют заданному выражению.
Ответ: 8
Задача 7
Логическая функция F задаётся выражением (¬x → y) ∧ (z → y). Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.
Переменная 1 ??? |
Переменная 2 ??? |
Переменная 3 ??? |
Функция F |
0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 1 |
1 | 0 | 1 | 1 |
0 | 1 | 0 | 1 |
1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 |
В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая 1-му столбцу; затем — буква, соответствующая 2-му столбцу; затем — буква, соответствующая 3-му столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x ∨ ¬y, зависящее от двух переменных x и y, и таблица истинности:
Переменная 1 ??? |
Переменная 2 ??? |
Функция F |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
0 | 1 | 1 |
Тогда 1-му столбцу соответствует переменная y, а 2-му столбцу соответствует переменная x. В ответе нужно написать: yx.
Решение
Преобразуем исходное выражение.
(¬x → y) ∧ (z → y) = (x ∨ y) ∧ (¬z ∨ y) = y ∨ (x ∧ ¬z).
Так как дизъюнкция ложна только в том случае, когда ложны оба высказывания, входящие в неё, то переменной y должен соответствовать тот столбец, в котором значение 0 стоит в тех же строках, что и в столбце F. Следовательно, переменной y соответствует третий столбец.
Рассмотрим строку, в которой значение функции отличается от значения переменной y. Такой строкой является четвёртая снизу. Здесь переменная y = 0, а значение функции F = 1. Это означает, что x ∧ ¬z = 1. В рассматриваемой строке значение первого столбца 0, а второго 1. Пусть x = 0, z = 1. При этих значениях логическое выражение x ∧ ¬z ложно, что не соответствует табличному значению функции F = 1. Следовательно, x = 1, z = 0. Значит, первый столбец соответствует переменной z, а второй—x.
Или при помощи программы на С++:
Выводим только ложные наборы, потому что их меньше
#include <iostream>
#include <algorithm>
#include <fstream>using namespace std;
bool f(int x, int y, int z){
return ((x || y) && (!z || y));
}int main() {
cout << "x y z F" << endl;
for (int x = 0; x <= 1; ++x)
for (int y = 0; y <= 1; ++y)
for (int z = 0; z <= 1; ++z)
if (f(x, y, z) == false)
cout << x << " " << y << " "
<< z << " " << f(x, y, z) << endl;
return 0;
}
Ответ: zxy
Задача 8
Логическая функция F задаётся выражением ((¬z∨¬x)∧z)∨w∨¬y. Во фрагменте таблицы истинности приведены все строки, при которых значение функции F ложно. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
F | ||||
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 |
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x∨¬y, зависящее от двух переменных x и y, и таблица истинности
F | ||
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
1 | 1 | 1 |
тогда 1-му столбцу соответствует переменная y, а 2-му столбцу соответствует переменная x. В ответе нужно написать: yx.
Задача 9
Логическая функция F задаётся выражением (y ∧ (w → x)) → g. Во фрагменте таблицы истинности приведены все строки, при которых значение функции F ложно. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, w, g.
F | ||||
0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 0 |
В ответе напишите буквы x, y, w, g в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x∨¬y, зависящее от двух переменных x и y, и таблица истинности
F | ||
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
1 | 1 | 1 |
тогда 1-му столбцу соответствует переменная y, а 2-му столбцу соответствует переменная x. В ответе нужно написать: yx.
Задача 10
Логическая функция F задаётся выражением (x → y) → (w → g). Во фрагменте таблицы истинности приведены все строки, при которых значение функции F ложно. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, w, g.
F | ||||
0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
В ответе напишите буквы x, y, w, g в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x∨¬y, зависящее от двух переменных x и y, и таблица истинности
F | ||
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
1 | 1 | 1 |
тогда 1-му столбцу соответствует переменная y, а 2-му столбцу соответствует переменная x. В ответе нужно написать: yx.
Задача 11
Логическая функция F задаётся выражением (x = y) ∨ ¬(y → w) ∨ z. Ниже приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных w, x, y, z.
F | ||||
1 | 1 | 0 | 0 | |
1 | 1 | 0 | ||
0 | 1 | 0 |
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Если бы функция F была задана выражением x ∨ ¬y, зависящим от двух переменных x и y, а фрагмент таблицы истинности имел бы вид:
тогда 1-му столбцу соответствовала бы переменная y, а 2-му столбцу — переменная x. В ответе следовало бы написать: yx.
Задача 12
Логическая функция F задаётся выражением (x = y)∨(x∧w)∨¬z. Ниже приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных w, x, y, z.
F | ||||
1 | 0 | 0 | ||
0 | 0 | 0 | ||
0 | 1 | 0 |
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Если бы функция F была задана выражением x ∨ ¬y, зависящим от двух переменных x и y, а фрагмент таблицы истинности имел бы вид:
тогда 1-му столбцу соответствовала бы переменная y, а 2-му столбцу — переменная x. В ответе следовало бы написать: yx.