Овр с хлором егэ

1. Химические свойства галогенов и их соединений с точки зрения изменения степеней окисления

В данном разделе реакции выходят за рамки С части ЕГЭ, но могут встретиться в тестовой части экзамена.

Все основные правила составления ОВР для С части, представлены в другом разделе.

Потренироваться составлять реакции онлайн (в рамках ЕГЭ) можно тут.

Правило 1.1. Простые вещества

Водный раствор Cl2 окисляет соединения S–2 (H2S и сульфиды) до S+6, восстанавливаясь до степени окисления -1 (так как, находясь в седьмой группе периодической таблицы элементов, принять они могут только один электрон):

4Cl2 + H2S + 4H2O →  H2SO4 + 8HCl

4Cl2 + Na2S + 4H2O →  Na2SO4 + 8HCl

Br2 и I2 являются более слабыми окислителями и поэтому окисляют сероводород преимущественно до S:

Br2 + H2S → S + 2HBr.

Водные растворы Cl2 и Br2 окисляют соединения S+4 до S+6:

Cl2 + SO2 + 2H2O →  H2SO4 + 2HCl

Br2 + SO2 + 2H2O →  H2SO4 + 2HBr

Cl2 и Br2 окисляют аммиак с образованием хлорида и бромида аммония:

3Cl2 + 8NH3  →  N2­ + 6NH4Cl

3Br2 + 8NH3  →  N2­ + 6NH4Br

F2, Cl2 и Br2 окисляют пероксид водорода с образованием кислорода:

F2 + H2O2 →  O2­ + 2HF

Cl2 + H2O2 →  O2­­ + 2HCl

Br2 + H2O2 →  O2­­ + 2HBr

F2, Cl2 и Br2 окисляют соединения железа, хрома, марганца и др. в промежуточных степенях окисления, преимущественно в щелочной среде:

3F2 + 2Fe(OH)3 + 10KOH →  2K2FeO4 + 6KF + 8H2O

3Cl2 + 2Fe(OH)3 + 10KOH →  2K2FeO4 + 6KCl + 8H2O

3Br2 + 2Fe(OH)3 + 10KOH →  2K2FeO4 + 6KBr + 8H2O

2Br2 + 2CrCl2 + 8NaOH →  Na2CrO4 + 2NaCl + 4NaBr + 4H2O

3Br2 + 2NaCrO2 + 8NaOH →  2Na2CrO4 + 6NaBr + 4H2O

3Cl2 + 2CrCl3 + 16KOH →  2K2CrO4 + 12KCl + 8H2O

3Br2 + Cr2(SO4)3 + 16NaOH →  2Na2CrO4 + 3Na2SO4 + 6NaBr + 8H2O

3Cl2 + 2K3[Cr(OH)6] + 4KOH →  2K2CrO4 + 6KCl + 8H2O

2Br2 + Mn(NO3)2 + 8NaOH →  Na2MnO4 + 4NaBr + 2NaNO3 + 4H2O

F2 + NaBrO3 + 2NaOH →  NaBrO4 + 2NaF + H2O

I2 + K2SO3 + 2KOH →  K2SO4 + 2KI + H2O

Br2 + 2K2MnO4 →  2KMnO4 + 2KBr

Галогены также окисляют кислоты и кислотные оксиды, в которых неметалл имеет промежуточную степень окисления:

2Cl2 + H3PO2 + 7KOH →  K3PO4 + 4KCl + 5H2O

2I2 + As2O3 + 5H2O →  2H3AsO4 + 4HI

F2 + KClO3 + 2NaOH → KClO4 + 2NaF + H2O.

Правило 1.2. Кислородсодержащие кислоты и соли хлора являются сильными окислителями.

При восстановлении любых соединений с положительными степенями окисления галогенов последние восстанавливается по максимуму, до Г .

Восстановление кислот:

5HClO3 + 6P + 9H2O → 5HCl + 6H3PO4

2HClO3 + 3P2O3 + 9H2O → 2HCl + 6H3PO4

4HClO + PH3  → 4HCl + H3PO4

HClO3 + 6HBr → 3Br2 + HCl + 3H2O

HClO3 + 6HI → 3I2 + HCl + 3H2O.

Восстановление солей:

KClO4 + 8HI → KCl + 4I2 + 4H2O

KClO3 + 6HCl → KCl + 3Cl2 + 3H2O

2KClO3 + 3P2O3 → 2KCl + 3P2O5

KClO3 + 3H2O2 → KCl + 3O2 + 3H2O

NaClO3 + 3MnO2 + 6NaOH → 3Na2MnO4 + NaCl + 3H2O.

Исключение: соединения йода в высоких степенях окисления могут восстанавливаться до I2, а не до йодид-иона
KIO3 + 5KI + 3H2SO4 → 3I2 + 3K2SO4 + 3H2O.

В щелочной среде соединения Fe, Cr и Mn окисляются до ферратов (FeO42–), хроматов (CrO42–) и манганатов (MnO42–), соответственно:

2KClO3 + 3FeSO4 + 12KOH → 2KCl + 3K2FeO4 + 3K2SO4 + 6H2O

KClO3 + 2CrCl3 + 10KOH → 7KCl + 2K2CrO4 + 5H2O

KClO3 + 2Cr(OH)3 + 4NaOH → KCl + 2Na2CrO4 + 5H2O

2KClO3 + 3MnO + 6KOH → 2KCl + 3K2MnO4 + 3H2O

KClO3 + 3MnO2 + 6KOH → KCl + 3K2MnO4 + 3H2O

NaClO3 + Cr2O3 + 2K2CO3 → NaCl + 2K2CrO4 + 2CO2

NaClO3 + Cr2O3 + 4NaOH → NaCl + 2Na2CrO4 + 2H2O.

Правило 1.3. При окислении галогенидов Г как правило образуются простые вещества (Cl2, Br2 и I2).

Примеры реакций с Cl, Br, I :

16HCl + 2KMnO4 → 5Cl2 + 2KCl + 8H2O + 2MnCl2

4HCl + MnO2 → Cl2 + MnCl2 + 2H2O

14HCl + K2Cr2O7 → 3Cl2 + 2CrCl3 + 2KCl + 7H2O

6HCl + KClO3 → 3Cl2 + KCl + 3H2O

2HCl + KClO → Cl2 + KCl + H2O

HCl + HClO → Cl2 + H2O

4HCl + PbO2 → Cl2 + PbCl2 + 2H2O

4HCl + Ca(ClO)2 → 2Cl2 + CaCl2 + 2H2O

14HI + K2Cr2O7 → 3I2 + 2CrI3 + 2KI + 7H2O

8HI + KClO4 → 4I2 + KCl + 4H2O

6KI + KClO3 + 3H2SO4 → 3I2 + 3K2SO4 + KCl + 3H2O

10KI + 2KMnO4 + 8H2SO4 → 5I2 + 2MnSO4 + 6K2SO4 + 8H2O

2KI + MnO2 + 2H2SO4 → I2 + MnSO4 + K2SO4 + 2H2O

10KBr + 2KMnO4 + 8H2SO4 → 5Br2 + 2MnSO4 + 6K2SO4 + 8H2O

Правило 1.4. Только I окисляется соединениями Fe+3 и Cu+2 :

6HI + 2Fe(OH)3 → I2 + 2FeI2 + 6H2O

6HI + Fe2O3 → I2 + 2FeI2 + 3H2O

6KI + 2FeBr3  →  I2 + 2FeI2 + 6KBr

4HI + 2CuCl2 → I2 + 2CuI + 4HCl

4KI + 2CuSO4 → I2 + 2CuI + 2K2SO4

4KI + 2Cu(NO3)2 → I2 + 2CuI + 4KNO3

При взаимодействии HI с соединениями Fe+2 и Cu+1, а также других галогеноводородов с Fe+3 и Cu+2, идут обычные реакции ионного обмена:

HI + Fe(OH)2 → FeI2 + H2O

3HCl + Fe(OH)3 → FeCl3 + 3H2O

Правило 1.5. Ионы I и Br могут окисляться кислотами-окислителями:

8HI + H2SO4(к) → 4I2  + H2S­ + 4H2O

2HBr + H2SO4(к) → Br2 + SO2­ + 2H2O

8KI + 5H2SO4(к) → 4I2 + H2S­ + 4K2SO4 + 4H2O

2KBr + 2H2SO4(к) → Br2 + SO2­ + K2SO4 + 2H2O

2KI + 4HNO3(к) → I2 + 2NO2­ + 2KNO3 + 2H2O

2KBr + 4HNO3(к) → Br2 + 2NO2­ + 2KNO3 + 2H2O.

Окислительно-восстановительные реакции. Окислитель и восстановитель

Окислительно-восстановительными называют реакции, которые сопровождаются изменением степеней окисления химических элементов, входящих в состав реагентов.

Окислением называют процесс отдачи электронов атомом, молекулой или ионом, который сопровождается повышением степени окисления.

Восстановлением называют процесс присоединения электронов атомом, молекулой или ионом, который сопровождается понижением степени окисления.

Окислителем называют реагент, который принимает электроны в ходе окислительно-восстановительной реакции. (Легко запомнить: окислитель — грабитель.)

Восстановителем называют реагент, который отдаёт электроны в ходе окислительно-восстановительной реакции.

Окислительно-восстановительные реакции делят на реакции межмолекулярного окисления-восстановления, реакции внутримолекулярного окисления-восстановления, реакции диспропорционирования и реакции конмутации.

Для составления окислительно-восстановительных реакций используют метод электронного баланса.

Составление уравнения окислительно-восстановительной реакции осуществляют в несколько стадий.

  1. Записывают схему уравнения с указанием в левой и правой частях степеней окисления атомов элементов, участвующих в процессах окисления и восстановления.
  2. Определяют число электронов, приобретаемых или отдаваемых атомами или ионами.
  3. Уравнивают число присоединённых и отданных электронов введением множителей, исходя из наименьшего кратного для коэффициентов в процессах окисления и восстановления.
  4. Найденные коэффициенты (их называют основными) подставляют в уравнение реакции перед соответствующими формулами веществ в левой и правой частях.

Пример 1. Реакция алюминия с серой. Записываем схему реакции и указываем изменение степеней окисления:

Атом серы присоединяет два электрона, изменяя свою степень окисления от 0 до –2. Он является окислителем. Атом алюминия отдаёт три электрона, изменяя свою степень окисления от 0 до +3. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Подставляем найденные коэффициенты в уравнение реакции и окончательно получаем:

Пример 2. Окисление фосфора хлором. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления хлора изменяется от 0 до –1, при этом молекула хлора присоединяет два электрона. Хлор является окислителем.

Атом фосфора отдаёт пять электронов, изменяя свою степень окисления от 0 до +5. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Электронное уравнение для хлора записывают именно так, поскольку окислителем является молекула хлора, состоящая из двух атомов, и каждый из этих атомов изменяет свою степень окисления от 0 до –1. Коэффициент 5 относится к молекуле хлора в левой части уравнения, а количество атомов хлора в правой части уравнения 5 × 2 = 10.

Подставляем найденные коэффициенты в уравнение реакции и окончательно получаем:

Пример 3. Восстановление оксида железа (II, III) алюминием. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления железа изменяется от +8/3 до 0, при этом три иона железа (поскольку в исходном оксиде их содержится именно три) присоединяют восемь электронов (3 × 8/3 = 8). Железо является окислителем.

Алюминий отдаёт три электрона, изменяя свою степень окисления от 0 до +3. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединенных и отданных электронов:

Электронное уравнение для алюминия записывают именно так, поскольку в состав оксида алюминия входят два атома алюминия. Таким образом, в левой части уравнения основной коэффициент перед оксидом железа (II, III) будет равен 3, а перед алюминием 4 × 2 = 8.

Количество атомов железа в правой части уравнения реакции составит 3 × 3 = 9. Количество молекул оксида алюминия будет равно 8/2 = 4. Окончательно получаем:

Проверяем баланс по кислороду. В левой части уравнения 3 × 4 = 12. В правой части уравнения 4 × 3 = 12. Таким образом, число атомов каждого элемента в отдельности в левой и в правой части химического уравнения равны между собой, и реакция уравнена правильно.

Этот пример наглядно показывает, что дробная степень окисления хотя и не имеет физического смысла, но позволяет правильно уравнять окислительно-восстановительную реакцию.

Очень часто окислительно-восстановительные реакции проходят в растворах в нейтральной, кислой или щелочной среде. В этом случае химические элементы, входящие в состав вещества, образующего среду реакции, свою степень окисления не меняют.

Пример 4. Окисление йодида натрия перманганатом калия в среде серной кислоты. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Атом марганца принимает пять электронов, изменяя свою степень окисления от +7 до +2. Перманганат калия является окислителем.

Два йодид-иона отдают два электрона, образуя молекулу I20. Йодид натрия является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов введением множителей:

Найденные коэффициенты подставим в уравнение реакции перед соответствующими формулами веществ в левой и правой частях.

Серная кислота является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет, но сульфат-анион связывает выделяющиеся в результате реакции катионы калия, натрия и марганца. Подсчитаем число сульфат-ионов в правой части. Оно равно 2 + 1 + 5 = 8. Следовательно, перед серной кислотой следует поставить коэффициент 8. Число атомов водорода в левой части уравнения равно 8 × 2 = 16. Отсюда вычисляем коэффициент для воды: 16/2 = 8.

Таким образом, уравнение реакции будет иметь вид:

Правильность баланса проверяем по кислороду. В левой части его 2 × 4 = 8 (перманганат калия); в правой — 8 × 1 = 8 (вода). Следовательно, уравнение составлено правильно.

Пример 5. Окисление сульфида калия манганатом калия в водной среде. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Ион марганца принимает два электрона, изменяя свою степень окисления от +6 до +4. Манганат калия является окислителем.

Сульфид-ион отдаёт два электрона, образуя молекулу S0. Сульфид калия является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов введением множителей:

Основные коэффициенты в уравнении реакции равны единице:

Вода является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет.

Гидроксид-ионы связывают выделяющиеся в результате реакции катионы калия. Таких катионов четыре (2 × 2), число атомов водорода также 4 (4 × 1), поэтому перед молекулой воды ставим коэффициент два (4/2 = 2):

Пример 6. Окисление аммиака хлоратом калия в щелочной среде. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Хлор принимает шесть электронов, изменяя свою степень окисления от +5 до –1. Хлорат калия является окислителем.

Азот отдаёт восемь электронов, изменяя свою степень окисления от –3 до +5. Аммиак является восстановителем.

Составляем уравнение электронного баланса, уравниваем число присоединённых и отданных электронов введением множителей, сокращаем кратные коэффициенты:

Проставляем найденные основные коэффициенты в уравнение реакции:

Гидроксид калия является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет.

Катионы калия связывают выделяющиеся в результате реакции нитрат-ионы. Таких анионов три. Следовательно, перед гидроксидом калия ставим коэффициент три:

Число атомов водорода в левой части уравнения равно девяти в аммиаке (3 × 3) = 9 и трём в гидроксиде калия (3 × 1), а их общее число 9 + 3 = 12. Следовательно, перед водой ставим коэффициент (12/2) = 6. Окончательно уравнение реакции будет иметь вид:

Убеждаемся ещё раз в правильности расстановки коэффициентов, сравнивая число атомов кислорода в левой и правой его частях. Оно равно 15.

Довольно часто одно и то же вещество одновременно является окислителем и создаёт среду реакции. Такие реакции характерны для концентрированной серной кислоты и азотной кислоты в любой концентрации. Кроме того, в подобные реакции, но в качестве восстановителя, вступают галогенводородные кислоты с сильными окислителями.

Пример 7. Окисление магния разбавленной азотной кислотой. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления азота изменяется от +5 до +1, при этом два атома азота присоединяют восемь электронов. Азотная кислота является окислителем.

Магний отдаёт два электрона, изменяя свою степень окисления от 0 до +2. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Подставляем найденные коэффициенты перед окислителем и восстановителем в левой части уравнения реакции и перед продуктами окисления и восстановления в правой части уравнения реакции:

При этом в правой части уравнения реакции имеется 4 × 2 = 8 нитрат-ионов, не изменивших свою степень окисления. Очевидно, что для этого в правую часть уравнения реакции следует добавить ещё 8 молекул HNO3. Тогда общее количество молекул азотной кислоты в правой части уравнения составит 2 + 8 = 10.

В этих молекулах содержатся 10 × 1 = 10 атомов водорода. Такое же количество атомов водорода должно быть и в правой части уравнения. Следовательно, перед молекулой воды следует подставить коэффициент 10/2 = 5, и уравнение окончательно будет иметь вид:

Окончательно проверяем правильность баланса, подсчитывая число атомов кислорода в левой и правой частях уравнения. В левой части 10 × 3 = 30. В правой части (2 × 3) × 4 = 24 в нитрате магния, 1 в оксиде азота (I) и 5 × 1 = 5 в молекуле воды. Итого 24 + 1 + 5 = 30. Таким образом, реакция полностью уравнена.

Пример 8. Взаимодействие соляной кислоты с оксидом марганца (IV). Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления марганца изменяется от +4 до +2, при этом марганец присоединяет два электрона. Оксид марганца (IV) является окислителем.

Два хлорид-иона отдают два электрона, образуя молекулу Cl20, хлористый водород является восстановителем.

Составляем электронное уравнение и уравниваем число присоединённых и отданных электронов, сокращаем кратные коэффициенты:

При этом коэффициент 1 изначально относится к двум хлорид-ионам и к одной молекуле Cl2. Подставляем найденные коэффициенты перед окислителем и восстановителем в левой части уравнения реакции и перед продуктами окисления и восстановления в правой части уравнения реакции:

При этом в правой части уравнения реакции имеется 1 × 2 = 2 хлорид-иона, не изменивших свою степень окисления. Эти хлорид-ионы в окислительно-восстановительной реакции не участвовали. Очевидно, что для этого в правую часть уравнения реакции следует добавить 2 молекулы HCl. Тогда общее количество молекул HCl в правой части уравнения составит 2 + 2 = 4. В этих молекулах будет содержаться 4 × 1 = 4 атома водорода. Такое же количество атомов водорода должно быть и в правой части уравнения. Тогда перед молекулой воды следует подставить коэффициент 4/2 = 2, и уравнение в окончательном виде будет иметь вид:

Проверяем правильность баланса, подсчитывая число атомов кислорода в левой и правой частях уравнения. В левой части оно составляет 1 × 2 = 2 в оксиде марганца (IV), а в правой части 2 × 1 = 2 в молекуле воды. Таким образом, реакция полностью уравнена.

В качестве окислителя могут выступать нейтральные атомы и молекулы, положительно заряженные ионы металлов, сложные ионы и молекулы, содержащие атомы металлов и неметаллов в состоянии положительной степени окисления и др.

Ниже приведены сведения о некоторых наиболее распространенных окислителях, имеющих важное практическое значение.

Кислород. Сильный окислитель, окислительная способность значительно возрастает при нагревании. Кислород взаимодействует непосредственно с большинством простых веществ, кроме галогенов, благородных металлов Ag, Au, Pt и благородных газов, с образованием оксидов:

Взаимодействие натрия с кислородом приводит к пероксиду натрия:

Более активные щелочные металлы (K, Rb, Cs) при взаимодействии с кислородом дают надпероксиды типа ЭО2:

В своих соединениях кислород, как правило, проявляет степень окисления –2. Применяется кислород в химической промышленности, в различных производственных процессах в металлургической промышленности, для получения высоких температур. С участием кислорода идут многочисленные чрезвычайно важные жизненные процессы: дыхание, окисление аминокислот, жиров, углеводов. Только немногие живые организмы, называемые анаэробными, могут обходиться без кислорода.

Реакции, иллюстрирующие окислительные свойства кислорода при его взаимодействии с различными неорганическими веществами, приведены в уроке 14.

Озон. Обладает ещё большей по сравнению с кислородом окислительной способностью. Озон окисляет все металлы, за исключением золота, платины и некоторых других, при этом, как правило, образуются соответствующие высшие оксиды элементов, реже — пероксиды и озониды, например:

Озон окисляет оксиды элементов с промежуточной степенью окисления в высшие оксиды.

Перманганат калия. Является сильным окислителем, широко применяется в лабораторной практике. Характер восстановления перманганата калия зависит от среды, в которой протекает реакция. В кислой среде перманганат калия восстанавливается до солей Mn2+, в нейтральной или слабощелочной — до MnO2, а в сильнощелочной он переходит в манганат-ион MnO42–. Данные переходы описываются следующими уравнениями

Перманганат калия способен окислять сульфиды в сульфаты, нитриты в нитраты, бромиды и йодиды — до брома и йода, соляную кислоту до хлора и т. д.:

Хромат и бихромат калия. Эти соединения широко применяют в качестве окислителей в неорганических и органических синтезах. Взаимные переходы хромат- и бихромат-ионов очень легко протекают в растворах, что можно описать следующим уравнением обратимой реакции:

Соединения хрома (VI) — сильные окислители. В окислительно-восстановительных процессах они переходят в производные Cr (III). В нейтральной среде образуется гидроксид хрома (III), например:

В кислой среде образуются ионы Cr3+:

В щелочной — производные анионного комплекса [Cr(OH)6]3–:

В качестве восстановителя могут выступать нейтральные атомы, отрицательно заряженные ионы неметаллов, положительно заряженные ионы металлов в низшей степени окисления, сложные ионы и молекулы, содержащие атомы в промежуточной степени окисления, электрический ток на катоде и др.

Ниже приведены сведения о некоторых наиболее распространённых восстановителях, имеющих важное практическое значение.

Углерод. Углерод широко применяют в качестве восстановителя в неорганических синтезах. При этом в качестве продуктов окисления может образовываться углекислый газ, или оксид углерода (II). При восстановлении оксидов металлов могут образовываться свободные металлы, реже — карбиды металлов.

Восстановительные свойства углерод проявляет также в реакции получения водяного газа:

Полученную смесь водорода и оксида углерода (II) широко применяют для синтеза органических соединений.

Оксид углерода (II). Широко применяют в металлургии при восстановлении металлов из их оксидов, например:

Водород. Широко применяют в качестве восстановителя в неорганических синтезах (водородотермия) для получения чистого вольфрама, молибдена, галлия, германия и т. д.:

Тренировочные задания

Используя метод электронного баланса, расставьте коэффициенты, определите окислитель и восстановитель в уравнении реакции, схема которой:

1. Al + H2O + KNO3 + KOH → K[Al(OH)4] + NH3↑.

2. KNO3 + Al → KAlO2 + Al2O3 + N2.

3. Na2O2 + H2SO4 + KMnO4 → O2↑ + MnSO4 + Na2SO4 + K2SO4 + H2O.

4. NaCl + H2SO4 + MnO2 → Cl2 + MnSO4 + Na2SO4 + H2O.

5. NaCl + H2SO4 + KMnO4 → Cl2 + MnSO4 + Na2SO4 + K2SO4 + H2O.

6. KNO2 + H2SO4 + MnO2 → MnSO4 + KNO + H2O.

7. KI + H2SO4 + KMnO4 → I2 + MnSO4 + K2SO4 + H2O.

8. KI + K2Cr2O7 + H2SO4 → I2 + Cr2(SO4)3 + K2SO4 + H2O.

9. C + K2Cr2O7 + H2SO4 → CO2 + Cr2(SO4)3 + K2SO4 + H2O.

10. PbO2 + HNO3 + KI → Pb(NO3)2 + I2 + KNO3 + H2O.

11. PbO2 + HNO3 + Mn(NO3)2 → Pb(NO3)2 + HMnO4 + H2O.

12. NaNO2 + KMnO4 + H2SO4 → NaNO3 + MnSO4 + K2SO4 + H2O.

13. KNO2 + KMnO4 + H2SO4 → KNO3 + MnSO4 + K2SO4 + H2O.

14. KNO2 + K2Cr2O7 + H2SO4 → KNO3 + Cr2(SO4)3 + K2SO4 + H2O.

15. KNO2 + KI + H2SO4 → NO + I2 + K2SO4 + H2O.

16. KNO2 + FeSO4 + H2SO4 → NO + Fe2(SO4)3 + K2SO4 + H2O.

17. Ca3(PO4)2 + C + SiO2 → CaSiO3 + P + CO.

18. Sb + HNO3 → Sb2O5 + NO2 + H2O.

19. H2O2 + H2SO4 + KMnO4 → MnSO4 + O2 + H2O + K2SO4.

20. S + HNO3 → H2SO4 + NO2 + H2O.

21. H2S + HNO3 → H2SO4 + NO2 + H2O.

22. H2S + KMnO4 → MnO2 + S + H2O + KOH.

23. H2S + K2Cr2O7 + H2SO4 → S + Cr2(SO4)3 + K2SO4 + H2O.

24. KMnO4 + Na2SO3 + H2SO4 → MnSO4 + Na2SO4 + K2SO4 + H2O.

25. KMnO4 + Na2SO3 + H2O → MnO2 + Na2SO4 + KOH.

26. KMnO4 + Na2SO3 + KOH → K2MnO4 + Na2SO4 + H2O.

27. K2Cr2O7 + K2SO3 + H2SO4 → Cr2(SO4)3 + K2SO4 + H2O.

28. H2SO4 + C → SO2 + CO2 + H2O.

29. H2SO4 + Zn → ZnSO4 + H2S + H2O.

30. H2SO4 + KBr → SO2 + Br2 + KHSO4 + H2O.

31. H2SO4 + KI → H2S + I2 + K2SO4 + H2O.

32. PbO2 + HCl → PbCl2 + Cl2 + H2O.

33. K2Cr2O7 + HCl → CrCl3 + Cl2 + KCl + H2O.

34. KMnO4 + HCl → MnCl2 + Cl2 + KCl + H2O.

35. KClO3 + HCl → KCl + Cl2 + H2O.

36. HClO3 + FeSO4 + H2SO4 → Fe2(SO4)3 + HCl + H2O.

37. NaBrO3 + NaBr + H2SO4 → Br2 + Na2SO4 + H2O.

38. HNO3 + I2 → HIO3 + NO2 + H2O.

39. HNO3 + I2 → HIO3 + NO + H2O.

40. H2SO4 + HI → I2 + H2S + S + H2O.

41. Fe2(SO4)3 + HI → FeSO4 + I2 + H2SO4.

42. HIO3 + FeSO4 + H2SO4 → Fe2(SO4)3 + I2 + H2O.

43. NaIO3 + NaI + H2SO4 → I2 + Na2SO4 + H2O.

44. KMnO4 + Cu2O + H2SO4 → MnSO4 + CuSO4 + K2SO4 + H2O.

45. HNO3 + Cu2S → CuSO4 + Cu(NO3)2 + NO2 + H2O.

46. H2SO4 + Cu2S → CuSO4 + SO2 + H2O.

47. Ag + HNO3 → AgNO3 + NO + H2O.

48. Zn + HNO3 → Zn(NO3)2 + N2O + H2O.

49. PH3 + KMnO4 + H2SO4 → H3PO4 + MnSO4 + K2SO4 + H2O.

50. FeSO4 + KMnO4 + H2SO4 → Fe2(SO4)3 + MnSO4 + K2SO4 + H2O.

51. H2S + KMnO4 + H2SO4 → S + MnSO4 + K2SO4 + H2O.

52. Ca3P2 + KMnO4 + H2SO4 → CaSO4 + H3PO4 + MnSO4 + K2SO4 + H2O.

Ответы

Окислительно-восстановительные реакции 

IОВР в неорганической химии.

Перекись водорода. 

4H2O+ PbS → PbSO4 + 4H2O

5H2O2KMnO4 + 3H2SO4 

 5O2 + K2SO4 +2MnSO4 + 8H2O

5H2O+ 2HIO3 → 5 O2 + I2 + 6H2O

3H2O2 + 2AuCl3 → 3 O2 + 6HCl + 2Au

H2O2 + H2→ S + 2H2O

H2O2 + KI + H2SO4 → I2 + K2SO4 + 2H2O

3H2O2 + 2CrCl3 + 10 KOH → 2K2CrO4 + 8H2O + 6KCl

H2O2 + 2NaOH → Na2O2 + 2H2O  

H2O2 + Ba(OH)2  BaO2 + 2H2O

          MnO2                                  

2H2O2  → 2H2O + O2

H2O2 + Cl2 → 2HCl + O2

H2O2 + 2FeSO4 + H2SO4 → Fe2(SO3)3 + 2H2O

K3[Cr(OH)6] + 3H2O2 → 2K2CrO4 + 8H2+ 2KOH  

H2O2 + SO2 → H2SO4    

Na2O2 + 2CO2  2Na2CO+ O2

Na2O2 + 2H2→ H2O2 + 2NaOH

Na2O2 + 2Na → 2Na2O

Na2O2 + H2SO4 → H2O2 + Na2SO4

Na2O2 + H2SO4 + 2KI → I2 + Na2SO+K2SO4 + 2H2O

KO2+ H2SO4H2O2+K2SO4+O2   надперекись

калия 

2KO2 + 2H2→ 2KOH +H2O2+ O2

BaO2 + H2SO4 → BaSO4 + H2O2

BaO2 + CO2 + H2→ H2O2 + BaCO3

          800oC

2BaO  2BaO + O2

SnO2 + 2H2SO4 Sn(SO4)2 + 2H2O

Железо.

                          to сильное

2Fe + 6H2SO4 (к)         Fe2(SO4)3 + 3SO2 + 6H2O

                        to

Fe + 6HNO3(к Fe(NO3)3 + 3NO2 + 3H2O

10Fe + 6HNO3(сильно разб.) → Fe(NO3)3 + 3N2 + 18H2O

С растворами щелочей в присутствии сильных окислителей

                                 to

Fe + KClO3 + 2KOH → KCl + H2O + K2FeO4 феррат калия

Соединения Fe2+.

                               to

2FeO + 4H2SO4 (к→ Fe2(SO4)3 + SO2 + 4H2O  

                           to

FeO + 4HNO3(к Fe(NO3)3 + NO2 + 2H2O

                              to

3FeO + 10HNO3(р)  3Fe(NO3)3 + NO + 5H2O

                                to

Fe(OH)2 + 4HNO3(к→ Fe(NO3)3 + NO2 + 3H2O

                                       to

2Fe(OH)2 + 4H2SO4 (к)    → Fe2(SO4)3 + SO2 + 6H2O

10FeS + 6KMnO+ 24H2SO4 → 5Fe2(SO4)3 + 6MnSO4 +   + 3K2SO4 + 24H2O

2FeI2 + 6H2SO4 (к)    → Fe2(SO4)3 + 2I2 +3SO2 + 6H2O

                                  to

4FeCl2 + O2 + 2H2O  → 4Fe(OH)Cl2

4FeCl2 + O2 + 8NaOH + 2H2→ Fe(OH)3 + 8NaCl

                     to

4FeSO4 → 2Fe2O3 + 4SO2 + O2

2FeSO4 + H2O2 + H2SO4 → Fe2(SO3)3 +

2H2O

10 FeSO4 + 2KIO3 + 6H2SO4 

I2 + 5Fe2(SO4)3 + K2SO4 +   + 6H2O

6FeSO4 + KClO3 + 3H2SO4 → 3Fe2(SO4)3 + KCl + 3H2O

10 FeSO4 + 2KMnO4 + 8H2SO4 → 5Fe2(SO4)3 + 2MnSO4 +

+ K2SO4 +  8H2O

                 to

4Fe(NO3)2 → 2Fe2O3 + 8NO2 + O2

Соединения Fe3+.

                          to

Fe2O3 + 3NaH  3NaOH + 2Fe

В присутствии сильных окислителей со щелочами

Fe2O3 + 4KOH + 3KNO3 → 2K2FeO4 + 3 KNO2 +2H2O

                                       to

Fe2O3 + 4KOH + KClO3 → 2K2FeO4 + KCl + 2H2O

Fe2O3 + 6Hl → 2FeI2 + I2 + 3H2O

NaFeO2+2H2O→ Fe(OH)3+NaOH

2Fe(OH)3 + 6HI → FeI2 +I26H2O

                                             to

2Fe(OH)3 +10NaOH+3Br → 

2Na2FeO4 + 6NaBr +8H2O

2FeCl3 + 2KI → FeCI2 + I2 + 2KCl

2FeCl3 + H2→ FeCI2 + S + 2HCl

2FeCl3 + FeCl2 + 4(NH4)2→ 3FeS + S + 8NH4Cl

                                       to

2FeCl3 +3Br2+16NaOH →2Na2FeO4 + 6NaBr ++6NaCl+8H2Oферрат натрия     

Fe3O4.

Fe3O4 + 8HCl → FeCI2 + 2FeCl3 + 4H2O (не ОВР)

Fe3O4+8Hl→3FeI2+I2+4H2O

Fe3O4+10HNO3(к) 3Fe(NO3)3+

NO2 + 5H2O

3Fe3O4 + 28 HNO3 (р) → 9Fe(NO3)3 + NO+14H2O

2Fe3O4+10H2SO4(к)3Fe2(SO4)3 +SO2+10H2O

Fe3O4 + 4H2SO4 (р)    → Fe2(SO4)3 + FeSO4 + 8H2O

                  to

Fe3O4 + Fe  4FeO

Соединения марганца.

Оксиды: 

MnO     Mn2O3      Mn3O4             Mn2O7      MnO3             MnO2

             основные                                кислотные                амфотерный

Mn(NO3)2 + 5PbO2 + 6HNO3 → 5Pb(NO3)2 + 2HMnO4 +2H2O

                to

Mn(NO3)2  MnO2 + 2NO2

                               to

Mn(NO3)2 +PbO2 MnO2+ 

Pb(NO3)2

2KMnO4 + 3MnSO4 2H2→ 5MnO2 + K2SO4 +2H2SO4

                                                                       MnO2

                                                             OH               H+  

                                                                    -2                          +2

                                                      MnO4                            Mn                        

                                                     манганат

2MnO2 +2H2SO4 (к)  → 2MnSO4 2H2O+ O2

MnO2 + 4HCl → MnCl2 + Cl22H2O

2MnO2 + 4HNO3 (к) → 2Mn(NO3)2 2H2O +O2

MnO2 проявляет кислотные свойства при сплавлении со щелочами или оксидами активных металлов без доступа воздуха.

MnO2 + 2KOH → K2MnO3 + H2O        (не ОВР)

Mn(OH)4 + BaO → BaMnO3 + 2H2O        (не ОВР)

В зависимости от условий реакции MnO2 проявляет либо окислительные, либо восстановительные свойства.

В кислой среде:

MnO2 +2FeSO+2H2SO4  

MnSO4 + Fe2(SO4)3 + 2H2O                                              

2MnO2+3PbO2+6HNO3

2HMnO4 +3Pb(NO3)2 + 2H2O

В щелочной среде:

                                               to

3MnO2 + KClO3 + 6NaOH                3Na2MnO4 +KCl + 3H2O

           твёрдые                    сплавление                                    

MnO2 + KNO3 + 2KOH → K2MnO4 + KNO2 + H2O           

                                                                 _

                                                         MnO4

                                  H+                 H2O             OH

                                +2                                                                 2-

                            Mn                         +4                                MnO4

                                                            MnO2 ↓                     манганат

                                                   оксид марганца (IV)

В кислой среде:

2KMnO4+5K2SO3 +3H2SO4→2MnSO4+6K2SO4+3H2O

2KMnO4+5Na2SO3+3H2SO4→2MnSO4+5Na2SO4+

K2SO4 +3H2O

2KMnO4 + 5H2S + 3H2SO4 → 5S + MnSO4 + K2SO4 + 8H2O

2KMnO4 + 5H3PO3 3H2SO4 → 5H3PO4 +2MnSO4 + K2SO4 + 3H2O

2KMnO4 + 5N2O + 3H2SO4 → 2MnSO4 + K2SO4 + 10NO + 3H2O

2KMnO4 + 5NaNO2 3H2SO4 → 5NaNO3 +2MnSO4 + K2SO4 + 3H2O

2KMnO4 + 10KBr + 8H2SO4  2MnSO4 + 5Br2 + 6K2SO4 + 8H2O

8KMnO4 + 5PH3 + 24HCl → 5H3PO4 + 8MnCl2 + 8KCl + 12H2O

2KMnO4 + 16HCl → 5Cl2 + MnCl2 + 2KCl + 8H2O

10 FeSO4 + 2KMnO4 + 8H2SO4 → 5Fe2(SO4)3 + 2MnSO4 + K2SO4 +  8H2O

В нейтральной среде:

2KMnO4+5SO2+ 2H2→ 2MnSO4 + K2SO4 + 2H2SO4

2KMnO4 + 3K2SO3 + H2→ 2MnO2 + 3K2SO4 + 2KOH

2KMnO4 + 3Na2SO3 + H2→ 2MnO2 + 3Na2SO4 + 2KOH

2KMnO4 + (NH4)2SO4 → 2MnO2 + N2 + K2SO4 + 4H2O

2KMnO4 + 3MnSO4 + 2H2→ 5MnO2 + K2SO4 + 2H2SO4

В щелочной среде:

2KMnO4 + K2SO3 + 2KOH → K2SO4 + 2K2MnO4 + H2O

2KMnO4 + Na2SO3 + 2KOH → Na2SO4 + 2K2MnO4 + H2O

Другие реакции:

              to

2KMnO4 → K2MnO4 + MnO2 + O2

2HMnO4 + 3H2S → 3S + 2MnO2 + 4H2O

8HMnO4 + 3PH3 → 3H3PO4 + 8MnO2 + 4H2O  

K2MnO4 + K2S + 2H2→ S + MnO2 + 4KOH

K2MnO4 + Cl2 → 2KCl + 2KMnO4

MnSO4 + NaClO + 2NaOH → MnO2 + NaCl + Na2SO4  H2 

Соединения хрома.

Соединения хрома (III).

Cr2O3 – оксид хрома (III)порошок тёмно-зелёного цвета, по твёрдости близок к корунду. Поэтому его вводят в состав полирующих средств. Он нерастворим в воде, имеет аморфный характер, однако в кислотах и щелочах плохо растворим.

Химические свойства.

1. Сплавление со щелочами:

                      t0                                                                     t0

Cr2O3 + 2KOH → 2KCrO2 + H2O                            Cr2O3 + Ba(OH)2 → Ba(CrO2)2 + H2O

                        хромит калия                                                  хромит бария

2. Сплавление с карбонатами щелочных металлов:

                           t0

Cr2O3 + Na2CO3 → 2NaCrO2 + CO2                                                            

                            хромит натрия

3. Сплавление с оксидами щелочных и щелочно-земельных металлов:

                       t0

Cr2O3 + Na2O  2NaCrO2

4. С концентрированными растворами кислот и щелочей реагирует с трудом:

                                                                                                                                    Cr2O3 + 6HCl → 2CrCl3 + 3H2O           

                                           t0

Cr2O3 + 6NaOH + 3H2O → 2Na3[Cr(OH)6]          

                                          гексагидроксохромит натрия

5. Взаимодействует со щелочными расплавами окислителей:

                                           t0        +6

Cr2O3 + 3KNO3 4KOH → 2K2CrO4 + 3KNO2 + 2H2O                                  

                                                                 хромат калия

Получение Cr2O3.

1. В лаборатории.                                     2. В промышленности.

                        t0                                                                            t0                  

(NH4)2Cr2O7  N2 + Cr2O3 + 4H2O              2K2Cr2O7+3С2Cr2O3

                                                                                     2K2СO3  + СO2                        

                                                                                               t0

                                                                           K2Cr2O7 + S → Cr2O3 + K2SO4

Cr(OH)3 – гидроксид хрома (III)серо-зелёного цвета, нерастворим в воде, амфотерный.

Получение Cr(OH)3. 

CrCl3 + 3NaOH → Cr(OH)3   + 3NaCl

                          студенистый серо-зелёный осадок

Химические свойства.

Cr(OH)3 легко взаимодействует с кислотами и со щелочами.

1. Взаимодействие с кислотами:

   2Cr(OH)3 + 3H2SO4 → Cr2(SO4)3  + 6H2O    

2. Взаимодействие со щелочами:

   Cr(OH)3 + 3NaOH → Na3[Cr(OH)6] 

                                гексагидроксохромат (III) натрия

                                (изумрудно-зелёный раствор)

3. Разложение при нагревании.

               t0

2Cr(OH)3 → Cr2O3 + 3H2O

Соли – хромиты и другие — (III).

Химические свойства.

1. С кислотами легко реагируют:

   а) недостаток кислоты:

  NaCrO2 + HCl H2O → Cr(OH)3  + NaCl

   бизбыток кислоты:

   NaCrO2 + 4HCl  CrCl3 + NaCl + 2H2O      

2. С кислотными  оксидами:

   Na3[Cr(OH)6] + 3CO2 → Cr(OH)3 + 3NaHCO3

3. В растворе подвергаются гидролизу:

   NaCrO2 + 2H2O → Cr(OH)3 + NaOH

   Cr2S3 + 6H2O  2Cr(OH)3 + 3H2S

4. Окислительные свойства соединений хрома (III):

   +3                 0                                 +2            +1

  Cr2(SO4)3  + H2 (Zn + H2SO4→ 2CrSO4 + H2SO4

5. Восстановительные свойства соединений хрома (III):

            +3               0                         +6             -1

    3[Cr(OH)6] + 3Br2 + 4KOH  2K2CrO4 + 6KBr + 8H2O

    +3             -1                                +6                              -2

3CrCl3 + 3H2O10KOH → 2K2CrO4 + 6KCL + 8H2O    

     -3e↗ Cr+6 (окисление)

Cr+3  

     +1e Cr+2  (восстановление)

Соединения хрома (III):                      

а) при окислении в щелочной среде образуют хроматы:

                                          to

   Cr2O3 + KClO3 4KOH   →         2K2CrO4 + KCl + 2H2O  

                                          спекание    хромат калия

б) при окислении в кислой среде образуют дихроматы:

Cr2(SO4)3  + 2K2FeO4 H2SO4 → K2Cr2O7 + Fe2(SO4)3 + K2SO4  H2 

                                                    дихромат калия

Соединения хрома (VI).

CrO3 – оксид хрома (VI) – кристаллы тёмно-красного цвета, хорошо растворимые в воде, сильно ядовит (действует на почки; 0,6 г – смертельная доза). Кислотный оксид, которому соответствуют кислоты Н2CrO4 и Н2Cr2O7.

Получение CrO3.

K2Cr2O7 + 2H2SO4 → K2SO4 + 2CrO3 + H2O            

Химические свойства.

1. Взаимодействие с водой.

                                                                                                                                                          OH                                            H+

   CrO3 + H2O  Н2CrO4           2CrO3 + H2O  H2Cr2O7          

Формула получающейся кислоты зависит от среды.

CrO3 – сильнейший окислитель.

2. Взаимодействие с углеродом:

  4CrO3 + 3C → 3CO2↑ + 2Cr2O3

3. Взаимодействие с серой:

    4CrO3 + 3S → 3SO2 + 2Cr2O3

4. Взаимодействие с органическими веществами:

    C2H5OH + 4CrO3 → 2CO2↑ + 2Cr2O3 + 3H2                                     

                      +6                           +3                +4                                     H                                                                                                                                 C2H5OH + 4CrO3 + 6H2SO4  2Cr2(SO4)3 + 2CO2↑ + 9H2    H   

       Реакция сопровождается воспламенением.                         HCOH

                                                                                                           H   ↑

                                                                                                                   H

5. Соли хромовой и дихромовой кислот – сильнейшие окислители.

   Na2CrO4 + H2SO4 → Na2Cr2O7 + Na2SO4 H2O     (не ОВР)

   Na2Cr2O7 + 2NaOH → 2Na2CrO4 + H2O       (не ОВР)

6. Хроматы при нагревании устойчивы, дихроматы при нагревании неустойчивы:

                      t0

   4K2Cr2O7 → 4K2CrO4 + 2Cr2O3 + 3 O2

7. Взаимодействие с солями:

    а) в нейтральной среде

    2K2CrO4 + 3(NH4)2S + 2H2O → 2Cr(OH)3 + 3S + 6NH3 + 4KOH        

    бв щелочной среде

    2K2CrO4 + 3(NH4)2S + 2KOH + 2H2O → 2K3[Cr(OH)63S + 6NH3

    вв кислой среде:

     K2Cr2O7 + 14HCl → 3Cl2 + 2KCL + 2CrCl3 + 7H2O

                                                               Cr(OH)3  — серозелёный осадок              

K2CrO4 (CrO4)2                  H2 

                                      }—-OH— →    [Cr(OH)6]3- — р-р изумрудно-зелёного цвета

K2Cr2O(Cr2O7)2  ______H+__ 

                                                             

                                                               Cr3+ — р-р сине-фиолетового цвета

Окисление органических соединений бихроматом калия.

      +6           -2                                         +2           +3

2K2Cr2O7 + 3CH3OH + 8H2SO4 → HCOOH + 2Cr2(SO4)3 +2K2SO4 + 11H2 

                            +3                                    +4                     

K2Cr2O7 + 3HOOC-COOH + 4H2SO4 → 6CO2 + Cr2(SO4)3  + K2SO4  7H2O

Соли в кислой среде:

K2Cr2O7 + 2H2SO4 → 2KHSO4 + 2CrO3 + H2O           (не ОВР)

Na2CrO4 + H2SO4 → Na2Cr2O7 + Na2SO4 H2O        (не ОВР)

K2Cr2O7 + 4H2SO4 + 3H2→ 3S + Cr2(SO4)3  + K2SO4  + 7H2 

K2Cr2O7 + 4H2SO4 + 2NO  2HNO3 + Cr2(SO4)3  + K2SO4  + 3H2 

2K2Cr2O7 + 8H2SO4 + 3C → 3CO2 + 2Cr2(SO4)3  + 2K2SO4  8H2O

K2Cr2O7 + 7H2SO4 + 6KI → 3I2 + Cr2(SO4)3  + 4K2SO4  + 7H2O

K2Cr2O7 + 7H2SO4 + 2Al → Al2(SO4)3  + Cr2(SO4)3  + K2SO4  + 7H2 

K2Cr2O7 + 14HCl → 3Cl2 + 2KCL + 2CrCl3 + 7H2O

2K2CrO4 + 16HCl  3Cl2 + 4KCL + 2CrCl3 + 8H2O

2K2CrO4 + 10HNO3 + 3H2S → 4KNO3 + 2Cr(NO3)3 + 3S + 8H2O

Соли в щелочной среде:

Na2Cr2O7 + 2CsOH → Na2CrO4 + Cs2CrO4 + H2O       (не ОВР)

K2Cr2O7 + 2RbOH → Rb2CrO4 + K2CrO4 + H2O           (не ОВР)

Cr2(SO4)3  + 3Br2 + 16NaOH → Na2CrO4 + 6NaBr + 3Na2SO4 + 8H2O

Соли в нейтральной (или слабокислой) среде:

2K2CrO4 + 3H2+ 2H2 2Cr(OH)3 + 3S + 4KOH

                              (гор.)

K3[Cr(OH)6] + 3H2O2 → 2K2CrO4 + 8H2+ 2KOH        

K3[Cr(OH)6] + 3SO2 → Cr(OH)3 + 3KHSO3                    (не ОВР)

K3[Cr(OH)6] + FeCl3 → Cr(OH)3 + Fe(OH)3 + 3KCl       (не ОВР)

2K2CrO4 + 3K2SO3 + 5H2→ 2Cr(OH)3 + 3K2SO4  + 4KOH

Разложение солей:

                        to

(NH4)2Cr2O7     N2 + Cr2O3 + 4H2O                              (вулкан)            

Основания:            

2Cr(OH)3 + 3Cl2 + 10NaOH → 2Na2CrO4 + 6NaCl + 8H2O

Оксиды:

2CrO3 + 2NH3 + H2O → (NH4)2Cr2O7                             (не ОВР)

Cr2O+ 3KNO3 + 4KOH → 2K2CrO4 + 3KNO2 + 2H2O  

+3                   +1                                       -1           +6

Cr2O3 + 3Ca(OCl)Cl + 4NaOH  → 3CaCl2 + 2Na2CrO4 + 2H2O

+3                                +5       t0       +6                   +4

Cr2O3 + Na2CO3 + KClO3 → 2Na2CrO4  + KCl + 2CO2

+3                   +1                                      -1             +6

Cr2O3 + 3Ca(OCl)Cl + 4NaOH  → 3CaCl2 + 2Na2CrO4 + 2H2O

+3                             +5          t0       +6                    +4 

Cr2O3 + Na2CO3 + KClO3 → 2Na2CrO4  + KCl + 2CO2

                                          t0                 

2Cr2O3 +3O2 +4Na2CO3 → 4Na2CrO4  + 4CO2

                                          t0                

2Cr2O3 +3O2 +4Na2CO3 → 4Na2CrO4  + 4CO2

Написать уравнения 4-х возможных реакций:

1) р-ры CrSO4; NaOH; Na2CrO4; H2SO4:

   3CrSO4 + Na2CrO4 + 16NaOH + 4H2O → 4Na3[Cr(OH)6] + 3Na2SO4

   2Na2CrO4 + H2SO4 → Na2Cr2O7 + Na2SO4 + H2O

   2NaOH + H2SO4 → Na2SO4 + 2H2O

   CrSO4 + 2NaOH → Na2SO4 + Cr(OH)2

2) р-ры SO2; CsOH; K2Cr2O7; H2SO4:    

  K2Cr2O7 + 2CsOH → K2CrO4 + Cs2CrO4 + H2O

    2CsOH + H2SO4 → Cs2SO4 + 2H2O

    K2Cr2O7 + 3SO2 + H2SO4 → Cr2(SO4)3  + K2SO4 + H2O

    2CsOH + SO2 → Cs2SO3 + H2O

3) Cr(NO3)3;  Na2SO3; Cl2; NaOH:  

   Cr(NO3)3 + Na2SO3 + 3H2→ 2Cr(OH)3 + SO2 + 6NaNO3

   6NaOH + 3Cl2 → 5NaCl + NaClO3 + 3H2O

   Cr(NO3)3 + 3NaOH → Cr(OH)3 + 3NaNO3

Галогены.

                              t0

3Cl2 + 6KOH (гор.) → 5KCl + KClO3 + 3H2O      

Cl2 + 2KOH (хол.) → KCl + KClO + H2O    

3Cl2 + 8NH3 → 6NH4Cl + N2

Cl2 + NaHS → S + NaCl + HCl

                               t0

3Br2 + 6KOH (гор.) → 5KBr + KBrO3 + 3H2O  

Br2 + 2KOH (хол.) → KBr + KBrO + H2O  

6Br2 + 6Ba(OH)2 → Ba(BrO3)2 + 5BaBr2 6H2O  

чистый         горячий

Br2 + H2S → 2HI + S

I2 + SO2 + 2H2O → H2SO4 + HI

Соединения галогенов.

KClO3 + 6HCl → KCl + 3Cl2 + 3H2O    

KClO + HI → Kl + l2 H2O    

Соединения серы.

Концентрированная H2SO4.

                          to

5H2SO4  8KIтв. → 4 I2 + 3H2↑+ 4K2SO4 + 4H2O  

3H2SO4  KIO3 + 5KI → 3I2 + 3K2SO4 + 3H2O  

H2SO4 + Na2S2O3 → Na2SO4 + SO2 + S + H2O

2H2SO4 + Hg → HgSO4 + SO2 + 2H2O

2H2SO4 + C → CO2 + 2SO2 + 2H2O

Оксид серы (IV).

SO2 + I2 + 2H2→ H2SO4 + 2HI

SO2 + Br2 + 2H2→ H2SO4 + 2HBr

SO2 + 2H2→ 3S + 2H2O

SO+ H2O2 → H2SO4    

Сера.

S + 6HNO3 (к.) → H2SO4 + 6NO2 + 2H2O

S + 2H2SO4 (к.) → 3SO2 + 2H2O

S + 3H2SO4 (к.) → 4SO2 + 4H2O

Соединения фосфора.

Фосфор. 

 to

6P + 5HClO3 + 9H2O → 5HCl + 6H3PO4

2P + 5NaNO3 → 5NaNO2 + P2O5

P + KMnO4 + H2SO4 →KH2PO4 + MnSO4

4P + 3KOH(k.) + 3H2 3KH2PO2 + PH3

P + 5HNO3 (к.)  → H3PO4 + 5NO2 + 5H2O

Фосфин.

2PH3 + 4O2 → P2O5 + 3H2O  

PH3 + 8AgNO3 + 4H2→ 8Ag + H3PO4 + 8HNO3

5PH3 + 8HBrO3 → 5H3PO4 + 4Br2 + 4H2O  

3PH3 + 4HClO3 → 3H3PO4 + 4HCl

3PH3 + 8HMnO4 → 3H3PO4 + 8MnO2 + 4H2O  

Фосфаты.

Сa3(PO4)2 + 5C + 3SiO2 → 3CaSiO3 + 2P + 5CO

3Сa3(PO4)2 + 16Al → 3Сa3P2 + 8Al2O3

Соединения азота.

Оксид азота (IV).

2NO2 + 2KOH → KNO2 + KNO3 + H2O

                    to

2NO2 + 4Cu → N2 + 4CuO

Азотная кислота.

H2S + 8HNO3 (к.) → H2SO4 + 8NO2 + 4H2O  

H2S + 2HNO3 (к., хол.) → S + 2NO2 + 2H2O  

3As2S3 28HNO3 + 4H2→ 6H3AsO4 + 28NO + 9H2SO4

S + 6HNO3 (к.) → H2SO4 + 6NO2 + 2H2O

5HNO3 (к.)  + P → H3PO4 + 5NO2 + 5H2O  

3Si + 4HNO3 + 18HF → 3H2SiF6 + 4NO + 8H2O

8HNO3 (к.) + CuS → CuSO4 + 8NO2 + 4H2O

Нитраты.

4Zn + KNO3 + 7KOH → NH3 + 4K2ZnO2 + 2H2O

          (тв.)

Аммиак.

NH3 + Ca(OCl)2 → N2 + H2O + CaCl2

Кремний.

3Si + 4HNO3 + 18HF → 3H2SiF6 + 4NO + 8H2O

Si + 4NaOH → Na4SiO4 + 2H2

Si + 2NaOH H2O → Na2SiO3 + 2H2

Кислород.

2PH3 + 4O2 → P2O5 + 3H2O  

2NO2 + O2 + 2KOH → 2KNO3 + H2O  

Кислоты, содержащие хлор

11-Янв-2015 | Нет комментариев | Лолита Окольнова

Кислоты, содержащие  хлор

Кислоты-окислители  и их соли.

кислоты, содержащие хлор

В ЕГЭ по этой теме не очень много спрашивают. Названия кислот и солей надо знать. И некоторые реакции. Я постарался написать в этой статье как можно больше каноничных ЕГЭ-шных реакций. Но на экзамене может попасться и то, чего здесь нет. Поэтому важно для ЕГЭ развить «химическую интуицию», чтобы предсказывать продукты реакций. Если посмотреть на ОВР очень внимательно, то можно вывести основные закономерности. То есть не все сводится к зубрежке, главное понять принцип. А чтобы у себя в голове вывести принцип, нужно прорешать много реакций. Ну и читать наши статьи.

Автор Статьи — Саид Лутфуллин

Вы, наверное, уже знаете, что у хлора очень много кислот. Все кислородсодержащие кислоты хлора и их соли – сильные окислители, и все они нестабильны.

Сила кислот возрастает со степенью окисления:

Степень окисления хлора

Формула кислоты

Название кислоты

Сила кислоты

Название соли

+1

HClO

Хлоноватистая

Слабая

Гипохлорит

+3

HClO2

Хлористая

Средней силы

Хлорит

+5

HClO3

Хлорноватая

Сильная

Хлорат

+7

HClO4

Хлорная

Очень сильная

Перхлорат

Хлорноватистая кислота образуется при пропускании хлора через воду.

При этом происходит диспропорционирование: хлор и окисляется (до +1) и восстанавливается (до +1), образуются хлороводородная (соляная) и хлорноватистая кислоты:

Cl2 + H2OHCl + HClO

Если хлор пропускать не через воду, а через водный раствор щелочи, то образуются соли этих кислот: хлорид и гипохлорит:

Cl2 + 2KOH → KCl + KClO + H2O

А если хлор пропускать через ГОРЯЧИЙ раствор щелочи, то вместо гипохлорита, будет образовываться хлорат:

3Cl2 + 6KOH (t˚)→ 5KCl + KClO3 + 3H2O

Если полученный раствор остудить, то выпадут в осадок белые кристаллы хлората калия KClO3.

Запомните тривиальное название этой соли: бертолетова соль, а так же этот исторический способ ее получения. Именно этим способом был впервые получен хлорат калия французским ученым Клодом Луи Бертолле (отсюда и название соли).

Бертолетова соль – очень сильный окислитель.

При нагревании бертолетова соль разлагается, опять таки с диспропорционированием хлора. Он восстанавливается (до -1) и окисляется (до +7, дальше ему некуда):

4KClO3 ()→ KCl + 3KClO4

Полученный перхлорат калия тоже не очень стабильный, и тоже разлагается:

KClO4 ()→ KCl + 2O2

Хлорноватистая кислота окисляет галогеноводороды (иодоводороды и бромоводороды) до свободных галогенов:

2HI + HClO → I2↓ + HCl + H2O

2HBr + HClO → Br2 + HCl + H2O

Кислоты-окислители хлора окисляют серу в сернистом газе до высшей степени окисления +6 (образуется серная кислота), при этом, в зависимости от условий, хлор восстанавливается до простого вещества (0) или до хлороводорода (-1):

HClO3 + 3SO2 + 3H2O → 3H2SO4 + HCl

И имейте в виду, что некоторые из этих свойств так же могут подойти и для аналогичных кислот брома.

Обсуждение: «Кислоты, содержащие хлор»

(Правила комментирования)

1. Положение галогенов в периодической системе химических элементов
2. Электронное строение галогенов
3. Физические свойства и нахождение в природе
4. Соединения галогенов
5. Способы получения галогенов
6. Химические свойства
6.1. Взаимодействие с простыми веществами
6.1.1. Взаимодействие с кислородом
6.1.2. Взаимодействие с серой
6.1.3. Взаимодействие с серой и фосфором 
6.1.4. Взаимодействие с металлами
6.1.5. Взаимодействие с водородом
6.1.6. Взаимодействие с галогенами
6.2. Взаимодействие со сложными веществами
6.2.1. Взаимодействие с водой
6.2.2. Взаимодействие с щелочами
6.2.3. Взаимодействие с солями и галогеноводородами
6.2.4. Взаимодействие с восстановителями

Галогеноводороды
1. Строение молекулы и физические свойства 
2. Способы получения
3. Химические свойства
3.1. Кислотные свойства
3.2. Диссоциация
3.3. Взаимодействие с солями
3.4. Восстановительные свойства
3.5. Взаимодействие с оксидом кремния (IV)

Соли-галогениды
Способы получения галогенидов
Химические свойства галогенидов

Кислородсодержащие кислоты галогенов
 1. Хлорноватистая кислота и ее соли 
 2. Хлористая кислота и ее соли 
 3. Хлорноватая кислота и ее соли 
 4. Хлорная кислота и ее соли 

Галогены

Положение в периодической системе химических элементов

Галогены расположены в главной подгруппе VII группы  (или в 17 группе в современной форме ПСХЭ) периодической системы химических элементов Д.И. Менделеева.

Электронное строение галогенов

Электронная конфигурация  галогенов в основном состоянии соответствует формуле ns2np5.

Например, электронная конфигурация фтора:

Электронная концигурация хлора:

Атомы галогенов содержат на внешнем энергетическом уровне 1 неспаренный электрон и три неподеленные электронные пары в основном энергетическом состоянии. Следовательно, в основном состоянии атомы галогенов могут образовывать 1 связи по обменному механизму.

При этом у фтора возбужденного состояния нет, т.е. максимальная валентность фтора в соединения равна I.

Однако, в отличие от фтора, за счет вакантной d-орбитали атомы хлора, брома и йода могут переходить в возбужденное энергетическое состояние. 

Таким образом, максимальная валентность галогенов (кроме фтора) в соединениях равна VII. Также для галогенов характерны валентности I, III, V.

Степени окисления атома галогенов – от -1 до +7. Характерные степени окисления -1, 0, +1, +3, +5, +7. Для фтора характерная степень окисления -1 и валентность I.

Физические свойства и закономерности изменения свойств

Галогены образуют двухатомные молекулы состава Hal2. В твёрдом состоянии имеют молекулярную кристаллическую решетку. Плохо растворимы в воде, все имеют запах, летучи.

Галоген  F Cl Br I
Электронная формула … 2s22p5 … 3s23p5 … 4s24p5 … 5s25p5
Электроотрицательность 4,0 3,0 2,8 2,5
Степени окисления -1 -1, +1, +3, +5, +7 -1, +1, +3, +5, +7 -1, +1, +3, +5, +7
Агрегатное состояние Газ Газ Жидкость Твердые кристаллы
Цвет Светло-желтый Жёлто-зелёный Буровато-коричневый Тёмно-серый с металлическим блеском
Запах Резкий Резкий, удушливый Резкий, зловонный Резкий
T плавления –220оС –101оС –7оС 113,5оС
Т кипения –188оС –34оС 58оС 185оС

Внешний вид галогенов:

 Фтор            

Хлор              

Бром              

Йод                 

В природе галогены встречаются в виде соединений, в основном, в виде галогенидов.

Соединения галогенов

Типичные соединения хлора:

Степень окисления Типичные соединения
+7 Хлорная кислота  HClO4

Перхлораты MeClO4

+5 Хлорноватая кислота HClO3

Хлораты MeClO3

+3 Хлористая кислота HClO2
+1 Хлорноватистая кислота HClO

Гипохлориты MeClO

–1 Хлороводород HCl, Хлориды MeCl

Бром и йод образуют подобные соединения.

Способы получения галогенов

1. Получение хлора.

В промышленности хлор получают электролизом расплава или раствора хлорида натрия.

Электролиз расплава хлорида натрия.

В расплаве  хлорид натрия диссоциирует на ионы:

NaCl   →  Na+    +    Cl

На катоде восстанавливаются ионы натрия:

K(–):     Na+  +1e  →  Na0      

На аноде окисляются ионы хлора:

A(+):     2Cl−     ̶ 2e   →  Cl20

Ионное уравнение электролиза расплава хлорида натрия:

2Na+    +    2Cl   →     2Na º    +   Cl2º

Суммарное уравнение электролиза  расплава хлорида натрия:

2NaCl   →  2Na    +   Cl2

Электролиз раствора хлорида натрия.

В растворе хлорид натрия диссоциирует на ионы:

NaCl   →  Na+    +    Cl

На катоде восстанавливаются молекулы воды:

K(–):      2H2O   +    2e    →    H2°    +   2OH      

На аноде окисляются ионы хлора:

A(+):     2Cl−     ̶ 2e   →  Cl20

Ионное уравнение электролиза раствора хлорида натрия:

2H2O   +    2Cl  →  H2°↑    +   2OH   +   Cl2°↑

Суммарное уравнение электролиза  раствора хлорида натрия:

2NaCl    +    2H2O   →     H2↑   +   2NaOH    +   Cl2

В лаборатории хлор получают взаимодействием концентрированной соляной кислоты с сильными окислителями.

Например, взаимодействием соляной кислоты с оксидом марганца (IV)

MnO2    +    4HCl     →   MnCl2    +    Cl2↑    +   2H2O

Или перманганатом калия:

2KMnO4    +    16HCl     →   2MnCl2    +   2KCl     +     5Cl2↑    +   8H2O

Бертолетова соль также окисляет соляную кислоту:

KClO3    +    6HCl     →     KCl     +     3Cl2↑    +   3H2O

Бихромат калия окисляет соляную кислоту:

K2Cr2O7    +    14HCl     →   2CrCl3    +   2KCl     +     3Cl2↑    +   7H2O

2. Получение фтора.

Фтор получают электролизом расплава гидрофторида калия.

2KHF2  →  2K + H2 + 2F2

3. Получение  брома. 

Бром можно получить окислением ионов Br сильными окислителями.

Например, бромоводород окисляется хлором:

2HBr +  Cl2   →   Br2   +  2HCl

Соединения марганца также окисляют бромид-ионы.

Например, оксид марганца (IV):

MnO2   +   4HBr   →   MnBr2   +   Br2 + 2H2O

4. Получение йода.

Йод получают окислением ионов I сильными окислителями.

Например, хлор окисляет йодид калия:

2KI +  Cl2   →   I2   +  2KCl

Соединения марганца также окисляют йодид-ионы.

Например, оксид марганца (IV) в кислой среде окисляет йодид калия:

2KI + MnO2 + 2H2SO4   →   I2 + K2SO4 + MnSO4 + 2H2O

Химические свойства галогенов

Химическая активность галогенов увеличивается снизу вверх – от астата к фтору.

1. Галогены проявляют свойства окислителей. Галогены реагируют с металлами и неметаллами.

1.1. Галогены не горят на воздухе. Фтор окисляет кислород с образованием фторида кислорода:

2F2  +  O2  →  2OF2

1.2. При взаимодействии галогенов с серой образуются галогениды серы:

S   +   Cl2  →  SCl2   (S2Cl2)

S   +  3F2  →   SF6

1.3. При взаимодействии фосфора и углерода с галогенами образуются галогениды фосфора и углерода:

2P    +   5Cl2   →  2PCl5

2P    +   3Cl2   →  2PCl3

2F2  +   C   →   CF4

1.4. При взаимодействии с металлами галогены проявляют свойства окислителей, образуя галогениды.  

Например, железо реагирует с галогенами с образованием галогенидов. При этом фтор, хлор и бром образуются галогениды железа (III), а c йодом — соединение железа (II):

3Cl2   +   2Fe   →  2FeCl3

I2   +   Fe   →  FeI2

Аналогичная ситуация с медью: фтор, хлор и бром окисляют медь до галогенидов меди (II),а йод до йодида меди (I):

Cl2   +   Cu   →  2CuCl2

I2   +   2Cu   →  2CuI

Активные металлы бурно реагируют с галогенами, особенно с фтором и хлором (горят в атмосфере фтора или хлора).

Еще пример: алюминий взаимодействует с хлором с образованием хлорида алюминия:

3Cl2   +  2Al   →  2AlCl3

1.5. Водород горит в атмосфере фтора:

F2  +  H2  →  2HF

С хлором водород реагирует только при нагревании или освещении. При этом реакция протекает со взрывом:

Cl2  +  H2  →  2HCl

Бром также реагирует с водородом с образованием бромоводорода:

Br2  +  H2  →  2HBr

Взаимодействие йода с водородом происходит только при сильном нагревании, реакция  протекает обратимо, с поглощением теплоты (эндотермическая):

I2  +  H2  ↔   2HI

1.6. Галогены реагируют с галогенами. Более активные галогены окисляют менее активные.

Например, фтор окисляет хлор, бром и йод:

Cl2  +  F2  →  2ClF

2. Со сложными веществами галогены реагируют, также проявляя преимущественно окислительные свойства. Галогены охотно диспропорционируют при растворении в воде или в щелочах.

2.1. При растворении в воде хлор и бром частично диспропорционируют, повышая и понижая степень окисления. Фтор окисляет воду.

Например, хлор при растворении в холодной  воде диспропорционирует до ближайших стабильных степеней окисления (+1 и -1), образует  при этом соляную кислоту и хлорноватистую кислоту (хлорная вода):

Cl2    +   H2O   ↔  HCl   +  HClO  

При растворении в горячей воде хлор диспропорционирует до  степеней окисления -1 и +5, образуя соляную кислоту и хлороватую кислоту:

Cl2    +   6H2O   ↔  5HCl   +  HClO3  

Фтор реагирует с водой со взрывом:

2F2   +   2H2O   →    4HF   +   O2

2.2. При растворении в щелочах хлор, бром и йод диспропорционируют с образованием различных солей. Фтор окисляет щелочи.

Например, хлор реагирует с холодным раствором гидроксидом натрия:

Сl2    +   2NaOH (хол.)  →  NaCl   +   NaClO   +   H2O

При взаимодействии с горячим раствором гидроксида натрия образуются хлорид и хлорат:

3Cl2   +   6NaOH (гор.)  →  5NaCl   +   NaClO3   +    3H2O

Еще пример: хлор растворяется в холодном растворе гидроксида кальция:

2Сl2    +   2Са(OH)2(хол.)  →  СaCl2   +   Сa(ClO)2   +   2H2O

2.3. Более активные галогены вытесняют менее активные галогены из солей и галогеноводородов.

Например, хлор вытесняет йод  и бром из раствора йодида калия и бромида калия соответственно:

Cl2    +   2NaI   →   2NaCl   +   I2

Cl2    +   2NaBr   →  2NaCl   +   Br2

Еще одно свойство: более активные галогены окисляют менее активные.

Например, фтор окисляет хлор с образованием фторида хлора (I):

Cl2   +   F2    →   2Cl+F

В свою очередь, хлор окисляет йод. При этом в растворе образуется соляная кислота и йодная кислота:

Cl2   +   I2   +  H2O   →   HCl   +   HIO3

2.4. Галогены проявляют окислительные свойства, взаимодействуют с восстановителями.

Например, хлор окисляет сероводород:

Cl2    +    H2S   →    S    +   2HCl

Хлор также окисляет сульфиты:

Cl2     +     H2O     +     Na2SO3    →   2HCl   +   Na2SO4

Также галогены окисляют пероксиды:

Cl +   H2O2   →  2HCl   +   O2

Или, при нагревании или на свету, воду:

2Cl2    +   2H2O   →  4HCl   +  O (на свету или кип.)

Галогеноводороды

Строение молекулы и физические свойства

Галогеноводороды HHal – это бинарные соединения водорода с галогенами, которые относятся к летучим водородным соединениям. Галогеноводороды – бесцветные ядовитый газы, с резким запахом, хорошо растворимые в воде.

В ряду HCl – HBr – HI увеличивается длина связи и ковалентности связи уменьшается полярность связи H – Hal.

Растворы галогеноводородов в воде (за исключением фтороводорода) – сильные кислоты. Водный раствор фтороводорода – слабая кислота. 

Способы получения галогеноводородов

В лаборатории галогеноводороды получают действием нелетучих кислот на хлориды металлов.

Например, действием концентрированной серной кислоты на хлорид натрия:

H2SO4(конц.)     +    NaCl(тверд.)    →   NaHSO4    +   HCl↑

Галогеноводороды получают также прямым взаимодействием простых веществ:

Cl +   H2    →    2HCl

Химические свойства галогеноводородов

1. В водном растворе галогеноводороды проявляют кислотные свойства. Взаимодействуют с основаниями, основными оксидами, амфотерными гидроксидами, амфотерными оксидами. Кислотные свойства в ряду HF – HCl – HBr – HI возрастают.

Например, хлороводород реагирует с оксидом кальция, оксидом алюминия, гидроксидом натрия, гидроксидом меди (II), гидроксидом цинка (II), аммиаком:

2HCl    +    CaO    →   CaCl2    +   H2O

 6HCl     +     Al2O3     →   2AlCl3    +    3H2O

HCl    +    NaOH   →    NaCl   +  H2O

2HCl     +     Cu(OH)2    →     CuCl2    +   2H2O

2HCl     +     Zn(OH)2    →     ZnCl2    +   2H2O

HCl     +     NH3    →     NH4Cl

Как типичные минеральные кислоты, водные растворы галогеноводородов реагируют с металлами, расположенными в ряду активности металлов до водорода. При этом образуются соль металла и водород.

Например, соляная кислота растворяет железо. При этом образуется водород и хлорид железа (II):

Fe    +   2HCl      →     FeCl2   + H2

2. В водном растворе галогеноводороды диссоциируют, образуя кислоты. Водный раствор фтороводорода (плавиковая кислота) – слабая кислота:

HF    ↔   H+    +    F

Водные растворы хлороводорода (соляная кислота), бромоводорода и йодоводорода сильные кислоты, в разбавленном растворе диссоциируют практически полностью:

HCl    ↔   H+    +    Cl

3. Водные растворы галогеноводородов взаимодействуют с солями более слабых кислот и с некоторыми растворимыми солями (если образуется газ, осадок, вода или слабый электролит).

Например, соляная кислота реагирует с карбонатом кальция:

2HCl     +     CaCO3    →     CaCl2    +   2H2O   +  CO2

Качественная реакция на галогенид-ионы  взаимодействие с растворимыми солями серебра.

При взаимодействии соляной кислоты с нитратом серебра (I) образуется белый осадок хлорида серебра:

HCl   +    AgNO3    =    AgCl↓    +    HNO3 

Осадок бромида серебра – бледно-желтого цвета:

HBr    +   AgNO3    =    AgBr↓   +    HNO3

Осадок иодида серебра желтого цвета:

HI    +    AgNO3    =    AgI↓   +    HNO3

Фторид серебра – растворимая соль, поэтому реакция плавиковой кислоты и ее солей с нитратом серебра не является качественной.

Видеоопыты качественных реакций на хлорид-, бромид- и йодид-ионы (взаимодействие с нитратом серебра) можно посмотреть здесь.

4. Восстановительные свойства галогеноводородов усиливаются в ряду HF – HCl – HBr – HI.

Галогеноводороды реагируют с галогенами. При этом более активные галогены вытесняют менее активные.

Например, бром вытесняет йод из йодоводорода:

Br2   +   2HI   →  I2   +   2HBr

А вот хлор не может вытеснить фтор из фтороводорода.

Фтороводород практически невозможно окислить.

Концентрированная соляная кислота окисляется соединениями марганца с валетностью выше II или соединениями хрома (VI).

Например: концентрированная соляная кислота окисляется оксидом марганца (IV):

4HCl    +    MnO2    →   MnCl2   +    Cl2   +   2H2O

Бромоводород – сильный восстановитель и окисляется соединениями марганца, хрома (VI),  концентрированной серной кислотой и другими сильными окислителями:

Например, бромоводород окисляется концентрированной серной кислотой:

2HBr   +   H2SO4(конц.)  →   Br2    +   SO2   +  2H2O

Бромоводород реагирует с бихроматом калия с образованием молекулярного брома:

14HBr      +    K2Cr2O7   →    2KBr  +    2CrBr  +    3Br2    +    7H2O

Или с оксидом марганца (IV):

 4HBr    +  MnO2   →   MnBr2   +   Br2   +   2H2O

Пероксид водорода также окисляет бромоводород до молекулярного брома:

2HBr   +   H2O2   →   Br2   +   2H2O

Йодоводород – еще более сильный восстановитель, и окисляется другими неметаллами и даже такими окислителями, как соединения железа (III) и соединения меди (II).

Например, йодоводород реагирует с хлоридом железа (III) с образованием молекулярного йода:

2HI    +   2FeCl3  →   I2   +   2FeCl2   +  2HCl

или с сульфатом железа (III):

2HI    +   Fe2(SO4)3    →   2FeSO4   +   I2   +   H2SO4

Йодоводород легко окисляется соединениями азота, например, оксидом азота (IV):

2HI   +  NO2  →   I2   +   NO   +    H2O

или молекулярной серой при нагревании:

2HI    +   S     →   I2     +    H2S

5. Плавиковая кислота реагирует с оксидом кремния (IV) (растворяет стекло):

SiO2   +   4HF   →   SiF4  +  2H2O

SiO2   +   6HF(изб)  →  H2[SiF6]  +   H2O

Галогениды металлов

Галогениды  это бинарные соединения галогенов и металлов или некоторых неметаллов, соли галогеноводородов.


Способы получения галогенидов

1. Галогениды металлов получают при взаимодействии галогенов с металлами. При этом галогены проявляют свойства окислителя.

Например, хлор взаимодействует с магнием и кальцием:

Cl2    +   Mg   →   MgCl2

Cl2   +   Ca   →   CaCl2

При взаимодействии железа с хлором образуется хлорид железа (III):

3Cl2   +   2Fe   →  2FeCl3

2. Галогениды металлов можно получить при взаимодействии металлов с галогеноводородами.

Например, соляная кислота реагирует с железом с образованием хлорида железа (II):

Fe  +  2HCl   →   FeCl2   +  H2

3. Галогениды металлов можно получить при взаимодействии основных  и амфотерных оксидов с галогеноводородами.

Например, при взаимодействии оксида кальция и соляной кислоты:

2HCl    +    CaO   →  CaCl2    +   H2O

Еще пример: взаимодействие оксида алюминия с соляной кислотой:

6HCl     +     Al2O3    →    2AlCl3    +    3H2O

4. Галогениды металлов можно получить при взаимодействии оснований  и амфотерных гидроксидов с галогеноводородами.

Например, при взаимодействии гидроксида натрия и соляной кислоты:

HCl    +    NaOH   →    NaCl   +  H2O

Или при взаимодействии гидроксида меди (II) с соляной кислотой:

2HCl     +     Cu(OH)2    →     CuCl2    +   2H2O

Гидроксид цинка (II) также взаимодействует с соляной кислотой:

2HCl     +     Zn(OH)2    →     ZnCl2    +   2H2O

5. Некоторые соли взаимодействуют с галогеноводородами с образованием галогенидов металлов.

Например, гидрокарбонат натрия реагирует с бромоводородом с образованием бромида натрия:

HBr     +   NaHCO3    →   NaBr    +    CO2↑    +   H2

Взаимодействие с нитратом серебра –  качественная реакция на соляную кислоту, бромодоводород и йодоводород:

HCl   +    AgNO3   →    AgCl↓    +    HNO3

HBr   +    AgNO3   →    AgBr↓    +    HNO3

HI   +    AgNO3   →    AgI↓    +    HNO3

Химические свойства галогенидов

1. Растворимые галогениды вступают в обменные реакции с растворимыми солями, кислотами и основаниями, если образуется осадок, газ или вода.

Например, бромиды, йодиды и хлориды реагируют с нитратом серебра с образованием желтого, желтого и белого осадков соответственно.

NaCl   +  AgNO3   →    AgCl↓    +  NaNO3 

Фторид серебра – растворимая соль, поэтому реакция фторидов с нитратом серебра не является качественной.

Видеоопыты качественных реакций на хлорид-, бромид- и йодид-ионы (взаимодействие с нитратом серебра) можно посмотреть здесь.

2. Галогениды тяжелых металлов реагируют с более активными металлами. При этом более активные металлы вытесняют менее активные.

Например, магний вытесняет медь из расплава хлорида меди (II):

Mg  +  CuCl2   →  MgCl2  +  Cu

Обратите внимание! В растворе более активные металлы вытесняют менее активные только если более активные металлы не взаимодействуют с водой (металлы, расположенные в ряду активности до магния). Если добавляемый металл слишком активен, то он провзаимодействует с водой, а не с солью.

Например, натрий не вытесняет цинк из раствора хлорида цинка. Т.к. натрий реагирует с водой, а реакция с хлоридом цинка не идет.

Na  +  ZnCl2(раствор)  ≠  

3. Галогениды подвергаются электролизу в растворе или расплаве. При этом на аноде образуются галогены.

Например, при электролизе расплава бромида калия на катоде образуется клий, а на аноде – бром:

2KBr   →    2K    +   Br2

При электролизе раствора бромида калия на катоде выдялется водород, а на аноде также образуется бром:

2KBr    +    2H2O    →    H2↑   +   2KOH    +   Br2↑        

4. Галогениды металлов проявляют восстановительные свойства. Хлориды окисляются только сильными окислителями, а вот йодиды уже являются очень сильными восстановителями. В целом, восстановительные свойства галогенидов аналогичны свойствам галогеноводородов.

Например, бромид калия окисляется концентрированной серной кислотой:

2KBr   +    2H2SO4 (конц.)    →    4K2SO4    +   4Br2   +   SO2   +    2H2O

Еще пример: йодид  калия окисляется соединениями меди (II) и соединениями железа (III):

4KI   +   2CuCl2   →   2CuI↓   +    I2↓   +    4KCl

2KI    +    2FeCl3    →   I2↓    +   2FeI2    +    2KCl

Еще несколько примеров восстановительных свойств галогенидов:

8KI   +    5H2SO4 (конц.)  →    4K2SO4    +   4I2   +   H2S  +    4H2O          или

8KI    +   9H2SO4  (конц.)  →    4I2↓ +    H2S↑     +    8KHSO4     +    4H2O

KI    +   3H2O   +  3Cl2  →   HIO3   +  KCl   +   5HCl

10KI   +  8H2SO4   +  2KMnO4  →  5I2   +   2MnSO4   +   6K2SO4   +   8H2O

6KI    +  7H2SO4   +  K2Cr2O7   →  Cr2(SO4)3    +   3I2    +   4K2SO4    +   7H2O

2KI    +   H2SO4   +   H2O2   →   I2    +   K2SO4    +   2H2O

2KI    +   Fe2(SO4)3    →  I2   +    2FeSO4   +  K2SO4

2KI    +   2CuSO4   +   K2SO3   +    H2O   →   2CuI   +   2K2SO4   +   H2SO4

Более активные галогены вытесняют менее активные из солей.

При этом галогениды металлов не горят в кислороде.

5. Нерастворимые галогениды металлов растворяются под действием избытка аммиака.

Например, хлорид серебра (I) растворяется под действием избытка раствора аммиака:

AgCl    +    NH3    →  [Ag(NH3)2]Cl

6. Нерастворимые галогениды под действием света разлагаются на галоген и металл.

Например, хлорид серебра разлагается под действием ультрафиолета:

2AgCl  →  2Ag    +   Cl2

Кислородсодержащие кислоты галогенов

Рассмотрим кислородсодержащие кислоты галогенов на примере хлора:

Степень окисления галогена +1 +3 +5 +7
Формула HClO HClO2 HClO3 HClO4
Название кислоты Хлорноватистая Хлористая Хлорноватая Хлорная
Устойчивость и сила Существует только в растворах,  слабая кислота Существует только в растворах,  слабая кислота Существует только в растворах,  сильная кислота Сильная кислота
Название соответствующей соли Гипохлориты Хлориты Хлораты Перхлораты

 Хлорноватистая кислота и ее соли

Хлорноватистая кислота HClO устойчива только в  разбавленном водном растворе.

Cпособ получения хлорноватистой кислоты:

1. Диспропорционирование хлора в холодной воде:

Cl2    +   H2O   ↔  HCl   +  HClO  

Химические свойства хлорноватистой кислоты:

Хлорноватистая кислота HClO – это слабая кислота, но сильный окислитель.

1. Под действием ультрафиолета (на свету) хлорноватистая кислота разлагается:

2HClO  →  2HCl   +   O2

2. Как кислота, хлорноватистая кислота реагирует с сильными основаниями.

Например, с гидроксидом калия:

HClO   +   KOH    →    KClO   +   H2O

3. Ярко выражены окислительные свойства хлорноватистой кислоты за счет атома хлора в степени окисления +1. При взаимодействии с восстановителями хлор, как правило, восстанавливается до степени окисления -1.

Например, хлорноватистая кислота окисляет йодоводород:

HClO   +  2HI   →  HCl   +   I2   +  H2O

Хлорноватистая кислота также окисляет, например, пероксид водорода:

HClO   +  H2O2   →  HCl   +   H2O   +   O2

4. Хлорноватистая кислота диспропорционирует:

3HClO    →   2HCl   +    НСlO3

Химические свойства солей хлорноватистой кислоты (гипохлоритов):

1. Более сильные кислоты вытесняют гипохлориты из солей.

Например, соляная кислота реагирует с гипохлоритом натрия:

NaClO   +   2HCl   →  NaCl  +  Cl2   +  H2O

Серная кислота реагирует с гипохлоритом кальция при нагревании или под действием излучения:

Ca(ClO)2    +   H2SO4  →   CaSO4   +   2HCl   +   O2

Даже угольная кислота вытесняет гипохлориты:

Ca(ClO)2    +   CO2   +   H2O   →  CaCO3   +   2HClO

2. Гипохлориты вступают в обменные реакции с другими солями, если образуется слабый электролит.

Например, гипохлорит кальция реагирует с растворимыми карбонатами:

Ca(ClO)2    +   Na2CO3    →   CaCO3   +   2NaClO

3. При нагревании гипохлориты разлагаются:

Ca(ClO)2     →    CaCl2   +   O2

Хлористая кислота и ее соли

Хлористая кислота HClO2  –  существует только в водных растворах.

Способы получения:

Хлористую кислоту можно получить окислением оксида хлора пероксидом водорода:

2ClO2     +   H2O2   →   2HClO2   +   O2

Химические свойства хлористой кислоты:

1. Хлористая кислота является также слабой. Реагирует с щелочами с образованием хлоритов:

HClO2   +   KOH   →   KClO2   +   H2O

2. При длительном хранении разлагается:

4HClO2   →   HCl   +   HClO3   +   2ClO2   +   H2O

Хлорноватая кислота и ее соли

Хлорноватая кислота HClO3  –  также существует только в водных растворах.

Способы получения:

Хлорноватую кислоту можно получить из солей хлорноватой кислоты – хлоратов.

Например, из хлората бария под действием серной кислоты:

Ba(ClO3)2   +   H2SO4   →   2HClO3    +    BaSO4

Химические свойства хлорноватой кислоты:

1. Хлорноватая кислота –  сильная кислота. Реагирует с щелочами с образованием хлоратов:

HClO3   +   KOH     →   KClO3   +   H2O

2. Хлорноватая кислота –  сильный окислитель

Например, хлорноватая кислота окисляет фосфор:

6P   +   5HClO3    →   3P2O5   +   5HCl

Химические свойства солей хлорноватой кислоты – хлоратов:

1. Хлораты сильные окислители.

Например, хлорат калия (бертолетова соль) при нагревании разлагается. При этом без катализатора хлорат диспропорционирует:

4KClO3   →    3KClO4   +   KCl

В присутствии катализатора (оксид марганца (IV)) хлорат калия разлагается, окисляя кислород:

2KClO3    →   2KCl   +   3O2

Еще пример: хлорат калия окисляет серу и фосфор:

2KClO3   +  3S    →  2KCl   +  3SO2

 5KClO3   +  6P    →   5KCl   +   3P2O5

Хлорная кислота и ее соли

Хлорная кислота HClO4  –  это бесцветная жидкость, хорошо растворимая в воде.

Способы получения:

Хлорную кислоту можно получить из солей хлорной кислоты – перхлоратов.

Например, из перхлората натрия под действием серной кислоты:

2NaClO4   +   H2SO4   →   2HClO4    +    Na2SO4

Химические свойства хлорной кислоты:

1. Хлорная кислота –  сильная кислота. Реагирует с щелочами с образованием перхлоратов:

HClO4   +   KOH     →   KClO4   +   H2O

2. Хлорная кислота –  сильный окислитель

Например, хлорная кислота окисляет углерод:

8HClO4   +   14C   →   14CO2   +   4Cl2   +   4H2O

3. При нагревании хлорная кислота разлагается:

4HClO4   →   4ClO2   +   3O2   +   2H2O

Химические свойства солей хлорной кислоты – перхлоратов:

1. Перхлораты сильные окислители.

Например, перхлорат калия при нагревании разлагается. При этом хлор окисляет кислород:

KClO4    →   KCl   +   2O2

Еще пример: перхлорат калия окисляет алюминий:

3KClO4   +   8Al   →  3KCl   +   4Al2O3

Like this post? Please share to your friends:
  • Овр с фосфором егэ
  • Овр с пероксидом водорода примеры подготовка к егэ по химии
  • Овр с перманганатом калия егэ
  • Овр с перекисью водорода егэ
  • Овр с озоном егэ