Овр с озоном егэ

СОВРЕМЕННЫЕ ВОПРОСЫ НЕОРГАНИЧЕСКОЙ ХИМИИ

ПОЛУЧЕНИЕ И СВОЙСТВА ОЗОНА О3 -2О+4О-2] [1]

КОЧКАРОВ Ж.А.

Кабардино-Балкарский государственный университет, Нальчик

Озон — газ синего цвета с характерным запахом свежести, молекула диамагнитна и имеет угловое строение. Для центральной атомной частицы характерна sp2 – гибридизация, валентный угол 117 о, π-связь делаколизуется между тремя атомными частицами кислорода. Растворимость его больше, чем кислорода, сильный окислитель, ядовит.

Сероуглерод СS2 растворяет озон, при этом раствор окрашивается в синий цвет, самым лучшим растворителем озона является четыреххлористый углерод ССI4, один объем которого поглощает три объема озона, в этом случае растворение также сопровождается окрашиванием жидкости в синий цвет.

+4О ↔ +4О

-2О О-2 -2О О-2

Окислительно-восстановительные свойства озона

Озон обычно представляют как очень сильный окислитель. Составление уравнений окислительно-восстановительных реакций с участием озона обычным методом электронного баланса не представляется возможным. Однако легко реализуется метод протонно-кислородного баланса [1-6].

Обратим внимание еще раз на строение молекулы озона. Между двумя атомными частицами кислорода образуются две ковалентные неполярные связи по обменному механизму за счет двух неспаренных электронов от каждой атомной частицы. Присоединение еще одного атома кислорода происходит по донорно-акцепторному механизму, при котором донором электронов выступает центральная атомная частица (в схеме указана стрелкой), а акцептором электронов –соседняя атомная частица, у которой возникает свободная орбиталь (вакансия) за счет внутриатомного спаривания двух неспаренных электронов. При этом центральной атомной частице приписывают степень окисления (+4), а двум соседним – степень окисления (-2) [1]. Теперь понятно, что озон сильный окислитель за счет атомной частицы кислорода О+4:

О+4 + 2ē = О+2 , О+4 + 4ē = Оо , О+4 + 6ē = О-2 (2)

Однако может проявлять и восстановительные свойства за счет атомных частиц кислорода О-2:

-2 — 4ē = О2о или О-2 — 2ē = Оо (3)

Ниже нами представлены следующие возможные электронные схемы внутримолекулярного окисления-восстановления и восстановления озона:

Схема 1: 2О-2 + О+4 + 2ē = О2о + О-2 , внутримолекулярная ОВР

О3

Схема 2: 2О-2 + О+4 -2ē = О2о + О+2 , внутримолекулярная ОВР

О3

Схема 3: 2О-2 + О+4 = О2о + Оо , внутримолекулярная конмутация

О3

Схема 4: 2О-2 + О+4 + 6ē = 3О-2, проявляет только окислительные

свойства

Схема 5: 2О-2 + О+4 + 2ē = 2О-2 + О+3, проявляет только окислительные

свойства

Как мы сказали выше, озон сильный окислитель за счет атомной частицы кислорода О+4, который в соответствии с полуреакцией (2) и схемой 3 дает атомарный кислород:

О3 = О2о + Оо

О+4 + 4ē = Оо 1

-2 — 4ē = О2о 1

Поэтому большинство окислительно-восстановительных реакций с участием озона можно представить как реакцию с атомарным кислородом, проявляющим сильные окислительные свойства в соответствии с полуреакцией Оо + 2ē = О-2, в связи с чем схемы (3) и (1) можно считать сопряженными, т.е. в начале реализуется схема (3), а затем — (1).

Еще раз обращаем внимание читателя на то, что обычным электронным балансом эти реакции уравнять не представляется возможным, поэтому мы будем пользоваться представленными схемами 1-5 и методом протонно-кислородного баланса [1-6].

NH3(г) + 4О3(г) + КОН = КNО3 + 2H2O + 4О2↑:

N-3 — 8ē = N+5 1

-2 + О+4 + 2ē = О2о + О-2 4, схема 1

или

N-3 — 8ē = N+5 1

О3 + 2ē = О2о + О-2 4

В полуреакции восстановления озон переходит в кислород, недостаток кислородных частиц в правой части восполняем за счет атомных частиц О-2 что соответствует схеме 1.

Реакция обнаружения озона в воздухе по посинению бумажки, смоченной водным раствором KI в присутствии крахмала:

2KI(р) + O3 + H2O = 2KOH + I2↓ + O2↑:

2I— 2ē = I2о 1

О3 + 2ē = О2о + О-2 1 , схема 1

Синяя окраска иодкрахмальной бумаги постепенно исчезает, поскольку между иодом и щелочью протекает реакция:

3I2 + 6КОН = КIO3 + 5KI + 3H2O

В присутствии избытка озона свободный иод окисляется:

I2 + 5O3 + Н2O = 2НIO3 + 5О2

I2о — 10ē = 2I+5 1

О3 + 2ē = О2о + О-2 5 , схема 1

Или:

2I2 + 9O3 = I(IO3)3 + 9O2

2I2о + 9О-2 — 18ē = I(IO3)3 1

О3 + 2ē = О2о + О-2 9 , схема 1

В первой полуреакции окисления недостаток кислородных частиц в левой части восполняем за счет частиц О-2, а в полуреакции восстановления недостаток кислородных частиц в правой части восполняем также за счет атомных частиц О-2.

Одной из реакцией на озон является взаимодействия с раствором хлорида марганца (П):

MnCl2 + O3 + 3H2O = Mn(ОН)4 + 2HCl + O2

Мn+2 — 2ē = Мn+4 1

О3 + 2ē = О2о + О-2 1, схема 1

1% -ный раствор индиго в концентрированной Н2SO4 изменяет цвет от синего до бледно-желтого из-за окисления в изатин по уравнению:

С16Н10О2N2 1% индиго,синий + 2O3 = 2С8Н5O2Nизатин,желтый + 2O2:

С16Н10О2N2 + 2О-2 — 4ē = 2С8Н5O2N 1

О3 + 2ē = О2о + О-2 2, схема 1

В присутствии озона бесцветный раствор сульфата титанила переходит в желто-оранжевый раствор пертитановой кислоты:

ТіOSO4 + O3 + 2Н2O = Н2ТiO4 + O2 + Н2SO4

Ті+4 — 2ē = Ті+6 1

О3 + 2ē = О2о + О-2 1 , схема 1

Раствор желтой кровяной соли окрашивается в красно-коричневый:

4[Fе(СN)6]желтый + Н2O + O3 = 2К3[Fе(СN)6]красно-корич + 2КОН + O2

+2 + 1ē = Fе+3 2

О3 + 2ē = О2о + О-2 1

Предлагаем аналогичным образом проанализировать представленные реакции:

МnО2(т) + О3(г) + 2NаОН = Nа2МnО4 + H2O + О2↑:

Мn+4 — 2ē = Мn+6 1

О3 + 2ē = О2о + О-2 1, схема 1

4МnSO4(p) + 4О3(г) + 12KОН = 4KМnО4 + 4К2SO4 + 6H2O + О2

Мn+2 — 5ē = Мn+7 2

О3 + 2ē = О2о + О-2 5, схема 1

2CrCl3(p) + 3О3(г) + 10КОН = 2К2CrO4 + 6KCl + 5H2O + 3О2↑:

Cr+3 — 3ē = Cr+6 2

О3 + 2ē = О2о + О-2 3, схема 1

О3(г) + Pb(NO3)2(p) + H2O = РbО2 + О2↑ + 2HNO3, схема 1

О3(г) + 3SnCl2(p) + 6HCl(p) = 3SnCl4 + 3H2O:

Sn+2 — 2ē = Sn+4 3

О3 + 6ē = 3О-2 1, схема 1

3(г) + РbS(т) = РbSO4 + 4О2↑:

S-2 — 8ē = S+6 1

О3 + 2ē = О2о + О-2 4, схема 1

3(г) + 4KОН(т) = 4KО3 + 2H2O + О2↑:

окислитель восстановитель

-2 — 4ē = О2о , 1 щелочь окисляется

О3+ 1ē =

-2 + О+3, 4 О3 восстанавливается, схема 5

озонид-ион

или электронный баланс можно записать проще:

4ОН— 4ē = О2о + 2H2O 1, окисление щелочи

О3 + 1ē = О34, восстановление озона, схема 5

Из первой полуреакции видно, что 2 моль щелочи окисляется, а 2 моль щелочи трансформируется в воду.

С учетом строения озона и озонида электронный баланс можно записать так:

-2 — 4ē = О2о , щелочь окисляется 1

О+4 + 1ē = О+3 , восстановление озона 4

+3О —

-2О О-2

В озонид-ионе О3 центральная атомная частица зарактеризуется sp3 –гибридизацией, валентный угол 108о.

2NH3(г) + 4О3(г) = NH43 + H2O + 4О2

N-3 — 8ē = N+5 1

О3 + 2ē = О2о + О-2 4, схема 1

NH3(г) + 4О3(г) + КОН = КNО3 + 2H2O + 4О2 :

N-3 — 8ē = N+5 1

О3 + 2ē = О2о + О-2 4, схема 1

Доказательством того, что озон все же проявляет одновременно и восстановительные свойства является реакция с фтороводородом и фтором:

3 + 2НF = ОF2 + 2О2 + H2O:

О3 -2ē = О2о + О+2 1, схема 2

О3 +2ē = О2о + О-2 1, схема 1

О3(г) + F2(г) = ОF2 + О2↑:

F2 + 2ē = 2F1

О3 — 2ē = О2о + О+2 1, схема 2

Таким образом, в соответствии со схемами 4 и 5 озон проявляет только окислительные свойства, в остальных случаях- окислительно-восстановительные свойства.

Предлагаем аналогичным образом проанализировать представленные реакции:

О3(г) + 2CuCl2(p) + 2HCl(p) = 2CuCl3 + О2↑ + H2O

О3(г) + KCN(p) = KCNO + О2

О3(г) + (NH2)2CO(т) = N2↑ + CО2 + 2H2O

3(г) + 4МеОН(т) = 4МеО3(т, красн.) + 2H2O + О2↑ (Ме = K, Rb, Cs) или

3(г) + 2МеОН(т) = 2МеО3(т, красн., озониды) + H2O + 5О2↑ (Ме = K, Rb,Cs)

O3 + Рb(ОН)2 = РbО(ОН)2 + O2

3(г) + MeS(т) = MeSO4 + 4О2 (Ме = металлы)

О3(г) + H2S(г) = S↓ + О2 + H2O или 4О3(г) + 3H2S(г) = 3H2SO4

О3(г) + NO(г) = 2 + О2↑; О3(г) + 2NО2(г) = N2О5 + О2

3(г) + C(т) = 2 + 2О2 ; 2О3(г) + S(т) + H2O = H2SO4

О3(г) + 3SО2(г) + 3H2O = 3H2SO4; О3(г) + 2(г) = 3 + О2

3(г) + 2NО2(г) + 2ClО2(г) = 2NО2ClО4 + О2

О3(г) + 6HClО4(безвод) + I2(р) = 2I(ClО4)3 + 3H2O (на холоду)

3(г) + 4N2(г) = 12СО↑ + 3N2

2KI(р) + O3 + H2SO4 = K2SO4 + I2↓ + O2↑+ H2O

Me + О3 = MeO + O2↑ (Me = кроме Au, Pt, Ir)

4Аg + 2O3 = 2Аg2O + 2O2

О3(г) + KO2(т) супероксид = KO3(т) озонид + O2↑,

Способы получение озона

из кислорода (тепловая, электрическая, излучение):

2 ↔ 2O3 — Q

С точки зрения представленных схем (1-5) попробуем проанализировать данную реакцию. Интересно, к какому типу ОВР она относится? Очевидно, реализуется схема, обратная схеме (3). Разделим эту схему на две полуреакций и запишем полуреакции восстановления и окисления раздельно:

Тогда для прямой реакции можно записать следующий электронный баланс:

О2о — 8ē = 2О+4 1

О2о + 4ē = -2 2

Таким образом, прямая реакция является окислительно-восстановительной и относится к межмолекулярной дисмутации [1-6].

Рассмотрим теперь обратную реакцию. Она соответствует схеме (3). Разделим эту схему на две полуреакций и запишем полуреакции восстановления и окисления раздельно:

О+4 + 4ē = Оо 1 2О+4 + 8ē = О2о 1

-2 — 4ē = О2о 1 или 2О-2 — 4ē = О2о 2

Таким образом, данная реакция является окислительно-восстановительной и относится к внутримолекулярной конмутации.

-окислением терпена:

С10Н16 терпен + 56O2 = 10CO2 + 28О3 + 8Н2О

С10Н16 + 20О-2 -56ē = 10CO2 + 16Н+ 1

2O2 + 2ē = О-2 + О3 28 ͦ

-из концентрированной серной кислоты и перманганат калия:

1) 2KMnO4 + H2SO4 = 2НMnO4 + К2SO4 (реакция обмена),

2) 2НMnO42SO4 = Мn2O7 + Н2O + Н2SO4 (реакция дегидратации),

3) Мn2O7 = 2МnO2 + 3O, Мn2O7 = 2МnО + 5O

4) 3O + 3O2 = 3O3 (реакция образования озона)

∑ 6KMnO4 + 9H2SO4 = 6MnSO4 + 3K2SO4 + 9H2O + 5O3:

Mn+7 +5ē = Mn+2 6

-2 — 6ē = О3 5 или:

Mn+7 +5ē = Mn+2 6

О-2 — 6ē = О+4 5

-получение озона действием концентрированной азотной кислоты

на персульфат аммония:

1) (NH4)2S2O8 персульфат + 2HNO3 = H2S2O8надсерная + 2NH4NO3,

2) H2S2O8 + H2O = 2H2SO4 + О, 3) 4HNO3 = 4NO2 + O2 + 2H2O (t)

4) O + O2 = O3

∑3(NH4)2S2O8 персульфат + 6HNO3 + 3H2O = 6H2SO4 + 6NH4NO3 + O3:

S2O82- +2ē = 2SO42- 3

-2 — 6ē = О3 1

-получение озона при самоокислении влажного белого фосфора:

1) Р4 белый + 12O2 = Р4О6 + 6O3, медленное окисление кислородом воздуха

Р4о — 12ē = +3 1

2O2 + 2ē = О-2 + О3 6

2) 5Р4О6 + 5O2 = 4Р5О10

-получение озона электролизом 50%-ной серной кислоты:

1) Н2SO4 = НSO4 + Н+ (диссоциация),

2) электродные процессы:

катод: 2Н+ + 2e = Н2 (выделяется водород).

анод: 2НSO4 — 2е- = Н2S2O8 , надсерная

3) Н2S2O8 + 2Н2O = 2Н2SO4 + Н2O + O (выделяется кислород).

4) O + O2 = O3.

ЛИТЕРАТУРА

1.Кочкаров Ж.А. Неорганическая химия в уравнениях реакций. Учебное пособие «Допущено УМО по классическому университетскому образованию» для студентов химических факультетов. Изд-во «Принт-центр», Нальчик, 2011 г. 400с.

2.Кочкаров Ж.А. Химия в уравнениях реакций. Учебное пособие для школьников. Изд-во «Принт-центр», Нальчик, 2011 г. 302с.

3. Кочкаров Ж.А. Классификация окислительно-восстановительных

реакций в неорганической химии. //Материалы международной науч-прак.

конф. «Иновационные технологии в производстве, науке и образовании»

Грозный, 2010 г. с. 35-40

4. Кочкаров Ж.А. Уравнения окислительно-восстановительных реакций:

Метод протонно-кислородного баланса и классификация ОВР// Науч-метод. Журн. «Химия в Школе», 2007, №9. С.44-47

5. Кочкаров Ж.А. Современные проблемы неорганической химии: Составление уравнений окислительно-восстановительных реакций методом протонно-кислородного баланса// Ш Всероссийская научно-методическая конференция «Иновационные технологии в профессиональном образовании» ГГНТУ, г.Грозный, 2012. С. 33-38.

6. Кочкаров Ж.А. Современные вопросы неорганической химии: Классификация Окислительно-восстановительных реакций // Ш Всероссийская научно-методическая конференция «Иновационные технологии в профессиональном образовании» ГГНТУ, г.Грозный, 2012. С. 233-240.

Поделитесь с Вашими друзьями:

Окислительно-восстановительные реакции 

IОВР в неорганической химии.

Перекись водорода. 

4H2O+ PbS → PbSO4 + 4H2O

5H2O2KMnO4 + 3H2SO4 

 5O2 + K2SO4 +2MnSO4 + 8H2O

5H2O+ 2HIO3 → 5 O2 + I2 + 6H2O

3H2O2 + 2AuCl3 → 3 O2 + 6HCl + 2Au

H2O2 + H2→ S + 2H2O

H2O2 + KI + H2SO4 → I2 + K2SO4 + 2H2O

3H2O2 + 2CrCl3 + 10 KOH → 2K2CrO4 + 8H2O + 6KCl

H2O2 + 2NaOH → Na2O2 + 2H2O  

H2O2 + Ba(OH)2  BaO2 + 2H2O

          MnO2                                  

2H2O2  → 2H2O + O2

H2O2 + Cl2 → 2HCl + O2

H2O2 + 2FeSO4 + H2SO4 → Fe2(SO3)3 + 2H2O

K3[Cr(OH)6] + 3H2O2 → 2K2CrO4 + 8H2+ 2KOH  

H2O2 + SO2 → H2SO4    

Na2O2 + 2CO2  2Na2CO+ O2

Na2O2 + 2H2→ H2O2 + 2NaOH

Na2O2 + 2Na → 2Na2O

Na2O2 + H2SO4 → H2O2 + Na2SO4

Na2O2 + H2SO4 + 2KI → I2 + Na2SO+K2SO4 + 2H2O

KO2+ H2SO4H2O2+K2SO4+O2   надперекись

калия 

2KO2 + 2H2→ 2KOH +H2O2+ O2

BaO2 + H2SO4 → BaSO4 + H2O2

BaO2 + CO2 + H2→ H2O2 + BaCO3

          800oC

2BaO  2BaO + O2

SnO2 + 2H2SO4 Sn(SO4)2 + 2H2O

Железо.

                          to сильное

2Fe + 6H2SO4 (к)         Fe2(SO4)3 + 3SO2 + 6H2O

                        to

Fe + 6HNO3(к Fe(NO3)3 + 3NO2 + 3H2O

10Fe + 6HNO3(сильно разб.) → Fe(NO3)3 + 3N2 + 18H2O

С растворами щелочей в присутствии сильных окислителей

                                 to

Fe + KClO3 + 2KOH → KCl + H2O + K2FeO4 феррат калия

Соединения Fe2+.

                               to

2FeO + 4H2SO4 (к→ Fe2(SO4)3 + SO2 + 4H2O  

                           to

FeO + 4HNO3(к Fe(NO3)3 + NO2 + 2H2O

                              to

3FeO + 10HNO3(р)  3Fe(NO3)3 + NO + 5H2O

                                to

Fe(OH)2 + 4HNO3(к→ Fe(NO3)3 + NO2 + 3H2O

                                       to

2Fe(OH)2 + 4H2SO4 (к)    → Fe2(SO4)3 + SO2 + 6H2O

10FeS + 6KMnO+ 24H2SO4 → 5Fe2(SO4)3 + 6MnSO4 +   + 3K2SO4 + 24H2O

2FeI2 + 6H2SO4 (к)    → Fe2(SO4)3 + 2I2 +3SO2 + 6H2O

                                  to

4FeCl2 + O2 + 2H2O  → 4Fe(OH)Cl2

4FeCl2 + O2 + 8NaOH + 2H2→ Fe(OH)3 + 8NaCl

                     to

4FeSO4 → 2Fe2O3 + 4SO2 + O2

2FeSO4 + H2O2 + H2SO4 → Fe2(SO3)3 +

2H2O

10 FeSO4 + 2KIO3 + 6H2SO4 

I2 + 5Fe2(SO4)3 + K2SO4 +   + 6H2O

6FeSO4 + KClO3 + 3H2SO4 → 3Fe2(SO4)3 + KCl + 3H2O

10 FeSO4 + 2KMnO4 + 8H2SO4 → 5Fe2(SO4)3 + 2MnSO4 +

+ K2SO4 +  8H2O

                 to

4Fe(NO3)2 → 2Fe2O3 + 8NO2 + O2

Соединения Fe3+.

                          to

Fe2O3 + 3NaH  3NaOH + 2Fe

В присутствии сильных окислителей со щелочами

Fe2O3 + 4KOH + 3KNO3 → 2K2FeO4 + 3 KNO2 +2H2O

                                       to

Fe2O3 + 4KOH + KClO3 → 2K2FeO4 + KCl + 2H2O

Fe2O3 + 6Hl → 2FeI2 + I2 + 3H2O

NaFeO2+2H2O→ Fe(OH)3+NaOH

2Fe(OH)3 + 6HI → FeI2 +I26H2O

                                             to

2Fe(OH)3 +10NaOH+3Br → 

2Na2FeO4 + 6NaBr +8H2O

2FeCl3 + 2KI → FeCI2 + I2 + 2KCl

2FeCl3 + H2→ FeCI2 + S + 2HCl

2FeCl3 + FeCl2 + 4(NH4)2→ 3FeS + S + 8NH4Cl

                                       to

2FeCl3 +3Br2+16NaOH →2Na2FeO4 + 6NaBr ++6NaCl+8H2Oферрат натрия     

Fe3O4.

Fe3O4 + 8HCl → FeCI2 + 2FeCl3 + 4H2O (не ОВР)

Fe3O4+8Hl→3FeI2+I2+4H2O

Fe3O4+10HNO3(к) 3Fe(NO3)3+

NO2 + 5H2O

3Fe3O4 + 28 HNO3 (р) → 9Fe(NO3)3 + NO+14H2O

2Fe3O4+10H2SO4(к)3Fe2(SO4)3 +SO2+10H2O

Fe3O4 + 4H2SO4 (р)    → Fe2(SO4)3 + FeSO4 + 8H2O

                  to

Fe3O4 + Fe  4FeO

Соединения марганца.

Оксиды: 

MnO     Mn2O3      Mn3O4             Mn2O7      MnO3             MnO2

             основные                                кислотные                амфотерный

Mn(NO3)2 + 5PbO2 + 6HNO3 → 5Pb(NO3)2 + 2HMnO4 +2H2O

                to

Mn(NO3)2  MnO2 + 2NO2

                               to

Mn(NO3)2 +PbO2 MnO2+ 

Pb(NO3)2

2KMnO4 + 3MnSO4 2H2→ 5MnO2 + K2SO4 +2H2SO4

                                                                       MnO2

                                                             OH               H+  

                                                                    -2                          +2

                                                      MnO4                            Mn                        

                                                     манганат

2MnO2 +2H2SO4 (к)  → 2MnSO4 2H2O+ O2

MnO2 + 4HCl → MnCl2 + Cl22H2O

2MnO2 + 4HNO3 (к) → 2Mn(NO3)2 2H2O +O2

MnO2 проявляет кислотные свойства при сплавлении со щелочами или оксидами активных металлов без доступа воздуха.

MnO2 + 2KOH → K2MnO3 + H2O        (не ОВР)

Mn(OH)4 + BaO → BaMnO3 + 2H2O        (не ОВР)

В зависимости от условий реакции MnO2 проявляет либо окислительные, либо восстановительные свойства.

В кислой среде:

MnO2 +2FeSO+2H2SO4  

MnSO4 + Fe2(SO4)3 + 2H2O                                              

2MnO2+3PbO2+6HNO3

2HMnO4 +3Pb(NO3)2 + 2H2O

В щелочной среде:

                                               to

3MnO2 + KClO3 + 6NaOH                3Na2MnO4 +KCl + 3H2O

           твёрдые                    сплавление                                    

MnO2 + KNO3 + 2KOH → K2MnO4 + KNO2 + H2O           

                                                                 _

                                                         MnO4

                                  H+                 H2O             OH

                                +2                                                                 2-

                            Mn                         +4                                MnO4

                                                            MnO2 ↓                     манганат

                                                   оксид марганца (IV)

В кислой среде:

2KMnO4+5K2SO3 +3H2SO4→2MnSO4+6K2SO4+3H2O

2KMnO4+5Na2SO3+3H2SO4→2MnSO4+5Na2SO4+

K2SO4 +3H2O

2KMnO4 + 5H2S + 3H2SO4 → 5S + MnSO4 + K2SO4 + 8H2O

2KMnO4 + 5H3PO3 3H2SO4 → 5H3PO4 +2MnSO4 + K2SO4 + 3H2O

2KMnO4 + 5N2O + 3H2SO4 → 2MnSO4 + K2SO4 + 10NO + 3H2O

2KMnO4 + 5NaNO2 3H2SO4 → 5NaNO3 +2MnSO4 + K2SO4 + 3H2O

2KMnO4 + 10KBr + 8H2SO4  2MnSO4 + 5Br2 + 6K2SO4 + 8H2O

8KMnO4 + 5PH3 + 24HCl → 5H3PO4 + 8MnCl2 + 8KCl + 12H2O

2KMnO4 + 16HCl → 5Cl2 + MnCl2 + 2KCl + 8H2O

10 FeSO4 + 2KMnO4 + 8H2SO4 → 5Fe2(SO4)3 + 2MnSO4 + K2SO4 +  8H2O

В нейтральной среде:

2KMnO4+5SO2+ 2H2→ 2MnSO4 + K2SO4 + 2H2SO4

2KMnO4 + 3K2SO3 + H2→ 2MnO2 + 3K2SO4 + 2KOH

2KMnO4 + 3Na2SO3 + H2→ 2MnO2 + 3Na2SO4 + 2KOH

2KMnO4 + (NH4)2SO4 → 2MnO2 + N2 + K2SO4 + 4H2O

2KMnO4 + 3MnSO4 + 2H2→ 5MnO2 + K2SO4 + 2H2SO4

В щелочной среде:

2KMnO4 + K2SO3 + 2KOH → K2SO4 + 2K2MnO4 + H2O

2KMnO4 + Na2SO3 + 2KOH → Na2SO4 + 2K2MnO4 + H2O

Другие реакции:

              to

2KMnO4 → K2MnO4 + MnO2 + O2

2HMnO4 + 3H2S → 3S + 2MnO2 + 4H2O

8HMnO4 + 3PH3 → 3H3PO4 + 8MnO2 + 4H2O  

K2MnO4 + K2S + 2H2→ S + MnO2 + 4KOH

K2MnO4 + Cl2 → 2KCl + 2KMnO4

MnSO4 + NaClO + 2NaOH → MnO2 + NaCl + Na2SO4  H2 

Соединения хрома.

Соединения хрома (III).

Cr2O3 – оксид хрома (III)порошок тёмно-зелёного цвета, по твёрдости близок к корунду. Поэтому его вводят в состав полирующих средств. Он нерастворим в воде, имеет аморфный характер, однако в кислотах и щелочах плохо растворим.

Химические свойства.

1. Сплавление со щелочами:

                      t0                                                                     t0

Cr2O3 + 2KOH → 2KCrO2 + H2O                            Cr2O3 + Ba(OH)2 → Ba(CrO2)2 + H2O

                        хромит калия                                                  хромит бария

2. Сплавление с карбонатами щелочных металлов:

                           t0

Cr2O3 + Na2CO3 → 2NaCrO2 + CO2                                                            

                            хромит натрия

3. Сплавление с оксидами щелочных и щелочно-земельных металлов:

                       t0

Cr2O3 + Na2O  2NaCrO2

4. С концентрированными растворами кислот и щелочей реагирует с трудом:

                                                                                                                                    Cr2O3 + 6HCl → 2CrCl3 + 3H2O           

                                           t0

Cr2O3 + 6NaOH + 3H2O → 2Na3[Cr(OH)6]          

                                          гексагидроксохромит натрия

5. Взаимодействует со щелочными расплавами окислителей:

                                           t0        +6

Cr2O3 + 3KNO3 4KOH → 2K2CrO4 + 3KNO2 + 2H2O                                  

                                                                 хромат калия

Получение Cr2O3.

1. В лаборатории.                                     2. В промышленности.

                        t0                                                                            t0                  

(NH4)2Cr2O7  N2 + Cr2O3 + 4H2O              2K2Cr2O7+3С2Cr2O3

                                                                                     2K2СO3  + СO2                        

                                                                                               t0

                                                                           K2Cr2O7 + S → Cr2O3 + K2SO4

Cr(OH)3 – гидроксид хрома (III)серо-зелёного цвета, нерастворим в воде, амфотерный.

Получение Cr(OH)3. 

CrCl3 + 3NaOH → Cr(OH)3   + 3NaCl

                          студенистый серо-зелёный осадок

Химические свойства.

Cr(OH)3 легко взаимодействует с кислотами и со щелочами.

1. Взаимодействие с кислотами:

   2Cr(OH)3 + 3H2SO4 → Cr2(SO4)3  + 6H2O    

2. Взаимодействие со щелочами:

   Cr(OH)3 + 3NaOH → Na3[Cr(OH)6] 

                                гексагидроксохромат (III) натрия

                                (изумрудно-зелёный раствор)

3. Разложение при нагревании.

               t0

2Cr(OH)3 → Cr2O3 + 3H2O

Соли – хромиты и другие — (III).

Химические свойства.

1. С кислотами легко реагируют:

   а) недостаток кислоты:

  NaCrO2 + HCl H2O → Cr(OH)3  + NaCl

   бизбыток кислоты:

   NaCrO2 + 4HCl  CrCl3 + NaCl + 2H2O      

2. С кислотными  оксидами:

   Na3[Cr(OH)6] + 3CO2 → Cr(OH)3 + 3NaHCO3

3. В растворе подвергаются гидролизу:

   NaCrO2 + 2H2O → Cr(OH)3 + NaOH

   Cr2S3 + 6H2O  2Cr(OH)3 + 3H2S

4. Окислительные свойства соединений хрома (III):

   +3                 0                                 +2            +1

  Cr2(SO4)3  + H2 (Zn + H2SO4→ 2CrSO4 + H2SO4

5. Восстановительные свойства соединений хрома (III):

            +3               0                         +6             -1

    3[Cr(OH)6] + 3Br2 + 4KOH  2K2CrO4 + 6KBr + 8H2O

    +3             -1                                +6                              -2

3CrCl3 + 3H2O10KOH → 2K2CrO4 + 6KCL + 8H2O    

     -3e↗ Cr+6 (окисление)

Cr+3  

     +1e Cr+2  (восстановление)

Соединения хрома (III):                      

а) при окислении в щелочной среде образуют хроматы:

                                          to

   Cr2O3 + KClO3 4KOH   →         2K2CrO4 + KCl + 2H2O  

                                          спекание    хромат калия

б) при окислении в кислой среде образуют дихроматы:

Cr2(SO4)3  + 2K2FeO4 H2SO4 → K2Cr2O7 + Fe2(SO4)3 + K2SO4  H2 

                                                    дихромат калия

Соединения хрома (VI).

CrO3 – оксид хрома (VI) – кристаллы тёмно-красного цвета, хорошо растворимые в воде, сильно ядовит (действует на почки; 0,6 г – смертельная доза). Кислотный оксид, которому соответствуют кислоты Н2CrO4 и Н2Cr2O7.

Получение CrO3.

K2Cr2O7 + 2H2SO4 → K2SO4 + 2CrO3 + H2O            

Химические свойства.

1. Взаимодействие с водой.

                                                                                                                                                          OH                                            H+

   CrO3 + H2O  Н2CrO4           2CrO3 + H2O  H2Cr2O7          

Формула получающейся кислоты зависит от среды.

CrO3 – сильнейший окислитель.

2. Взаимодействие с углеродом:

  4CrO3 + 3C → 3CO2↑ + 2Cr2O3

3. Взаимодействие с серой:

    4CrO3 + 3S → 3SO2 + 2Cr2O3

4. Взаимодействие с органическими веществами:

    C2H5OH + 4CrO3 → 2CO2↑ + 2Cr2O3 + 3H2                                     

                      +6                           +3                +4                                     H                                                                                                                                 C2H5OH + 4CrO3 + 6H2SO4  2Cr2(SO4)3 + 2CO2↑ + 9H2    H   

       Реакция сопровождается воспламенением.                         HCOH

                                                                                                           H   ↑

                                                                                                                   H

5. Соли хромовой и дихромовой кислот – сильнейшие окислители.

   Na2CrO4 + H2SO4 → Na2Cr2O7 + Na2SO4 H2O     (не ОВР)

   Na2Cr2O7 + 2NaOH → 2Na2CrO4 + H2O       (не ОВР)

6. Хроматы при нагревании устойчивы, дихроматы при нагревании неустойчивы:

                      t0

   4K2Cr2O7 → 4K2CrO4 + 2Cr2O3 + 3 O2

7. Взаимодействие с солями:

    а) в нейтральной среде

    2K2CrO4 + 3(NH4)2S + 2H2O → 2Cr(OH)3 + 3S + 6NH3 + 4KOH        

    бв щелочной среде

    2K2CrO4 + 3(NH4)2S + 2KOH + 2H2O → 2K3[Cr(OH)63S + 6NH3

    вв кислой среде:

     K2Cr2O7 + 14HCl → 3Cl2 + 2KCL + 2CrCl3 + 7H2O

                                                               Cr(OH)3  — серозелёный осадок              

K2CrO4 (CrO4)2                  H2 

                                      }—-OH— →    [Cr(OH)6]3- — р-р изумрудно-зелёного цвета

K2Cr2O(Cr2O7)2  ______H+__ 

                                                             

                                                               Cr3+ — р-р сине-фиолетового цвета

Окисление органических соединений бихроматом калия.

      +6           -2                                         +2           +3

2K2Cr2O7 + 3CH3OH + 8H2SO4 → HCOOH + 2Cr2(SO4)3 +2K2SO4 + 11H2 

                            +3                                    +4                     

K2Cr2O7 + 3HOOC-COOH + 4H2SO4 → 6CO2 + Cr2(SO4)3  + K2SO4  7H2O

Соли в кислой среде:

K2Cr2O7 + 2H2SO4 → 2KHSO4 + 2CrO3 + H2O           (не ОВР)

Na2CrO4 + H2SO4 → Na2Cr2O7 + Na2SO4 H2O        (не ОВР)

K2Cr2O7 + 4H2SO4 + 3H2→ 3S + Cr2(SO4)3  + K2SO4  + 7H2 

K2Cr2O7 + 4H2SO4 + 2NO  2HNO3 + Cr2(SO4)3  + K2SO4  + 3H2 

2K2Cr2O7 + 8H2SO4 + 3C → 3CO2 + 2Cr2(SO4)3  + 2K2SO4  8H2O

K2Cr2O7 + 7H2SO4 + 6KI → 3I2 + Cr2(SO4)3  + 4K2SO4  + 7H2O

K2Cr2O7 + 7H2SO4 + 2Al → Al2(SO4)3  + Cr2(SO4)3  + K2SO4  + 7H2 

K2Cr2O7 + 14HCl → 3Cl2 + 2KCL + 2CrCl3 + 7H2O

2K2CrO4 + 16HCl  3Cl2 + 4KCL + 2CrCl3 + 8H2O

2K2CrO4 + 10HNO3 + 3H2S → 4KNO3 + 2Cr(NO3)3 + 3S + 8H2O

Соли в щелочной среде:

Na2Cr2O7 + 2CsOH → Na2CrO4 + Cs2CrO4 + H2O       (не ОВР)

K2Cr2O7 + 2RbOH → Rb2CrO4 + K2CrO4 + H2O           (не ОВР)

Cr2(SO4)3  + 3Br2 + 16NaOH → Na2CrO4 + 6NaBr + 3Na2SO4 + 8H2O

Соли в нейтральной (или слабокислой) среде:

2K2CrO4 + 3H2+ 2H2 2Cr(OH)3 + 3S + 4KOH

                              (гор.)

K3[Cr(OH)6] + 3H2O2 → 2K2CrO4 + 8H2+ 2KOH        

K3[Cr(OH)6] + 3SO2 → Cr(OH)3 + 3KHSO3                    (не ОВР)

K3[Cr(OH)6] + FeCl3 → Cr(OH)3 + Fe(OH)3 + 3KCl       (не ОВР)

2K2CrO4 + 3K2SO3 + 5H2→ 2Cr(OH)3 + 3K2SO4  + 4KOH

Разложение солей:

                        to

(NH4)2Cr2O7     N2 + Cr2O3 + 4H2O                              (вулкан)            

Основания:            

2Cr(OH)3 + 3Cl2 + 10NaOH → 2Na2CrO4 + 6NaCl + 8H2O

Оксиды:

2CrO3 + 2NH3 + H2O → (NH4)2Cr2O7                             (не ОВР)

Cr2O+ 3KNO3 + 4KOH → 2K2CrO4 + 3KNO2 + 2H2O  

+3                   +1                                       -1           +6

Cr2O3 + 3Ca(OCl)Cl + 4NaOH  → 3CaCl2 + 2Na2CrO4 + 2H2O

+3                                +5       t0       +6                   +4

Cr2O3 + Na2CO3 + KClO3 → 2Na2CrO4  + KCl + 2CO2

+3                   +1                                      -1             +6

Cr2O3 + 3Ca(OCl)Cl + 4NaOH  → 3CaCl2 + 2Na2CrO4 + 2H2O

+3                             +5          t0       +6                    +4 

Cr2O3 + Na2CO3 + KClO3 → 2Na2CrO4  + KCl + 2CO2

                                          t0                 

2Cr2O3 +3O2 +4Na2CO3 → 4Na2CrO4  + 4CO2

                                          t0                

2Cr2O3 +3O2 +4Na2CO3 → 4Na2CrO4  + 4CO2

Написать уравнения 4-х возможных реакций:

1) р-ры CrSO4; NaOH; Na2CrO4; H2SO4:

   3CrSO4 + Na2CrO4 + 16NaOH + 4H2O → 4Na3[Cr(OH)6] + 3Na2SO4

   2Na2CrO4 + H2SO4 → Na2Cr2O7 + Na2SO4 + H2O

   2NaOH + H2SO4 → Na2SO4 + 2H2O

   CrSO4 + 2NaOH → Na2SO4 + Cr(OH)2

2) р-ры SO2; CsOH; K2Cr2O7; H2SO4:    

  K2Cr2O7 + 2CsOH → K2CrO4 + Cs2CrO4 + H2O

    2CsOH + H2SO4 → Cs2SO4 + 2H2O

    K2Cr2O7 + 3SO2 + H2SO4 → Cr2(SO4)3  + K2SO4 + H2O

    2CsOH + SO2 → Cs2SO3 + H2O

3) Cr(NO3)3;  Na2SO3; Cl2; NaOH:  

   Cr(NO3)3 + Na2SO3 + 3H2→ 2Cr(OH)3 + SO2 + 6NaNO3

   6NaOH + 3Cl2 → 5NaCl + NaClO3 + 3H2O

   Cr(NO3)3 + 3NaOH → Cr(OH)3 + 3NaNO3

Галогены.

                              t0

3Cl2 + 6KOH (гор.) → 5KCl + KClO3 + 3H2O      

Cl2 + 2KOH (хол.) → KCl + KClO + H2O    

3Cl2 + 8NH3 → 6NH4Cl + N2

Cl2 + NaHS → S + NaCl + HCl

                               t0

3Br2 + 6KOH (гор.) → 5KBr + KBrO3 + 3H2O  

Br2 + 2KOH (хол.) → KBr + KBrO + H2O  

6Br2 + 6Ba(OH)2 → Ba(BrO3)2 + 5BaBr2 6H2O  

чистый         горячий

Br2 + H2S → 2HI + S

I2 + SO2 + 2H2O → H2SO4 + HI

Соединения галогенов.

KClO3 + 6HCl → KCl + 3Cl2 + 3H2O    

KClO + HI → Kl + l2 H2O    

Соединения серы.

Концентрированная H2SO4.

                          to

5H2SO4  8KIтв. → 4 I2 + 3H2↑+ 4K2SO4 + 4H2O  

3H2SO4  KIO3 + 5KI → 3I2 + 3K2SO4 + 3H2O  

H2SO4 + Na2S2O3 → Na2SO4 + SO2 + S + H2O

2H2SO4 + Hg → HgSO4 + SO2 + 2H2O

2H2SO4 + C → CO2 + 2SO2 + 2H2O

Оксид серы (IV).

SO2 + I2 + 2H2→ H2SO4 + 2HI

SO2 + Br2 + 2H2→ H2SO4 + 2HBr

SO2 + 2H2→ 3S + 2H2O

SO+ H2O2 → H2SO4    

Сера.

S + 6HNO3 (к.) → H2SO4 + 6NO2 + 2H2O

S + 2H2SO4 (к.) → 3SO2 + 2H2O

S + 3H2SO4 (к.) → 4SO2 + 4H2O

Соединения фосфора.

Фосфор. 

 to

6P + 5HClO3 + 9H2O → 5HCl + 6H3PO4

2P + 5NaNO3 → 5NaNO2 + P2O5

P + KMnO4 + H2SO4 →KH2PO4 + MnSO4

4P + 3KOH(k.) + 3H2 3KH2PO2 + PH3

P + 5HNO3 (к.)  → H3PO4 + 5NO2 + 5H2O

Фосфин.

2PH3 + 4O2 → P2O5 + 3H2O  

PH3 + 8AgNO3 + 4H2→ 8Ag + H3PO4 + 8HNO3

5PH3 + 8HBrO3 → 5H3PO4 + 4Br2 + 4H2O  

3PH3 + 4HClO3 → 3H3PO4 + 4HCl

3PH3 + 8HMnO4 → 3H3PO4 + 8MnO2 + 4H2O  

Фосфаты.

Сa3(PO4)2 + 5C + 3SiO2 → 3CaSiO3 + 2P + 5CO

3Сa3(PO4)2 + 16Al → 3Сa3P2 + 8Al2O3

Соединения азота.

Оксид азота (IV).

2NO2 + 2KOH → KNO2 + KNO3 + H2O

                    to

2NO2 + 4Cu → N2 + 4CuO

Азотная кислота.

H2S + 8HNO3 (к.) → H2SO4 + 8NO2 + 4H2O  

H2S + 2HNO3 (к., хол.) → S + 2NO2 + 2H2O  

3As2S3 28HNO3 + 4H2→ 6H3AsO4 + 28NO + 9H2SO4

S + 6HNO3 (к.) → H2SO4 + 6NO2 + 2H2O

5HNO3 (к.)  + P → H3PO4 + 5NO2 + 5H2O  

3Si + 4HNO3 + 18HF → 3H2SiF6 + 4NO + 8H2O

8HNO3 (к.) + CuS → CuSO4 + 8NO2 + 4H2O

Нитраты.

4Zn + KNO3 + 7KOH → NH3 + 4K2ZnO2 + 2H2O

          (тв.)

Аммиак.

NH3 + Ca(OCl)2 → N2 + H2O + CaCl2

Кремний.

3Si + 4HNO3 + 18HF → 3H2SiF6 + 4NO + 8H2O

Si + 4NaOH → Na4SiO4 + 2H2

Si + 2NaOH H2O → Na2SiO3 + 2H2

Кислород.

2PH3 + 4O2 → P2O5 + 3H2O  

2NO2 + O2 + 2KOH → 2KNO3 + H2O  

Главная
»
Видео

#ЕГЭ
#химия
#неорганическаяхимия
#озон
#Ермолаев
#кислительно-восстановительныереакции
#окислениесоединенийхрома
#получениесинтез-газа

Длительность: 01ч 58мин 05c

Преподаватель: Иван Сергеевич Ермолаев, МГУ. Курс неорганической химии. ЕГЭ. Окислительно-восстановительные реакции: озон, окисление соединений хрома до хроматов нитратами. Разбор нескольких интересных реакций. Реакции для запоминания. Получение синтез-газа и водорода.

Рекомендации материалов по теме: нет

Например:
а) H3PO3
+
H3PO3

H3PO4
+
PH3

В
реакции участвуют две молекулы H3PO3,
где фосфор имеет С.О. =+3.
В приведенной схеме одной молекулы
фосфор проявляет окислительные свойства,
а второй молекулы – восстановительные.

в-ль
Р+3
— 2
ē
=
P+5
окислениее

ок-ль
Р+3
+ 6
ē = P-3
восстановление

Ионно-электронный
баланс, РН < 7;

в-ль
(
PO3)3-
H2O-2
ē = (PO4)3-
+ 2
H+

3 окисление

ок-ль
(
PO3)3-
+ 3
H+
+ 6 H+
+ 6
ē = PH3
+ 3
H2O

2 восстановление

3(PO3)3-
+ (
PO3)3-
+3
H+
3(PO4)3-
+
PH3

Расставим
коэффициенты в молекулярное уравнение:

3H3PO3
+ H
3PO3

3H
3PO4
+ PH
3
,

б)
KBr + KBrO
3
+ H
2SO4
Br
2
+ K
2SO4
+ H
2O

в-ль
2
Br
— 2ē = Br
2

2

1

5

5

окисление

ок-ль
2
Br+5
+ 10
ē
=
Br2

10

5

1

восстановление

10Br
+ 2
Br+5
= 5
Br2
+
Br2

5
Br

+ Br
+5
= 3Br
2

Ионно-электронный баланс:

в-ль
2Br
— 2 ē = Br
2

5

ок-ль
2
BrO3
+ 12
H+
+ 10 ē =
Br2
+ 6
H2O

1

10Br
+ 2BrO
3
+ 12H
+
= 5Br
2
+ Br
2
+ 6H
2O

5
Br

+ BrO
3

+ 6H
+
= 3Br
2
+
3H
2O

Расставляем
коэффициенты в молекулярное уравнение:

5KBr
+ KBrO
3
+ 3H
2SO4
= 3Br
2
+ 3K
2SO4
+ 3H
2O

3.4. Особенности протекания овр при термитной сварке

При термитной сварке протекает следующая
реакция:

Al
+ Fe
3O4

Fe
0
+ Al
2O3

Молекулу
Fe3O4
можно представить в виде двух оксидов:

FeO
· Fe2O3
С.О. Fe
в FeO
= +2; С.О.Fe
в Fe2O3
= +3.
В схеме ОВР Fe+2
и Fe+3
проявляют свойства окислителя и
принимают электроны:

ок-ль

Fe+2
+ 2
ē
=
Fe0

8Σ
принятых
ē

8

4

12

3

ок-ль

2Fe+3
+ 6
ē
= 2Fe
0

в-ль

2Al0
— 6
ē
= 2Al
3+

6-
Σ отданных
ē
от двух атомов
Al

6

3

4


8
Al + 3Fe

+2
+
3Fe

+3

= 8Al
+3
+
9Fe
0

Расставим
коэффициенты в схеме реакции ОВР:

8 Al
+ 3
Fe3O4
= 4Al2O3
+ 9Fe0

3.5. Овр в присутствии окислителя – озона (о3)

Атомы кислорода в молекуле озона
расположены в вершине равнобедренного
треугольника с углом < 1170и
сторонами 1,26 А10μ = 0,52 Д.
Молекула О3диамагнитна. Озон
образуется в процессах, сопровождающихся
выделением атомарного кислорода:

О2 + О2 + hν
= О
3 + О

О + О2 = О3

Получение озона – энергоемкий процесс
(ΔН = 142,5 кДж/моль), и поэтому О3разлагается самопроизвольно в две
стадии

3 → 2О2 +
2О →3О
2

В ОВР окисление озоном происходит за
счет атомарного кислорода.

Пассивные
металлы (Cu,
Аu,
Нg,
Аg,
Pt
и др.)
окисляются озоном, например:

8Ag
+ 2
O3
= 4
Ag2O
+
O2

Очень активные металлы отдают молекуле
озона электрон без разрушения молекулы
и озон превращается в озонид-ион с
образованием озонидов

K
+ O3
= KO3

Рассмотрим, как будет протекать реакция
окисления бромид-иона с участием озона.

NaBr
+
O3
+
H2O

Бромид
ионы (Br¯)
— являются восcтановителями,
и в ОВР они могут только окисляться 2Br
— 2ē = Br2,
а молекула озона принимает 2ē
и восстанавливается в О-2
и О2.
Учитывая эти рассуждения, запишем
продукты реакции:

NaBr
+
O3
+
H2O
Br2
+
O2
+
NaOH

2Br
— 2
ē=
Br
2

1
окисление

O3
+ 2
ē
= O
-2
+ O
2

1
восстановление

Расставим
коэффициенты в молекулярное уравнение
ОВР:

2NaBr
+ O
3
+ H
2O
= Br
2
+ O
2
+ 2NaOH

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #

    19.12.2018842.75 Кб5st.doc

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Окислительно – восстановительные реакции в неорганической химии.

Восстановители

Продукты окисления

Условия

1. Металлы , м

М+, М2+, М3+

кислая и нейтральная среда

2. Металлы, образующие  амфотерные гидроксиды:

Ве, Zn, Al

[Zn(OH)4]2-, [Al(OH)4],

ZnO22-, AlO2

  • щелочная среда (раствор),
  • щелочная среда

  (сплавление)

3. Углерод, С

СО

 СО2

  • при высокой температуре,
  • при горении,

   в кислой среде

4. Оксид углерода (II), СО

  СО2

5. Сера, S

SO2, SO42-,

SO32-

  • кислая среда,
  • щелочная среда

6. Сероводород, H2S,

   cульфиды, S2-

S

    SO2

H2SO4, SO42-

  • с сильными окислителями,
  • при обжиге,
  • с сильными окислителями

7. Оксид серы (IV), SO2,

  cернистая кислота H2SO3,

  сульфиты SO32-(Na2SO3)

SO3

H2SO4,

SO42-(Na2SO4)

  • в газовой сфере,
  • в водных растворах

8. Фосфор, Р,

   фосфорин РН3,

   фосфиты РО33-

Р2О5

Н3РО4,

 РО43-

  • в газовой сфере,
  • в водных растворах

9. Аммиак, NH3

N2

  NO

  • в большинстве случаев,
  • каталитическое окисление

10.Азотистая кислота, HNO2,

   нитриты NO2(KNO2)

HNO3

NO3(KNO3)

11. Галогеноводороды,

    кислоты HCl, HBr, HI

    и их соли

Cl2, Br2, I2

12. Катионы Cr3+

CrO42 —

 Cr2O72 —

  • щелочная среда,
  • кислая среда

13. Катионы Fe2+, Cu+

Fe3+, Cu2+

14. Катионы Mn2+

MnO2

  MnO42-

 MnO4

  • нейтральная среда,
  • щелочная среда,
  • кислая среда

15. Пероксид водорода, Н2О2

О2 + Н+

  О2 + Н2О

  • кислая среда.
  • нейтральная среда

Окислители

Продукты восстановления

Условия

1. Галогены, F2, Cl2, Br2, I2

F , Cl , Br , I

2. Оксокислоты, хлора,

  брома и их соли:

  HClO, HBrO, HClO3,HBrO3

Cl , Br

3. Кислород, О2

O2-

4. Озон, О3

Н2О + О2

ОН  + О2

  • кислая среда,
  • нейтральная среда

5. Сера, S

S2-

6. Оксид серы (VI), SO3

  SO2

7. Оксид серы (IV), SO2

                      S

8. Азотистая кислота, HNO2,

   нитриты, NO2

             NO

N2

  • в большинстве случаев,
  • с солями аммония

9. Оксид азота (IV), NO2

более сильный окислитель, чем HNO3,

 NO

N2

  NH3

  • в большинстве случаев

10. Нитраты, NO3

   NO2

  NH3

  • в расплавах,
  • с сильными восстановителями:

11. Хроматы, CrO42-,

    дихроматы, Cr2O72-

[Cr(OH)6]3-

Cr(OH)3

Cr3+

  • щелочная среда,
  • нейтральная среда,
  • кислая среда

12. Катионы, Fe3+, Cu2+

Fe2+, Cu+

13. Перманганаты, MnO4

    Mn2+ + H2O

MnO2 + щелочь

MnO42- + H2O

  • кислая среда,
  • нейтральная, слабощелочная среда,
  • сильнощелочная среда

14. Пероксид водорода, Н2О2

Н2О

ОН

  • кислая среда,
  • нейтральная и щелочная среда

15. H2SO4 (конц.), HNO3

рассмотрены отдельно

При составлении уравнений ОВР важно уверенно находить среди реагирующих веществ окислитель и восстановитель. Некоторые вещества могут быть только восстановителями. Это металлы и вещества, которые содержат элемент, изменяющий степень окисления, в низшей степени окисления (например: NH3, PH3, H2S, HCl, HBr, HI и их соли). Фтор и сложные вещества, содержащие элемент в высшей степени окисления, могут быть только окислителями (например: HNO3, H2SO4, SO3, KMnO4, K2CrO4, K2Cr2O7).

Вещества, которые содержат элементы в промежуточной степени окисления, могут проявлять, в зависимости от природы реагента – партнёра, как окислительные, так и восстановительные свойства. Это – все неметаллы (кроме фтора): N2, NO, HNO2, KNO2, H2O2, S, SO2 и другие.

Пользуясь данными таблицы 1, составим некоторые уравнения ОВР:            

2KI      +      2SO3        =       I2         +          SO2      +       K2SO4

                восст. — ль       окисл. – ль         продукт               продукт           побочный

                                                                     окисл. – я             восст. – я            продукт

SO2      +     NO2      =      SO3       +     NO

                                       восст. – ль     окисл. – ль       продукт           продукт

                                                                                         окисл. – я        восст. – я

        В этой реакции оксид серы (IV) проявляет восстановительные свойства, т.к. реагирует с сильным окислителем – NO2.

2H2S      +       SO2      =      3S        +    2H2O

                                                    восст. – ль       окисл. – ль      продукт         побочный

                                                                                        окисл. – я          продукт  

                                                                                       и восст. – я

        В данной реакции SO2 проявляет окислительные свойства, т.к. реагирует с более сильным восстановителем – H2S.

        На ход окислительно – восстановительных реакций в растворах влияет среда, в которой протекает реакция и, поэтому, окислительно – восстановительный процесс между одними и теми же веществами в разных средах приводит к образованию различных продуктов. Для создания кислой среды обычно используют разбавленную серную кислоту.

        Азотную и соляную применяют редко, т.к. первая является сильным окислителем, а вторая способна окисляться. Для создания щелочной среды применяют растворы гидроксидов калия или натрия.

        Примеры влияния среды на характер продуктов ОВР:

5Na2SO3 + 2KMnO4 + 3H2SO4 = 5Na2SO4 + 2MnSO4 + K2SO4 + 3H2O

                 восст.-ль     окисл.-ль        среда        продукт      продукт           побочные

                                                                                 окисл.-я      восст.-я           продукты

3Na2SO3 + 2KMnO4 + H2O = 3Na2SO4 + 2MnO2 + 2KOH

                 восст.-ль      окисл.-ль    среда     продукт      продукт     побочный

                                                                            окисл.-я      восст.-я        продукт

Na2SO3 + 2KMnO4 + 4KOH = Na2SO4 + 2K2MnO4 + 2H2O

             восст.-ль     окисл.-ль       среда     продукт     продукт    побочный

                                                                         окисл.-я     восст.-я     продукт

16HBr  +  2NaMnO4 =   5Br2   +  2MnBr2  +  2NaBr + 8H2O

                   восст.-ль      окисл.-ль     продукт     продукт            побочные

                            среда                        окисл.-я     восст.-я            продукты

4KMnO4 + 4KOH = 4K2MnO4 + O2 + 2H2O

Остановимся на некоторых, наиболее часто встречающихся в заданиях ЕГЭ. окислительно – восстановительных реакциях.

 Кислоты – сильные окислители.

Это серная кислота концентрированная и азотная кислота в любом виде. Они окисляют почти все металлы и такие неметаллы, как углерод, фосфор, серу, и многие сложные вещества.

Возможные продукты восстановления этих кислот:

H2SO4  SO2  S  H2S

HNO3  NO2  NO  N2O  N2  NH3(NH4NO3)

При взаимодействии с металлами получаются три вещества: соль, вода и продукт восстановления кислоты, который зависит от концентрации кислоты, активности металла и температуры.

Чем меньше концентрация кислоты. А металл более активен, тем больше степень восстановления кислоты.

Представим возможные направления взаимодействия этих кислот с различными веществами в виде схем:

H2SO4 концентр.

не реагирует      не реагирует     восстанавливается               восстанавливается                    

с Au, Pt и            на холоде          до SO2 с неактивными        до SO2, S или H2S

некоторыми       с Fe,Al, Cr         металлами и                         с металлами средней

другими                                        неметаллами                        активности и активными,

металлами                                                                                   со сложными

                                                                                                      веществами

  Cu + H2SO4 концентр. = CuSO4 + SO2 + 2H2O

Zn + 2H2SO4 концентр.= ZnSO4 +SO2 + 2H2O

                               3Zn + 4H2SO4 концентр. = 3ZnSO4 + S + 4H2O

  4Zn + 5H2SO4 концентр. = 4ZnSO4 + H2S + 4H2O

HNO3 концентр.

не реагирует   не реагирует    восстанавливается             восстанавливается

с Au, Pt и         на холоде         до NO2  с неактив —            до NO, N2O, N2 или

некоторыми    с Fe, Al, Cr       ными металлами,               NH4NO3 (если кислота

другими                                     неметаллами,                     очень разбавлена или

металлами                                 сложными                          сказано, что газ

                                                   веществами                         не выделялся) с металлами

                                                                                                средней активности и

                                                                                                активными

Cu + 4HNO3 концентр. = Cu (NO3)2 + 2NO2 + 2H2O

HNO3 разбавл.

не реагирует    не реагирует    восстанавливается                 восстанавливается

с Au, Pt и          на холоде         до NO с неактивными           до NO, N2O, N2 или

некоторыми     с Fe, Al, Cr       металлами, неметаллами,     NH4NO3 (если кислота

другими                                     сложными веществами          очень разбавлена или

металлами                                                                                   сказано, что газ не вы –

                                                                                              делялся) с металлами            

                                                                                              средней активности и

                                                                            активными

3Cu + 8HNO3 разбавл.. = 3Cu (NO3)2 + 2NO + 4H2O

Al + 4HNO3 разбавл. = Al (NO3)3 + NO + 2H2O

8Al + 30HNO3 разбавл. = 8Al (NO3)3 + 3N2O + 15H2O

10Al + 36HNO3 разбавл. = 10Al (NO3)3 + 3N2 + 18H2O

8Al + 30HNO3 разбавл. = 8Al (NO3)3 + 3NH4NO3 + 5H2O

Концентрированные H2SO4 и HNO3  реагируют с Fe, Al, Cr только при нагревании:

2Fe + 6H2SO4 концентр. = Fe2 (SO4)3 + 3SO2 + 3H2O

Fe + 6HNO3 концентр. = Fe (NO3)3 + 3NO2 + 3H2O

Концентрированная H2SO4 и HNO3 в любом виде окисляют неметаллы — восстановители — углерод, фосфор, серу — до соответствующих кислот.

C + 4HNO3 концентр. = CO2 + 2H2O + 4NO2

3C + 4HNO3 разбавл. = 3CO2 + 2H2O + 4NO

C + 2H2SO4 концентр. = CO2 + 2H2O + 2SO2

P + 5HNO3 концентр. = H3PO4 + 5NO2 + H2O

3P + 5HNO3 разбавл. + 2H2O = 3H3PO4 + 5NO

2P + 5H2SO4 концентр. = 2H3PO4 + 5SO2 + 2H2O

S +6HNO3 концентр. = H2SO4 + 6NO3 + 2H2O

S + 2HNO3 разбавл. = H2SO4 + 2NO

S +2H2SO4        концентр. = 3SO2 +2H2O

Концентрированная азотная кислота окисляет йод до йодноватой кислоты:

I2 + 10HNO3 = 2HIO3 + 10NO2 + 4H2O

Взаимодействие этих кислот со сложными веществами рассмотрим в следующем разделе.

Особое значение имеет ОВР между соляной и азотной кислотами. Смесь трёх объёмов соляной кислоты и одного объёма концентрированной азотной называют «царская водка», в ней растворяется даже золото, которое алхимики считали царём металлов:

3HCl +HNO3 = Cl2 + NOCl + 2H2O

 Окислительно – восстановительные реакции, а не реакции обмена.

В ряде случаев между веществами, которые проявляют сильные восстановительные и окислительные свойства, возможны только ОВР, а не реакции обмена.

Рассмотрим следующие варианты:

1. Окислители – соединения железа (III), восстановители – сульфиды, йодиды. При этом катион Fe3+ восстанавливается до катиона Fe2+, сульфид – анион S2-окисляется до серы S0, а йодид – анион I окисляется до йода I2.

                В зависимости от количественного соотношения реагирующих веществ могут получиться различные соединения железа (II):

2FeCl3 + H2S = S + 2FeCl2 + 2HCl

2FeCl3 + Na2S = S + 2FeCl2 + 2NaCl

                                или 2FeCl3 + 3Na2S = S + FeS + 6NaCl

                                       Fe2(SO4)3 + H2S = S + 2FeSO4 +H2SO4

Fe(OH)3 + 6HI = 2FeI2 + I2 + 6H2O

     Fe2O3 + 6HI = 2FeI2 + I2 + 3H2O

      2FeCl3 +2HI = 2FeCl2 + I2 + 2HCl

     2FeCl3 + 2KI = 2FeCl2 + I2 + 2KCl

                                      или 2FeCl3 + 6KI = 2FeI2 + I2 + 6KCl

    Fe2(SO4)3 + 2KI = 2FeSO4 + I2 + K2SO4

      Fe2(SO4)3 + BaI2 = 2FeSO4 + I2 + BaSO4

2. Окислители – соединения меди (II), восстановители — йодиды. При этом катион   Cu2+ восстанавливается до катиона Cu+, а йодид – анион окисляется до йода I2 :

2CuSO4 + 4KI = 2CuI + I2 + 2K2SO4

                                          2CuCl2 + 4KI = 2CuI + I2 + 4KCl

                                          2CuCl2 + 4HI = 2CuI + I2 + 4HCl

3. Окислитель – азотная кислота, восстановитель – сульфиды, йодиды, сульфиты. При этом азотная кислота, в зависимости от концентрации, восстанавливается до NO2 (концентрированная), до NO (разбавленная); сульфид – анион S2- окисляется до серы S0 или сульфат – аниона SO42-, йодид – анион – до йода I2, a сульфит – анион SO32- — до сульфат – аниона SO42- :

8HNO3 концентр. + CuS = CuSO4 + 8NO2 + 4H2O

       или 4HNO3 концентр.+ CuS = S + 2NO2 + Cu(NO3)2 + 2H2O

                 8HNO3 разбавл.+ 3CuS = 3S + 2NO + 3Cu(NO3)2 + 4H2O

           4HNO3 концентр.+ Na2S = S + 2NO2 + 2NaNO3 + 2H2O

     24HNO3 концентр.+ Al2S3 = Al2(SO4)3 + 24NO2 + 12H2O

                                 2HNO3 разбавл.+ H2S = 3S + 2NO + 4H2O

8HNO3 концентр.+ H2S = H2SO4 + 8NO2 + 4H2O

                       или 2HNO3 концентр.+ H2S = S + 2NO2 + 2H2O

                           2HNO3 разбавл.+ 3K2SO3 = 3K2SO4 + 2NO + H2O

                                 6HNO3 концентр.+ HI = HIO3 + 6NO2 + 3H2O

                               2HNO3 концентр.+ 2KI = I2 + 2NO2 + H2O

4. Окислитель – азотная кислота или серная концентрированная кислота, восстановитель – соединения железа (II). При этом азотная кислота восстанавливается до NO2 или NO, серная – до SO2, а катион Fe2+ окисляется до катиона Fe3+ :

Fe(OH)2 + 4HNO3 концентр. = Fe(NO3)3 + NO2 + 3H2O

       FeO + 4HNO3 концентр. = Fe(NO3)3 + NO2 + 2H2O

   3Fe(NO3)2 + 4НNO3 разбавл. = 3Fe(NO3)2 + NO + 2H2O

                       2Fe(OH)2 + 4H2SO4 концентр. = Fe2(SO4)3 + SO2 + 6H2O

5. Окислитель – серная кислота концентрированная, восстановитель – сульфиды, йодиды и бромиды. При этом серная кислота восстанавливается до SO2, S или

H2S; сульфид – анион S2- окисляется до серы S, SO2 или H2SO4; йодид – анион до йода I2, бромид – анион до брома Br2 :

CuS + 4H2SO4  концентр. = CuSO4 + 4SO2 + 4H2O

                                 H2S + H2SO4  концентр. = S + SO2 + 2H2O

                          или H2S + H2SO4  концентр. = 4SO2 + 4H2O

8HI + H2SO4  концентр. = 4I2 + H2S + 4H2O

                            или 6HI + H2SO4  концентр.= 3I2 + S + 4H2O

                                  2HI + H2SO4  концентр. = I2 + SO2 + 2H2O

                8KI + 9H2SO4  концентр. = I2 + H2S + 8KHSO4 + 4H2O —

 наиболее вероятный вариант подуктов,

        или 6KI + 2H2SO4  концентр. = 3I2 + H2S + 3K2SO4 + 4H2O

                                2HBr + H2SO4  концентр. = Br2 + SO2 + 2H2O

          2KBr + 2H2SO4  концентр. = Br2 + SO2 + K2SO4 + 2H2O

          6KBr + 2H2SO4  концентр. = 3Br2 + S + 3K2SO4 + 2H2O

6. Железная окалина – Fe3O4, это смесь двух оксидов — FeO и Fe2O3. Поэтому при взаимодействии с сильными окислителями она окисляется до соединения железа (III) за счёт катионов Fe2+ — восстановителей, а при взаимодействии с сильными восстановителями восстанавливается до соединения железа (II) за счёт катионов Fe3+ — окислителей:

Fe3O4 + 10HNO3 концентр. = 3Fe(NO3)3 + NO2 + 5H2O

3Fе3O4 + 28HNO3 разбавл. = 9Fe(NO3)3 + NO + 14H2O

           Fe3O4 + 8HI = 3FeI2 + I2 + 4H2O

При взаимодействии с большинством кислот происходит реакция обмена, получаются две соли:

Fe3O4 + 8HCl = FeCl2 + 2FeCl3 + 4H2O

                 Fe3O4 + 4H2SO4  разбавл. = FeSO4 + Fe2(SO4)3 + 4H2O

  Реакции диспропорционирования.

Это реакции, в которых атомы одного и того же элемента, входящие в состав одного и того же исходного вещества, повышают и понижают степень окисления. Они очень часто встречаются в заданиях С-2, поэтому их нужно запомнить тем, кто хочет сдать ЕГЭ на высокий балл.

  1. Все галогены, кроме F2, диспропорционируют в растворах всех щелочей. При комнатной температуре или на холоде получаются две соли – МГ, МГО и Н2О; при нагревании – две соли: МГ, МГО3 и Н2О.

Cl2 +2KOH = KCl + KClO + H2O – на холоде,

           3Cl2 + 6KOH = 5KCl +KClO3 + 3H2O – при нагревании,

                          2Br2 + 2Sr(OH)2 = SrBr2 + Sr(BrO)2 + H2O – на холоде,

             6Br2 + 6Sr(OH)2 = 5SrBr2 + Sr(BrO3)2 + 6H2O – при нагревании

        Аналогично происходят реакции с растворами карбонатов:

Cl2 + K2CO3 = KCl + KClO + CO2 – на холоде,

           3Cl2 + 3K2CO3 = 5KCl + KClO3 + 3CO2 – при нагревании.

2. Диспропорционирование серы в растворах щелочей:

3S + 6KOH = 2K2S + K2SO3 + 3H2O или 4S + 6KOH = K2S2O3 + 2K2S +3H2O

3. Диспропорционирование фосфора в растворах щелочей.

4P + 3KOH + 3H2O = PH3 + 3KH2PO2

  8P + 3Ba(OH)2 + 6H2O = 2PH3 + 3Ba(H2PO2)2

                P4 (белый фосфор) + 3KOH + 3H2O = PH3 + 3KH2PO2

4. Диспропорционирование оксида азота (IV) в воде и щелочах:

2NO2 + H2O = HNO2 + HNO3

          2NO2 + 2NaOH = NaNO2 + NaNO3 + H2O

5. Другие реакции диспропорционирования:

3K2MnO4 + 2H2O = 2KMnO4 + MnO2 + 4KOH

                                                 4NaClO3 = 3NaClO4 + NaCl

                                                   4K2SO3 = 3K2SO4 + K2S

                                            ClO2 + H2O = HCl + HClO3

В завершении этой статьи хочу отметить, что не так уж страшны окислительно – восстановительные уравнения, как это кажется на первый взгляд. Знание основных закономерностей поможет их составлении.

Нажмите, чтобы узнать подробности

100 ОВР, котрые помогут учащимся при сдаче ЕГЭ по химии.

1) 2KMnO4 + 3MnSO4 + 2H2O = 5MnO2 + K2SO4 + 2H2SO4

2) 2KMnO4 + 16HCl = 2MnCl2 + 5Cl2 + 8H2O + 2KCl

3) 5NaNO2 + 2KMnO4 + 3H2SO4 = 2MnSO4 + 5NaNO3 + K2SO4 + 3H2O

4) 10FeSO4 + 2KMnO4 + 8H2SO4 = 5Fe2(SO4)3 + 2MnSO4 + K2SO4 + 8H2O

5) 2KMnO4 + 5H2S + 3H2SO4 = 5S + 2MnSO4 + K2SO4 + 8H2O

6) 2KMnO4 + 5Na2SO3 + 3H2SO4 = MnSO4 + K2SO4 + 5Na2SO4 + 3H2O

7)SO2 + 2KMnO4 + 4KOH = K2SO4 + 2K2MnO4 + 2H2O

8) K2Cr2O7 + 3H2S + 4H2SO4 = Cr2(SO4)3 + 3S + K2SO4 + 7H2O

9) K2Cr2O7 + 3NaNO2 + 4H2SO4 = 3NaNO3 + Cr2(SO4)3 + K2SO4 + 4H2O

10) K2Cr2O7 + 6KI + 7H2SO4 = 3I2 + Cr2(SO4)3 + 4K2SO4 + 7H2O

11) 4Mg + 10HNO3(оч.разб.) = 4Mg(NO3)2 + NH4NO3 + 3H2O

12) Cr2(SO4)3 + 3Br2 + 16NaOH = 6NaBr + 2Na2CrO4 + 3Na2SO4 + 8H2O

13)Al2S3 + 30HNO3(конц.) = 2Al(NO3)3 + 3H2SO4 + 24NO2 + 12H2O

14) 6FeSO4 + 2HNO3 + 3H2SO4 = 3Fe2(SO4)3 + 2NO + 4H2O

15) FeCl2 + 4HNO3(конц.) = Fe(NO3)3 + 2HCl + NO2 + H2O

16) AlP + 11HNO3(конц.) = H3PO4 + 8NO2 + Al(NO3)3 + 4H2O

17) 6FeSO4 + KClO3 + 3H2SO4 = 3Fe2(SO4)3 + KCl + 3H2O

18) 3MnSO4 + 2KClO3 + 12KOH = 3K2MnO4 + 2KCl + 3K2SO4 + 6H2O

19) 2Al + K2Cr2O7 + 7H2SO4 = Al2(SO4)3 + Cr2(SO4)3 + K2SO4 + 7H2O

20) 3P2O3 + 2HClO3 + 9H2O = 6H3PO4 + 2HCl

21) Cr2(SO4)3 + 6KMnO4 + 16KOH = 2K2CrO4 + 6K2MnO4 + 3K2SO4 + 8H2O

22) Cr2O3 + 3KNO3 + 4KOH = 2K2CrO4 + 3KNO2 + 2H2O

23) 2NaNO2 + 2NaI + 2H2SO4 = 2NO + I2 + 2Na2SO4 + 2H2O

24) 8KI + 9H2SO4(конц.) = 4I2 + H2S + 8KHSO4 + 4H2O

25) Cu + 2FeCl3 = CuCl2 + 2FeCl2

26) 3PH3 + 4HClO3 = 3H3PO4 + 4HCl

27) 3NO2 + H2O = NO + 2HNO3

28) I2 + K2SO3 + 2KOH = 2KI + K2SO4 + H2O

29) 2NH3 + 3KClO = N2 + 3KCl + 3H2O

30) 6P + 5HClO3 + 9H2O = 5HCl + 6H3PO4

31) 3P + 5HNO3 + 2H2O = 3H3PO4 + 5NO

32) Ca(ClO)2 + 4HCl = CaCl2 + 2Cl2 + 2H2O

33) 3H2S + HClO3 = 3S + HCl + 3H2O

34) Fe2(SO4)3 + 2KI = 2FeSO4 + I2 + K2SO4

35) 2KMnO4 + KI + H2O = 2MnO2 + KIO3 + 2KOH

36) I2 + 10HNO3(конц.) = 2HIO3 + 10NO2 + 4H2O

37) 3As2S3 + 28HNO3 + 4H2O = 6H3AsO4 + 28NO + 9H2SO4

38) 4Mg + 5H2SO4(конц.) = 4MgSO4 + H2S + 4H2O

39) MnO2 + 2KBr + 2H2SO4 = MnSO4 + Br2 + K2SO4 + 2H2O

40) 5HCOH + 4KMnO4 + 6H2SO4 = 5CO2 + 2K2SO4 + 4MnSO4 + 11H2O

41) 3KNO2 + 2KMnO4 + H2O = 3KNO3 + 2MnO2 + 2KOH

42) NaClO + 2KI + H2SO4 = I2 + NaCl + K2SO4 + H2O

43) 2KNO3 + 6KI + 4H2SO4 = 2NO + 3I2 + 4K2SO4 + 4H2O

44) 14HCl + K2Cr2O7 = 3Cl2 + 2CrCl3 + 2KCl + 7H2O

45) 2Cr(OH)3 + 3Cl2 + 10KOH = 2K2CrO4 + 6KCl + 8H2O

46) K2MnO4 + 8HCl = MnCl2 + 2Cl2 + 2KCl + 4H2O

47) K2Cr2O7 + 3Na2SO3 + 4H2O = 2Cr(OH)3 + 3Na2SO4 + 2KOH

48) 2KMnO4 + 10KBr + 8H2SO4 = 2MnSO4 + 5Br2 + 6K2SO4 + 8H2O

49) 4Zn + KNO3 + 7KOH = NH3 + 4K2ZnO2 + 2H2O

50) 2Fe(OH)3 + 3Br2 + 10KOH = 2K2FeO4 + 6KBr + 8H2O

51) P2O3 + 6KOH + 2NO2 = 2NO + 2K3PO4 + 3H2O

52) 2KMnO4 + 2NH3 = 2MnO2 + N2 + 2KOH + 2H2O

53) 3Na2SO3 + 2KMnO4 + H2O = 3Na2SO4 + 2MnO2 + 2KOH

54) 3NaNO2 + Na2Cr2O7 + 8HNO3 = 5NaNO3 + 2Cr(NO3)3 + 4H2O

55) B + HNO3(конц.) + 4HF = NO + HBF4 + 2H2O

56) 2CuCl2 + SO2 + 2H2O = 2CuCl + 2HCl + H2SO4

57) PH3 + 8AgNO3 + 4H2O = 8Ag + H3PO4 + 8HNO3

58) 2NH3 + 6KMnO4 + 6KOH = N2 + 6K2MnO4 + 6H2O

59) 5Zn + 2KMnO4 + 8H2SO4 = 5ZnSO4 + 2MnSO4 + K2SO4 + 8H2O

60) 3KNO2 + K2Cr2O7 + 8HNO3 = 5KNO3 + 2Cr(NO3)3 + 4H2O

61) FeS + 12HNO3(конц.) = Fe(NO3)3 + H2SO4 + 9NO2 + 5H2O

62) KIO3 + 5KI + 3H2SO4 = 3I2 + 3K2SO4 + 3H2O

63) 2NaCrO2 + 3Br2 + 8NaOH = 2Na2CrO4 + 6NaBr + 4H2O

64) Fe2(SO4)3 + Na2SO3 + H2O = 2FeSO4 + Na2SO4 + H2SO4

65) 3P2O3+ 2H2Cr2O7 + H2O = 2H3PO4 + 4CrPO4

66) 3Si + 4HNO3 + 18HF = 3H2SiF6 + 4NO + 8H2O

67) 5Na2SO3(нед.) + 2KIO3 + H2SO4 = I2 + K2SO4 + 5Na2SO4 + H2O

68) 2CrBr3 + 3H2O2 + 10NaOH = 2Na2CrO4 + 6NaBr + 8H2O

69) 8 KMnO4 + 5 PH3 + 12H2SO4 = 5H3PO4 + 8MnSO4 + 4K2SO4 + 12H2O

70) 3SO2 + K2Cr2O7 + H2SO4 = K2SO4 + Cr2(SO4)3 + H2O

71) 3P2O3 + 4HNO3 + 7H2O = 6H3PO4 + 4NO

72) 2NO + 3KClO + 2KOH = 2KNO3 + 3KCl + H2O

73) 5PH3 + 8KMnO4 + 12H2SO4 = 5H3PO4 + 4K2SO4 + 8MnSO4 + 12H2O

74) 5AsH3 + 8KMnO4 + 12H2SO4 = 5H3AsO4 + 4K2SO4 + 8MnSO4 + 12H2O

75) 2CuI + 4H2SO4(конц.) = 2CuSO4 + I2 + 4H2O + 2SO2

76) Si + 2KOH + H2O = K2SiO3 + 2H2 (to)

77) B + 3HNO3 = H3BO3 + 3NO2

78) 8NH3 + 3Br2 = N2 + 6NH4Br

79) P4 + 3KOH + 3H2O = PH3 + 3KH2PO2

80) Al2O3 + 3C + 3Cl2 = 2AlCl3 + 3CO(to)

81) H2S + HClO = S + HCl + H2O

82) 5KNO3(расплав) + 2P = 5KNO2 + P2O5

83) I2 + 5Cl2 + 6H2O = 2HIO3 + 10HCl

84) H2S + 4Cl2 + 4H2O = H2SO4 + 8HCl

85) 8Zn + 5H2S2O7 = 8ZnSO4 + 2H2S + 3H2O

86) 2FeCl3 + 3Na2S = 2FeS + S + 6NaCl

87) Na2S + 8NaNO3 + 9H2SO4 = 10NaHSO4 + 8NO2 + 4H2O

88) Cr2O3 + 3NaNO3 + 2Na2CO3 = 2Na2CrO4 + 3NaNO2 + 2CO2

89) 5C + Ca3(PO4)2 + 3SiO2 = 2P + 5CO + 3CaSiO3 (to)

90) 2NaI + H2O2 + H2SO4 = Na2SO4 + I2 + 2H2O

91) 14HBr + K2Cr2O7 = 2CrBr3 + 3Br2 + 7H2O + 2KBr

92) 2NH3 + 2KMnO4(тв.) = N2 + 2MnO2 + 2KOH + 2H2O (to)

93) 2FeCl3 + SO2 + 2H2O = 2FeCl2 + H2SO4 + 2HCl

94) 2HMnO4 + 5H2S + 2H2SO4 = 5S + 2MnSO4 + 8H2O

95) 3KNO3 + 8Al + 5KOH + 18H2O = 3NH3 + 8K[Al(OH)4]

96) 5H2O2 + 2KMnO4 + 3H2SO4 = 5O2 + 2MnSO4 + K2SO4 + 8H2O

97) P4 + 20HNO3 = 4H3PO4 + 20NO2 + 4H2O

98) 3NaClO + 4NaOH + Cr2O3 = 2Na2CrO4 + 3NaCl + 2H2O

99) Na2SO3 + 2KMnO4 + 2KOH = 2K2MnO4 + Na2SO4 + H2O

100) Cr2(SO4)3 + 3H2O2 + 10NaOH = 2Na2CrO4 + 3Na2SO4 +8H2O

Понравилась статья? Поделить с друзьями:
  • Овр с марганцем егэ
  • Овр с йодом егэ
  • Овр с железом егэ
  • Овр с галогенами для егэ
  • Овр с азотом егэ