Пластический обмен подготовка к егэ

Понятие метаболизма

Метаболизм — совокупность всех химических реакций, протекающих в живом организме. Значение метаболизма состоит в создании необходимых организму веществ и обеспечении его энергией.

Выделяют две составные части метаболизма — катаболизм и анаболизм.

Составные части метаболизма

Часть Характеристика Примеры Затраты энергии
Катаболизм (энергетический обмен, диссимиляция) Совокупность химических реакций, приводящих к образованию простых веществ из более сложных Гидролиз полимеров до мономеров и расщепление последних до низкомолекулярных соединений углекислого газа, воды, аммиака и других веществ Энергия выделяется
Анаболизм (пластический обмен, ассимиляция) Совокупность химических реакций синтеза сложных веществ из более простых Образование углеводов из углекислого газа и воды в процессе фотосинтеза, реакции матричного синтеза Энергия поглощается

Процессы пластического и энергетического обмена неразрывно связаны между собой. Все синтетические (анаболические) процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления (катаболизма) протекают лишь при участии ферментов, синтезируемых в процессе ассимиляции.

Роль ФТФ в метаболизме

Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам.

АТФ (аденозинтрифосфорная кислота) — мононуклеотид, состоящий из аденина, рибозы и трёх остатков фосфорной кислоты, соединяющихся между собой макроэргическими связями.

В этих связях запасена энергия, которая высвобождается при их разрыве:
АТФ + H2O → АДФ + H3PO4 + Q1
АДФ + H2O → АМФ + H3PO4 + Q2
АМФ + H2O → аденин + рибоза + H3PO4 + Q3,
где АТФ — аденозинтрифосфорная кислота; АДФ — аденозиндифосфорная кислота; АМФ — аденозинмонофосфорная кислота; Q1 = Q2 = 30,6 кДж; Q3 = 13,8 кДж.
Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования. Фосфорилирование — присоединение остатка фосфорной кислоты к АДФ (АДФ + Ф → АТФ). Он происходит с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 мин).
Энергия, накопленная в молекулах АТФ, используется организмом в анаболических реакциях (реакциях биосинтеза). Молекула АТФ является универсальным хранителем и переносчиком энергии для всех живых существ.

Энергетический обмен

Энергию, необходимую для жизнедеятельности, большинство организмов получают в результате процессов окисления органических веществ, то есть в результате катаболических реакций. Важнейшим соединением, выступающим в роли топлива, является глюкоза.
По отношению к свободному кислороду организмы делятся на три группы.

Классификация организмов по отношению к свободному кислороду

Группа Характеристика Организмы
Аэробы (облигатные аэробы) Организмы, способные жить только в кислородной среде Животные, растения, некоторые бактерии и грибы
Анаэробы (облигатные анаэробы) Организмы, неспособные жить в кислородной среде Некоторые бактерии
Факультативные формы (факультативные анаэробы) Организмы, способные жить как в присутствии кислорода, так и без него Некоторые бактерии и грибы

У облигатных аэробов и факультативных анаэробов в присутствии кислорода катаболизм протекает в три этапа: подготовительный, бес- кислородный и кислородный. В результате органические вещества распадаются до неорганических соединений. У облигатных анаэробов и факультативных анаэробов при недостатке кислорода катаболизм протекает в два первых этапа: подготовительный и бескислородный. В результате образуются промежуточные органические соединения, еще богатые энергией.

Этапы катаболизма

1. Первый этап — подготовительный — заключается в ферментативном расщеплении сложных органических соединений на более простые. Белки расщепляются до аминокислот, жиры — до глицерина и жирных кислот, полисахариды — до моносахаридов, нуклеиновые кислоты — до нуклеотидов. У многоклеточных организмов это происходит в желудочно-кишечном тракте, у одноклеточных — в лизосомах под действием гидролитических ферментов. Высвобождающаяся при этом энергия рассеивается в виде теплоты. Образовавшиеся органические соединения либо подвергаются дальнейшему окислению, либо используются клеткой для синтеза собственных органических соединений.
2. Второй этап — неполное окисление (бескислородный) — заключается в дальнейшем расщеплении органических веществ, осуществляется в цитоплазме клетки без участия кислорода. Главным источником энергии в клетке является глюкоза. Бескислородное, неполное окисление глюкозы называется гликолизом. В результате гликолиза одной молекулы глюкозы образуется по две молекулы пировиноградной кислоты (ПВК, пируват) CH3COCOOH, АТФ и воды, а также атомы водорода, которые связываются молекулой-переносчиком НАД+ и запасаются в виде НАД·Н.
Суммарная формула гликолиза имеет следующий вид:
C6H12O6 + 2H3PO4 + 2АДФ + 2НАД+ → 2C3Н4O3 + 2H2O + 2АТФ + 2НАД·Н.
Далее при отсутствии в среде кислорода продукты гликолиза (ПВК и НАД·Н) перерабатываются либо в этиловый спирт — спиртовое брожение (в клетках дрожжей и растений при недостатке кислорода)
CH3COCOOH → СО2 + СН3СОН
СН3СОН + 2НАД·Н → С2Н5ОН + 2НАД+,
либо в молочную кислоту — молочнокислое брожение (в клетках животных при недостатке кислорода)
CH3COCOOH + 2НАД·Н → C3Н6O3 + 2НАД+.
При наличии в среде кислорода продукты гликолиза претерпевают дальнейшее расщепление до конечных продуктов.
3. Третий этап — полное окисление (дыхание) — заключается в окислении ПВК до углекислого газа и воды, осуществляется в митохондриях при обязательном участии кислорода.
Он состоит из трёх стадий:
А) образование ацетилкоэнзима А;
Б) окисление ацетилкоэнзима А в цикле Кребса;
В) окислительное фосфорилирование в электронотранспортной цепи.

А. На первой стадии ПВК переносится из цитоплазмы в митохондрии, где взаимодействует с ферментами матрикса и образует 1) диоксид углерода, который выводится из клетки; 2) атомы водорода, которые молекулами-переносчиками доставляются к внутренней мембране митохондрии; 3) ацетилкофермент А (ацетил-КоА).
Б. На второй стадии происходит окисление ацетилкоэнзима А в цикле Кребса. Цикл Кребса (цикл трикарбоновых кислот, цикл лимонной кислоты) — это цепь последовательных реакций, в ходе которых из одной молекулы ацетил-КоА образуются 1) две молекулы диоксида углерода, 2) молекула АТФ и 3) четыре пары атомов водорода, передаваемые на молекулы-переносчики — НАД и ФАД. Таким образом, в результате гликолиза и цикла Кребса молекула глюкозы расщепляется до СО2, а высвободившаяся при этом энергия расходуется на синтез 4 АТФ и накапливается в 10 НАД·Н и 4 ФАД·Н2.
В. На третьей стадии атомы водорода с НАД·Н и ФАД·Н2 окисляются молекулярным кислородом О2 с образованием воды. Один НАД·Н способен образовывать 3 АТФ, а один ФАД·Н2–2 АТФ. Таким образом, выделяющаяся при этом энергия запасается в виде ещё 34 АТФ.
Этот процесс протекает следующим образом. Атомы водорода концентрируются около наружной стороны внутренней мембраны митохондрии. Они теряют электроны, которые по цепи молекул-переносчиков (цитохромов) электронотранспортной цепи (ЭТЦ) переносятся на внутреннюю сторону внутренней мембраны, где соединяются с молекулами кислорода:
О2 + е → О2.
В результате деятельности ферментов цепи переноса электронов внутренняя мембрана митохондрий изнутри заряжается отрицательно (за счёт О2), а снаружи — положительно (за счёт Н+), так что между её поверхностями создаётся разность потенциалов. Во внутреннюю мембрану митохондрий встроены молекулы фермента АТФ- синтетазы, обладающие ионным каналом. Когда разность потенциалов на мембране достигает критического уровня, положительно заряженные частицы H+ силой электрического поля начинают проталкиваться через канал АТФазы и, оказавшись на внутренней поверхности мембраны, взаимодействуют с кислородом, образуя воду:
1/2О2 +2H+ → Н2О.
Энергия ионов водорода H+, транспортирующихся через ионный канал внутренней мембраны митохондрии, используется для фосфорилирования АДФ в АТФ:
АДФ + Ф → АТФ.
Такое образование АТФ в митохондриях при участии кислорода называется окислительным фосфорилированием.
Суммарное уравнение расщепления глюкозы в процессе клеточного дыхания:
C6H12O6 + 6O2 + 38H3PO4 + 38АДФ → 6CO2 + 44H2O + 38АТФ.
Таким образом, в ходе гликолиза образуются 2 молекулы АТФ, в ходе клеточного дыхания — ещё 36 молекул АТФ, в целом при пол- ном окислении глюкозы — 38 молекул АТФ.

Пластический обмен

Пластический обмен, или ассимиляция, представляет собой совокупность реакций, обеспечивающих синтез сложных органических соединений из более простых (фотосинтез, хемосинтез, биосинтез белка и др.).

Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул:
органические вещества пищи (белки, жиры, углеводы) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).
Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе фото- и хемосинтеза происходит образование простых органических соединений, из которых в дальнейшем синтезируются макромолекулы:
неорганические вещества (СО2, Н2О) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).

Фотосинтез

Фотосинтез — синтез органических соединений из неорганических за счёт энергии света. Суммарное уравнение фотосинтеза:

Фотосинтез протекает при участии фотосинтезирующих пигментов, обладающих уникальным свойством преобразования энергии солнечного света в энергию химической связи в виде АТФ. Фотосинтезирующие пигменты представляют собой белковоподобные вещества. Наиболее важным является пигмент хлорофилл. У эукариот фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид, у прокариот — во впячивания цитоплазматической мембраны.
Строение хлоропласта очень похоже на строение митохондрии. Во внутренней мембране тилакоидов гран содержатся фотосинтетические пигменты, а также белки цепи переноса электронов и молекулы фермента АТФ-синтетазы.
Процесс фотосинтеза состоит из двух фаз: световой и темновой.
1. Световая фаза фотосинтеза протекает только на свету в мембране тилакоидов граны.
К ней относятся поглощение хлорофиллом квантов света, образование молекулы АТФ и фотолиз воды.
Под действием кванта света (hv) хлорофилл теряет электроны, переходя в возбуждённое состояние:

Эти электроны передаются переносчиками на наружную, то есть обращенную к матриксу поверхность мембраны тилакоидов, где накапливаются.
Одновременно внутри тилакоидов происходит фотолиз воды, то есть её разложение под действием света:

Образующиеся электроны передаются переносчиками к молекулам хлорофилла и восстанавливают их. Молекулы хлорофилла возвращаются в стабильное состояние.
Протоны водорода, образовавшиеся при фотолизе воды, накапливаются внутри тилакоида, создавая Н+-резервуар. В результате внутренняя поверхность мембраны тилакоида заряжается положительно (за счёт Н+), а наружная — отрицательно (за счёт е). По мере накопления по обе стороны мембраны противоположно заряженных частиц нарастает разность потенциалов. При достижении критической величины разности потенциалов сила электрического поля начинает проталкивать протоны через канал АТФ-синтетазы. Выделяющаяся при этом энергия используется для фосфорилирования молекул АДФ:
АДФ + Ф → АТФ.

Образование АТФ в процессе фотосинтеза под действием энергии света называется фотофосфорилированием.
Ионы водорода, оказавшись на наружной поверхности мембраны тилакоида, встречаются там с электронами и образуют атомарный водород, который связывается с молекулой-переносчиком водорода НАДФ (никотинамидадениндинуклеотидфосфат):
+ + 4е + НАДФ+ → НАДФ·Н2.
Таким образом, во время световой фазы фотосинтеза происходят три процесса: образование кислорода вследствие разложения воды, синтез АТФ и образование атомов водорода в форме НАДФ·Н2. Кислород диффундирует в атмосферу, а АТФ и НАДФ·Н2 участвуют в процессах темновой фазы.
2. Темновая фаза фотосинтеза протекает в матриксе хлоропласта как на свету, так и в темноте и представляет собой ряд последовательных преобразований СО2, поступающего из воздуха, в цикле Кальвина. Осуществляются реакции темновой фазы за счёт энергии АТФ. В цикле Кальвина СО2 связывается с водородом из НАДФ·Н2 с образованием глюкозы.
В процессе фотосинтеза кроме моносахаридов (глюкоза и др.) синтезируются мономеры других органических соединений — аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растения обеспечивают себя и всё живое на Земле необходимыми органическими веществами и кислородом.
Сравнительная характеристика фотосинтеза и дыхания эукариот представлена в таблице.

Сравнительная характеристика фотосинтеза и дыхания эукариот

Признак Фотосинтез Дыхание
Уравнение реакции 6СО2 + 6Н2О + энергия света → C6H12O6 + 6O2 C6H12O6 + 6O2 → 6СО2 + 6Н2О + энергия (АТФ)
Исходные вещества Углекислый газ, вода Органические вещества, кислород
Продукты реакции Органические вещества, кислород Углекислый газ, вода
Значение в круговороте веществ Синтез органических веществ из неорганических Разложение органических веществ до неорганических
Превращение энергии Превращение энергии света в энергию химических связей органических веществ Превращение энергии химических связей органических веществ в энергию макроэргических связей АТФ
Важнейшие этапы Световая и темновая фаза (включая цикл Кальвина) Неполное окисление (гликолиз) и полное окисление (включая цикл Кребса)
Место протекания процесса Хлоропласты Гиалоплазма (неполное окисление) и митохондрии (полное окисление)

Генетическая информация у всех организмов хранится в виде определённой последовательности нуклеотидов ДНК (или РНК у РНК-содержащих вирусов). Прокариоты содержат генетическую информацию в виде одной молекулы ДНК. В эукариотических клетках генетический материал распределён в нескольких молекулах ДНК, организованных в хромосомы.
ДНК состоит из кодирующих и некодирующих участков. Кодирующие участки кодируют РНК. Некодирующие области ДНК выполняют структурную функцию, позволяя участкам генетического материала упаковываться определённым образом, или регуляторную функцию, участвуя во включении генов, направляющих синтез белка.
Кодирующими участками ДНК являются гены. Ген — участок молекулы ДНК, кодирующей синтез одной мРНК (и соответственно полипептида), рРНК или тРНК.
Участок хромосомы, где расположен ген называется локусом. Совокупность генов клеточного ядра представляет собой генотип, совокупность генов гаплоидного набора хромосом — гено́м, совокупность генов внеядерных ДНК (митохондрий, пластид, цитоплазмы) — плазмон.
Реализация информации, записанной в генах, через синтез белков называется экспрессией (проявлением) генов. Генетическая информация хранится в виде определённой последовательности нуклеотидов ДНК, а реализуется в виде последовательности аминокислот в белке. Посредниками, переносчиками информации выступают РНК. То есть реализация генетической информации происходит следующим образом:
ДНК → РНК → белок.
Этот процесс осуществляется в два этапа:
1) транскрипция;
2) трансляция.

Транскрипция (от лат. transcriptio — переписывание) — синтез РНК с использованием ДНК в качестве матрицы. В результате образуются мРНК, тРНК и рРНК. Процесс транскрипции требует больших затрат энергии в виде АТФ и осуществляется ферментом РНК-полимеразой.

Одновременно транскрибируется не вся молекула ДНК, а лишь отдельные её отрезки. Такой отрезок (транскриптон) начинается промотором — участком ДНК, куда присоединяется РНК-полимераза и откуда начинается транскрипция, а заканчивается терминатором — участком ДНК, содержащим сигнал окончания транскрипции. Транскриптон — это ген с точки зрения молекулярной биологии.
Транскрипция, как и репликация, основана на способности азотистых оснований нуклеотидов к комплементарному связыванию. На время транскрипции двойная цепь ДНК разрывается, и синтез РНК осуществляется по одной цепи ДНК.

В процессе транскрипции последовательность нуклеотидов ДНК переписывается на синтезирующуюся молекулу мРНК, которая выступает в качестве матрицы в процессе биосинтеза белка.
Гены прокариот состоят только из кодирующих нуклеотидных последовательностей.

Гены эукариот состоят из чередующихся кодирующих (экзонов) и некодирующих (интронов) участков.

После транскрипции участки мРНК, соответствующие интронам, удаляются в ходе сплайсинга, являющегося составной частью процессинга.

Процессинг — процесс формирования зрелой мРНК из её предшественника пре-мРНК. Он включает два основных события. 1.Присоединение к концам мРНК коротких последовательностей нуклеотидов, обозначающих место начала и место конца трансляции. Сплайсинг — удаление неинформативных последовательностей мРНК, соответствующих интронам ДНК. В результате сплайсинга молекулярная масса мРНК уменьшается в 10 раз.
Трансляция (от лат. translatio — перевод) — синтез полипептидной цепи с использованием мРНК в роли матрицы.

В трансляции участвуют все три типа РНК: мРНК является информационной матрицей; тРНК доставляют аминокислоты и узнают кодоны; рРНК вместе с белками образуют рибосомы, которые удерживают мРНК, тРНК и белок и осуществляют синтез полипептидной цепи.

Этапы трансляции

Этап Характеристика
Инициация Сборка комплекса, участвующего в синтезе полипептидной цепи. Малая субчастица рибосомы соединяется с инициаторной мет-трнк, а затем с мрнк, после чего происходит образование целой рибосомы, состоящей из малой и большой субчастиц.
Элонгация Удлинение полипептидной цепи. Рибосома перемещается вдоль мрнк, что сопровождается многократным повторением цикла присоединения очередной аминокислоты к растущей полипептидной цепи.
Терминация Завершение синтеза полипептидной молекулы. Рибосома достигает одного из трёх стоп-кодонов мрнк, а так как не существует трнк с антикодонами, комплементарными стоп-кодонам, синтез полипептидной цепи прекращается. Она высвобождается и отделяется от рибосомы. Рибосомные субчастицы диссоциируют, отделяются от мрнк и могут принять участие в синтезе следующей полипептидной цепи.

Реакции матричного синтеза. К реакциям матричного синтеза относятся

  • самоудвоение ДНК (репликация);
  • образование мРНК, тРНК и рРНК на молекуле ДНК (транскрипция);
  • биосинтез белка на мРНК (трансляция).

Все эти реакции объединяет то, что молекула ДНК в одном случае или молекула мРНК в другом выступают в роли матрицы, на которой происходит образование одинаковых молекул. Реакции матричного синтеза являются основой способности живых организмов к воспроизведению себе подобных.
Регуляция экспрессии генов. Тело многоклеточного организма построено из разнообразных клеточных типов. Они отличаются структурой и функциями, то есть дифференцированы. Различия проявляются в том, что помимо белков, необходимых любой клетке организма, клетки каждого типа синтезируют ещё и специализированные белки: в эпидермисе образуется кератин, в эритроцитах — гемоглобин и т. д. Клеточная дифференцировка обусловлена изменением набора экспрессируемых генов и не сопровождается какими-либо необратимыми изменениями в структуре самих последовательностей ДНК.

ЕГЭ по биологии 0111

Обмен веществ (метаболизм) – это совокупность взаимосвязанных процессов синтеза и расщепления химических веществ, происходящих в организме:

1.анаболизм (ассимиляция, пластический обмен) – синтез более сложных мономеров из более простых с поглощением и накоплением энергии в виде химических связей в синтезированных веществах.

2.катаболизм (диссимиляция, энергетический обмен) – распад более сложных мономеров на более простые с освобождением энергии и ее запасанием в виде макроэргических связей АТФ.

Анаболизм и катаболизм связаны между собой. Все синтетические процессы нуждаются в веществах и энергии, поставляемых процессами расщепления.

Процессы расщепления катализируются ферментами, синтезирующимися в ходе пластического обмена, с использованием продуктов и энергии энергетического обмена.

ЕГЭ по биологии

Живые существа для своей жизнедеятельности используют световую и химическую энергию.

ЕГЭ по биологии

Зеленые растения – автотрофы – синтезируют органические соединения в процессе фотосинтеза, используя энергию солнечного света. Источником углерода для них является углекислый газ. Многие автотрофные прокариоты добывают энергию в процессе хемосинтеза – окисления неорганических соединений. Для них источником энергии могут быть соединения серы, азота, углерода.

Гетеротрофы используют органические источники углерода, т.е. питаются готовыми органическими веществами.

Особая группа организмов – миксотрофы – питаются смешанным способом – это растения росянка, венерина мухоловка (среди растений есть даже гетеротроф – раффлезия); а среди животных есть одноклеточное животное — эвглена зеленая.

ЕГЭ по биологии 0112

Ферменты – это специфические белки – катализаторы. Термин «специфические» означает, что объект, по отношению к которому этот термин употребляется, имеет неповторимые особенности, свойства, характеристики. Каждый фермент обладает такими особенностями, потому что, как правило, катализирует определенный вид реакций. Иными словами, к активному центру фермента, имеющему сложное строение, как к замку, подходит только один или несколько «ключей» — расщепляющихся субстратов или ингибиторов.

ЕГЭ по биологии 0113

Ни одна биохимическая реакция в организме не происходит без участия ферментов. Особенности специфичности молекулы фермента объясняются ее строением и свойствами. В молекуле фермента есть активный центр (замок), пространственная конфигурация которого соответствует пространственной конфигурации веществ, с которыми фермент взаимодействует (ключам). Узнав свой субстрат, фермент взаимодействует с ним и ускоряет его превращение.

Ферментами катализируются все биохимические реакции.

Активность ферментов зависит от температуры, кислотности среды, количества субстрата, с которым он взаимодействует. При повышении температуры активность ферментов увеличивается. Однако происходит это до определенных пределов, т.к. при достаточно высоких температурах белок денатурируется. Среда, в которой могут функционировать ферменты, для каждой группы различна. Есть ферменты, которые активны в кислой или слабокислой среде или в щелочной или слабощелочной среде. В кислой среде активны ферменты желудочного сока у млекопитающих. В слабощелочной среде активны ферменты кишечного сока. Пищеварительный фермент поджелудочной железы активен в щелочной среде. Большинство же ферментов активны в нейтральной среде.

Фотосинтез и хемосинтез

Фотосинтез

Все живые существа нуждаются в пище и питательных веществах. Питаясь, они используют энергию, запасенную, прежде всего, в органических соединениях – белках, жирах, углеводах. Гетеротрофные организмы, как уже говорилось, используют пищу растительного и животного происхождения, уже содержащую органические соединения. Растения же создают органические вещества в процессе фотосинтеза.

Исследования в области фотосинтеза начались в 1630 г. экспериментами голландца ван Гельмонта. Он доказал, что растения получают органические вещества не из почвы, а создают их самостоятельно. Джозеф Пристли в 1771 г. доказал «исправление» воздуха растениями. Помещенные под стеклянный колпак они поглощали углекислый газ, выделяемый тлеющей лучиной. Исследования продолжались, и в настоящее время установлено, что фотосинтез – это процесс образования органических соединений из диоксида углерода (СО2) и воды с использованием энергии света и проходящий в хлоропластах зеленых растений и зеленых пигментах некоторых фотосинтезирующих бактерий.

Хлоропласты и складки цитоплазматической мембраны прокариот содержат зеленый пигмент – хлорофилл. Молекула хлорофилла способна возбуждаться под действием солнечного света и отдавать свои электроны и перемещать их на более высокие энергетические уровни. Этот процесс можно сравнить с подброшенным вверх мячом. Поднимаясь, мяч запасается потенциальной энергией; падая, он теряет ее. Электроны не падают обратно, а подхватываются переносчиками электронов (НАДФ+ – никотинамиддифосфат). При этом энергия, накопленная ими ранее, частично расходуется на образование АТФ. Продолжая сравнение с подброшенным мячом, можно сказать, что мяч, падая, нагревает окружающее пространство, а часть энергии падающих электронов запасается в виде АТФ. Процесс фотосинтеза подразделяется на реакции, вызываемые светом, и реакции, связанные с фиксацией углерода. Их называют световой и темновой фазами.

  • Световая фаза – это этап, на котором энергия света, поглощенная хлорофиллом, преобразуется в электрохимическую энергию в цепи переноса электронов. Осуществляется на свету, в мембранах гран при участии белков – переносчиков и АТФ-синтетазы.

Реакции, вызываемые светом, происходят на фотосинтетических мембранах гран хлоропластов:

1) возбуждение электронов хлорофилла квантами света и их переход на более высокий энергетический уровень;

2) восстановление акцепторов электронов – НАДФ+ до НАДФ • Н

+ + 4е + НАДФ+ → НАДФ • Н;

3) фотолиз воды, происходящий при участии квантов света: 2Н2О → 4Н+ + 4е + О2.

Данный процесс происходит внутри тилакоидов – складках внутренней мембраны хлоропластов. Из тилакоидов формируются граны – стопки мембран.

Результатами световых реакций являются: фотолиз воды с образованием свободного кислорода, синтез АТФ, восстановление НАДФ+ до НАДФ • Н. Таким образом, свет нужен только для синтеза АТФ и НАДФ-Н.

  • Темновая фаза – процесс преобразования СО2 в глюкозу в строме (пространстве между гранами) хлоропластов с использованием энергии АТФ и НАДФ • Н.

Результатом темновых реакций являются превращения углекислого газа в глюкозу, а затем в крахмал. Помимо молекул глюкозы в строме происходит образование, аминокислот, нуклеотидов, спиртов.

Суммарное уравнение фотосинтеза

В процессе фотосинтеза образуется свободный кислород, который необходим для дыхания организмов:

  • кислородом образован защитный озоновый экран, предохраняющий организмы от вредного воздействия ультрафиолетового излучения;

  • фотосинтез обеспечивает производство исходных органических веществ, а следовательно, пищу для всех живых существ;

  • фотосинтез способствует снижению концентрации диоксида углерода в атмосфере.

Хемосинтез

Хемосинтез – образование органических соединений из неорганических за счет энергии окислительно-восстановительных реакций соединений азота, железа, серы. Существует несколько видов хемосинтетических реакций:

1) окисление аммиака до азотистой и азотной кислоты нитрифицирующими бактериями:

NH3 → HNQ2 → HNO3 + Q;

2)превращение двухвалентного железа в трехвалентное железобактериями:

Fe2+ → Fe3+ + Q;

3)окисление сероводорода до серы или серной кислоты серобактериями

H2S + O2 = 2H2O + 2S + Q,

H2S + O2 = 2H2SO4 + Q.

Выделяемая энергия используется для синтеза органических веществ.

Бактерии – хемосинтетики, разрушают горные породы, очищают сточные воды, участвуют в образовании полезных ископаемых.

Фотосинтез и хемосинтез

Фотосинтез

Все живые существа нуждаются в пище и питательных веществах. Питаясь, они используют энергию, запасенную, прежде всего, в органических соединениях – белках, жирах, углеводах. Гетеротрофные организмы, как уже говорилось, используют пищу растительного и животного происхождения, уже содержащую органические соединения. Растения же создают органические вещества в процессе фотосинтеза.

Исследования в области фотосинтеза начались в 1630 г. экспериментами голландца ван Гельмонта. Он доказал, что растения получают органические вещества не из почвы, а создают их самостоятельно. Джозеф Пристли в 1771 г. доказал «исправление» воздуха растениями. Помещенные под стеклянный колпак они поглощали углекислый газ, выделяемый тлеющей лучиной. Исследования продолжались, и в настоящее время установлено, что фотосинтез – это процесс образования органических соединений из диоксида углерода (СО2) и воды с использованием энергии света и проходящий в хлоропластах зеленых растений и зеленых пигментах некоторых фотосинтезирующих бактерий.

Хлоропласты и складки цитоплазматической мембраны прокариот содержат зеленый пигмент – хлорофилл. Молекула хлорофилла способна возбуждаться под действием солнечного света и отдавать свои электроны и перемещать их на более высокие энергетические уровни. Этот процесс можно сравнить с подброшенным вверх мячом. Поднимаясь, мяч запасается потенциальной энергией; падая, он теряет ее. Электроны не падают обратно, а подхватываются переносчиками электронов (НАДФ+ – никотинамиддифосфат). При этом энергия, накопленная ими ранее, частично расходуется на образование АТФ. Продолжая сравнение с подброшенным мячом, можно сказать, что мяч, падая, нагревает окружающее пространство, а часть энергии падающих электронов запасается в виде АТФ. Процесс фотосинтеза подразделяется на реакции, вызываемые светом, и реакции, связанные с фиксацией углерода. Их называют световой и темновой фазами.

  • Световая фаза – это этап, на котором энергия света, поглощенная хлорофиллом, преобразуется в электрохимическую энергию в цепи переноса электронов. Осуществляется на свету, в мембранах гран при участии белков – переносчиков и АТФ-синтетазы.

Реакции, вызываемые светом, происходят на фотосинтетических мембранах гран хлоропластов:

1) возбуждение электронов хлорофилла квантами света и их переход на более высокий энергетический уровень;

2) восстановление акцепторов электронов – НАДФ+ до НАДФ • Н

+ + 4е + НАДФ+ → НАДФ • Н;

3) фотолиз воды, происходящий при участии квантов света: 2Н2О → 4Н+ + 4е + О2.

Данный процесс происходит внутри тилакоидов – складках внутренней мембраны хлоропластов. Из тилакоидов формируются граны – стопки мембран.

Результатами световых реакций являются: фотолиз воды с образованием свободного кислорода, синтез АТФ, восстановление НАДФ+ до НАДФ • Н. Таким образом, свет нужен только для синтеза АТФ и НАДФ-Н.

  • Темновая фаза – процесс преобразования СО2 в глюкозу в строме (пространстве между гранами) хлоропластов с использованием энергии АТФ и НАДФ • Н.

Результатом темновых реакций являются превращения углекислого газа в глюкозу, а затем в крахмал. Помимо молекул глюкозы в строме происходит образование, аминокислот, нуклеотидов, спиртов.

Суммарное уравнение фотосинтеза

В процессе фотосинтеза образуется свободный кислород, который необходим для дыхания организмов:

  • кислородом образован защитный озоновый экран, предохраняющий организмы от вредного воздействия ультрафиолетового излучения;

  • фотосинтез обеспечивает производство исходных органических веществ, а следовательно, пищу для всех живых существ;

  • фотосинтез способствует снижению концентрации диоксида углерода в атмосфере.

Хемосинтез

Хемосинтез – образование органических соединений из неорганических за счет энергии окислительно-восстановительных реакций соединений азота, железа, серы. Существует несколько видов хемосинтетических реакций:

1) окисление аммиака до азотистой и азотной кислоты нитрифицирующими бактериями:

NH3 → HNQ2 → HNO3 + Q;

2)превращение двухвалентного железа в трехвалентное железобактериями:

Fe2+ → Fe3+ + Q;

3)окисление сероводорода до серы или серной кислоты серобактериями

H2S + O2 = 2H2O + 2S + Q,

H2S + O2 = 2H2SO4 + Q.

Выделяемая энергия используется для синтеза органических веществ.

Бактерии – хемосинтетики, разрушают горные породы, очищают сточные воды, участвуют в образовании полезных ископаемых.

Нашему организму для жизни постоянно необходимы следующие составляющие :

  • энергия — для поддержания постоянства внутренней среды (например, температуры тела на уровне нормы), на построение структур клеток, для синтеза веществ
  • различные органические и неорганические вещества, из которых строятся клеточные структуры, — для высвобождения энерги при окислении, образования новых соединений (например, из углеводов могут образовываться жиры)

На уроках в школе организм школьника в ходе умственной и физической деятельности затрачивает много энергии.

Например, за 6 уроков школьник весом 45 кг тратит около 324 ккал (1356 кДж) энергии.

Если перевести эти данные в кВт в час, то получится 0,37 кВт в час- этой энергии хватило бы для горения лампы мощностью 100Вт почти 4 часа (лампа мощностью в 100Вт израсходует 0,1 киловатт электроэнергии за 1 час)

Для того чтобы эта энергия была, необходимы питательные вещества, которые поступают в наш организм с пищей.

В любом живом организме постоянно идут биохимические процессы, которые необходимы для поддержания жизнедеятельности — все эти процессы называют обменом веществ или метаболизмом.

Эта информация доступна зарегистрированным пользователям

Метаболизм- это совокупность протекающих в живых организмах биохимических превращений веществ и энергии, а также обмен веществами и энергией с окружающей средой.

Одним из критериев живого как раз считается метаболизм.

Вещества, поступившие в организм, в ходе процесса обмена веществ претерпевают различные химические превращения, благодаря чему выделяется или поглощается энергия, столь нужная организму, образуются простые вещества для построения структур клетки, тканей и органов.

Можно сказать, что метаболизм складывается из двух взаимосвязанных и противоположных процессов:

  • пластический обмен (анаболизм или ассимиляция)- процессы биосинтеза (образования) органических веществ, компонентов клеток и тканей с затратой энергии (примеры: биосинтез белка, фотосинтез)
  • энергетический обмен (катаболизм или диссимиляция) — расщепление сложных молекул и компонентов клеток с образованием энергии(например, при отщеплении одного фосфорного остатка АТФ образуется 40кДж энергии)

Эта информация доступна зарегистрированным пользователям

При энергетическом обмене образуется несколько видов энергии:

  • тепловая (поддержание постоянной температуры тела)
  • механическая (мышечное сокращение)
  • механическо- электрическая (проведение нервного импульса)
  • химическая (биосинтетические процессы, протекающие с поглощением энергии)
  • энергия для работы, связанной с переносом веществ через биологические мембраны (железы, кишечник, почки и др.)

Организм человека для своего существования главным образом использует химическую энергию.

В таблице приведены данные о количестве энергии, выделяемой при распаде органических веществ:

Вещество

Сколько энергии выделяется

На что расщепляются

Дополнения

Белки

При окислении 1 г белка выделяется 17,2 кДж (4,1 ккал)

Распадаются на аминокислоты

В процессе обмена веществ белки окончательно распадаются до углекислого газа, воды, азотсодержащих веществ

Жиры

При распаде 1 г жира выделяется 38,9 кДж (9,3 ккал)

Распадаются на жирные кислоты и глицерин

Молекулы жиров состоят из углерода, кислорода и водорода.

При полном их окислении из них образуется вода и углекислый газ

Сложные углеводы

При распаде 1 г углеводов выделяется 17,2 кДж (4,1 ккал) энергии.

Распадаются в процессе пищеварения до простого сахара глюкозы

Основная часть глюкозы окисляется в организме до углекислого газа и воды

Пластический обмен необходим для «строительства» утраченных частей, создания новых клеток, для роста и развития не только клеток, но и всего организма.

В среднем у человека каждые 80 дней меняется половина всех тканевых белков. Ферменты печени (в ней идут особенно интенсивные реакции) обновляются через 2-4 часа, а некоторые через несколько десятков минут.

Соотношение равновесия или неравновесия анаболизма и катаболизма зависит от возраста.

У детей преобладают анаболические процессы, то есть дети активно и быстро растут, увеличивают массу тела.

У взрослых оба процесса находятся в равновесии, но их соотношение может меняться в зависимости от состояния здоровья, физической и психоэмоциональной нагрузки.

У пожилых преобладают процессы катаболизма, что приводит к частичному разрушению тканевых структур, уменьшению массы тела; требуется больше энергии для поддержания гомеостаза.

Функции обмена веществ:

  • получение энергии для функционирования организма, поддержания постоянства внутренней среды
  • получение строительного материала для роста и восстановления организма: синтез белков, нуклеиновых кислот, углеводов, липидов и других клеточных компонентов из полученных с пищей веществ
  • запасание питательных веществ в клетках и тканях
  • выведение продуктов метаболизма

Скорость обмена веществ

Стоит отметить, что обмен веществ в живом организме идет непрерывно, даже в состоянии полного покоя, хотя и интенсивность его замедляется.

Скорость обмена веществ оценивают по общему расходу энергии.

Если организм выполняет большую физическую нагрузку, то расход энергии будет большой. Помимо физической работы на скорость обмена веществ могут влиять возраст, пол и другие факторы.

Непосредственным помощником в реакциях обмена веществ служат ферменты.

Ферменты- это биологические катализаторы, которые участвуют во всех химических реакциях расщепления веществ, осуществляют превращение веществ в организме и ускоряют все процессы, направляя и регулируя тем самым обмен веществ.

Факторы, влияющие на скорость метаболизма:

  • физическая нагрузка (при физической нагрузке обмен веществ усиливается)
  • возраст: начиная с 5 лет, интенсивность основного обмена веществ постепенно уменьшается, у пожилых людей обмен веществ снижен
  • температура: при повышенной температуре тела интенсивность обмена веществ увеличивается (к примеру, с повышением температуры тела на 1 градус величина основного обмена веществ возрастает на 13%)

Если в окружающей среде температура низкая, то, для того чтобы поддержать постоянную температуру тела, срабатывают защитные механизмы и обмен веществ усиливается, выделяется больше энергии для согревания организма.

У некоторых организмов, наоборот, происходит замедление обмена веществ при пониженной температуре: впадают в спячку пресмыкающиеся, некоторые млекопитающие и насекомые.

  • половой фактор- у молодых мужчин основной обмен веществ составляет 1300- 1600 килокалорий (ккал) в сутки, у женщин величина основного обмена 1100- 1400 ккал

Эта информация доступна зарегистрированным пользователям

Эта информация доступна зарегистрированным пользователям

Эта информация доступна зарегистрированным пользователям

Белковые молекулы являются неотъемлемой частью клетки, без которых она не сможет существовать, ведь белки выполняют в организме множество функций, они входят в состав мембран, гормонов, ферментов, мышечных волокон и др.

Организмы, будь то растения, животные, бактерии имеют строго определенный набор белковых молекул.

Именно белки и различия в их структуре формируют индивидуальный и неповторимый набор признаков у особи, у целых популяций и видов.

За сутки в организме человека распадается около 400 грамм различных белков, следовательно, такую же массу нужно образовывать снова, поэтому в клетке происходит постоянный процесс образования белков, что является одним из примеров пластического обмена.

Пластический обмен— совокупность реакций образования органических веществ в клетке с использованием энергии.

Биосинтез белка, фотосинтез, синтез нуклеиновых кислот- это примеры пластического обмена, во время которых образуются органические вещества.

Значение пластического обмена:

  • образование строительного материала для создания клеточных структур (синтез белков, углеводов, жиров)
  • образование органических веществ, которые могут компенсировать энергетические затраты организма
  • образование нуклеиновых кислот (ДНК, РНК), которые отвечают за хранение наследственной информации и синтез белка

Один из самых важных процессов пластического обмена- это синтез белка.

Эта информация доступна зарегистрированным пользователям

Вещества и структуры клетки участвующие в биосинтезе белка:

Вещества и структуры клетки

Функции в биосинтезе белка

ДНК

Содержит информацию о структуре белка, служит матрицей для синтеза белка и для всех видов РНК

иРНК (информационная или матричная РНК)

Переносит информацию от ДНК к месту сборки белковой молекулы.

Содержит генетический код

тРНК

Переносит кодирующие аминокислоты к месту биосинтеза на рибосоме.

Содержит антикодон

Рибосомы

Органоид, где происходит биосинтез белка

Ферменты

Катализируют биосинтез белка

Аминокислоты

Строительный материал для построения белковой молекулы

АТФ

Вещество, обеспечивающее энергией все процессы биосинтеза белка и других процессов пластического обмена

Автотрофные организмы (растения) образуют белок из неорганических веществ.

Гетеротрофные организмы (животные) образуют белок из аминокислот.

Важно помнить, что белок состоит из аминокислот, то есть аминокислота является мономером белка (самой мельчайшей составляющей молекулы белка).

20 Аминокислот (АК) в различных комбинациях формируют огромное множество белковых молекул.

Эта информация доступна зарегистрированным пользователям

Генетический код

Каким же образом происходит синтез такой большой и сложной белковой молекулы?

Конечно, основная роль в определении структуры белка и последовательности аминокислот в белке принадлежит молекулам ДНК.

Эта информация доступна зарегистрированным пользователям

ДНК- носитель всей генетической информации в клетке, но непосредственного участия в синтезе белков не принимает, хотя одна молекула ДНК содержит информацию о нескольких десятков белков.

Из предыдущих уроков мы помним, что молекула ДНК очень длинная и разные ее участки отвечают за образование определенного вида белка.

Участок ДНК, определяющий синтез одной молекулы белка называется ген.

Ген представляет собой участок двойной спирали ДНК, который содержит информацию о первичной структуре какого-то одного белка.

Информация о белке может быть записана в нуклеиновой кислоте только одним способом: в виде последовательности нуклеотидов.

В ДНК содержится информация о последовательности аминокислот всех белков организма. Именно эта информация и называется генетической (наследственной) информацией.

Для перевода последовательности нуклеотидов из молекул ДНК и иРНК в последовательность аминокислот синтезируемой молекулы белка используется специальный «шифр», или генетический код.

Генетический код- запись наследственной информации в виде последовательности нуклеотидов в нуклеиновых кислотах.

Схематично это выглядит так:

Эта информация доступна зарегистрированным пользователям

Реакции синтеза органического вещества на основе другой органической молекулы (матрицы) относят к реакциям матричного синтеза.

Биосинтез белка происходит на основе иРНК, являющейся матрицей в процессе его создания.

Одна аминокислота белка закодирована тремя нуклеотидами, и эта комбинация из трех нуклеотидов ДНК называется триплет или кодон.

В настоящее время генетический код полностью расшифрован.

Ниже представлена таблица с аминокислотами, их название сокращено.

Генетический код (основания без скобок- это основания иРНК; в скобках красным цветом- это основания ДНК)

Эта информация доступна зарегистрированным пользователям

Как пользоваться таблицей генетического кода?

В таблице представлены три вида оснований (первое, второе и третье). Обратите внимание на то, что они даются в двух вариантах: без скобок- нуклеотиды РНК, а в скобках- нуклеотиды ДНК.

Пользоваться ей не сложно.

Предположим, нам известно, что в ДНК есть участок со следующим составом нуклеотидов АЦЦ- ЦТТ- АТЦ. Таким образом, мы имеем три триплета. Определим аминокислоты, которые закодированы этими триплетами.

Ищем основания, что в скобках (так как нам дана ДНК), но чаще в задачах необходимо найти аминокислоты, которые кодирует участок иРНК, поэтому ДНК обычно не ищут и на самом экзамене в задачах дается таблица с основаниями только для иРНК.

Первый триплет ДНК: А-Ц-Ц, смотрим в таблице первое основание (А), это первый горизонтальный столбец.

Далее ищем второе основание (Ц) на пересечении этих двух столбцов видим прямоугольник, в котором расположены четыре аминокислоты. Далее в крайнем правом столбце находим третье основание (Ц) — это четвертая строчка, там указана аминокислота Три (триптофан).

Эта информация доступна зарегистрированным пользователям

Зная алгоритм действия, мы можем решать биологические задачи и расшифровывать генетический код ДНК, используя таблицу Генетического кода.

Продолжим решать нашу задачу до конца, Ц-Т-Т кодирует аминокислоту Глу (глутаминовая кислота).

АТЦ- прочерк- это стоп-кодон, он не кодирует ни одну аминокислоту и означает конец синтеза данного белка.

Таким образом мы расшифровали генетический код и перевели его в аминокислотный состав белка.

Генетический код обладает рядом свойств:

1.     Код триплетный

Необходимо закодировать 20 аминокислот всего четырьмя нуклеотидами.

Если бы один нуклеотид кодировал одну аминокислоту, то возможно было закодировать только 4 аминокислоты.

Для того, чтобы закодировать 20 аминокислот, нужны комбинации из нескольких нуклеотидов.

Если взять комбинации из двух нуклеотидов, то мы получим 42=16 различных комбинаций- этого недостаточно, так как у нас 20 аминокислот.

Комбинаций из трёх нуклеотидов будет уже 64 (43= 64), т. е. даже больше, чем нужно, поэтому код триплетный, то есть одну аминокислоту могут кодировать три нуклеотида (триплет).

2.     Код обладает свойством однозначности и вырожденности

Кажется непонятным- для чего необходимы 64 комбинации нуклеотидов, ведь аминокислот всего 20?

Оказывается, что одна аминокислота может кодироваться несколькими триплетами (до 6), что позволяет разнообразить генетический материал.

Например, один и тот же белок у бактерии кишечной палочки и вируса табачной мозаики записаны разными триплетами.

Также разные триплеты по-разному распознаются, что влияет на скорость синтеза белка рибосомами и повышается надежность кодирования информации.

Способность разных кодонов кодировать одну аминокислоту называется вырожденностью кода.

В дальнейшем было выяснено, что существуют три триплета, не кодирующие аминокислоты- это стоп-кодоны, они означают конец синтеза одного белка.

Однако, несмотря на вырожденность, в генетическом коде полностью отсутствует двусмысленность. Кодоны РНК- ГАА и ГАГ кодируют аминокислоту глутамат, но ни один из них не кодирует одновременно ещё какую-то аминокислоту, т.е. каждый триплет кодирует строго одну определённую аминокислоту- это свойство генетического кода называется однозначность.

3. Генетический код универсален

Гены всех организмов одинаковым образом кодируют информацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

К примеру, белок актин есть в составе цитоскелета вирусов и мышц человека.

Аминокислоты этого белка могут кодироваться одинаковыми последовательностями нуклеотидов в цепи ДНК, что в организме вируса, что в клетке человека.

Но не нужно забывать и про свойство вырожденности кода. То есть не всегда одна аминокислота кодируется одинаковыми последовательностями нуклеотидов у разных организмов.

Это свойство имеет большое практическое значение и активно используется в генной инженерии. Благодаря универсальности генетического кода мы можем заставить гены одного организма работать в другом организме и производить функционально активные белки.

Так ген для гормона роста переносят в бактерию, чтобы она была способна производить его. Таким образом получают гормон роста для медицинских целей, который в обычном организме производится в очень небольших количествах.

Таким же генно-инженерным способом научились производить гормон инсулин.

Однако универсальность генетического кода оказалась не абсолютной.

Известно несколько генетических систем, в которых генетический код немного отличается от универсального- это митохондрии. Также отклонения от универсального генетического кода найдены у некоторых инфузорий и паразитических бактерий, но во всех этих случаях отклонения незначительны.

4.     Внутри гена нет «знаков препинания»- свойство компактности

Между кодонами внутри одного гена нет знаков препинания.

Иными словами, триплеты не отделены друг от друга, к примеру, одним ничего не значащим нуклеотидом.

Отсутствие в генетическом коде «знаков препинания» было доказано в экспериментах Ф.Крика и С. Бреннера.

В ходе этих экспериментов учёные при помощи мутагенных веществ (акридиновых красителей) вызывали в генах возникновение определённого типа мутаций- выпадения или вставки 1 нуклеотида.

Оказалось, что выпадение или вставка 1 или 2 нуклеотидов всегда вызывает поломку кодируемого белка, а вот выпадение или вставка 3 нуклеотидов (или числа, кратного 3) практически не сказывается на функции кодируемого белка.

5.     Неперекрываемость (дискретность)

Код может быть перекрывающимся и не перекрывающимся.

У большинства организмов код не перекрывающийся, исключением являются вирусы.

Сущность не перекрывающего кода заключается в том, что нуклеотид одного триплета не может быть одновременно нуклеотидом другого триплета.

6.     Полярность

Считывание информации с ДНК и с иРНК происходит только в одном направлении.

Полярность имеет важное значение для определения структур белка (первичной, вторичной и третичной).

Этапы биосинтеза белка

Процесс биосинтеза белка можно разделить на два этапа:

  • транскрипция— синтез РНК- происходит в ядре клетки
  • трансляция— это процесс синтеза белка- происходит в цитоплазме

Для того чтобы понять этапы биосинтеза белка, необходимо вспомнить основные понятия.

ДНК и РНК состоят из множества нуклеотидов.

Нуклеотид— это мономер нуклеиновых кислот.

Эта информация доступна зарегистрированным пользователям

Эта информация доступна зарегистрированным пользователям

Целый нуклеотид принято обозначать каким- либо одним азотистым основанием, например, А (аденин) или Г(гуанин).

Последовательность трех нуклеотидов называют триплетом (кодон) и он обозначается, например, АГЦ.

Первый этап биосинтеза белка- транскрипция

Эта информация доступна зарегистрированным пользователям

Транскрипция— это процесс переписывания информации с последовательности нуклеотидов ДНК в последовательность нуклеотидов РНК. Этот процесс происходит в ядре клетки.

При этом против каждого нуклеотида одной из цепей ДНК встает комплементарный ему нуклеотид иРНК.

Транскрипции предшествует процесс раскручивания участка ДНК.

Двойную спираль ДНК разрывает фермент ДНК- полимераза и далее начинается считывание информации с одной спирали ДНК и формирование матричной РНК (иРНК) за счет работы РНК- полимеразы.

Процесс переписывания информации идет по принципу комплементарности.

Комплементарность- это взаимное дополнение азотистых оснований в молекуле ДНК и РНК.

Комлементарность нуклеотидов ДНК к РНК:

Эта информация доступна зарегистрированным пользователям

Так как в одной молекуле ДНК может находиться множество генов, то очень важно, чтобы РНК-полимераза начала синтез иРНК со строго определенного места ДНК, иначе в структуре иРНК будет записана информация о белке, которого нет в природе, что может привести к повреждению синтезируемой молекулы белка.

Поэтому в начале каждого гена находится особая специфическая последовательность нуклеотидов, называемая промотором.

РНК-полимераза «узнает» промотор, взаимодействует с ним и, таким образом, начинает синтез цепочки иРНК с нужного места.

Фермент продолжает синтезировать иРНК, присоединяя к ней новые нуклеотиды, до тех пор, пока не дойдет до очередного «стоп- кодона» (терминатора) в молекуле ДНК (это последовательность нуклеотидов, указывающая на то, что синтез иРНК нужно прекратить).

После копирования, сформированная иРНК выходит из ядра клетки в цитоплазму к рибосоме и начинается второй этап биосинтеза белка.

Эта информация доступна зарегистрированным пользователям

Прежде чем переходить к рассмотрению второго этапа биосинтеза белка давайте поймем принцип комплементарности и попробуем решить задачи.

Задача

Фрагмент цепи ДНК имеет последовательность нуклеотидов:

А-Г-Ц-Т-А-Ц-Г-А-Т

Постройте мРНК по принципу комплементарности.

Решение:

Мы знаем принцип комплементарности

44

Если на ДНК нуклеотид А, то ему по принципу комплементарности соответствует нуклеотид У на мРНК.

Если на ДНК нуклеотид Г, то на мРНК это нуклеотид Ц и так далее.

Таким образом дописываем цепь мРНК, используя принцип комплементарности:

цепь ДНК: А-Г-Ц-Т-А-Ц-Г-А-Т

цепь иРНК: У-Ц-Г-А-У-Г-Ц-У-А

Второй этап биосинтеза белка- трансляция

Трансляция— перевод последовательности нуклеотидов в последовательность аминокислот белка.

Эта информация доступна зарегистрированным пользователям

Триплет нуклеотидов на верхушке тРНК называется антикодон.

Кодон- это триплет нуклеотидов на иРНК.

У эукариотических организмов иРНК синтезируется в ядре, потом она переносится через ядерную мембрану в цитоплазму к месту синтеза белка- к рибосомам.

В цитоплазме обязательно должен иметься полный набор аминокислот, необходимых для синтеза белков.

Эти аминокислоты образуются в результате расщепления белков, получаемых организмом с пищей.

Аминокислоты должны попасть на рибосому, а переносит их к рибосоме транспортная РНК (тРНК).

К одной транспортной РНК прикрепляется одна аминокислота, для каждой аминокислоты существует своя тРНК.

На одном конце транспортной РНК имеется структура «черешок», к которой прочно прилепляется аминокислота.

На верхушке тРНК находится триплет нуклеотидов (антикодон), который соответствует по коду данной аминокислоте.

Триплет нуклеотидов на верхушке т-РНК. называется антикодон.

Эта информация доступна зарегистрированным пользователям

В основном все белки (за исключением некоторых случаев) начинаются с аминокислоты метионин, закодированный кодоном АУГ, который является знаком начала трансляции.

Рибосома взаимодействует с иРНК именно с того конца, где находится код метионина АУГ.

После связывания рибосома начинает двигаться по иРНК, от 3 штрих конца к 5 штрих концу, задерживаясь на каждом ее участке, состоящим из 6 нуклеотидов (2 кодона).

Пятый штрих конец- это место, где прикрепляется фосфорный остаток, третий штрих конец — где присоединена пентоза (рибоза, у ДНК дезоксирибоза).

Время задержки составляет всего 0,2 с.

За это время молекула тРНК, несущая аминокислоту, успевает распознать комплементарный триплет, то есть антикодон тРНК по принципу комплементарности соответствует кодону иРНК.

Далее аминокислота отделяется от «черешка» тРНК и присоединяется с образованием пептидной связи к растущей цепочке белка.

В тот же самый момент к рибосоме подходит следующая т-РНК, антикодон которой комплементарен следующему триплету в иРНК, и следующая аминокислота, принесенная этой тРНК, включается в растущую цепочку белка.

После этого рибосома сдвигается по иРНК, задерживается на следующих нуклеотидах, и все повторяется сначала.

Эта информация доступна зарегистрированным пользователям

Далее рибосома доходит до одного из так называемых стоп-кодонов (УАА, УАГ или УГА), которые не кодируют аминокислоту и сигнализируют о завершении синтеза данного белка.

Белковая цепочка отсоединяется от рибосомы, выходит в цитоплазму и формирует определенную структуру (первичную, вторичную, третичную, четвертичную в зависимости от функции молекулы белка).

Процесс синтеза белка осуществляется за очень короткие промежутки времени.

Подсчитано, что на синтез крупной молекулы белка, состоящего из 300 аминокислотных остатков, уходит всего около одной-двух минут. А, например, на синтез актина, который состоит из 376 аминокислот, уйдет чуть больше минуты.

Эта информация доступна зарегистрированным пользователям

Клетке необходима не одна, а множество молекул каждого белка, поэтому как только рибосома, первой начавшая синтез белка на молекуле иРНК, продвигается вперед, тут же на эту иРНК нанизывается вторая рибосома, которая начинает синтезировать такой же белок.

На одну иРНК может быть нанизана и третья, и четвертая рибосома, и т. д.

Поэтому рибосомы можно назвать «заводом» по производству белков.

Все рибосомы, синтезирующие белок на одной молекуле иРНК, называются полисомой.

Когда синтез белка окончен, рибосома может связаться с другой молекулой иРНК и начать синтезировать новый белок, закодированный в этой молекуле иРНК.

Последовательность аминокислот в первичной структуре белка не зависит от рибосом, а определяется только последовательностью нуклеотидов иРНК.

Таким образом, трансляция— это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка.

Краткая схема биосинтеза белка:

Эта информация доступна зарегистрированным пользователям

Этапы биосинтеза белка:

  • подготовительный этап к синтезу белка- удвоение ДНК за счет ДНК-полимеразы
  • 1 этап- транскрипция: переписывание информации с ДНК на иРНК, за счёт работы РНК-полимеразы
  • 2 этап- трансляция- на рибосоме идет синтез белка, в направлении с 3 штрих конца в сторону 5 штрих конца иРНК до стоп кодона с участием тРНК, которые приносят аминокислоты
  • рибосома, дойдя до стоп-кодона распадается на 2 части (большая и малая субъединица) и освобождается образовавшийся белок, который готов выполнять свои свойственные ему функции

Эта информация доступна зарегистрированным пользователям

Оперон и репрессор

Гены всех организмов одинаковым образом кодируют информацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

В этих генах записана информация о всех белках, которые способен синтезировать любой живой организм.

То есть клетка растения, к примеру, может синтезировать любой белок, который характерен для человека? и эту способность используют в генной инженерии.

Сразу хочется задать такой вопрос: почему же клетки, содержащие в своем ядре одинаковую генетическую информацию, не производят различные белки и не синтезируют сразу все белки?

Ответ лежит в изучении механизмов контроля синтеза белка в клетках, хотя природа регуляторных процессов изучена недостаточно.

Среди теорий, объясняющих природу регуляторных процессов, наибольшую популярность приобрела «теория оперона», сформулированная Ф. Жакобом и Ж. Моно на основании исследования синтеза ферментов у бактерий.

Генетической единицей механизма регуляции синтеза белков следует считать оперон.

В состав оперона прокариот входят:

1. Структурные гены

  • кодируют белки
  • может быть один или несколько
  • в ходе транскрипции работают как один единый ген: на них синтезируется одна общая молекула иРНК, которая в последующем расщепляется

 2. Регуляторные элементы

  • промотор— последовательность нуклеотидов ДНК, узнаваемая РНК-полимеразой как стартовая площадка для начала транскрипции
  • оператор— это последовательность нуклеотидов ДНК, с которой связывается регуляторный белок- репрессор или активатор
  • терминатор (не путать с геном-регулятором) — участок ДНК в конце оперона, узнаваемая РНК-полимеразой как сигнал к прекращению синтеза молекулы РНК

Эта информация доступна зарегистрированным пользователям

На работу оператора оперона влияет самостоятельный регуляторный ген, синтезирующий соответствующий регуляторный белок-репрессор или белок- активатор.

Ген регулятор не обязательно располагается рядом с опероном.

Если на операторе белок репрессор, то РНК- полимераза не может начать синтез иРНК, так как не может связаться с промотором.

Эта информация доступна зарегистрированным пользователям

Если на операторе белок-активатор, то его можно сравнить с клеем, который склеивает РНК-полимеразу и оперон.

В итоге РНК-полимераза находит промотор и начинается синтез иРНК.

РНК- полимераза продвигается по структурному гену ДНК и считывает информацию, переводя ее в нуклеотиды иРНК.

После того как РНК-полимераза дошла до терминатора, то синтез на иРНК заканчивается. Затем РНК-полимераза отделяется от участка ДНК и направляется снова на процесс образования иРНК.

Образовавшаяся иРНК покидает ядро и направляется в цитоплазму, где и происходит образование белка на рибосомах.

Эта информация доступна зарегистрированным пользователям

У эукариот регуляция синтеза белка намного сложнее и еще недостаточно изучена, но известно следующее:

  • белки могут быть закодированы в генах различных ДНК, а не в одной ДНК как у бактерий
  • сами гены устроены сложнее, у них есть «молчащие» участки, с которых не считывается иРНК, но которые способны регулировать работу соседних участков ДНК
  • координация работы генов осуществляется на уровне целого организма и главным образом при помощи гормонов, которые могут заблокировать работу гена, а могут и активировать

Стоит отметить, что синтез белка требует от клетки больших энергетических затрат.

Эта информация доступна зарегистрированным пользователям

Эта информация доступна зарегистрированным пользователям

В ЕГЭ встречаются задачи по синтезу белка.

Примеры задач с решением:

Задача

Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов:

ТТА-ГАА-ТАТ-ЦАГ-ГАЦ

Определите последовательность нуклеотидов на иРНК, антикодоны соответствующих тРНК и последовательность аминокислот во фрагменте молекулы белка, кодируемом указанным фрагментом ДНК, используя таблицу генетического кода.

Эта информация доступна зарегистрированным пользователям

Решение:

1) Необходимо определить последовательность нуклеотидов на иРНК: строим цепь иРНК. используя принцип комплементарности А=У; Г=Ц:

ДНК- ТТА-ГАА-ТАТ-ЦАГ-ГАЦ

иРНК- ААУ-ЦУУ-АУА-ГУЦ-ЦУГ

2) тРНК также образуем по принципу комплементарности перекодировать нужно уже с построенной иРНК

иРНК- ААУ-ЦУУ-АУА-ГУЦ-ЦУГ

тРНК – УУА ГАА УАУ ЦАГ ГАЦ

3)    Фрагмент молекулы белка(аминокислоты) определяем ПО ТАБЛИЦЕ, как было описано выше по иРНК- ААУ ЦУУ АУА ГУЦ ЦУГ— первому кодону иРНК ААУ— соответствует аминокислота Асн (аспарагин), второму кодону иРНК ГАА— соответствует аминокислота Лей (лейцин) и т.д

Ответ: фрагмент белка состоит из следующих аминокислот: Асн– Лей – Иле – Вал — Лей

Задача

Последовательность аминокислот во фрагменте молекулы белка, следующая:

Фен- Глу- Мет

Определите, пользуясь таблицей генетического кода, возможные триплеты ДНК, которые кодируют этот фрагмент белка.

Решение:

Для решения пользуемся таблицей генетического кода.

Аминокислота Фен кодируется следующими триплетами иРНК: УУУ или УУЦ, следовательно, на ДНК ее кодируют триплеты ААА или ААГ.

Аминокислота Глу кодируется следующими триплетами иРНК: ГАА или ГАГ. Следовательно, на ДНК ее кодируют триплеты ЦТТ или ЦТЦ.

Аминокислота Мет кодируется триплетом иРНК АУГ. Следовательно, на ДНК ее кодирует триплет ТАЦ.

Задача

Антикодоны тРНК поступают к рибосомам в следующей последовательности нуклеотидов:

УЦГ, ЦГА, ААУ, ЦЦЦ

Определите последовательность нуклеотидов на иРНК, последовательность нуклеотидов на ДНК, кодирующих определенный белок и последовательность аминокислот во фрагменте молекулы синтезируемого белка, используя таблицу генетического кода.

Эта информация доступна зарегистрированным пользователям

Решение:

1)    По принципу комплементарности последовательность нуклеотидов из тРНК переводим в иРНК

Эта информация доступна зарегистрированным пользователям

АГЦ- ГЦУ- УУА- ГГГ

1)    По принципу комплементарности на основе иРНК находим нуклеотиды ДНК:

ТЦГ-ЦГА-ААТ-ЦЦЦ

2)    С помощью таблицы генетического кода на основе иРНК определяем последовательность аминокислот: Сер- Ала — Лей- Гли

Задача

Известно, что все виды РНК синтезируются на ДНК-матрице.

Фрагмент молекулы ДНК, на котором синтезируется участок тРНК, имеет следующую последовательность нуклеотидов:

ТТГ- ГАА- ААА- ЦГГ- АЦТ

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте.

Какой кодон иРНК будет соответствовать центральному антикодону этой тРНК?

Какая аминокислота будет транспортироваться этой тРНК?

Ответ поясните.

Решение:

Для решения задания используйте таблицу генетического кода.

Пояснение: обратите внимание на условие задачи: «ИЗВЕСТНО, что все виды РНК синтезируются на ДНК-матрице», т. е. нам необходимо найти именно тРНК, которые синтезируются на ДНК.

Затем находим тот триплет, который является центральным, именно его по принципу комплементарности переводим в иРНК и только теперь по таблице генетического кода находим аминокислоту.

1) По принципу комплементарности на основе фрагмента ДНК находим последовательность нуклеотидов участка тРНК:

ААЦ- ЦУУ- УУУ— ГЦЦ- УГА

2) Находим центральный участок тРНК- антикодон, его нуклеотидная последовательность: УУУ

3) По принципу комплементарности на основе антикодона тРНК находим нуклеотидную последовательность кодона иРНК:

ААА

4) По таблице генетического кода на основе кодона иРНК определяем аминокислоту:

лизин

Задача

В процессе трансляции участвовало 30 молекул тРНК.

Определите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.

Решение:

1) Одна т-РНК транспортирует одну аминокислоту. Так как в синтезе белка участвовало 30 тРНК, то белок состоит из 30 аминокислот

2) Одну аминокислоту кодирует триплет нуклеотидов, значит, 30 аминокислот кодирует 30 триплетов

3) Триплет состоит из 3 нуклеотидов, значит, количество нуклеотидов в гене, кодирующем белок из 30 аминокислот, равно 30х3=90

Эта информация доступна зарегистрированным пользователям

Читайте также


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Готовыми органическими веществами питаются


2

Готовыми органическими веществами питаются организмы


3

В процессе пластического обмена

1) более сложные углеводы синтезируются из менее сложных

2) жиры превращаются в глицерин и жирные кислоты

3) белки окисляются с образованием углекислого газа, воды, азотсодержащих веществ

4) происходит освобождение энергии и синтез АТФ


4

Единый аппарат биосинтеза белка

1) эндоплазматическая сеть и рибосомы

2) митохондрии и клеточный центр

3) хлоропласты и комплекс Гольджи

4) лизосомы и плазматическая мембрана


5

Принцип комплементарности лежит в основе взаимодействия

1) аминокислот и образования первичной структуры белка

2) нуклеотидов и образования двуцепочечной молекулы ДНК

3) глюкозы и образования молекулы полисахарида клетчатки

4) глицерина и жирных кислот и образования молекулы жира

Пройти тестирование по этим заданиям

Понравилась статья? Поделить с друзьями:
  • Пластиковый калькулятор для экзамена
  • Планы политика егэ общество
  • Планы по экономике егэ обществознание 2023
  • Планы по теме социальная сфера егэ
  • Планы по социологии обществознание егэ