Почему организм человека не может существовать только на белковой пище егэ

Белки – одни из основных питательных веществ – это важнейшие строительные блоки всех живых организмов. Иногда используется другое название белков – протеины (от греческого слова protos – «первый, самый важный»).

Состав белков

Белки содержат: углерод, кислород, водород, азот и серу. Помимо упомянутых элементов, некоторые белки могут также содержать: фосфор, железо, цинк, медь, марганец и йод. 

Некоторые белки растворяются в воде, некоторые – в водных растворах кислот, оснований и солей, и ни один из них не растворяется в органических растворителях (кроме спирта). 

При более высоких температурах белок сворачивается, т.е. происходит денатурация. В нормальных условиях этот необратимый процесс изменения структуры белковой молекулы можно наблюдать, например, путем варки яйца. Денатурация также может быть вызвана сильными кислотами и основаниями, солями тяжелых металлов или спиртом.

Основные строительные блоки белков – аминокислоты, объединяющиеся друг с другом с образованием многомолекулярных химических соединений со сложной структурой и высокой молекулярной массой. Поэтому белки различаются по структуре и свойствам в зависимости от количества аминокислот и их взаимного положения в молекуле. Комбинации двух или более молекул аминокислот называются пептидами (две молекулы аминокислот образуют дипептиды, три – трипептиды и т. д.).

Состав белков

Состав белков

Мы знаем 20 аминокислот, 8 из которых считаются незаменимыми для человеческого организма. Это так называемые экзогенные аминокислоты, которые должны поступать в организм с пищей. Их называют незаменимыми, потому что их нельзя заменить другими. К незаменимым аминокислотам относятся: лизин, метионин, треонин, лейцин, изолейцин, валин, триптофан и фенилаланин, а также гистидин, который вырабатывается организмом, но в недостаточных количествах.

Вторая группа аминокислот – полуэкзогенные аминокислоты, которые могут образовываться в организме из экзогенных аминокислот. Например тирозин синтезируется в печени из фенилаланина, а цистеин образуется из метионина. 

Третья группа включает эндогенные аминокислоты (они не являются незаменимыми),их организм может синтезировать сам. Это: глицин, аланин, аргинин, аспарагиновая кислота, глутаминовая кислота, пролин, гидроксипролин и серин.

Классификация белков

Белки классифицируются по:

  • химической структуре;
  • биологической функции;
  • месту возникновения.

По своему химическому строению белки делятся на простые и сложные. Простые белки состоят только из аминокислот, в то время как сложные белки, помимо аминокислот, также содержат небелковые соединения, так называемые простетические группы (остаток фосфорной кислоты, нуклеиновые кислоты, гем, атом тяжелых металлов, углеводы, липиды). К ним относятся фосфопротеины, нуклеопротеины, хромопротеины, металлопротеины, гликопротеины и липопротеины.

Классификация белков

Классификация белков

Из-за различных функций отдельных белков их можно разделить на:

  • структурные белки – коллаген, эластин, кератин, гликопротеины;
  • ферментные белки – ферменты;
  • защитные белки – иммуноглобулины, фибриноген, интерферон;
  • транспортные белки – гемоглобин, альбумин плазмы, липопротеин, трансферрин;
  • белки, участвующие в сокращении – актин, миозин;
  • гормоны – инсулин, глюкагон, паратиреоидный гормон, кальцитонин;
  • белки клеточной мембраны.

По месту нахождения в пище белки можно разделить на:

  • животные белки, полученные из мяса, мясного ассорти, птицы, рыбы, молока, сыра, яиц;
  • растительные белки, полученные из зерновых продуктов, семян бобовых, картофеля, овощей и фруктов.

Содержание белка в мясе может колебаться в пределах 11-23% (например, свинина – 15-21%, говядина – 16-21%, субпродукты – 11-17%, птица – 18-23%, рыба – 16-19%. ). Растительные продукты содержат в среднем 1-2% белка (исключение составляют: зеленый горошек – 6% белка, брюссельская капуста – 5% белка, а горох, фасоль, чечевица и соевые бобы – 21-25% белка), а зерновые продукты – 7-14. % белков.

Источники белков в продуктах

Источники белков в продуктах

Пищевая ценность белков животного и растительного происхождения

В зависимости от пищевой ценности различают:

  • полноценные белки;
  • частично дефектные белки;
  • дефектные белки.

Полноценные белки

Полноценные белки включают те, которые содержат все необходимые (экзогенные) аминокислоты в пропорциях, обеспечивающих их максимальное использование для синтеза белков собственного тела для роста молодых организмов и поддержания баланса азота у взрослых.

Это белки животного происхождения, такие как:

  • молоко и продукты из него;
  • мясо животных и продукты из них;
  • рыба;
  • птица и яйца (кроме желатина и фибрина – белков, бедных триптофаном).

Белки животного происхождения

Белки животного происхождения

Частично дефектные белки

Частично дефектные белки – это те, которые могут даже содержать все незаменимые аминокислоты, но некоторые из них находятся в недостаточном количестве, и поэтому их достаточно для поддержания жизни, но не для роста организма. Например, зерновые белки со слишком низким содержанием лизина.

Дефектные белки

Большинство растительных белков менее питательны, поскольку содержат меньше лизина, триптофана, метионина и валина. Дефектные белки растительного происхождения, содержат очень мало незаменимых аминокислот или вообще не содержат хотя бы одну незаменимую аминокислоту, не полностью используются для синтеза белков организма и не обеспечивают оптимальный рост молодых организмов или поддержание азотистого баланса у взрослых, часто даже не достаточного для поддержания жизни (например, желатин).

Только белок соевых бобов и других бобовых, а также орехов имеет относительно высокую пищевую ценность, но они не могут заменить 100% полезного животного белка, например, молочного белка. Однако степень биологической ценности растительных белков очень разнообразна. Биологическая ценность диетического белка измеряется содержанием в нем экзогенной аминокислоты, которое является самым низким; содержание этой аминокислоты определяет правильный синтез белка в организме.

Белки животного и растительного происхождения

При правильном питании взрослого человека половину необходимого количества белка должны составлять животные белки, а другая половина – белок, полученный из растительной пищи. В питании детей и подростков, а также беременных и кормящих женщин белки животного происхождения должны составлять 2/3 необходимого количества белка во всем дневном рационе.

Комбинируя продукты растительного и животного происхождения в одном приеме пищи, вы получаете ценные по аминокислотному составу продукты. Белки цельного молока прекрасно дополняют, например, неполные белки из зерновых продуктов, бедных лизином, треонином и триптофаном. Например, хлопья с молоком или молочный суп с лапшой, манная крупа в молоке.

В молочных продуктах (например, твороге и сычужных сырах) содержание серных аминокислот (метионина и цистеина) несколько ниже. Гораздо сложнее получить высокую биологическую ценность протеина (т.е.возможность использовать его для синтеза протеина тела) в веганской или вегетарианской диете, где необходимо правильно комбинировать растительные продукты.

Белок в молочных продуктах

Белок в молочных продуктах

Белок в вегетарианской диете

Знание аминокислотного состава отдельных белков позволяет разрабатывать комбинации белков чисто растительного происхождения или растительных продуктов с небольшими добавками животного белка (яйца, молоко), питательная ценность которых становится высокой.

Правильная комбинация, по крайней мере, двух типов растительного белка в пище может дополнить недостающие или недостаточные аминокислоты в одном белке теми же аминокислотами, которые в больших количествах содержатся в других белках, например, бобовые содержат много лизина, но мало метионина. а в злаках не хватает лизина и триптофана. Его дополняют почти все овощи, богатые лизином и триптофаном.

Составляя состав дневного рациона, не забывайте максимально пополнять белки (максимум с интервалом 4–6 часов). Во время более длительных перерывов между приемами пищи недостающие аминокислоты не восполняются, а часть белка расходуется на энергетические цели.

Переваривание белков в организме человека

Переваривание белков в организме человека начинается в желудке. Кислая среда вызывает денатурацию белка и набухание коллагена, эластина и кератина. В желудочном соке есть фермент пепсин, который разрывает пептидную связь в середине полипептидной цепи, разделяя ее на более короткие участки. 

Переваренная пища в виде мелко измельченной мякоти попадает в двенадцатиперстную кишку, где находится панкреатический сок, содержащий ферменты трипсин, химотрипсин и эластазу, которые гидролизуют пептидные связи между аминокислотами. Сок поджелудочной железы также содержит карбоксипептидазы экзопептидазы, которые действуют на конце пептидной цепи и выделяют концевые аминокислоты. 

Переваривание белков заканчивается в тонком кишечнике, где под действием аминопептидаз и дипептидаз происходит окончательный процесс расщепления пептидной цепи. Всасывание конечных продуктов переваривания белков (аминокислот) происходит в тонком кишечнике. 

Переваривание белков в организме человека

Переваривание белков в организме человека

Из клеток тонкой кишки аминокислоты попадают в кровь воротной вены, а оттуда в печень путем пассивной диффузии. Затем аминокислоты переносятся через кровь во все ткани и используются для синтеза белков организма. Непереваренные и / или неабсорбированные белки выводятся с фекалиями.

Роль белков в организме человека

Белки в организме играют очень важную и незаменимую роль.

  • Они используются для построения новых и восстановления изношенных клеток и тканей (без их участия рост, развитие организма, обновление тканей, устойчивость к заболеваниям, заживление ран невозможны).
  • Являются основным компонентом крови, лимфы и молока.
  • Являются частью иммунных тел, ферментов, катализирующих биохимические изменения, и жидкостей организма.
  • Участвуют в регулировании артериального давления и поддержании кислотно-щелочного баланса.
  • Действуют как переносчики некоторых витаминов и минералов.
  • Сжигаясь, они снабжают организм энергией (1 г белка = 4 ккал).

Потребность человека в белке

Потребности организма в белке зависят от возраста, пола, физиологического состояния и массы тела. 

Молодые растущие организмы имеют более высокий уровень синтеза белка, что связано с построением новых структур. Согласно рекомендациям диетологов, взрослый (> 19 лет) должен потреблять около 0,8 г белка на 1 кг массы тела в день, поступающего из различных источников (т.е. смешанных белков – животных и растений). Более высокое потребление белка рекомендуется женщинам во время беременности (1,1 г / кг массы тела в сутки) и в период лактации (1,3 г / кг массы тела в сутки), а также детям и подросткам. В случае детей наибольшее количество белка должно содержаться в пище детей младшего возраста (младше 1 года).

В случае разнообразной диеты, содержащей мясо и другие источники животного белка, соблюдение минимальных требований к незаменимым аминокислотам не должно быть трудным. Минимальное количество порций пищи в пищевой пирамиде обеспечивает не менее 60 г белка: например, 1 стакан молока дает 8 г белка; одна порция фасоли (1 стакан) – около 2 г белка, одна порция овощей (1 стакан сырых или 1 стакан вареных) – 2 г белка.

Белок в пищевой пирамиде

Белок в пищевой пирамиде

Важность белка для здоровья человека: дефицит белка

Дефицит белка вызывает квашиоркор (угнетение роста и созревания, гипоальбуминемия, апатия, анорексия, изменения кожи, напоминающие пеллагру, жировая инфильтрация печени).

Дефицит белков особенно опасен для детей (они вызывают задержку роста и умственного развития, похудание) и беременных женщин (белок необходим для правильного роста и развития плода, для выработки большего количества крови для матери и ребенка).

Недополучение белков в утробе матери и у младенцев тормозит физическое и умственное развитие и повышает восприимчивость к инфекционным заболеваниям. Во время грудного вскармливания белок составляет основу увеличения производства молока. 

В случае дефицита белка в пище подавляются или нарушаются многие обменные процессы, анемия, иммуносупрессия, атрофия мышечной ткани, дегенеративные изменения органов, общая слабость, апатия и потеря работоспособности. 

Дефицит белка может быть следствием не только его недостатка или недостаточного поступления в пищу, но также его неправильного усвоения и усвоения (например, при заболеваниях печени и почек, хронической диарее).

Избыток белка

Избыток белка также не рекомендуется, потому что азот, неиспользованный для создания белков организма, должен выводиться из организма. Аммиак образуется в печени из иона амина (содержащего азот) и диоксида углерода, который, в свою очередь, превращается в мочевину и выводится почками.

Таким образом, избыток потребленного белка по отношению к потребностям организма увеличивает количество выделяемых азотных соединений и, таким образом, создает дополнительную нагрузку на почки и печень. Избыток белка у младенцев может вызвать диарею, симптомы ацидоза, обезвоживание, гипераммонемию и  лихорадку. 

Кроме того, чрезмерное потребление белка обычно связано с увеличением потребления мяса, мясного ассорти и сыра с высоким содержанием жира. Такая диета с высоким содержанием белка может превратиться в диету с высоким содержанием жиров, что может привести к развитию ожирения и дислипидемии (липидных нарушений), за которыми следует атеросклероз и  гипертония. 

Дислипидемия

Дислипидемия

Более того, при большом количестве белка в пище может нарушиться метаболизм одной из аминокислот – метионина, особенно при недостаточном поступлении витаминов группы В (особенно витамина В 6). Это приводит к увеличению выработки гомоцистеина, одного из основных факторов риска атеросклероза.

Продолжительное употребление высокобелковой диеты приводит к увеличению выведения кальция с мочой. Если к тому же высокобелковая диета не сопровождается увеличением поступления кальция и витамина D с продуктами, увеличивается риск остеопороза. 

Чрезмерное потребление белка может привести к развитию камней в почках и подагре, поэтому рекомендуется употреблять нужное количество белка и использовать диету с высоким содержанием белка только при заболеваниях (например, кахексии, хронических заболеваниях печени).

Однако следует помнить, что человек не может накапливать запасы белка и поэтому должен потреблять их в рационе каждый день на необходимом уровне.

Белки или протеины — это органические вещества, без которых не может существовать ни один живой организм.  Они поступают с пищей, расщепляются в кишечнике до аминокислот и используются:

  • для образования ферментов, гормонов, новых клеток, факторов свертывания крови, защитных антител;

  • для транспорта гормонов, витаминов, минералов, лекарств;

  • для связывания и обезвреживания токсинов;

  • для поддержания осмотического давления крови;

  • в качестве запаса энергии на случай голодания.

В организме постоянно происходит обмен белков. В результате образуются токсические продукты (мочевина, мочевая кислота, креатинин), которые выводятся почками. Снижение белка происходит при заболеваниях органов, участвующих в их образовании и утилизации.

К белковой недостаточности может привести:

снижение поступления белка при голодании (в том числе при диетах), атрофических и воспалительных заболеваниях желудка и кишечника, инсультах, психических заболеваниях (в том числе анорексии);

 — повышение потребности для восполнения энергетических затрат и восстановления погибших клеток при инфекционных, онкологических и ревматических заболеваниях, ожогах, сахарном диабете;

— нарушение синтеза белка при врожденных иммунодефицитах, циррозе печени;

потеря белка с мочой при заболеваниях почек, диарее.

Белковая недостаточность чаще отмечается:

  • у людей старше 60 лет;

  • при голодании, соблюдении вегетарианской диеты или монодиеты;

  • при заболеваниях органов пищеварения и почек;

  • при профессиональном дефиците веса у моделей, гимнастов, балерин;

  • у детей в результате неполноценного питания.

Обнаружить белковую недостаточность удается не сразу. Легкие формы обычно протекают бессимптомно. При нарастании дефицита жалобы постепенно прогрессируют:

  • кожа становится бледной, сухой, шелушится, ногти истончаются и ломаются, выпадают волосы;

  • беспокоит бессонница, слабость, головные боли, перепады настроения, вялость;

  • появляется тошнота, боль и вздутие живота, рвота, неустойчивый стул;

  • истончается подкожно-жировая клетчатка, снижается тонус мышц, теряется вес;

  • из-за снижения онкотического давления крови (создаваемого белками) появляются отеки;

  • нарушается синтез половых гормонов, гормонов щитовидной железы, надпочечников;

  • нарушается терморегуляция (беспокоит озноб);

  • ослабевает иммунитет (раны долго не заживают, отмечаются частые инфекционные заболевания);

  • появляется анемия, нарушается работа сердца и легких (сердцебиение становится слабым, дыхание поверхностным).

Особенно опасен дефицит белка в детском возрасте. Он влияет на умственное развитие, замедляет рост, нарушает формирование мышц.

Для выявления белковой недостаточности определяют:

— антропометрические показатели (рост, вес, толщину кожной складки и окружности конечностей);

— лабораторные показатели: общий анализ крови, общий анализ мочи, биохимический анализ крови (общий белок, белковые фракции, трансферрин, креатинин, мочевину, глюкозу, АЛТ, АСТ, билирубин), гормоны щитовидной железы, половые гормоны. Для оценки нарушения пищеварения назначают копрограмму.

В процессе прогрессирования белковой недостаточности изменяются все виды обмена. Истощаются запасы гликогена и жира, усиливается расход белков мышц и внутренних органов, что приводит к нарушению их функций и прогрессированию дистрофических процессов.

При возникновении нарушений без помощи врача справится практически не возможно. Необходимо не только восполнить объем белка, но и нормализовать его обмен и устранить возникшие осложнения.

Тяжелые стадии белково-энергетической недостаточности проще предотвратить, чем лечить.  Соблюдение простых рекомендаций поможет избежать развития таких нарушений:

  • регулярные умеренные физические нагрузки и пребывание на свежем воздухе;

  • нормализация режима сна и отдыха;

  • разнообразный и сбалансированный режим питания, который соответствует энергозатратам. Рацион должны составлять 70% растительных и 30% животных продуктов. Оптимальное соотношение белков, жиров и углеводов 1:1:4. Белки пищи должны быть животного и растительного происхождения. Животные белки (говядина, крольчатина, курятина, индюшатина, яйца, икра, молочные продукты, рыба) содержат достаточное количество незаменимых аминокислот. Растительных белков содержится много в злаках, бобовых, орехах и семенах;

  • соблюдение диет с жестким ограничением рациона или лечебное голодание необходимо проводить под контролем врача;

  • людям с высоким риском развития дефицита белка необходимо регулярно проходить обследование.

Провести качественную диагностику состояния здоровья и вовремя выявить нарушения Вы можете в сети диагностических клиник МобилМед. С полным перечнем анализов можно ознакомиться на нашем сайте.

врач иммунолог-аллерголог, кандидат медицинских наук,
доцент кафедры Клинической аллергологии и иммунологии
МГМСУ им.А.И.Евдокимова.

В статье мы расскажем:

  1. Зачем нужны белки
  2. Причины возникновения белковой недостаточности
  3. Симптомы дефицита белка в организме
  4. Диагностика дефицита белка
  5. Как восполнить дефицит белка
  6. Продукты богатые белком

Дефицит белка — повсеместная проблема, с которой изо дня в день сталкиваются в своей работе нутрициологи. Какие основные причины его возникновения и чем грозит организму недостаточность протеиновых молекул? На какие продукты стоит обратить внимание и что из биологически активных добавок следует добавить в свой рацион? Давайте разбираться.

Зачем нужны белки

Белки в человеческом теле выполняют множество функций. Прежде всего, это строительный материал — те кирпичики, на которых закладывается фундамент всех органов и тканей. Они создают каркас клеток — их цитоскелет, участвуют в формировании органелл движений — и кстати, благодаря последним лейкоциты способны выходить из системного кровотока в направлении очага воспаления. Именно коллаген соединительной ткани во многом придает структуру не только коже, но, скажем, и сосудам. В свою очередь, кератин входит в состав ногтей и волос.

Протеиновые молекулы осуществляют передачу сигналов, опосредуя межклеточные взаимодействия, транспортируют гормоны, жирные кислоты, образуют комплексы с самыми разными биологически активными веществами. Те из них, что не циркулируют в сыворотке, а встроены в плазматическую мембрану — избирательный барьер на границе внутри- и внеклеточной сред — являются важным фактором регуляции водно-солевого баланса: формируя ионные каналы, они способствуют входу в цитоплазму калия, натрия и некоторых других заряженных частиц.

Важность белков

Одна из наиболее важных функций, осуществляемых этим классом органических соединений, — это, несомненно, каталитическая. Все ферменты имеют белковую природу — и это опосредует строгие условия (включающие определенную температуру и рН среды), отклонения от которых в малейшую сторону приводят к своеобразному транспортному коллапсу на молекулярном и клеточном уровнях. Так, скажем, еще со школьных уроков биологии многие помнят: чрезмерное повышение температуры чревато денатурацией протеиновых молекул — в сущности, их разрушению. Здесь, как правило, понятно именно аналогия с глазуньей: только подумайте, какие “метаморфозы” происходят с куриным яйцом, стоит ему попасть на раскаленную сковородку.

Кроме того, большое количество гормонов также представлены полипептидами и белками — это позволяет выделить отдельным пунктом регуляторное воздействие: причем как местное, так и на уровне всего организма (взять хотя бы гормоны щитовидной железы, влияние которых начинается еще с клеточного метаболизма и заканчивается целыми системами органов).

Причины возникновения белковой недостаточности

  1. Нарушение синтетической функции печени — центральной фабрики метаболизма. Именно здесь образуются белки плазмы крови: альбумины и большинство глобулинов, во многом опосредующие поддержание гомеостаза в организме.

    Осуществляется это путем формирования онкотического давления: протеиновые молекулы в силу своей химической природы, притягивают воду, осуществляя, таким образом, контроль за водно-солевым обменом. Из этого можно сделать важное следствие: при низкой концентрации белков в сыворотке крови или же при их увеличении в межклеточной жидкости и тканях, что особенно характерно для воспалительных процессов, сопровождающихся повышением сосудистой проницаемости, развиваются отеки — вода выходит за пределы артерий и вен.

    При заболеваниях, проявляющихся повреждением гепатоцитов (токсическими или инфекционными агентами), также возникают эдемы — причем преимущественно на нижней половине туловища и конечностях. Более подробно мы писали об этом в этой статье: https://miin.ru/blog/pitanie-pri-otekakh

  2. Алиментарные факторы — голодание, приводящее в целом к белково-энергетической недостаточности, или же несбалансированная и некомпенсированная нутрицевтиками растительная диета, сопровождающаяся отсутствием в рационе незаменимых аминокислот — того субстрата для построения клеток и тканей, что организм не может воспроизвести самостоятельно, из подручных элементов и с помощью присутствующих ферментов.

Ниже мы привели небольшую таблицу с незаменимыми аминокислотами и теми продуктами, в которых они сконцентрированы. Надеемся, что это поможет вам грамотно организовать и подобрать подходящий именно вам тип питания.

Валин

Изолейцин

Лейцин

Лизин

яйца

соя

горох

кета

молочная продукция

арахис

окунь

чечевица

говядина

яичный желток

индейка

куриное мясо и индейка

чечевица

горбуша

молоко

баранина

Метионин

Треонин

Триптофан

Фенилаланин

яйца

подсолнечные семечки

индейка

фасоль

мясо

минтай

кальмар

миндаль

молоко и молочная продукция

судак

молоко

кешью

скумбрия

кунжут

фисташки

треска

  1. Одна из наиболее частых патологий, приводящая к затруднению усвоения поступающего с пищей белка — сниженная кислотность желудочного сока.

    Соляная кислота, вырабатываемая париетальными клетками слизистой, активирует протеолитические энзимы и, вдобавок, способствует набуханию белковых молекул, облегчая ферментативную обработку пищу. Также это мощный фактор неспецифической защиты, оказывающий сильное бактерицидное действие — в частности, и по отношению к простейшим, паразитическим червям, бактериям и вирусам.

    Широкая популярность самостоятельного применения и частого назначения ингибиторов протонной помпы (“Омез”) стало причиной серьезного беспокойства ученых о вероятных последствиях их длительного приема не только на органы желудочно-кишечного тракта, но на и организм как таковой.

    Кроме воздействия со стороны лекарственных препаратов, к уменьшению продукции соляной кислоты могут приводить поломки в фолатном цикле (а точнее в трех основных генах, осуществляющих его регуляцию: MTHFR, MTR, MTRR), так как именно он обеспечивает образование основного медиатора парасимпатической системы — ацетилхолина, стимулирующего, вдобавок, париетальные клетки желудка. При выявлении мутации необходима дополнительная поддержка организма, направленная на снижение концентрации накапливающегося в подобных условиях гомоцистеина — аминокислоты, известной своим повреждающим действием на эндотелий (внутреннюю выстилку сосуда) и занимающей не последнюю роль в патогенезе атеросклеротических повреждений.

    С другой стороны, наравне с недостаточным образованием ацетилхолина, отмечается повышение медиатора воспаления — гистамина. Это происходит из-за нарушения процессов его обезвреживания, в норме осуществляемых реакциями метилирования. Учитывая, что и гистамин является активатором секреции желудочного сока, можно сделать закономерное заключение: влияние фолатного цикла на пищеварительную систему несколько неоднозначное. Логично предположить, что в условиях избыточного поступления этого биогенного амина, развиваются не только эрозивные поражения слизистой желудка, но и, вследствие увеличения проницаемости кишечной стенки, в системный кровоток попадают структурные элементы бактерий — наблюдается воспалительный процесс, причем не ограничивающийся сугубо ЖКТ.

    Еще одной возможной причиной гипохлоргидрии является атрофический гастрит — аутоиммунное заболевание, сопровождающееся уменьшением числа функционирующих клеток вследствии их гибели при “атаках” антител сошедшей с ума иммунной системы, которая перестает четко разграничивать, где “свое”, а где “чужое”.

  2. Повреждения слизистой желудка: язвы, гастриты, эрозии. Несмотря на широко закрепившееся в сознаниях людей убеждение, что воспаление эпителиальной выстилки сугубо осуществляется H.pylori, это нельзя сопоставить со стопроцентной истиной.

    Во-первых, заражение происходит еще в глубоком детстве, поэтому само понятие об инфицировании в подростковом возрасте или взрослой жизни, скорее является эфемерной редкостью, чем правдой как таковой.

    Во-вторых, все зависит именно от штамма бактерии: не все из них являются агрессивными (или, по меньшей мере, настолько сильно патогенными, чтобы проявилась клиническая манифестация и само воспаление слизистой желудка) — и это влечет за собой обязательную диагностику (хотя бы перед назначением 2-недельной антибиотикотерапии). Учитывая широкое распространение последней, что привело и без того к тотальной резистентности микрофлоры (населяющей и дистальные отделы тонкого, а также толстый кишечник человека) к хим.препаратам, а также бактериальное прошлое митохондрий, наших маленьких электростанций, самозабвенно продуцирующих энергию, решение о эрадикации хеликобактера должно быть хорошо обдумано врачом или нутрициологом, что прибег к более щадящей терапии нутрицевтиками.

    Причины возникновения белковой недостаточности

    Хеликобактер действительно приспосабливается (в отличие от большинства микроорганизмов) к неблагоприятным условиям желудочной среды: обладая специфическим ферментом, расщепляющим мочевину, он, путем выделения аммиака, защелачивает свое место обитания. Однако патология развивается лишь при его диссеминации — распространению из пилорического отдела, граничащего с двенадцатиперстной кишкой, по всему периметру желудка.

    К поражению слизистой желудка зачастую приводит стресс: он сопровождается активацией симпатической нервной системы с последующим выбросом в кровь гормонов мозгового вещества надпочечников, что, воздействуя, в свою очередь, на секреторный аппарат почек, стимулируют выделение ими вазоконстриктора. Именно сужение просвета сосудов, в том числе и тех, что кровоснабжают желудок, приводит к последующему изъязвлению слизистой оболочки.

  3. Нарушение расщепления и всасывания белков в кишечнике. Первое характерно для экзокринной недостаточности поджелудочной железы, при которой ее секреторные клетки перестают образовывать и выделять в кровь достаточное количество ферментов (причем не только протеолитических). Второе сопровождает синдром мальабсорбции и целиакию — еще одно аутоиммунное заболевание, переставшее, к сожалению, сегодня быть такой уж редкостью.

  4. Нарушение желчеобразования и желчеоттока, что ведет к невозможности не только эмульгации жиров, но и активации панкреатических энзимов. Глистная инвазия, закупорка желчевыводящих путей конкрементами, снижение текучести этого секрета вследствие преобладания холестерина над остальными компонентами (желчными кислотами и фосфолипидами) — большое количество возможных причин обуславливают необходимость тщательной лабораторной и инструментальной диагностики, что выстраивают недостающие пазлы в клинической картине заболевания.

  5. Заболевания почек: в норме белковые молекулы не фильтруются в первичную мочу в силу своих громоздких размеров. Однако, при повреждении почечного фильтра (образовании в нем “дыр”) отмечается массивная протеинурия, о чем свидетельствует выявление белков в общем анализе мочи.

Симптомы дефицита белка в организме

Одно из наиболее ярких проявлений недостаточного поступления и/или усвоения белков — появление отеков. Их развитие связано с закономерно возникающим сбоем водно-солевого обмена: в условиях сниженной концентрации протеинов в плазме крови, в норме удерживающих воду, последняя переходит в ткани, что сопровождается их последующим набуханием.

Кроме того, учитывая огромную роль белков в создании остова, каркаса всех клеток и органов, их дефицит приводит к нарушением структуры тканей: отмечается ломкость волос, ногтей, ухудшается качество кожи.

Наравне с пластической функцией, этот класс органических соединений выполняет и каталитическую. Уменьшение содержания пептидов приводит к снижению активности ферментов. В сущности, это настоящий транспортный коллапс на магистралях метаболизма: он замедляется, становиться вялотекущим.

Широкий спектр гормонов также обладает протеиновой природой — эндокринная система начинает страдать не меньше, чем все остальные. Характерны: отсутствие менструации, снижение продукции гормонов щитовидной железы (что подсыпает масло в и без того слабый огонь едва протекающих обменных процессов), замедление роста и развития из-за торможения синтеза гипофизом тропных гормонов — включая соматотропин.

Недостаток аминокислот обуславливает протеолиз тканевых белков — отмечается снижение мышечной массы, ее тонуса и силы.

Иными словами, нет такого органа, который не затрагивал бы дефицит белка — прогрессирует тотальная дисфункция на всех уровнях функционирования: от молекулярного до организменного.

Диагностика дефицита белка

Наиболее простым методом для первоначальной диагностики будет определение в биохимическом анализе крови такого показателя, как “общий белок”. Кроме того, необходимо установить уровень альбуминов в плазме крови — как правило, в условиях недостаточного поступления протеинов извне, печень компенсаторно увеличивает продукцию этой фракции.

Поскольку все ферменты, как уже ранее было сказано, имеют полипептидную основу, можно дополнительно опираться на АЛТ и АСТ — они достаточно часто назначаются специалистами по питанию и врачами. Однако здесь важно помнить все же о не менее главенствующей роли в функционировании данных энзимов витамина В6 и уметь правильно дифференцировать причины и факторы снижения этих показателей печеночной панели.

Диагностика дефицита белка

О нарушении процессов метилирования говорит повышение аминокислоты гомоцистеин в сыворотке крови — в таком случае, можно заподозрить полиморфизм в одном или нескольких генах-регуляторах фолатного цикла и сделать генетический тест. Несколько выше мы говорили о том, что эти “поломки” сопровождаются увеличением концентрации гистамина по причине снижения его обезвреживания — у пациентов отмечается аллергия, кожные высыпания и даже бронхиальная астма.

Низкую кислотность определяют путем проведения рН-метрии, обязательно сопровождающей фиброгастродуоденоскопию с взятием биопсийного материала — это принципиально важно для установления стадии процесса и профилактики развития в дальнейшем рака желудка. Из лабораторных тестов показательными будут следующие:

  1. Аминокислоты в моче (тенденция к их снижению).

  2. Уменьшение концентрации в крови металлов, всасывающихся в кислой среде: селена, марганца, цинка и магния.

Диагностика хеликобактера, обязательно проводимая с целью установления показаний для применения антибиотикотерапии, состоит из:

  1. Определение антигенов бактерии в кале.

  2. Дыхательные тесты с меченной мочевиной.

  3. Определение антител в крови пациента.

  4. Биопсия во время фиброгастродуоденоскопии с последующим гистологическим анализом.

В гастропанель, что довольно часто назначается для диагностики состояния слизистой желудка, входит, наравне с другими 3 биомаркерами, такой показатель как гастрин-17 — еще один стимулятор секреции соляной кислоты, вырабатываемый пилорическим отделом желудка. Его снижение указывает на высокую вероятность атрофического гастрита — аутоиммунного заболевания, сопровождающегося уменьшением количества функционирующих клеток эпителия.

О состоянии желчного пузыря, как возможного виновника нарушения активации ферментов поджелудочной железы (в том числе, и протеолитических) судят по:

  1. Копрограмме.

  2. Биохимическому анализу крови:

    • АЛТ, АСТ.

    • Гамма-глутамилтрансфераза.

    • Прямой и непрямой билирубин.

    • Общий холестерин.

    • ЛПВП, ЛПНП (дополнительно — апопротеин В).

    • щелочная фосфатаза.

  3. Органическим кислотам в моче (для диагностики синдрома избыточного бактериального роста).

    Увеличение числа колоний резидентов нашего кишечника сопровождается повышением активности процессов ферментации и, как следствие, — избыточной продукции газов. Это, в свою очередь, затрудняет секрецию панкреатического сока и желчи из-за повышенного в просвете кишечника давления.

  4. Узи органов брюшной полости.

Как восполнить дефицит белка

Если белковая недостаточность не была вызвана алиментарными факторами, то первостепенное внимание должно быть направлено на причину, приводящую к их затрудненному расщеплению и всасыванию. Именно устранение этого этиологического фактора позволит обеспечить организм достаточным количеством протеинов — в противном случае, все съеденное попросту не будет усвоено.

Как правило, главенствующую роль занимает именно гипохлоргидрия — снижение секреции соляной кислоты париетальными клетками желудка. Если ее причиной является нарушение фолатного цикла, стоит начать работу именно с ним, принимая курс активных форм витаминов, задействованных в его механизмах:

  • метилфолат;

  • метилкобаламин;

  • рибофлавин-5-фосфат;

  • пиридоксаль-5-фосфат.

При условии отсутствия поражения слизистой желудка, можно также рассмотреть употребление биологически активных добавок, стимулирующих секрецию соляной кислоты:

  1. Бетаин-пепсина.

  2. Йода, хлора и цинка.

Вдобавок, следует уменьшить или полностью исключить воздействие стрессовых факторов, приводящих к спазмированию сосудов. Повышайте тонус именно парасимпатической системы: как известно, именно блуждающему нерву подконтрольны процессы пищеварения. Принимайте ванны с магниевой солью, делайте расслабляющие практики вроде пилатеса, йоги, дыхательных упражнений.

В качестве адаптогенов для снижения уровня кортизола подойдут:

  • родиола розовая;

  • валерьяна;

  • женьшень.

Изменение образа жизни играет ключевую роль в нормализации состояния всего организма. Больше двигайтесь — пускай 10 000 шагов станут для вас не чем-то сверхъестественным, а привычной, обыденной нормой. Элиминируйте максимально из своего рациона простые сахара: особенно, если причина нарушенной секреции пищеварительных соков кроется в синдроме избыточного грибкового или бактериального роста.

Ложитесь рано спать: в 23.00 уже начинается секреция мелатонина — гормона-антиоксиданта, отвечающего за молодость, красоту и активно противодействующего развитию оксидативного стресса. Кроме того, к циклам “сон-бодровствование” привязано и выделение других, не менее важных гормонов: ТТГ и соматотропина.

Продукты богатые белком

Название продукта

Содержание белка на 100 г продукта

Соя

34.9 г

Тунец

24.2 г

Горох

23 г

Мясо кролика

21.2 г

Фасоль

21 г

Горбуша

20.5 г

Нут

20.1

Индейка

19.5 г

Кунжут

19.4 г

Сельдь

19.1 г

Миндаль

18.6 г

Кешью

18.5 г

Ставрида

18.5 г

Сом

17.2 г

В контексте сугубо растительной диеты хочется еще раз подчеркнуть: не забывайте, пожалуйста, не только замачивать крупы и бобовые, но и учитывайте содержащийся в них достаточно высокий процент углеводов, избыток которых приводит к развитию инсулинорезистентности.

В процессе метаболических трансформаций протеинов, в организме образуется продукт их конечного обмена — аммиак. Это высоко токсическое вещество (особенно в отношении головного мозга) обезвреживается в печени и выводится в составе мочевины почками. Однако людям с первичными (генетически обусловленными) или вторичными (приобретенными) нарушениями в системе его детоксикации, показана поддержка нутрицевтиками ключевых звеньев этого процесса. В частности, следует рассмотреть прием:

  • орнитина;

  • аргинина;

  • цитруллина;

  • гуминовых кислот;

  • корня Юкки.

Почему недостаток белка в организме опасен

Как проявляется нехватка белка в организме

При недостаточном поступлении белка (в основном животного) с пищей или при каких-либо патологических состояниях будут страдать почти все органы и системы организма: сначала уменьшается мышечная масса; ухудшается состояние кожи (ведь коллаген это тоже белок), она становится менее упругой, быстрее стареет; волосы начинают ломаться и выпадать; появляется выраженная слабость. При прогрессировании может ухудшаться работа иммунной системы, возникают проблемы с выработкой гормонов и др. При тяжелой белковой недостаточности развивается кахексия (степень крайнего истощения организма), нарушаются процессы кроветворения и др. При полном отсутствии белковой пищи возможен даже летальный исход.

Почему для детей белковая пища важнее, чем для взрослого?

Для детей белковая недостаточность опаснее, так как может повлиять на развитие мозга и умственных способностей, привести к нарушениям роста и формирования мышечного каркаса.

Зачем нужны белки в организме

Белки выполняют ряд жизненно важных функций, перечислим несколько из них:

  • Строительная: белок выступает в качестве основы соединительной ткани (мышц) и цитоскелета клеток.
  • Двигательная: специфические белки (миозин и актин) нужны для сокращения мышц, движения клеток крови (лейкоцитов), движения составных частей клеток (ресничек и жгутиков) и др.
  • Каталитическая: все химические реакции в организме проходят с участием ферментов, а ферменты как раз и состоят из белковой части (апофермент) и витамина и/или минерала (кофермент).
  • Гормональная: к белковым гормонам относятся тиреоидные гормоны (трийодтиронин и тироксин) щитовидной железы, катехоламины, гормоны поджелудочной железы (инсулин, глюкагон), тропные гормоны гипофиза и пролактин.
  • Защитная: иммунная и механическая (белок выступает основой скелетно-мышечного каркаса, который защищает внутренние органы от повреждений).
  • Транспортная: с помощью белков (гемоглобин, альбумины, церулоплазмин, транскобаламин) осуществляется перенос веществ между клетками и внутри клеток.
  • Энергетическая: окисление 1 г белка дает 4 ккал.
  • Регуляторная: например, белки регулируют деление клеток и активность считывания информации с ДНК.
    • Есть и другие функции. Так, достаточное содержание белка в пище способствует регулированию функций коры головного мозга, улучшает состояние нервной системы, способствует усвоению некоторых микронутриентов (например, железа).

      Продолжение статьи Вы можете прочитать по ссылке в источнике.

Источник Роскачество



Статьи по теме

Как понять, что у вас сахарный диабет?

16 января 2023

Как понять, что у вас сахарный диабет?

Согласно данным Всемирной организации здравоохранения (ВОЗ), от сахарного диабета страдают более 422 миллионов человек во всем мире. Заболевание является одной из основных причин инфарктов и инсультов, поэтому важно вовремя его распознать и начать лечение. Какие симптомы указывают на наличие сахарного диабета? Рассказывает Калмыкова Зиля Асхатовна, эндокринолог, семейный врач, терапевт  GMS Clinic, для «Рамблер/доктор».

Читать статью

Сахарный диабет и хронические заболевания печени (Часть 2)

18 июля 2022

Сахарный диабет и хронические заболевания печени (Часть 2)

Текст предоставлен не полностью. Всю статью вы можете прочитать на КиберЛенинка. Особенности лечения сахарного диабета и других заболеваний печени.

Читать статью

Сахарный диабет и хронические заболевания печени (Часть 1)

27 июня 2022

Сахарный диабет и хронические заболевания печени (Часть 1)

Общие механизмы этиологии и патогенеза

Читать статью

Эффективность назначения высоких доз каберголина при лечении резистентных пролактином

23 июня 2022

Эффективность назначения высоких доз каберголина при лечении резистентных пролактином

Клиническое наблюдение

Читать статью

Гипергликемия и возможные механизмы повреждения β-клеток у пациентов с COVID-19

09 июня 2022

Гипергликемия и возможные механизмы повреждения β-клеток у пациентов с COVID-19

Всего за несколько месяцев заболевание, вызванное новым коронавирусом SARS-CoV-2 и получившее название COVID-19, достигло масштабов пандемии.

Читать статью

Съешь меня: 5 научных фактов о бананах

12 февраля 2022

Съешь меня: 5 научных фактов о бананах

Текст предоставлен не полностью. Всю статью вы можете прочитать на РБК Стиль. Бананы богаты клетчаткой, калием, витаминами B6 и С, а также антиоксидантами. Вместе с экспертами разбираемся, как эти плоды влияют на здоровье и кому могут навредить.

Читать статью

Другие статьи этого автора

Польза арбузов: 6 фактов, о которых вы не знали

12 февраля 2022

Польза арбузов: 6 фактов, о которых вы не знали

Текст представлен не полностью. Всю статью вы можете прочитать на РБК Life. В августе начинается сезон арбуза на территории Центральной России. Рассказываем, в чем польза этой ягоды, как ее правильно есть и можно ли с ее помощью похудеть.

Читать
статью

Белковая недостаточность представляет собой болезненное состояние организма, связанное с недостаточным поступлением и усвоением белка либо с его усиленным распадом. Истинный дефицит поступления белков с пищей может развиваться у лиц, длительное время недоедающих, придерживающихся так называемых монодиет, или у вегетарианцев. Вторичный дефицит белка, связанный с его усиленным распадом, может сопровождать целый ряд заболеваний, например тяжелые формы инфекционных заболеваний, ожоги, патологии почек, наследственные нарушения обмена веществ. Белки являются основным строительным материалом организма, поэтому даже легкие формы белковой недостаточности, внешне протекающие бессимптомно, влияют на способность противостоять инфекции или на скорость заживления ран, замедляют рост ногтей и волос, вызывают сухость кожи. Тяжелая белковая недостаточность может нарушить нормальную работу всех органов и систем. Особенно опасен дефицит белка в детском возрасте, так как он способен повлиять на развитие умственных способностей, формирование мышц, замедлить рост ребенка.

Своевременное выявление белковой недостаточности и установление ее причины крайне важно, так как позволяет избежать опасных для жизни осложнений.

Синонимы русские

Дефицит белка, белковая дистрофия, белково-энергетическая недостаточность.

Синонимы английские

Protein Deficiency.

Симптомы

Легкие формы белковой недостаточности чаще всего протекают бессимптомно. Исключение могут составлять наследственно обусловленные дефициты отдельных аминокислот (структурных компонентов молекулы белка), характерные признаки которых наблюдаются в раннем детском возрасте.

Внешние проявления дефицита белка:

  • общая слабость;
  • прогрессирующее снижение веса;
  • ломкость, тусклость и выпадение волос;
  • ломкость ногтей;
  • сухость и шелушение кожи;
  • отеки.

Проявления со стороны нервной системы:

  • вялость и повышенная утомляемость;
  • головные боли;
  • снижение умственной активности;
  • неустойчивое настроение;
  • бессонница.

Проявления со стороны костно-мышечной системы:

  • боли в мышцах и реже в суставах;
  • замедленный рост (у детей);
  • уменьшение массы и видимого объема мышц;
  • мышечная слабость.

Со стороны органов пищеварения:

  • повышенная тяга к сладкому;
  • тошнота;
  • боль и вздутие живота;
  • нарушения стула (запор, сменяющийся поносом);
  • увеличение печени.

Кто в группе риска?

  • Население стран с низким уровнем жизни.
  • Вегетарианцы.
  • Лица, соблюдающие монодиету или голодающие в целях снижения веса.
  • Пациенты с заболеваниями почек.
  • Пациенты с заболеваниями органов пищеварения.
  • Лица с  наследственной предрасположенностью к нарушениям белкового обмена.
  • Лица с профессионально обусловленным дефицитом веса: балерины, модели, гимнасты.
  • Лица старше 60 лет.

Общая информация о заболевании

Белки относятся к числу основных питательных веществ, выполняющих в организме следующие функции.

  • Строительная – белок входит в состав всех клеток человеческого тела и, по сути, является основой существования жизни.
  • Каркасная – белки участвуют в образовании волос и ногтей, формируют защитную оболочку глаза, хрящи, сухожилия и связки. Даже такое свойство, как гладкость кожи, напрямую зависит от содержащегося в ней белка.
  • Двигательная и сократительная. Белки являются основным компонентом мышечной ткани, обеспечивающим ее работу.
  • Транспортная. Многие белки обладают способностью связываться с питательными веществами, содержащимися в крови, и переносить их к органам и тканям. Примером транспортного белка служит гемоглобин, содержащийся в красных кровяных клетках (эритроцитах) и осуществляющий транспорт кислорода.
  • Защитная. В организме вырабатываются специфические белки (антитела), обеспечивающие защиту от микроорганизмов и вирусов.
  • Ферментативная. Ферментами называются белки, участвующие во всех химических процессах, происходящих в организме (например, в переваривании пищи).
  • Гормональная. Большинство гормонов человеческого тела являются белками.

Реализация этих функций происходит за счет белкового обмена – постоянно протекающих процессов образования (синтеза) и распада белка.

Основные причины белковой недостаточности:

  • Тяжелые и длительные заболевания требуют от организма использования всех резервов. Белки тратятся на восполнение энергетических затрат, восстановление погибших клеток. При ряде заболеваний происходят значительные потери белка.
  • Хронические заболевания почек (гломерулонефрит, почечная недостаточность, нефротический синдром) могут приводить к выделению значительного количества белка с мочой (протеинурии), вызывая падение уровня белка и хроническую белковую недостаточность.
  • Цирроз печени и печеночная недостаточность бывают причиной дефицита белка, особенно на поздних стадиях заболевания, когда развиваются отеки – в брюшной полости может скапливаться жидкость, содержащая большое количество белка (асцит). В печени синтезируются многие необходимые организму белки, а вырабатываемые ею пищеварительные ферменты участвуют в их усвоении. При циррозе нормальная работа печени нарушается и может развиваться белковая недостаточность.
  • Ожоги (ожоговая болезнь). При термических ожогах на коже могут образовываться пузыри, заполненные содержащей белок жидкостью. Потери белка при вскрытии этих пузырей бывают весьма значительны.
  • Для диареи (поноса) характерна значительная потеря жидкости и пищеварительных соков, содержащих белки.
  • Злокачественные новообразования на поздних стадиях способны приводить к тяжелой белковой недостаточности. Белок расходуется на рост опухоли, а также теряется при ее распаде и кровотечении. Образующиеся в опухолевых клетках вещества чужеродны организму. Попадая в кровь, они вызывают его отравление продуктами распада (синдром раковой интоксикации), одним из проявлений которого бывает падение уровня белка.
  • Сахарный диабет может стать причиной белковой недостаточности за счет усиленного распада белка, а также диабетического поражения почек и вторичной протеинурии.
  •   Нарушения белково-аминокислотного обмена. Белки являются сложными веществами, которые, подобно цепочке, состоят из звеньев, называемых аминокислотами. Последовательность аминокислот для каждого организма индивидуальна, поэтому поступающий с пищей белок в процессе пищеварения расщепляется до уровня отдельных звеньев, из которых затем составляется собственная последовательность. При этом одни аминокислоты могут образовываться в человеческом организме, другие же (их еще называют незаменимыми) поступают только с пищей. Роль незаменимых аминокислот настолько велика, что без них образование белка становится невозможным. Если какие-либо незаменимые аминокислоты отсутствуют в рационе или не усваиваются, равновесие между распадом и синтезом белка может сместиться в сторону распада и привести к белковой недостаточности.
  •   Нарушенная усвояемость незаменимых аминокислот относится к наследственным патологиям. В развитии хронической белковой недостаточности наиболее значимы следующие заболевания.
  •   Фенилкетонурия – нарушение обмена аминокислоты фениланина. Фениланин участвует в образовании практически всех белков человеческого тела, в первую очередь белков нервной системы. Заболевание характеризуется отсутствием или недостаточным уровнем в печени специального белка (фермента), отвечающего за усвоение этой аминокислоты. В результате происходит ее избыточное накопление в тканях. Фенилкетонурия обычно диагностируется в раннем детском возрасте и сопровождается различными расстройствами нервной системы, а также отставанием в физическом развитии. Без лечения может привести к психической инвалидности.
  •   Обмен тирозина. Тирозин – аминокислота, необходимая для образования одного из основных белковых пигментов человеческого тела – меланина, поэтому одним из проявлений нарушенного его обмена является альбинизм (бледность кожи, обесцвечивание волос и радужной оболочки глаз). Тирозин также требуется для образования гормонов щитовидной железы.
  •   Нарушения синтеза белка могут приводить к недостаточному образованию белка либо появлению так называемых дефектных, или патологических, белков, которые не способны выполнять свои функции. Например, при таком наследственном заболевании, как серповидно-клеточная анемия, в крови выявляется гемоглобин, который не в состоянии переносить такое же количество кислорода, как нормальный. Причиной приобретенных нарушений белкового синтеза могут стать злокачественные опухоли или прием некоторых лекарственных препаратов.
  •   Алиментарная (пищеварительная) белковая недостаточность – наиболее частая форма белкового дефицита. Она может развиваться при следующих обстоятельствах:
  •   Недостаточное поступление белка с пищей. Некоторые диеты предусматривают ограничение животного белка (мяса), замену его растительным или же полный отказ от белков. К белковой недостаточности может также приводить длительное голодание. В последнем случае может начаться необратимый распад белка, представляющий угрозу для жизни.
  •   Нарушения переваривания белка могут развиваться при заболеваниях желудочно-кишечного тракта, сопровождающихся недостаточной продукцией пищеварительных соков, например при атрофических гастритах с пониженной секреторной функцией.

В зависимости от степени выраженности недостаток белка может приводить к:

  •   отставанию в умственном и физическом развитии;
  •   ослаблению памяти и интеллекта;
  •   ослаблению защитной системы организма.

Диагностика

Белковая недостаточность в первую очередь может быть заподозрена у пациентов с дефицитом массы тела, а также у лиц с симптомами заболеваний, для которых характерен дефицит белков. Для подтверждения диагноза проводится комплекс исследований.

Лабораторные исследования

  •   Общий анализ крови относится к числу базовых исследований.
  •   Уровень эритроцитов и гемоглобина может быть понижен (анемия) у пациентов с тяжелыми формами белковой недостаточности при общем истощении. Нормальное содержание эритроцитов при низком уровне гемоглобина может наблюдаться при его недостаточном образовании или избыточном разрушении. Такое состояние называется гипохромной анемией.
  •   Лейкоциты. Рост числа лейкоцитов с появлением в лейкоцитарной формуле молодых клеточных может указывать на инфекционно-воспалительный процесс, явившийся причиной белковой недостаточности.
  •   Скорость оседания эритроцитов (СОЭ) также относится к показателям, указывающим на воспалительный процесс как причину белкового дефицита.
  •   Общий анализ мочи является основным при исключении или подтверждении почечной причины белковой недостаточности. Включает в себя изучение следующих параметров.
  •   Цвет мочи. В норме оценивается как соломенно-желтый. Красное или коричневое окрашивание может наблюдаться при поступлении в мочу крови (гематурия) и указывать на серьезные почечные расстройства. Темно-коричневая моча, особенно в сочетании с желтушностью, характерна для заболеваний печени.
  •   Прозрачность. Нормальная моча прозрачна. При заболеваниях почек она бывает мутной за счет значительного содержания гноя (пиурия) или солей.
  •   Удельный вес мочи – показатель эффективности работы почек. При белковой недостаточности, вызванной поражением почек, он может значительно снижаться.
  •   Белок в анализе мочи в норме отсутствует. При положительном тесте (протеинурии) проводят количественное определение белка в моче и обязательно исследуют его состав. Альбумин – наиболее часто выявляемый вид белка, однако могут обнаруживаться и другие белки, например иммуноглобулины, гемоглобин, миоглобин и другие. Степень протеинурии позволяет косвенно судить об уровне и тяжести поражения почек.
  •   Исследование мочи с помощью специальных тест-полосок проводится для выявления протеинурии – выделения белка с мочой. Положительный результат может стать первым указателем на почечное происхождение белковой недостаточности. В таком случае необходима микроскопия осадка. Исследование осадка мочи:
  •   Красные кровяные клетки – эритроциты белковой недостаточности, обусловленной патологией почек, могут присутствовать в моче в большом количестве. Наличие измененных обесцвеченных эритроцитов позволяет заподозрить поражение клубочков (гломерулонефрит).
  •   Цилиндры формируются в почечных канальцах из белка, лейкоцитов, эритроцитов, эпителия. Выявление цилиндров, особенно белковых, может указывать на почечное происхождение белковой недостаточности.
  •   Белок в сыворотке крови. Исследование является «золотым стандартом» при изучении белкового обмена и подтверждении белковой недостаточности. Уровни белка в плазме крови и тканях находятся в состоянии равновесия. При потере тканевого белка уровень белков плазмы также снижается, что и определяет значимость этого параметра.
  •   Белковые фракции сыворотки крови. Определение количественного состава и соотношения видов белка в сыворотке крови. Общий белок сыворотки представлен альбуминами и глобулинами, выполняющими различные функции. Основную часть составляет альбумин – главный строительный белок организма. Колебания его уровня в наибольшей степени отражают состояние белкового обмена. Глобулины более специфичны по своему предназначению. Это белки защитной системы, маркеры воспалительных реакций и специальные транспортные белки. При различных патологических состояниях соотношение и количество белков того или иного вида может существенно меняться, а в некоторых случаях появляются дополнительные (патологические) белковые фракции. По соотношению отдельных фракций белкового состава крови в некоторой степени можно судить о причине белковой недостаточности. Например, при поражении печени и почек может снижаться уровень альбумина. Глобулины повышаются при воспалительных процессах, отражая активность воспаления или иммунной (защитной) системы. Снижение уровня глобулинов может указывать на заболевания почечных канальцев, а также наблюдаться при нарушенной функции печени и при угнетении иммунной системы организма (как при тяжелых формах сепсиса).
  •   Глюкоза (сахар крови). Определение уровня глюкозы может быть назначено при подозрении на белковую недостаточность, обусловленную сахарным диабетом. Поражение почек при сахарном диабете (диабетическая нефропатия), а также усиление распада белка могут быть причиной белковой недостаточности.
  •   Мочевина и креатинин в сыворотке крови. Это вещества, образующиеся в процессе распада белков. При интенсивном разрушении белка уровень их в крови может повышаться. Показатель следует оценивать вместе с уровнем мочевины в суточной моче.
  •   Мочевина в суточной моче отражает эффективность работы почек. При интенсивном распаде белка может существенно повышаться. Низкий уровень мочевины в моче при повышении его в крови больше характерен для почечной недостаточности.
  •   Креатинин в суточной моче – индикатор нарушения выделительной способности почек, о которой свидетельствует снижение его уровня. Для более точной оценки рассчитывается клиренс креатинина, представляющий собой соотношение его уровней в суточной моче и крови. При почечных формах белковой недостаточности этот показатель может существенно снижаться.
  •   Копрограмма – исследование кала, позволяющее выявить возможные нарушения основных этапов пищеварения. Оценивается химический состав каловых масс, их цвет, запах, консистенция, выявляются отдельные виды микроорганизмов (дисбактериоз). Анализ позволяет оценить активность основных ферментов печени, желудочного и кишечного сока, поджелудочной железы. При белковой недостаточности, вызванной нарушением усвоения белка, в каловых массах могут обнаруживаться непереваренные мышечные волокна.

Дополнительные (инструментальные) методы исследования

Объем диагностических исследований зависит от предполагаемой причины белковой недостаточности и должен определяться лечащим врачом. К числу основных методов диагностики относятся:

  •   Ультразвуковое исследование органов брюшной полости. Врач может назначить его, чтобы исключить заболевания печени и поджелудочной железы, а также почек. оно сочетает в себе высокую информативность и безопасность для пациента. Ультразвук проходит сквозь мягкие ткани до исследуемого органа и, отразившись, возвращается обратно. Полученное изображение передается на монитор. Исследование позволяет оценить размеры внутренних органов, структуру их тканей, выявить опухолевое поражение или кисту, исключить наличие жидкости в брюшной полости. При необходимости исследование может быть дополнено биопсией под УЗИ-контролем.
  •   Эзофагогастродуоденоскопия. Представляет собой непосредственный осмотр пищевода, желудка и двенадцатиперстной кишки. Оценивается проходимость верхних отделов пищеварительного тракта, состояние слизистой оболочки, степень ее воспаления или атрофии. В процессе исследования может быть взят фрагмент ткани на анализ (биопсия). Наряду с УЗИ гастроскопия является обязательной при подозрении на алиментарный характер белковой недостаточности.
  •   Суточная РН-метрия. Это изучение суточных колебаний кислотности желудочного сока. Зонд с размещенным на его конце датчиком помещается в желудок, и информация, поступающая с него, записывается портативным устройством, закрепленным на поясе пациента. Основная часть белка, поступающего с пищей, переваривается в желудке под воздействием соляной кислоты и пепсина – фермента, расщепляющего белок. Если кислотность желудочного сока снижена, переваривание белка может быть нарушено.
  •   Энтероскопия (интестиноскопия). Осмотр тонкой кишки. Исследование по своим возможностям аналогично гастроскопии, но технически более сложно, так как предусматривает осмотр всей тонкой кишки. Позволяет оценить состояние слизистой, исключить эрозивное поражение и взять содержимое на анализ для исключения инфекционного процесса.
  •   Колоноскопия – осмотр толстой кишки. При белковой недостаточности может назначаться пациентам с подозрением на опухоль кишечника или язвенные колиты, при которых вероятна значительная потеря белка.

Лечение

Лечение белковой недостаточности направлено на восполнение объема белка и нормализацию белкового обмена. Одновременно лечится основное заболевание.

Оно может включать в себя следующие пункты.

  •   Рекомендации по сбалансированной или обогащенной белком диете (с достаточным количеством животных белков). Включение в рацион мяса, яиц, рыбы, икры. Пациентам с белковой недостаточностью, обусловленной заболеваниями почек, печени, сахарным диабетом, диету должен подбирать лечащий врач, учитывая особенности течения основного заболевания. Такая коррекция режима питания может оказаться единственной необходимой мерой при легкой форме белкового дефицита.
  •   Медикаментозные средства:
  •   растворы, содержащие комплекс аминокислот, или белковые компоненты крови, предназначенные для внутривенного введения; лечение этими препаратами осуществляется под строгим контролем врача в условиях стационара;
  •   специальные смеси для питания могут назначаться пациентам с тяжелыми формами белкового дефицита при заболеваниях желудочно-кишечного тракта или в послеоперационном периоде; это специальные белковые коктейли, которые вводятся в желудок или двенадцатиперстную кишку по зонду при невозможности нормального питания;
  •   пищеварительные ферменты употребляются с заместительной целью пациентами, у которых их производится недостаточно.

Профилактика

  •   Рациональное питание с достаточным количеством растительных и животных белков.
  •   Обязательный врачебный контроль при диете, жестко ограничивающей рацион, или при курсах лечебного голодания.
  •   Своевременное выявление и лечение заболеваний, увеличивающих риск развития беловой недостаточности.

Рекомендуемые анализы

  •   Общий анализ крови
  •   Лейкоцитарная формула
  •   Скорость оседания эритроцитов (СОЭ)
  •   Общий анализ мочи с микроскопией
  •   Проба Реберга (клиренс эндогенного креатинина)
  •   Мочевина в суточной моче
  •   Креатинин в суточной моче
  •   Белок общий в моче
  •   Белок общий в сыворотке
  •   Белковые фракции в сыворотке
  •   Креатинин в сыворотке
  •   Мочевина в сыворотке
  •   Глюкоза в плазме
  •   Копрограмма

Рассматривая обмен веществ в условиях нормального функционирования организма, следует остановиться на безусловно взаимосвязанных, но в то же время достаточно специфичных составляющих метаболизма, а именно на углеводном, белковом, липидном и водно-электролитном обмене.

Очевидно, что основная роль углеводов в метаболизме определяется их энергетической функцией. Именно глюкоза крови вследствие наличия простого и быстрого пути гликолитической диссимиляции и последующего окисления в цикле трикарбоновых кислот, а также возможности максимально быстрого извлечения ее из депо гликогена, обеспечивающей экстренную мобилизацию энергетических ресурсов, является наиболее востребованным источником энергии в организме. Использование циркулирующей в плазме глюкозы разными органами неодинаково: мозг задерживает 12% глюкозы, кишечник— 9%, мышцы — 7%, почки — 5%. При этом уровень глюкозы плазмы крови является одной из важнейших гомеостатических констант организма, составляя 3, 3—5, 5 ммоль/л. Как известно снижение уровня глюкозы ниже допустимого передела имеет своим незамедлительным следствием дискоординацию деятельности ЦНС, проявляющуюся соответствующей клинической симптоматикой: головной мозг содержит небольшие резервы углеводов и нуждается в постоянном поступлении глюкозы, поскольку энергетические расходы мозга покрываются исключительно за счет углеводов. Глюкоза в тканях мозга преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту.

Единственной формой углеводов, которая может всасываться в кишечнике, являются моносахара. Они всасываются главным образом в тонкой кишке, током крови переносятся в печень и к тканям. Основная часть поступающей с пищей глюкозы (около 70%) окисляется в тканях до воды и углекислого газа, около 25—28% пищевой глюкозы превращается в жир и только 2—5% ее синтезируется в гликоген. Гликоген печени представляет собой основной резерв углеводов в организме, достигая по своей массе у взрослого человека 150—200 г. Синтез гликогена происходит достаточно быстро, что, наряду с быстрой мобилизацией гликогена и поступлением глюкозы в кровь в процессе гликогенолиза, является одним из механизмов поддержания гликемии в константных пределах. Помимо печени в качестве депо гликогена выступают также мышцы. Однако запас гликогена в мышечной массе по отношению к всему гликогену организма составляет всего 1 — 2%. В мышцах под влиянием фермента фосфорилазы, которая активируется в начале мышечного сокращения, происходит усиленное расщепление гликогена, являющегося одним из источников энергии мышечного сокращения. При распаде мышечного гликогена процесс идет до образования пировиноградной и молочной кислот. Этот процесс называют гликолизом. В фазе отдыха из молочной кислоты в мышечной ткани происходит ресинтез гликогена.

При полном отсутствии углеводов в пище они образуются в организме из продуктов трансформации жиров и белков. В печени возможно новообразование углеводов как из собственных продуктов их распада (пировиноградной или молочной кислоты), так и из продуктов диссимиляции жиров и белков (кетокислот и аминокислот), что обозначается как глюконеогенез. В результате трансформации аминокислот образуется пировиноградная кислота, при окислении жирных кислот — ацетилкоэнзим А, который может превращаться в пировиноградную кислоту — предшественник глюкозы. Это наиболее важный общий путь биосинтеза углеводов. Между двумя основными источниками энергии — углеводами и жирами — существует тесная физиологическая взаимосвязь. Повышение содержания глюкозы в крови увеличивает биосинтез триглицеридов и уменьшает распад жиров в жировой ткани. Поступление в кровь свободных жирных кислот уменьшается. В случае возникновения гипогликемии процесс синтеза триглицеридов тормозится, ускоряется распад жиров и в кровь в большом количестве поступают свободные жирные кислоты. Гликогенез, гликогенолиз и глюконеогенез являются тесно взаимосвязанными процессами, обеспечивающими оптимальный уровень глюкозы крови сообразно степени функционального напряжения организма.

Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Отсюда регулирующие влияния реализуются вегетативными нервами и гуморальным путем, включающим эндокринные железы. Единственным гормоном, снижающим уровень гликемии, является инсулин — гормон, вырабатываемый β-клетками островков Ланхгерганса. Снижение гликемии происходит за счет усиления инсулином синтеза гликогена в печени и мышцах и повышения потребления глюкозы тканями организма. Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов. Это глюкагон, продуцируемый α-клетками островков Ланхгерганса, адреналин — гормон мозгового слоя надпочечников, глюкокортикоиды — гормоны коркового слоя надпочечников, соматотропный гормон гипофиза, тироксин и трийодтиронин — гормоны щитовидной железы. Данные гормоны в связи с однонаправленностью их влияния на углеводный обмен и функциональным антагонизмом по отношению к эффектам инсулина часто объединяют понятием «контринсулярные гормоны».

Таким образом биологическая роль углеводов для организма человека определяется прежде всего их энергетической функцией. Обладая энергетической ценностью в 16, 7 кДж (4, 0 ккал) на 1 грамм вещества, углеводы являются основным источником энергии для всех клеток организма, при этом выполняя еще пластическую и опорную функции. Суточная потребность взрослого человека в углеводах составляет около 500 г.

Характерной особенностью белкового обмена является его чрезвычайная разветвленность. Достаточно указать, что в обмене 20 аминокислот, входящих в состав белковых молекул, в организме животных участвуют сотни промежуточных метаболитов, тесно связанных с обменом углеводов и липидов. Число ферментов, катализирующих химические реакции азотистого обмена, также исчисляется сотнями. Собственно белки (протеины и протеиды), высокомолекулярные соединения, построенные из мономеров — аминокислот, занимают ведущее место среди органических элементов организма, составляя более 50 % сухой массы клетки. Как известно, белки в организме выполняют ряд важнейших биологических функций, а именно:

— пластическая (структурная) функция заключается в том, что белки являются главной составной частью всех клеточных и межклеточных структур тканей;

— ферментная (каталитическая, энзимная) функция состоит в обеспечении всех химических реакций, протекающих в ходе обмена веществ в организме (дыхание, пищеварение, выделение), деятельностью ферментов, являющихся по своей структуре белками;

— транспортная функция белков заключается в их способности к соединению с целым рядом метаболитов и переносе последних в связанном состоянии в межтканевой жидкости и плазме крови к области их утилизации;

— защитная функция белков проявляется реализацией иммунного ответа образованием иммуноглобулинов (антител) и системы комплемента при поступлении в организм чужеродного белка, а также способностью к непосредственному связыванию экзогенных токсинов; белки системы гемостаза обеспечивают свертывание крови и остановку кровотечения при повреждении кровеносных сосудов;

регуляторная функция, направленная на сохранение гомеостаза с поддержанием биологических констатнт организма, реализуется буферными свойствами молекулы протеинов, белковой структурой клеточных рецепторов, активируемых в свою очередь регуляторными полипептидами и гормонами, также имеющими белковую структуру;

— двигательная функция, обеспечивается взаимодействием сократительных белков мышечной ткани актина и миозина;

энергетическая роль белков состоит в обеспечении организма энергией, образующейся при диссимиляции белковых молекул; при окислении 1 г белка в среднем освобождается энергия, равная 16, 7 кДж (4, 0 ккал).

В организме постоянно происходит распад и синтез белков. Единственным источником синтеза нового белка являются белки пищи. В пищеварительном тракте белки ферментативно расщепляются ферментами до аминокислот и абсорбируются в тонкой кишке. Транспорт их осуществляется двумя путями: через воротную систему печени, ведущую прямо в печень, и по лимфатическим сосудам, сообщающимся с кровью через грудной лимфатический проток. Максимальная концентрация аминокислот в крови достигается через 30 — 50 мин после приёма белковой пищи (углеводы и жиры замедляют всасывание аминокислот). Всасывание L-аминокислот (но не D-изомеров) — активный процесс, требующий затраты энергии. Аминокислоты переносятся через кишечную стенку от слизистой её поверхности в кровь. Перенос через щеточную кайму осуществляется целым рядом переносчиков, многие из которых действуют при участии Na+-зависимых механизмов симпорта, подобно переносу глюкозы.

Из аминокислот и простейших пептидов клетки тканей синтезируют собственный белок, который характерен только для данного организма. Белки не могут быть заменены другими пищевыми веществами, так как их синтез в организме возможен только из аминокислот. Вместе с тем белок может замещать собой жиры и углеводы, то есть использоваться для синтеза этих соединений. В тканях постоянно протекают процессы распада белка с последующим выделением из организма неиспользованных продуктов белкового обмена и параллельно с этим — синтез белков. Катаболизм большинства аминокислот начинается с отщепления α-аминогруппы результате реакций трансаминирования и дезаминирования. Чаще всего в реакциях трансаминирования участвуют аминокислоты, содержание которых в тканях значительно выше остальных — глутамат, аланин, аспартат и соответствующие им кетокислоты — αкетоглутарат, пируват и оксалоацетат. Основным донором аминогруппы служит глутамат. Реакции трансаминирования играют большую роль в обмене аминокислот. Поскольку этот процесс обратим, ферменты аминотрансферазы функционируют как в процессах катаболизма, так и биосинтеза аминокислот. Трансаминирование — заключительный этап синтеза заменимых аминокислот из соответствующих α-кетокислот, если они в данный момент необходимы клеткам. В результате происходит перераспределение аминного азота в тканях организма. Трансаминирование — первая стадия дезаминирования большинства аминокислот, то есть начальный этап их катаболизма. Образующиеся при этом кетокислоты окисляются в ЦТК или используются для синтеза глюкозы и кетоновых тел. При трансаминировании общее количество аминокислот в клетке не меняется. В свою очередь дезаминирование аминокислотреакция отщепления α-аминогруппы от аминокислоты, в результате чего образуется соответствующая α-кетокислота (безазотистый остаток) и выделяется молекула аммиака. Аммиак токсичен для ЦНС, поэтому в организме человека и млекопитающих он превращается в нетоксичное хорошо растворимое соединение — мочевину. В виде мочевины, а также в виде солей аммония аммиак выводится из организма. Безазотистый остаток используется для образования аминокислот в реакциях трансаминирования.

При катаболизме почти все природные аминокислоты сначала передают аминогруппу на а-кетоглутарат в реакции трансаминирования с образованием глутамата и соответствующей кетокислоты. Затем глутамат подвергается прямому окислительному дезаминированию под действием глутаматдегидрогеназы, в результате чего получаются а-кетоглутарат и аммиак. При необходимости синтеза аминокислот и наличии необходимых а-кетокислот обе стадии непрямого дезаминирования протекают в обратном направлении. В результате восстановительного аминирования а-кетоглутарата образуется глутамат, который вступает в трансаминирование с соответствующей а-кетокислотой, что приводит к синтезу новой аминокислоты. В случае использования белков в качестве источника энергии большинство аминокислот окисляются в конечном счёте через цикл лимонной кислоты до углекислого газа и воды. Прежде, чем эти вещества вовлекаются в заключительный этап катаболизма, их углеродный скелет превращается в двухуглеродный фрагмент в форме ацетил-КоА. Именно в этой форме большая часть молекул аминокислот включается в цикл лимонной кислоты.

Белки организма находятся в динамическом состоянии: из-за непрерывного процесса их разрушения и образования происходит обновление белков, скорость которого неодинакова для различных тканей. С наибольшей скоростью обновляются белки печени, слизистой оболочки кишечника, а также других внутренних органов и плазмы крови. Медленнее обновляются белки, входящие в состав клеток мозга, сердца, половых желез и еще медленнее — белки мышц, кожи и особенно опорных тканей (сухожилий, костей и хрящей). Важнейшими азотистыми продуктами распада белков, которые выделяются с мочой и потом, являются мочевина, мочевая кислота и аммиак. Преобладание в организме в данный момент времени синтеза или распада белка отражается понятием азотистого баланса — разностью между количеством азота, содержащегося в пище человека, и его уровнем в выделениях. Азотистым равновесием называют состояние, при котором количество выведенного азота равно количеству поступившего в организм. Азотистое равновесие наблюдается у здорового взрослого человека, если минимальное количество белков в пище соответствует 30-50 г/сут. Оптимальное количество поступления белка с пищей при средней физической нагрузке составляет около 100-120 г/сут. При положительном азотистом балансе количество азота в выделениях организма значительно меньше, чем содержание его в пище, то есть наблюдается задержка азота в организме. Положительный азотистый баланс отмечается у детей в связи с усиленным ростом, у женщин во время беременности, при усиленной спортивной тренировке, приводящей к увеличению мышечной массы, при заживлении обширных ран и при разрешении патологического процесса, связанного с выраженными системными нарушениями. Отрицательный азотистый баланс отмечается тогда, когда количество выделяющегося азота больше содержания его в пище, поступающей в организм. Отрицательный азотистый баланс наблюдается при белковом голодании, лихорадочных состояниях, нарушениях нейроэндокринной регуляции белкового обмена.

Некоторые аминокислоты не могут синтезироваться в организме человека и должны обязательно поступать с пищей в готовом виде. Эти аминокислоты принято называть незаменимыми, или эссенциальными. Экспериментально установлено, что из 20 входящих в состав белков аминокислот 12 синтезируются в организме (заменимые аминокислоты), а 8 не синтезируются (незаменимые аминокислоты) . К незаменимым аминоксилотам относятся: валин, метионин, треонин, лейцин, изолейцин, фенилаланин, триптофан и лизин. Две аминокислоты — аргинин и гистидин — у взрослых образуются в достаточных количествах, однако детям для нормального роста организма необходимо дополнительное поступление этих аминокислот с пищей. Поэтому их называют частично заменимыми. Две другие аминокислоты — тирозин и цистеин — условно заменимые, так как для их синтеза необходимы незаменимые аминокислоты. Тирозин синтезируется из фенилаланина, а для образования цистеина необходим атом серы метионина. Белки, содержащие весь необходимый набор аминокислот, называют биологически полноценными (табл. 1. 1. ). Наиболее высока биологическая ценность белков молока, яиц, рыбы, мяса. Биологически неполноценными называют белки, в составе которых отсутствует хотя бы одна аминокислота, которая не может быть синтезирована в организме. Неполноценными белками являются белки кукурузы, пшеницы, ячменя.

Таблица 1. 1. Аминокислоты, входящие в состав белков человека.

1. Незаменимые

Валин

Лейцин

Изолейцин

Треонин

Метионин

Фенилаланин

Триптофан

Лизин

2. Частично заменимые

Гистидин

Аргинин

3. Условно заменимые

Цистеин

Тирозин

4. Заменимые

Аланин

Аспарагиновая кислота

Аспарагин

Глутаминовая кислота

Глутамин

Пролин

Глицин

Серин

Жиры (липиды) по своей химической структуре представляют собой триглицериды — сложные эфиры глицерина и жирных кислот (табл. 1. 2). Изначально эти соединения были объединены в одну химическую группу по общему признаку растворимости: они не растворяются в воде, но растворяются в органических растворителях (эфир, спирт, бензол). Жиры делят на простые липиды (нейтральные жиры, воски), сложные липиды (фосфолипиды, гликолипиды, сульфолипиды) и стероиды (холестерин). Основная масса липидов представлена в организме человека нейтральными жирами — триглицеридами олеиновой, пальмитиновой, стеариновой, линолевой и линоленовой жирных кислот.

Таблица 1. 2. Классификация липидов организма человека.

1. Гликолипиды.

Содержат углеводный компонент.

2. Жиры.

Эфиры глицерина и высших жирных кислот. Химическое название — ацилглицерины. Преобладают триацилглицерины.

3. Минорные липиды.

Свободные жирные кислоты, жирорастворимые витамины, биологически активные вещества липидной природы — простагландины и др.

4. Стероиды.

В основе строения — полициклическая структура циклопентанпергидрофенантрен-стеран.

А. Стерины (спирты).

Наиболее важен холестерин.

В. Стериды.

Эфиры стеринов и высших жирных кислот. Наиболее распространены эфиры холестерина.

5. Фосфолипипы.

Отличительная особенность — остаток фосфорной кислоты в составе молекулы.

Жиры растительного и животного происхождения имеют различный состав жирных кислот, определяющий их физические свойства и физиолого-биохимические эффекты. Жирные кислоты подразделяются на два основных класса — насыщенные и ненасыщенные. Насыщенность жира определяется количеством атомов водорода, которое содержит каждая жирная кислота (или, иначе, количеством двойных связей С=С). Жирные кислоты со средней длиной цепи (С8-С14) способны усваиваться в пищеварительном тракте без участия желчных кислот и панкреатической липазы, не депонируются в печени и подвергаются β-окислению. Животные жиры могут содержать насыщенные жирные кислоты с длиной цепи до двадцати и более атомов углерода, они имеют твердую консистенцию и высокую температуру плавления. Как известно высокое потребление насыщенных жирных кислот является важнейшим фактором риска развития диабета, ожирения, атеросклероза. К мононенасыщенным жирным кислотам относятся миристолеиновая и пальмитолеиновая кислоты (жиры рыб и морских млекопитающих), олеиновая (оливковое, сафлоровое, кунжутное, рапсовое масла). Мононенасыщенные жирные кислоты помимо их поступления с пищей в организме синтезируются из насыщенных жирных кислот и частично из углеводов. Жирные кислоты с двумя и более двойными связями между углеродными атомами называются полиненасыщенными – ПНЖК. Особое значение для организма человека имеют такие ПНЖК как линолевая, линоленовая, являющиеся структурными элементами клеточных мембран и обеспечивающие нормальное развитие и адаптацию организма человека к неблагоприятным факторам окружающей среды. ПНЖК являются предшественниками образующихся из них биорегуляторов – эйкозаноидов. Двумя основными группами ПНЖК являются кислоты семейств ω-6 и ω-3. Жирные кислоты ω-6 содержатся практически во всех растительных маслах и орехах. ω-3 жирные кислоты также содержатся в ряде масел (льняном, из семян крестоцветных, соевом). Основным пищевым источником ω-3 жирных кислот являются жирные сорта рыб и некоторые морепродукты. Из ПНЖК ω — 6 особое место занимает линолевая кислота, которая является предшественником наиболее физиологически активной кислоты этого семейства — арахидоновой. Арахидоновая кислота является преобладающим представителем ПНЖК в организме человека и служит субстратом для синтеза простагландинов и лейкотриенов.

Источниками жира в организме являются экзогенный жир, поступающий с пищей, и эндогенный жир, синтезируемый в печени из углеводов. Жир, всасывающийся из кишечника, поступает преимущественно в лимфу и в меньшем количестве — непосредственно в кровь. Большая часть жиров в организме находится в жировой ткани, меньшая часть входит в состав клеточных структур. В жировой ткани жир, находящийся в клетке в виде включений, легко выявляется при микроскопическом и гистохимическом исследованиях. Жировые вакуоли в клетках — это резервный жир, используемый для обеспечения прежде всего энергетических потребностей клетки. Больше всего запасного жира содержится в жировой ткани, а также в некоторых органах, например в печени и мышцах. Количество запасного жира зависит от характера питания, количества пищи, конституциональных особенностей, а также от величины расхода энергии при мышечной деятельности; количество же протоплазматического жира является устойчивым и постоянным. В жировой ткани нейтральный жир депонируется виде триглицеридов. Сложные липиды — фосфолипиды и гликолипиды — входят в состав всех клеток, но в большей степени в состав клеток нервной ткани. Общее количество жира в организме человека колеблется в широких пределах и в среднем составляет 10—20% от массы тела, а в случае патологического ожирения может достигать 50%. Суточная потребность взрослого человека в нейтральном жире составляет 70—80 г. У человека состав и свойства жира относительно постоянны. При употреблении пищи, содержащей даже небольшое количество жира, в теле человека жир все же откладывается в депо. При этом эндогенный жир имеет некоторые видовые особенности, однако видовая специфичность жиров выражена несравнимо меньше, чем видовая специфичность белков.

Основная биологическая роль жиров — обеспечение пластического и энергетического обмена в организме. Пластическая роль липидов состоит в том, что они входят в состав клеточных мембран, в значительной мере определяя их свойства. Фосфатиды и стерины входят в состав клеточных структур, в частности клеточных мембран, а также ядерного вещества и цитоплазмы. Исключительно важное физиологическое значение имеют стерины, в частности холестерин. Это вещество входит в состав клеточных мембран, является источником образования желчных кислот, а также гормонов коры надпочечников и половых желез, витамина D. Печень является практически единственным органом, поддерживающим уровень фосфолипидов в крови и местом синтеза эндогенного холестерина. В плазме крови холестерин находится в составе липопротеидных комплексов, с помощью которых и осуществляется его транспорт. У взрослых людей 67—70% холестерина плазмы крови находится в составе липопротеидов низкой плотности (ЛПНП), 9—10% — в составе липопротеидов очень низкой плотности (ЛПОНП) и 20—24% — в составе липопротеидов высокой плотности (ЛПВП). Давно доказано, что именно липопротеиды определяют уровень холестерина и динамику его обмена.

Энергетическая роль жиров определяется их максимальной среди всех биологических молекул энергоемкостью, более чем в два раза превышающую таковую углеводов или белков. При окислении 1 г жира выделяется 37, 7 кДж (9, 0 ккал) энергии. В отличие от углеводов жиры составляют энергетический резерв организма. Преимущество жира в качестве энергетического резерва заключается в том, что жиры являются более восстановленными веществами по сравнению с углеводами (в молекулах углеводов при каждом углеродном атоме есть кислород — группы -CHOH-; у жира имеются длинные углеводородные радикалы, в которых преобладают группы -CH2- — в них нет кислорода). От жира можно отнять больше водорода, который затем проходит по цепи митохондриального окисления с образованием АТФ. Еще одним преимуществом жира как энергетического резерва, в отличие от углеводов, является гидрофобность — он не связан с водой. Это обеспечивает компактность жировых запасов — они хранятся в безводной форме, занимая малый объем. В среднем, у человека запас чистых триацилглицеринов составляет примерно 13 кг. Этих запасов могло бы хватить на 40 дней голодания в условиях умеренной физической нагрузки. Для сравнения: общие запасы гликогена в организме — примерно 400 г; при голодании этого количества не хватает даже на одни сутки.

Катаболизм жира включает в себя три этапа: 1) гидролиз жира до глицерина и жирных кислот (липолиз) ; 2) трансформация глицерина с последующим вступлением продуктов в гексозобифосфатный путь, а также окисление жирных кислот до ацетил-КоА; 3) вступление вышеуказанных продуктов в цикл трикарбоновых кислот. Кроме указанных этапов к катаболизму жиров относят также окисление кетоновых тел и перекисное окисление липидов. Обмен полученного в результате липолиза глицерина может осуществляться несколькими путями. Значительная часть образовавшегося при гидролизе липидов глицерина используется для ресинтеза триглицеридов. Второй путь обмена глицерина — включение продукта его окисления в гликолиз или в глюконеогенез. Окисление жирных кислот осуществляется различными путями, наиболее значимым из них является β-окисление. В ходе β-окисления последовательно происходит активация жирной кислоты на мембране митохондрии и ее связывание с молекулой карнитина, прохождение комплекса нв внутреннюю поверхность мембраны митохондрии, внутримитохондриальное окисление жирной кислоты с образованием ацетил-КоА и АТФ.

Одним из продуктов катаболизма жиров, имеющем важное значения для метаболизма в целом являются кетоновые тела. Кетоновые тела — группа органических соединений, являющихся промежуточными продуктами жирового, углеводного и белкового обменов. К кетоновым телам относят β-оксимасляную и ацетоуксусную кислоты и ацетон, имеющие сходное строение и способные к взаимопревращениям. Главным путем синтеза кетоновых тел, происходящего в основном в печени, считается реакция конденсации между двумя молекулами ацетил-КоА, образовавшегося при β-окислении жирных кислот или при окислительном декарбоксилировании пирувата (пировиноградной кислоты) в процессе обмена глюкозы и ряда аминокислот. Данный путь синтеза кетоновых тел более других зависит от характера питания и в большей степени страдает при патологических нарушениях обмена веществ. Из печени кетоновые тела поступают в кровь и с нею во все остальные органы и ткани, где они включаются в универсальный энергообразующий цикл — цикл трикарбоновых кислот, в котором окисляются до углекислоты и воды. Кетоновые тела используются также для синтеза холестерина, высших жирных кислот, фосфолипидов и заменимых аминокислот. При голодании, однообразном безуглеводистом питании и при недостаточной секреции инсулина использование ацетил-КоА в цикле трикарбоновых кислот подавляется, так как все метаболически доступные ресурсы организма превращаются в глюкозу крови. В этих условиях увеличивается синтез кетоновых тел. Следует подчеркнуть важную роль кетоновых тел в поддержании энергетического баланса. Кетоновые тела – поставщики «топлива» для мышц, почек и действуют, возможно, как часть регуляторного механизма с обратной связью, предотвращая чрезвычайную мобилизацию жирных кислот из жировых депо. Печень в этом смысле является исключением, она не использует кетоновые тела в качестве энергетического материала.

Процесс образования, отложения и мобилизации из депо жира регулируется нервной и эндокринной системами, а также тканевыми механизмами и тесно связаны с углеводным обменом. Так, повышение концентрации глюкозы в крови уменьшает распад триглицеридов и активизирует их синтез. Понижение концентрации глюкозы в крови, наоборот, тормозит синтез триглицеридов и усиливает их расщепление. Таким образом, взаимосвязь жирового и углеводного обменов направлена на обеспечение энергетических потребностей организма. При избытке углеводов в пище триглицериды депонируются в жировой ткани, при нехватке углеводов происходит расщепление триглицеридов с образованием неэтерифицнрованных жирных кислот, служащих источником энергии. В обмене жиров одна из важнейших ролей принадлежит печени. Печень — основной орган, в котором происходит образование кетоновых тел (бета-оксимасляная, ацетоуксусная кислоты, ацетон), используемых как альтернативный глюкозе источник энергии.

При обильном углеводном питании и отсутствии жиров в пище синтез жира в организме может происходить из углеводов. Источником углерода для синтеза жирных кислот служит ацетил-КоА, образующийся при распаде глюкозы в абсорбтивном периоде. В норме у человека 25—30% углеводов пищи превращается в жиры. Превращение белка в жирные кислоты происходит, вероятнее всего, также через образование углеводов. С другой стороны и нейтральные жиры в энергетическом отношении могут быть заменены углеводами. Тем не менее жиры необходимы для нормальной жизнедеятельности. Известно, что длительное исключение жиров из пищевого рациона может явиться причиной возникновения целого ряда тяжелых метаболических нарушений. Отчасти это связано с отсутствием поступления в организм жирорастворимых витаминов (A, D, E, K). Но основная причина метаболических нарушений кроется в возникновении в организме дефицита незаменимых жирных кислот. Некоторые ненасыщенные жирные кислоты (с числом двойных связей более 1), например линолевая, линоленовая и арахидоновая, в организме человека и некоторых животных не образуются из других жирных кислот и поэтому являются незаменимыми. Особенно остро реагирует организм на дефицит незаменимой линолевой кислоты СН3- (СН2) 4 — СН = СН — СН2 — СН = СН — (СН2) 7 — СООН. Возможно это связано с тем, что эта ненасыщенная жирная кислота в организме человека служит предшественником арахидоновой кислоты, которая в свою очередь необходима для синтеза универсальных биорегуляторов — простагландинов. Основными пищевыми источниками полиненасыщенных жирных кислот, в том числе линолевой, являются растительные масла.

Как указывалось выше метаболизм жиров контролируется нервной и эндокринной системами. Мобилизация жиров из депо происходит под влиянием гормонов мозгового слоя надпочечников — адреналина и норадреналина. Соматотропный гормон гипофиза также обладает жиромобилизирующим действием. Аналогично действует тироксин — гормон щитовидной железы. Тормозят мобилизацию жира глюкокортикоиды — гормоны коркового слоя надпочечника, вероятно, вследствие того, что они несколько повышают уровень глюкозы в крови. Действие инсулина связано с повышением активности внутриклеточной фосфодиэстеразы, что приводит к снижению концентрации цАМФ и угнетению липолиза. Таким образом, инсулин усиливает синтез жира и уменьшает скорость его мобилизации. Имеются данные, свидетельствующие о возможности прямых нервных влияний на обмен жиров. Симпатические влияния тормозят синтез триглицеридов и усиливают их распад. Парасимпатические влияния, напротив, способствуют отложению жира в депо.

31 мая 2016 г.

31.01.2022

Все мы слышали о белке — питательном веществе, которое мы чаще всего получаем из продуктов животного происхождения. Если вы веган или вегетарианец, вам, вероятно, довольно часто говорили, что вы не получаете достаточно белка, но насколько это правда? Может ли дефицит белка возникать и у людей, которые едят мясо, и в чем причина этого?

Какова роль белков в организме?

Белки — это сложные молекулы, которые играют в организме ряд важных ролей. Они состоят из тысяч более мелких частей, известных как аминокислоты, которые связаны между собой, как цепь. Есть 20 различных аминокислот, которые можно объединить в белок. Аминокислоты определяют структуру белка, а также его роль в организме.

Таким образом, существуют разные белки с разными функциями. Например, гормоны роста на самом деле являются белками, которые передают сигналы, координирующие биологические процессы между клетками, тканями и органами. Иммуноглобулин, с другой стороны, представляет собой антитело, которое может связываться с чужеродными частицами, такими как вирусы и бактерии, тем самым защищая организм.

Что такое нехватка белка в организме и почему это происходит?

Дефицит белка — это состояние, при котором организму не хватает одной или нескольких необходимых аминокислот. Обычно это происходит, когда человек не получает достаточно богатой белком пищи, но иногда причиной является проблема со здоровьем, такая как болезнь Крона или глютеновая болезнь (расстройство, препятствующее усвоению питательных веществ из пищи).

Количество белка, которое вам нужно съесть в течение дня, зависит от вашего возраста, самочувствия и уровня активности. Подходящая суточная доза для взрослых — около 0,8 грамма белка на килограмм.

Например человек, весящий 75 килограммов, должен потреблять около 60 граммов белка в день. Людям, которые более физически активны, например, спортсменам и бодибилдерам, необходимо есть больше белка. Разумеется, все это по согласованию со специалистом.

Симптомы белковой недостаточности

Недостаток белка может вызвать множество симптомов в зависимости от серьезности проблемы. Люди с более легкой формой расстройства обычно испытывают:

  • повышенный аппетит,
  • слабость,
  • усталость.

У тех, у кого есть серьезные проблемы с дефицитом белка, могут возникнуть:

  • снижение мышечной массы и атрофия мышц,
  • истончение волос,
  • ломкость ногтей,
  • сухость и шелушение кожи,
  • повышенный риск переломов костей,
  • проблемы роста и развития у детей.

Источники белка

Если вы заметили какой-либо из перечисленных выше признаков, вам следует обратиться к врачам, где после консультации, при необходимости, они сделают тест и определят, действительно ли у вас дефицит белка. Обычно врачи рекомендуют есть продукты, богатые белком, или, если причиной является проблема со здоровьем, вам назначат лечение.

Вы, наверное, слышали, что мясо — лучший источник белка, и это правда, но есть и другие продукты:

  • орехи (миндаль, кешью, фисташки),
  • семена льна и чиа,
  • ягоды,
  • бобовые (чечевица, фасоль, нут),
  • яйца,
  • морепродукты,
  • молочные продукты,
  • тофу,
  • соя,
  • некоторые овощи (брокколи, шпинат, спаржа, сладкий картофель).

Веганы и вегетарианцы часто считаются группой риска, когда дело доходит до дефицита белка. Причина этого в том, что наиболее распространенными источниками белка являются продукты животного происхождения. Но это не значит, что каждый веган или вегетарианец столкнется с этой проблемой.

Исследования показали, что те, кто не ест мясо и продукты животного происхождения, могут получать рекомендуемую суточную норму белка из продуктов растительного происхождения, таких как продукты, перечисленные выше.

Like this post? Please share to your friends:
  • Почему нужно читать книги аргументы к сочинению
  • Почему опасно повышение температуры тела свыше 40 градусов егэ
  • Почему нужно читать классическую литературу сочинение рассуждение
  • Почему опасно быть мечтателем сочинение белые ночи
  • Почему нужно ценить жизнь сочинение рассуждение