Подготовка к егэ по биологии дыхание

Строение легких

Легкие — парные органы, расположенные в грудной полости. Состоят из долей: правое легкое содержит три доли, левое — две.
Легочная ткань состоит из пузырьков — альвеол, в которых происходит жизненно важный процесс — газообмен между кровью и атмосферным воздухом.

Строение легких

Легкое покрыто оболочкой — плеврой, которая переходит с поверхности легких на внутренние стенки грудной клетки. Между двумя
листками плевры образуется плевральная полость, давление в которой ниже атмосферного (его называют отрицательным давлением), что имеет принципиальное значения для акта
вдоха и выдоха.

Газообмен в легких и тканях

Воздух перемещается по воздухоносным путям и, наконец, достигает мельчайшей структуры легкого — легочного пузырька, или альвеолы.
Стенка альвеолы оплетена густой сетью капилляров — сосудов с тонкой стенкой, через которую происходит диффузия газов: из
крови в альвеолу выходит углекислый газ, а в кровь из альвеолы поступает кислород.

Кислород, растворившийся в крови, по кровеносным сосудам достигает внутренних органов и тканей организма. Замечу, что
перемещаясь по крови, газы образуют соединения с гемоглобином эритроцитов:

  • Кислород (O2) — оксигемоглобин
  • Углекислый газ (CO2) — карбгемоглобин
  • Угарный газ (CO) — карбоксигемоглобин

Соединение гемоглобина с угарным газом гораздо устойчивее, чем остальные: угарный газ легко выигрывает в конкуренции
с кислородом и занимает его место. Этим объясняются тяжелые последствия отравлений угарным газом, который быстро скапливается
при пожаре в замкнутом помещении.

Траспорт газов в легких и тканях

По мере того, как кровь отдает углекислый газ и принимает кислород, из венозной крови (бедной кислородом) она превращается
в кровь артериальную. В тканях происходит обратный процесс: клетки нуждаются в кислороде, необходимом для тканевого дыхания,
а углекислый газ, побочный продукт обмена веществ, требует удаления из клетки в кровь.

Я часто спрашиваю учеников — «Что движет газом, что заставляет, к примеру, кислород перемещаться сначала из альвеолы в кровь,
а в тканях — из крови к клеткам?» Запомните, что этой движущей силой является разность парциальных давлений газов.

Парциальное давление газов в воздухе и крови

Парциальным давлением газа называют ту часть от общего объема газа, которая приходится на долю данного газа. Не рекомендую
вам заучивать таблицу, приведенную выше, но для понимания она весьма хороша.

Заметьте, парциальное давление кислорода в
альвеоле 100-110, а в венозной крови капилляра, оплетающего стенку альвеолы, давление кислорода 40. Таким образом, кислород
устремляется из области большего давления в область меньшего — из альвеолы в кровь.

Происходящие перемещения газов можно легко зафиксировать, измерив концентрацию газов во вдыхаемом и выдыхаемом человеком
воздухе. Вероятно, многие из этих данных вам не пригодятся, но призываю вас запомнить, что в окружающем воздухе 21% кислорода и 0,03% углекислого газа — это важная информация.

Состав вдыхаемого альвеолярного и выдыхаемого воздуха

Важное значение в транспорте газов имеет жидкость, покрывающая стенки альвеол — сурфактант. Изначально кислород растворяется
в сурфактанте и только после этого диффундирует через стенку капилляра, попадая в кровь. Сурфактант также препятствует
слипанию (спаданию) стенок альвеол во время выдоха.

Жизненная емкость легких

Одним из физиологически важных показателей является жизненная емкость легких (ЖЕЛ). ЖЕЛ — максимальное количество воздуха, которое
человек может выдохнуть после самого глубокого вдоха.

Этот показатель весьма вариабельный, в среднем ЖЕЛ взрослого человека около 3500 см3. У спортсменов ЖЕЛ
больше на 1000-1500 см3, а у пловцов может достигать 6500 см3. Чем больше ЖЕЛ, тем больше воздуха
поступает в легкие и кислорода — в кровеносную систему, что очень важно для клеток тканей во время занятий спортом.

ЖЕЛ легко измеряется с помощью специального прибора — спирометра (от лат. spirare — дышать).

Измерение ЖЕЛ с помощью спирометра

Механизм легочного дыхания

Между наружной поверхностью легкого и стенками грудной клетки имеется плевральная полость, которая играет важнейшую
роль в процессе вдоха и выдоха, а также уменьшает трение легких при дыхательных движениях.

Давление в плевральной полости всегда ниже на 5-7 мм. рт. ст. атмосферного давления, поэтому легкие постоянно находятся
в расправленном состоянии, скреплены через плевру со стенками грудной полости.

Плевральная полость

Вообразите: легкое подтягивается к плевре, которая скреплена с грудной клеткой. А грудная клетка постоянно совершает
дыхательные движения, расширяясь и сужаясь, таким образом, легкое следует за дыхательными движениями грудной клетки.

Остается разобраться, как происходят эти дыхательные движения? Причина этому — сокращения и расслабления межреберных мышц,
в результате которых грудная клетка соответственно — поднимается и опускается. Сейчас мы детально обсудим механизм вдоха и
выдоха.

При вдохе сокращаются наружные межреберные мышцы, при этом ребра поднимаются, и грудина отодвигается вперед — грудная клетка
расширяется в передне-заднем и фронтальном (в стороны) направлениях. Диафрагма — дыхательная мышца, во время вдоха
сокращается и опускается вниз: грудная клетка расширяется в вертикальном направлении.

При выдохе сокращаются внутренние межреберные мышцы, ребра опускаются, грудина отодвигается назад — грудная клетка
сужается в передне-заднем и фронтальном (в стороны) направлениях. Диафрагма во время выдоха
расслабляется и поднимается вверх: грудная клетка сужается в вертикальном направлении. Благодаря этим движениям осуществляется
вдох и выдох.

Механизм вдоха и выдоха

Можем ли мы брать под контроль свое дыхание? Легко. Но ведь мы далеко не всегда его контролируем даже в течение дня, не говоря
о ночи. Процессом дыхания управляет дыхательный центр, расположенный в продолговатом отделе головного мозга. Дыхательный центр обладает
автоматией — периодически импульсы сами поступают к дыхательным мышцам, к примеру — во время сна.

Состав крови сильно влияет на интенсивность дыхания. В многочисленных опытах было выявлено, что увеличение концентрации CO2
возбуждает дыхательный центр. Этим можно объяснить учащение дыхания во время физической нагрузки, к примеру, бега, когда в клетках мышц
ног идет активное образование CO2 и поступление его в кровь, дыхание учащается рефлекторно.

Рефлекторную регуляцию дыхания наиболее ярко доказывает опыт с перекрестным кровообращением, при котором соединены кровеносные
системы двух собак. При пережатии трахеи у первой собаки останавливается дыхание, и углекислый газ перестает удаляться из крови —
его концентрация в крови возрастает, что приводит к возникновению одышки (учащенного дыхания) у второй собаки.

Опыт с перекрестным кровообращением

Пневмоторакс

В норме давление в плевральной полости отрицательное, оно обеспечивает растяжение легких. Однако при ранениях грудной
клетки целостность плевральной полости может нарушаться: в таком случае давление в полости становится равным атмосферному.

Нарушение целостности плевральной полости называют — пневмоторакс (от др.-греч. πνεῦμα — дуновение, воздух и θώραξ — грудь).
При наступлении пневмоторакса легкие спадаются и перестают участвовать в дыхании.

Пневмоторакс

Горная и кессонная болезни

Альпинисты и любители горных походов (особенно новички) часто сталкиваются с горной болезнью. Это состояние возникает из-за того,
что при подъеме на высоту парциальное давление кислорода падает, и его концентрация в крови не соответствует потребностям организма
— ниже, чем должна быть.

Поначалу горная болезнь проявляется эйфорией (беспричинной радостью) и учащением пульса. Если покорение горных вершин продолжается,
то к этим симптомам постепенно присоединяется апатия (состояние равнодушия), мышечная слабость, судороги и головная боль.

Что же делать,
спросите вы? Необходимо немедленно прекратить дальнейший подъем, при усилении симптомов — начать спуск. Лучше всего предупредить
горную болезнь, следуя правилу — не увеличивать высоты ночевки более чем на 300-600 метров.

Горная болезнь

Кессонная болезнь возникает у водолазов, связана с увеличением парциального давления газа — азота, которое возникает при погружении под
воду. Существует закономерность: чем глубже водолаз опускается, тем больше становится растворенного в крови азота. В чем же опасность того, что
азот растворяется в крови?

При резком быстром подъеме растворимость азота в крови понижается, и кровь буквально вскипает. Только представьте, в сосудах
возникают настоящие пузыри газа! Они могут закупорить сосуды легких, сердца, других внутренних органов, в результате чего кровообращение
остановится, и последствия могут быть самыми печальными, вплоть до летального исхода.

Как же предупредить кессонную болезнь? Можно использовать в дыхательной смеси вместо азота газ гелий, который не приводит к таким
последствиям. Также необходимо придерживаться правила постепенного подъема, с остановками, избегать резкого всплытия.

Кессонная болезнь

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Строение и жизнедеятельность органов системы дыхания

Дыхание является одной из важнейших функций живого организма, которая обеспечивает высвобождение энергии химических связей органических соединений и образование конечных продуктов обмена — углекислого газа и воды. Если без пищи человек может прожить около 30 дней, без воды — 10, то без воздуха — до 6 минут, после чего наступают необратимые изменения в головном мозге. В организме человека и ряда животных дыхание является многостадийным процессом, в процессе которого воздух поступает в легкие, затем его кислород диффундирует в кровь, транспортируется из нее в ткани, проникает в клетки, где, наконец, и происходит непосредственно процесс высвобождения энергии, называемый тканевым дыханием.

Внешнее дыхание, или процесс газообмена между организмом и окружающей средой, целиком зависит от функционирования дыхательной системы. Кроме того, она играет важную роль в терморегуляции, осуществлении выделительной и речевой функций. Так, поддержание постоянства температуры тела связано с образованием водяного пара, отделение которого приводит к охлаждению тканей. Обнаружить выделение пара можно даже у спящего или находящегося в бессознательном состоянии человека, если поднести к его губам зеркало — оно обязательно запотеет. Когда же человек входит в холодную воду, происходит задержка дыхания, чтобы сохранить температуру тела. Выдыхаемый воздух, помимо углекислого газа и пара, содержит аммиак и другие летучие продукты обмена веществ, а с откашливаемой слизью может выделяться, например, мочевина. Формирование звуков также связано с дыхательной системой, поскольку именно в ней находятся голосовые связки, а в некоторых языках есть даже специальные носовые звуки.

Строение дыхательной системы. Дыхательная система человека состоит из дыхательных путей и легких. Дыхательные пути, в свою очередь, подразделяются на носовую полость, носоглотку, гортань, трахею и бронхи, разветвляющиеся в легких на многочисленные канальцы — бронхиолы.

Носовая полость открывается наружу ноздрями с одной стороны и сообщается с носоглоткой с другой. Она разделена носовой перегородкой на две симметричные половины — правую и левую, каждая из которых разделена на носовые раковины и ходы. Носовая полость выстлана реснитчатым эпителием с многочисленными железистыми клетками и обильно снабжается кровью. В ней воздух очищается от взвешенных частиц, в том числе возбудителей различных заболеваний, увлажняется и приводится к температуре тела (согревается или охлаждается). В верхней части носовой полости расположены обонятельные рецепторы, обеспечивающие восприятие запаха. Носовая полость сообщается и с околоносовыми пазухами, например гайморовой, участвующими в согревании воздуха и являющимися звуковыми резонаторами, и с носослезным протоком, по которому стекает часть слезной жидкости.

Носоглотка сообщается не только с носовой, но и с ротовой полостью, через нее воздух попадает в гортань.

Гортань — воронкообразный соединительнотканный орган, прикрытый хрящевым надгортанником. При попадании пищи на корень языка, когда происходит рефлекторный акт глотания, надгортанник должен закрыться, чтобы пища не попала в дыхательные пути.

Передняя часть гортани сформирована щитовидным хрящом, который у мужчин срастается под острым углом и формирует кадык, или адамово яблоко. В гортани расположены голосовые связки, обеспечивающие вместе с зубами, языком и губами членораздельную речь. У мужчин голосовые связки длиннее, чем у женщин, вследствие чего тембр голоса обыкновенно более низкий.

Трахея спереди защищена хрящевыми полукольцами, а сзади затянута эластичной соединительнотканной перегородкой, что обеспечивает беспрепятственное прохождение пищи по пищеводу, расположенному непосредственно за трахеей. В нижней части трахея разветвляется на два бронха — правый и левый.

Бронхи образованы хрящевыми кольцами. Входя в легкие, они начинают разветвляться на все более мелкие бронхи следующих порядков и бронхиолы, заканчивающиеся пузырьками — альвеолами, собранными в гроздевидные структуры.

Легкие — парные органы, лежащие в грудной полости, ограниченной грудной клеткой и диафрагмой. Ниже левого легкого находится сердце, поэтому левое легкое меньше правого. Легкие человека имеют альвеолярное строение. Стенки альвеол выстланы эпителием и густо оплетены капиллярами, они выделяют специальную жидкость, которая способствует газообмену и препятствует спаданию стенок альвеол. В альвеолах воздух отдает крови кислород и обогащается углекислым газом.

Легкие покрыты плеврой, имеющей два листка — наружный и внутренний, между которыми находится плевральная жидкость, уменьшающая силу трения при дыхательных движениях.

Механизм легочной вентиляции. В процессе дыхания вдох осуществляется в такой последовательности: сокращаются наружные межреберные мышцы, ребра поднимаются, диафрагма опускается, объем грудной клетки увеличивается, давление в грудной полости падает, что приводит к растяжению легких и втягиванию воздуха в них. Выдох происходит в обратном порядке: внутренние межреберные мышцы и мышцы живота сокращаются, ребра опускаются, диафрагма поднимается, объем грудной клетки уменьшается, объем легких сокращается и воздух выталкивается наружу.

Газообмен в тканях. Совершая вдох и выдох, человек вентилирует легкие, поддерживая в альвеолах относительно постоянный состав газов. Во вдыхаемом воздухе концентрация кислорода повышена, а в выдыхаемом — снижена. Содержание же углекислого газа в выдыхаемом воздухе, наоборот, выше, чем во вдыхаемом.

Состав альвеолярного воздуха отличается и от вдыхаемого, и от выдыхаемого, что объясняется смешиванием воздуха, входящего в легкие или покидающего их, с воздухом, содержащимся в самих дыхательных путях.

В легких кислород из альвеолярного воздуха переходит в кровь, а углекислый газ из крови — в легкие путем диффузии через стенки альвеол и кровеносных капилляров. Направление и скорость диффузии определяются парциальным давлением газа в воздухе, или его напряжением в растворе. Парциальным давлением газа называют часть общего давления газов, которая определяется данным газом. Разница между напряжением газов в венозной крови и их парциальным давлением в альвеолярном воздухе составляет для кислорода около 70 мм рт. ст., а для углекислого газа — 7 мм рт. ст. Эта разница позволяет обеспечить потребности организма даже во время физической работы и занятий спортом.

Кровь транспортирует кислород от легких к тканям и углекислый газ от тканей к легким в связанном с гемоглобином эритроцитов состоянии.

Обогащенная кислородом кровь поступает во все органы и ткани организма, где происходит диффузия кислорода в ткани, которая обусловлена разницей напряжения в крови и тканях. В клетках кислород используется в биохимических процессах тканевого дыхания — окислении органических соединений до углекислого газа и воды с образованием АТФ.

Дыхательные и легочные объемы. Вентиляция легких определяется глубиной дыхания (дыхательный объем) и частотой дыхательных движений. Для исследования характеристик дыхания используют специальные приборы — спирографы, спирометры и др.

Глубина дыхания и его частота зависят от физической нагрузки, степени тренированности, эмоционального состояния, условий окружающей среды и других причин. В покое они невелики (около 500 мл воздуха и 12–18 дыхательных движений в минуту соответственно), тогда как, например, на холоде газообмен усиливается, чем поддерживается постоянство температуры тела.

В связи с этим выделяют ряд легочных объемов и емкостей.

  1. Дыхательный объем — объем вдыхаемого и выдыхаемого воздуха в спокойном состоянии (в среднем около 500 мл).
  2. Резервный объем вдоха — дополнительный объем воздуха, который человек может вдохнуть после нормального вдоха (около 1 500 мл).
  3. Резервный объем выдоха — объем воздуха, который человек может еще выдохнуть после нормального выдоха (около 1 500 мл).
  4. Остаточный объем легких — объем воздуха, который остается в легких после самого глубокого выдоха (около 1 200 мл).
  5. Жизненная емкость легких — это объем воздуха, который можно выдохнуть после самого глубокого вдоха; является суммой дыхательного объема, резервных объемов вдоха и выдоха (3,5–4,7 л).
  6. Общая емкость легких — объем воздуха, содержащегося в легких после самого глубокого вдоха: является суммой жизненной емкости и остаточного объема легких (4,7–5 л).
  7. Функциональная остаточная емкость — объем воздуха, остающегося в легких после спокойного выдоха: сумма резервного объема выдоха и остаточного объема (2,7–2,9 л). Обеспечивает выравнивание колебаний концентраций газов во вдыхаемом и выдыхаемом воздухе.

Регуляция дыхания. С одной стороны, «дыхательные» нейроны посылают ритмические импульсы к межреберным мышцам и диафрагме, а с другой — чутко реагируют на сигналы, приходящие от разнообразных рецепторов. Часть рецепторов расположена в легких и дыхательных путях, реагирует на растяжение. Другие рецепторы находятся в продолговатом мозге и стенках сосудов и реагируют на изменение концентрации углекислого газа, кислорода, рН крови. Вдох вызывается увеличением концентрации углекислого газа в крови, а выдох стимулируется растяжением стенок дыхательных путей и легких. Несмотря на то, что дыхательный центр расположен в продолговатом мозге, «дыхательные» нейроны расположены и в более высоких отделах нервной системы. В целом дыхание является рефлекторным актом.

На интенсивность дыхания существенное влияние могут оказывать высшие дыхательные центры в коре больших полушарий переднего мозга, а также вегетативная нервная система. Так, ее симпатический отдел способствует учащению дыхания и увеличению глубины дыхания, а парасимпатический, наоборот, снижает его частоту и глубину.

В гуморальной регуляции дыхания задействован в основном гормон надпочечников — адреналин, возрастание концентрации которого способствует увеличению частоты и силы дыхательных движений.

Заболевания дыхательной системы. Так как дыхательная система непосредственно связана с окружающей средой, в нее проникают возбудители многочисленных заболеваний. Наиболее распространенными заболеваниями являются насморк, гайморит, фарингит, трахеит, бронхит, пневмония и туберкулез. Одни из них вызываются вирусами, а другие, такие как пневмония и туберкулез, — бактериями. В последнее время заболеваемость туберкулезом приобретает характер эпидемии.


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Длительное пребывание человека в помещении с высокой концентрацией угарного газа

1) существенно не влияет на способность крови переносить кислород и углекислый газ

2) приводит к увеличению способности крови снабжать тело кислородом

3) несущественно влияет на содержание кислорода в крови

4) приводит к резкому уменьшению количества кислорода, которое доставляется к клеткам тела


2

Почему увеличение концентрации угарного газа в помещении может вызвать у человека тяжёлое отравление

1) в окружающей среде уменьшается количество кислорода

2) образуется его стойкое соединение с гемоглобином

3) гемоглобин распадается на гем и глобин

4) значительно увеличивается концентрация угарного газа в тканях тела


3

Центр дыхательных рефлексов расположен в


4

У человека, растений, животных, грибов и большинства бактерий в процессе дыхания происходит

1) образование сложных органических веществ из неорганических

2) окисление органических веществ и освобождение энергии

3) значительное увеличение массы тела и его размеров

4) значительное уменьшение массы тела и изменение его размеров


5

Дышать следует через нос, так как в носовой полости

2) образуется много слизи

3) имеются хрящевые полукольца

4) воздух согревается и очищается

Пройти тестирование по этим заданиям

Дыхательная система человека — совокупность органов и тканей, обеспечивающих в организме человека обмен газов между кровью и внешней средой.

Функция дыхательной системы: 

  • поступление в организм кислорода;
  • выведение из организма углекислого газа;
  • выведение из организма газообразных продуктов метаболизма;
  • терморегуляция;
  • синтетическая: в тканях лёгких синтезируются некоторые биологически активные вещества: гепарин, липиды и др.;
  • кроветворная: в лёгких созревают тучные клетки и базофилы;
  • депонирующая: капилляры лёгких могут накапливать большое количество крови;
  • всасывательная: с поверхности лёгких легко всасываются эфир, хлороформ, никотин и многие другие вещества.

Дыхательная система состоит из лёгких и дыхательных путей.

Лёгочные сокращения осуществляются с помощью межрёберных мышц и диафрагмы.

Дыхательные пути: носовая полость, глотка, гортань, трахея, бронхи и бронхиолы.

Лёгкие состоят из лёгочных пузырьков — альвеол.

Рис. Дыхательная система

дыхательные пути

НОСОВАЯ ПОЛОСТЬ

Полости носа и глотки являются верхними дыхательными путями. Нос образован системой хрящей, благодаря которым носовые ходы всегда открыты. В самом начале носовых ходов располагаются мелкие волоски, которые задерживают крупные пылевые частицы вдыхаемого воздуха.  

Носовая полость выстлана изнутри слизистой оболочкой, пронизанной кровеносными сосудами. Она содержит большое количество слизистых желез (150 желез/см2см2слизистой оболочки). Слизь препятствует размножению микробов. Из кровеносных капилляров на поверхность слизистой оболочки выходит большое количество лейкоцитов-фагоцитов, которые уничтожают микробную флору.

Кроме того, слизистая оболочка может значительно изменяться в своем объёме. Когда стенки её сосудов сокращаются, она сжимается, носовые ходы расширяются, и человек легко и свободно дышит.

Слизистая оболочка верхних дыхательных путей образована мерцательным эпителием. Движение ресничек отдельной клетки и всего эпителиального пласта строго координировано: каждая предыдущая ресничка в фазах своего движения опережает на определённый промежуток времени последующую, поэтому поверхность эпителия волнообразно подвижна — «мерцает». Движение ресничек помогает сохранять дыхательные пути в чистоте, удаляя вредные вещества.

Рис. 1. Мерцательный эпителий дыхательной системы

В верхней части носовой полости находятся органы обоняния.

Функция носовых ходов:

  • фильтрация микроорганизмов;
  • фильтрация пыли;
  • увлажнение и согревание вдыхаемого воздуха;
  • слизь смывает все отфильтрованное в желудочно-кишечный тракт.

Полость разделена решётчатой костью на две половины. Костные пластинки разделяют обе половины на узкие, сообщающиеся между собой ходы.

В полость носа открываются пазухи воздухоносных костей: гайморова, лобная и др. Эти пазухи называются придаточными пазухами носа. Они выстланы тонкой слизистой оболочкой, содержащей небольшое количество слизистых желез. Все эти перегородки и раковины, а также многочисленные придаточные полости черепных костей резко увеличивают объём и поверхность стенок носовой полости. 

ПРИДАТОЧНЫЕ ПАЗУХИ НОСА

Далее ходы открываются двумя носоглоточными отверстиями (хоанами) в глотку,расположенную позади носовой и ротовой полости.

Нижняя часть глотки переходит в две трубки: дыхательную (спереди) и пищевод (сзади). Таким образом, глотка является общим отделом для пищеварительной и дыхательной системы.

ГОРТАНЬ

Верхнюю часть дыхательной трубки составляет гортань, расположенная в передней части шеи. Большая часть гортани также выстлана слизистой оболочкой из мерцательного (ресничного) эпителия. 

Гортань состоит из подвижно соединённых между собой хрящей: перстневидного, щитовидного (образует кадык, или адамово яблоко) и двух черпаловидных хрящей.

Надгортанник прикрывает вход в гортань в момент глотания пищи. Передним концом надгортанник соединён с щитовидным хрящом.

Рис. Гортань

Хрящи гортани соединены между собой суставами, а промежутки между хрящами затянуты соединительнотканными перепонками.

В гортани находятся голосовой аппарат, состоящий из голосовых связок и голосовых мышц; их функция — голосообразование. 

Рис. Голосовой аппарат

Голосовые связки покрыты многослойным плоским эпителием и слизистых желез не имеют. Увлажнение голосовых связок происходит благодаря оттеканию слизи из вышележащих отделов.

ГОЛОСООБРАЗОВАНИЕ

К гортани снаружи прилегает щитовидная железа.

Спереди гортань защищена передними мышцами шеи. 

ТРАХЕЯ И БРОНХИ

Трахея — дыхательная трубка длиной около 12 см.

Она составлена из 16−20 хрящевых полуколец, которые не смыкаются сзади; полукольца предотвращают спадание трахеи во время выдоха.

Задняя часть трахеи и промежутки между хрящевыми полукольцами затянуты соединительнотканной перепонкой. Позади трахеи лежит пищевод, стенка которого во время прохождения пищевого комка слегка выпячивается в её просвет.

Рис. Поперечный срез трахеи: 1 — мерцательный эпителий; 2 — собственный слой слизистой оболочки; 3 — хрящевое полукольцо; 4 — соединительнотканная перепонка

На уровне IV−V грудных позвонков трахея делится на два крупных первичных бронха,отходящих в правое и левое лёгкие. Это место деления носит название бифуркации (разветвления).

Через левый бронх перегибается дуга аорты, а правый огибается идущей сзади наперёд непарной веной. По выражению старых анатомов, «дуга аорты сидит верхом на левом бронхе, а непарная вена — на правом».

Хрящевые кольца, расположенные в стенках трахеи и бронхах, делают эти трубки упругими и неспадающимися, благодаря чему воздух по ним проходит легко и беспрепятственно. Внутренняя поверхность всего дыхательного пути (трахеи, бронхов и части бронхиол) покрыта слизистой оболочкой из многорядного мерцательного эпителия.

Устройство дыхательных путей обеспечивает согревание, увлажнение и очищение поступающего со вдохом воздуха. Частицы пыли мерцательным эпителием продвигаются кверху и с кашлем и чиханием удаляются наружу. Микробы обезвреживаются лимфоцитами слизистой оболочки.

лЁгкие

Лёгкие (правое и левое) находятся в грудной полости под защитой грудной клетки.

ПЛЕВРА

Лёгкие покрыты плеврой.

Плевра — тонкая, гладкая и влажная, богатая эластическими волокнами серозная оболочка, одевающая каждое из лёгких.

Различают лёгочную плевру, плотно срощенную с тканью лёгкого, и пристеночную плевру, выстилающую изнутри стенки грудной клетки. 

У корней лёгких лёгочная плевра переходит в пристеночную. Таким образом, вокруг каждого лёгкого образуется герметически замкнутая плевральная полость, представляющая узкую щель между лёгочной и пристеночной плеврой. Плевральная полость заполнена небольшим количеством серозной жидкости, играющей роль смазки, облегчающей дыхательные движения лёгких.

Рис. Плевра

СРЕДОСТЕНИЕ

Средостение — пространство между правым и левым плевральными мешками. Оно ограничено спереди грудиной с реберными хрящами, сзади — позвоночником.

В средостении располагаются сердце с крупными сосудами, трахея, пищевод, вилочковая железа, нервы диафрагмы и грудной лимфатический проток.

БРОНХИАЛЬНОЕ ДЕРЕВО

Глубокими бороздами правое лёгкое разделено на три доли, а левое — на две. У левого лёгкого на стороне, обращённой к срединной линии, имеется углубление, которым оно прилежит к сердцу. 

В каждое лёгкое с внутренней стороны входят толстые пучки, состоящие из первичного бронха, лёгочной артерии и нервов, а выходят по две лёгочные вены и лимфатические сосуды. Все эти бронхиально-сосудистые пучки, вместе взятые, образуют корень лёгкого. Вокруг лёгочных корней расположено большое количество бронхиальных лимфатических узлов.

Входя в лёгкие, левый бронх делится на две, а правый — на три ветви по числу лёгочных долей. В лёгких бронхи образуют так называемое бронхиальное дерево. С каждой новой «веточкой» диаметр бронхов уменьшается, пока они не становятся совсем микроскопическими бронхиолами с диаметром в 0,5 мм. В мягких стенках бронхиол имеются гладкие мышечные волокна и нет хрящевых полуколец. Таких бронхиол насчитывается до 25 млн.

Рис. Бронхиальное дерево

Бронхиолы переходят в ветвистые альвеолярные ходы, которые оканчиваются лёгочными мешочками, стенки которых усыпаны вздутиями — лёгочными альвеолами. Стенки альвеол пронизаны сетью капилляров: в них происходит газообмен.

Альвеолярные ходы и альвеолы обвиты множеством упругих соединительнотканных и эластических волокон, которые составляют также основу мельчайших бронхов и бронхиол, благодаря чему лёгочная ткань легко растягивается во время вдоха и снова спадается во время выдоха.

АЛЬВЕОЛЫ

Альвеолы образованы сетью тончайших эластических волокон. Внутренняя поверхность альвеол выстлана однослойным плоским эпителием. Стенки эпителия вырабатываютсурфактант — поверхностно-активное вещество, выстилающее изнутри альвеолы и препятствующее их спаданию. 

Под эпителием лёгочных пузырьков залегает густая сеть капилляров, на которые разбиваются конечные ветви лёгочной артерии. Через соприкасающиеся стенки альвеол и капилляров происходит газообмен при дыхании. Попав в кровь, кислород связывается с гемоглобином и разносится по всему организму, снабжая клетки и ткани. 

Рис. Альвеолы   

 

Рис. Газообмен в альвеолах

До рождения плод через лёгкие не дышит и лёгочные пузырьки находятся в спавшемся состоянии; после рождения с первым же вдохом альвеолы раздуваются и остаются расправленными на всю жизнь, сохраняя в себе некоторое количество воздуха даже при самом глубоком выдохе.

ПЛОЩАДЬ ГАЗООБМЕНА

 

физиология дыхания

Все процессы жизнедеятельности протекают при обязательном участии кислорода, т. е. являются аэробными. Особенно чувствительной к кислородной недостаточности является ЦНС, и прежде всего корковые нейроны, которые в бескислородных условиях погибают раньше других. Как известно, период клинической смерти не должен превышать пяти минут. В противном случае в нейронах коры головного мозга развиваются необратимые процессы. 

Дыхание — физиологический процесс обмена газов в лёгких и тканях.

Весь процесс дыхания можно разделить на три основных этапа:

  • лёгочное (внешнее) дыхание: газообмен в капиллярах лёгочных пузырьков;
  • транспорт газов кровью;
  • клеточное (тканевое) дыхание: газообмен в клетках (ферментативное окисление питательных веществ в митохондриях).

Рис. Лёгочное и тканевое дыхание

Эритроциты содержат гемоглобин, сложный железосодержащий белок. Этот белок способен присоединять к себе кислород и углекислый газ.

Проходя по капиллярам лёгких, гемоглобин присоединяет к себе 4 атома кислорода, превращаясь в оксигемоглобин. Эритроциты транспортируют кислород из лёгких в ткани организма. В тканях происходит освобождение кислорода (оксигемоглобин превращается в гемоглобин) и присоединение углекислого газа (гемоглобин превращается в карбогемоглобин). Далее эритроциты транспортируют углекислый газ к лёгким для удаления из организма.

Рис. Транспортная функция гемоглобина

Молекула гемоглобина образует стойкое соединение с оксидом углерода II (угарным газом). Отравление угарным газом приводит к гибели организма в связи с кислородной недостаточностью.

МЕХАНИЗМ ВДОХА И ВЫДОХА

Вдох — является активным актом, так как осуществляется при помощи специализированных дыхательных мышц.

К дыхательным мышцам относятся межрёберные мышцы и диафрагма. При глубоком вдохе используются мышцы шеи, груди и пресса.

Сами лёгкие мышц не имеют. Они не способны самостоятельно растягиваться и сокращаться. Лёгкие лишь следуют за грудной клеткой, которая расширяется благодаря диафрагме и межрёберным мышцам.

Диафрагма во время вдоха опускается на 3−4 см, вследствие чего объём грудной клетки увеличивается на 1000−1200 мл. Кроме того, диафрагма отодвигает нижние рёбра к периферии, что также ведёт к увеличению ёмкости грудной клетки. Причём чем сильнее сокращения диафрагмы, тем больше увеличивается объём грудной полости.

Межрёберные мышцы, сокращаясь, приподнимают рёбра, что также вызывает увеличение объёма грудной клетки.

Лёгкие, следуя за растягивающейся грудной клеткой, сами растягиваются, и давление в них падает. В результате создаётся разность между давлением атмосферного воздуха и давлением в лёгких, воздух устремляется в них — происходит вдох.

Выдох, в отличие от вдоха, является пассивным актом, так как в его осуществлении не принимают участие мышцы. При расслаблении межрёберных мышц рёбра под действием силы тяжести опускаются; диафрагма, расслабляясь, поднимается, занимая свое привычное положение, и объём грудной полости уменьшается — лёгкие сокращаются. Происходит выдох.

Лёгкие находятся в герметически закрытой полости, образованной лёгочной и пристеночной плеврой. В плевральной полости давление ниже атмосферного («отрицательное»). За счёт отрицательного давления лёгочная плевра плотно прижимается к пристеночной. 

Уменьшение давления в плевральном пространстве является основной причиной увеличения объёма лёгких во время вдоха, то есть является той силой, которая и растягивает лёгкие. Так, во время увеличения объёма грудной клетки давление в межплевральном образовании уменьшается, и вследствие разности давлений воздух активно поступает в лёгкие и увеличивает их объём.

Во время выдоха давление в плевральной полости возрастает, и в силу разности давлений воздух выходит, лёгкие спадаются. 

Грудное дыхание осуществляется преимущественно за счёт наружных межрёберных мышц.

Брюшное дыхание осуществляется за счёт диафрагмы.

У мужчин отмечается брюшной тип дыхания, а у женщин — грудной. Однако независимо от этого и мужчины, и женщины дышат ритмично. С первого часа жизни ритм дыхания не нарушается, изменяется лишь его частота.

Новорождённый ребёнок дышит 60 раз в минуту, у взрослого человека частота дыхательных движений в покое составляет около 16−18. Однако во время физической нагрузки, эмоционального возбуждения или при повышении температуры тела частота дыхания может значительно увеличиваться. 

Жизненная Ёмкость лЁгких

Жизненная ёмкость лёгких (ЖЕЛ) — это максимальное количество воздуха, которое может поступить и вывестись из лёгких во время максимального вдоха и выдоха.

Жизненная емкость лёгких определяется прибором спирометром.

У взрослого здорового человека ЖЕЛ меняется в пределах от 3500 до 7000 мл и зависит от пола и от показателей физического развития: например, объема грудной клетки.

ЖЕЛ состоит из нескольких объемов:

  1. Дыхательный объем (ДО) — это количество воздуха, которое поступает и выводится из лёгких при спокойном дыхании (500-600 мл).
  2. Резервный объем вдоха (РОВ) — это максимальное количество воздуха, которое может поступить в лёгкие после спокойного вдоха (1500 — 2500 мл).
  3. Резервный объем выдоха (РОВ) — это максимальное количество воздуха, которое может вывестись из лёгких после спокойного выдоха(1000 — 1500 мл).

регуляция дыхания

Дыхание регулируется нервными и гуморальными механизмами, которые сводятся к обеспечению ритмической деятельности дыхательной системы (вдох, выдох) и адаптационных дыхательных рефлексов, то есть изменению частоты и глубины дыхательных движений, имеющих место при изменяющихся условиях внешней среды или внутренней среды организма.

Ведущим дыхательным центром, как было установлено Н. А. Миславским в 1885 году, является дыхательный центр, расположенный в области продолговатого мозга.

Дыхательные центры обнаружены в области гипоталамуса. Они принимают участие в организации более сложных адаптационных дыхательных рефлексов, необходимых при изменении условий существования организма. Кроме того, дыхательные центры размещаются и в коре головного мозга, осуществляя высшие формы адаптационных процессов. Наличие дыхательных центров в коре головного мозга доказывается образованием дыхательных условных рефлексов, изменениями частоты и глубины дыхательных движений, имеющих место при различных эмоциональных состояниях, а также произвольными изменениями дыхания.

Вегетатвная нервная система иннервирует стенки бронхов. Их гладкая мускулатура снабжена центробежными волокнами блуждающих и симпатических нервов. Блуждающие нервы вызывают сокращение бронхиальной мускулатуры и сужение бронхов, а симпатические нервы расслабляют бронхиальную мускулатуру и расширяют бронхи.

Гуморальная регуляция: вдох осуществляется рефлекторно в ответ на повышение концентрацию углекислого газа в крови.

А1. Газообмен между кровью и атмосферным воздухом

происходит в

1) альвеолах легких

2) бронхиолах

3) тканях

4) плевральной полости

А2. Дыхание – это процесс:

1) получения энергии из органических соединений при участии кислорода

2) поглощения энергии при синтезе органических соединений

3) образования кислорода в ходе химических реакций

4) одновременного синтеза и распада органических соединений.

А3. Органом дыхания не является:

1) гортань 

2) трахея 

3) ротовая полость

4) бронхи

А4. Одной из функций носовой полости является:

1) задержка микроорганизмов 

2) обогащение крови кислородом

3) охлаждение воздуха             

4) осушение воздуха

А5. Гортань от попадания в нее пищи защищает(ют):

1) черпаловидный хрящ 

3) надгортанник

2) голосовые связки        

4) щитовидный хрящ

А6. Дыхательную поверхность легких увеличивают

1) бронхи

2) бронхиолы

3) реснички 

4) альвеолы

А7. Кислород поступает в альвеолы и из них в кровь путем

1) диффузии из области с меньшей концентрацией газа в область с большей концентрацией

2) диффузии из области с большей концентрацией газа в область с меньшей концентрацией

3) диффузии из тканей организма

4) под влиянием нервной регуляции

А8. Ранение, нарушившее герметичность плевральной полости приведет к

1) торможению дыхательного центра 

2) ограничению движения легких

3) избытку кислорода в крови            

4) избыточной подвижности легких

А9. Причиной тканевого газообмена служит

1) разница в количестве гемоглобина в крови и тканях

2) разность концентраций кислорода и углекислого газа в крови и тканях

3) разная скорость перехода молекул кислорода и углекислого газа из одной среды в другую

4) разность давлений воздуха в легких и плевральной полости

В1. Выберите процессы, происходящие при газообмене в легких

1) диффузия кислорода из крови в ткани

2) образование карбоксигемоглобина

3) образование оксигемоглобина

4) диффузия углекислого газа из клеток в кровь

5) диффузия атмосферного кислорода в кровь

6) диффузия углекислого газа в атмосферу

В2. Установите правильную последовательность прохождения атмосферного воздуха через дыхательные пути

А) гортань

В) бронхи

Д) бронхиолы

Б) носоглотка

Г) легкие

Е) трахея

3

ДЫХАТЕЛЬНАЯ СИСТЕМА ЧЕЛОВЕКА

Ц ель : Все животные и человек приспособились добывать энергию из синтезированных растениями органических веществ. Чтобы использовать энергию Солнца, заключённую в молекулах органических веществ, её необходимо высвободить, окислив эти вещества. Чаще всего в качестве окислителя используют кислород воздуха.

Этапы дыхания: Комплекс последовательных физиологических и физико-химических процессов, обеспечивающих дыхание, подразделяют на пять этапов.

1-й этап — внешнее дыхание, или вентиляция легких — процессы, обеспечивающие ритмическое поступление определенных объемов атмосферного воздуха в легкие (вдох) и удаление его из легких в атмосферу (выдох).

2-й этап — диффузия газов в легких (газообмен в легких) — процессы, обеспечивающие переход кислорода из альвеолярного воздуха в кровь и углекислого газа в обратном направлении.

3-й этаптранспорт газов кровью — процессы, обеспечивающие растворение кислорода и углекислого газа в крови, связывание их с гемоглобином и другими веществами и перенос с током крови.

4-й этап — диффузия газов в тканях (газообмен в тканях) — процессы, обеспечивающие диссоциацию оксигемоглобина в крови тканевых капилляров и диффузию кислорода из крови в тканевые структуры, а также диффузию углекислого газа в обратном направлении, его растворение и связывание с гемоглобином.

5-й этапклеточное дыхание — биохимические и физико-химические процессы, обеспечивающие аэробное окисление органических веществ с получением энергии, используемой для жизнедеятельности клетки. При этом образуются углекислый газ, вода и азотистые основания (при окислении белков).

Функционирование дыхательной системы:

Название отдела

Особенности строения

Функции

Полость носа и носоглотка

Извилистые носовые ходы. Слизистая снабжена капиллярами, покрыта мерцательным эпителием и имеет много слизистых железок. Есть обонятельные рецепторы. В полости носа открываются воздухоносные пазухи костей.

  • Согревание или охлаждение вдыхаемого воздуха.

  • Задерживание и удаление пыли.

  • Уничтожение бактерий.

  • Обоняние.

  • Рефлекторное чихание.

  • Проведение воздуха в гортань.

Гортань

Непарные и парные хрящи. Между щитовидным и черпаловидными хрящами натянуты голосовые связки, образующие голосовую щель. Надгортанник прикреплён к щитовидному хрящу. Полость гортани выстлана слизистой оболочкой, покрытой мерцательным эпителием.

  • Согревание или охлаждение вдыхаемого воздуха.

  • Надгортанник при глотании закрывает вход в гортань.

  • Участие в образовании звуков и речи, кашле при раздражении рецепторов от попадания пыли.

  • Проведение воздуха в трахею.

Трахея и бронхи

Трубка 10–13 см с хрящевыми полукольцами. Задняя стенка эластичная, граничит с пищеводом. В нижней части трахея разветвляется на два главных бронха. Изнутри трахея и бронхи выстланы слизистой оболочкой.

Обеспечивает свободное поступление воздуха в альвеолы лёгких.

Зона газообмена

Лёгкие

Парный орган — правое и левое. Мелкие бронхи, бронхиолы, легочные пузырьки (альвеолы). Стенки альвеол образованы однослойным эпителием и оплетены густой сетью капилляров.

Газообмен через альвеолярно-капилярную мембрану.

Плевра

Снаружи каждое лёгкое покрыто двумя листками соединительнотканной оболочки: легочная плевра прилегает к лёгким, пристеночная — к грудной полости. Между двумя листками плевры — полость (щель), заполненная плевральная жидкостью.

  • За счёт отрицательного давления в полости осуществляется растягивание лёгких при вдохе.

  • Плевральная жидкость уменьшает трение при движении лёгких.

Носовая полость

Воздухоносные пути начинаются с носовой полости, которая через ноздри соединяется с окружающей средой. От ноздрей воздух проходит по носовым ходам, выстланным слизистым, реснитчатым и чувствительным эпителием. Наружный нос состоит из костных и хрящевых образований и имеет форму неправильной пирамиды, которая изменяется в зависимости от особенностей строения человека. В состав костного скелета наружного носа входят носовые косточки и носовая часть лобной кости. Хрящевой скелет является продолжением костного скелета и состоит из гиалиновых хрящей различной формы. Полость носа имеет нижнюю, верхнюю и две боковые стенки. Нижняя стенка образована твёрдым нёбом, верхняя — решётчатой пластинкой решётчатой кости, боковая — верхней челюстью, слёзной костью, глазничной пластинкой решётчатой кости, нёбной костью и клиновидной костью. Носовой перегородкой полость носа разделена на правую и левую части.

Гортань

Гортань — один из отделов воздухоносных путей. Сюда из носовых ходов через глотку поступает воздух. В стенке гортани есть несколько хрящей: щитовидный, черпаловидный и др. В момент глотания пищи мышцы шеи поднимают гортань, а надгортанный хрящ опускается и закрывается гортань. Поэтому пища поступает только в пищевод и не попадает в трахею.

Трахея

Гортань переходит в трахею (дыхательное горло), которая имеет форму трубки длиной около 12 см, в стенках которого есть хрящевые полукольца, не позволяющие ей спадать. Задняя стенка её образована соединительнотканной перепонкой. Полость трахеи, как и полость других воздухоносных путей выстлана мерцательным эпителием, препятствующим проникновению в лёгкие пыли и других инородных тел. При дыхании мелкие частички пыли прилипают к увлажнённой слизистой оболочке трахеи, а реснички мерцательного эпителия продвигают их обратно к выходу из дыхательных путей.

Нижни й конец трахеи делится на два бронха, которые затем многократно ветвятся, входят в правое и левое лёгкие, образуя в лёгких «бронхиальное дерево».

Бронхи

В грудной полости трахея делится на два бронха — левый и правый. Каждый бронх входит в лёгкое и там делится на бронхи меньшего диаметра, которые разветвляются на мельчайшие воздухоносные трубочки — бронхиолы. Бронхиолы в результате дальнейшего ветвления переходят в расширения — альвеолярные ходы, на стенках которых находятся микроскопические выпячивания, называемые легочными пузырьками, или альвеолами. Стенки альвеол построены из особого тонкого однослойного эпителия.

Лёгкие

Лёгкие занимают почти всю полость грудной полости и представляют собой упругие губчатые органы. В центральной части лёгкого располагаются ворота, куда входят бронх, легочная артерия, нервы, а выходят легочные вены. Правое лёгкое делится бороздами на три доли, левое на две. Снаружи лёгкие покрыты тонкой соединительнотканной плёнкой — легочной плеврой, которая переходит на внутреннею поверхность стенки грудной полости и образует пристенную плевру. Между этими двумя плёнками находится плевральная щель, заполненная жидкостью, уменьшающей трение при дыхании.

В момент вдоха, когда сокращаются наружные межреберные мышцы и ребра поднимаются, наружный листок плевры отходит от внутреннего, вследствие чего увеличивается объем плевральной полости. Поскольку легкие всегда стремятся занять максимально возможный объем в грудной полости в связи с разностью давления внутри и снаружи органа, при увеличении объема плевральной полости происходят растяжение легких и поступление в них воздуха. Это приводит к увеличению эластической тяги легких и, следовательно, уменьшению внутриплеврального давления. Чем глубже вдох, тем больше уменьшается давление. В момент глубокого вдоха оно может достигать минус 12-15 мм рт. ст. (рис. 1).

Когда в межреберных мышцах заканчивается процесс возбуждения, они расслабляются и ребра пассивно возвращаются в исходное положение; точно так же прекращение сокращения диафрагмы приводит к тому, что она занимает свое прежнее куполообразное положение. Возвращение ребер и диафрагмы в исходное положение приводит к уменьшению объема грудной полости, а следовательно, к сдавлению легких. При возвращении ребер в исходное положение давление в плевральной полости повышается, т.е. в ней уменьшается отрицательное давление, так как уменьшается эластическая тяга легких. При глубоком выдохе оно становится равным минус 3-4 мм рт. ст. При сдавлении легких из них пассивно выходит воздух — осуществляется выдох.

Упругие свойства легких. Эластическая тяга легких обусловлена тремя факторами:

  • поверхностным натяжением пленки жидкости, покрывающей внутреннюю поверхность альвеол;

  • упругостью ткани стенок альвеол вследствие наличия в них эластических волокон;

  • тонусом бронхиальных мышц.

Если бы внутренняя поверхность альвеол была покрыта водным раствором, поверхностное натяжение должно было быть в 5-8 раз больше. В таких условиях наблюдалось бы полное спадение одних альвеол (ателектаз) при перерастяжении других. Этого не происходит потому, что внутренняя поверхность альвеол выстлана веществом, имеющим низкое поверхностное натяжение, так называемым сурфактантом, имеющим толщину 20-100 нм и состоящим из белков и липидов. Пленка сурфактанта обладает замечательным свойством: уменьшение размеров альвеол сопровождается снижением поверхностного натяжения; это важно для стабилизации альвеол.

Сурфактант необходим для начала дыхания при рождении ребенка. До рождения легкие находятся в спавшемся состоянии. Ребенок после рождения делает несколько сильных дыхательных движений, легкие расправляются, а сурфактант удерживает их от спадения (коллапса). Недостаток или дефекты сурфактанта вызывают тяжелое заболевание (синдром дыхательного дистресса).

Газообмен в альвеоле

Регуляция дыхания

Нервная Гуморальная

Кора Дыхательный центр Концентрация СО2 в крови

Нервная регуляция дыхания

Дыхательный центр

Координи­рованные дыхательные движения управляются из дыхательного центра в продолговатом мозге. Он состоит из двух половин, связанных между собою перемычками. Каждая половина координирует соответствующую половину грудной клет­ки. Это можно доказать в опыте на кошке, расщепив у нее продолговатый мозг по средней линии. Тогда правая и левая половина грудной клетки начинают дышать самостоятельно и с особым ритмом.

Дыхательный центр посылает им­пульсы к дыхательным мышцам не непосредственно, а через соот­ветствующие центры спинного мозга. В настоящее время в дыхательном центре различают участки, раздражение которых стимулирует вдох (так называемый центр вдоха), и участки, стимулирующие выдох (так называемый центр выдоха).

Автоматия дыхательного центра

Нервные импульсы из центра дыхания в продолговатом мозге поступают каждые 4-5 сек. в нервные центры, регулирующие движения диафрагмы и межреберных мышц, которые расположены в шейном и грудном отделе спинного мозга, и вызывают их возбуждение. Это возбуждение, передаваясь по нервным волокнам, приводит в движение диафрагму и межреберные мышцы. Таким образом осуществляется автоматическое регулирование процессов вдоха и выдоха.

Высший центр дыхания

Высший центр, который регулирует дыхание, расположен в коре больших полушарий головного мозга. При участии этого высшего центра человек может произвольно задерживать дыхание в течение определенного времени, однако избыточное накопление углекислого газа в результате задержки дыхания вызывает сильное возбуждение дыхательного центра в продолговатом мозге и дыхание автоматически возобновляется.

Высший центр дыхания координирует частоту и глубину дыхательных движений при различных состояниях человека, то есть во время разговора, пения, выполнения физических упражнений, ходьбы. Под влиянием эмоций — гнева, страха и пр.— дыхание учащается, а при испуге или боли может даже остановиться. В высшем центре коры больших полушарий образуются условные рефлексы дыхания.

Рефлекторная регуляция дыхания Рефлексы с полости носа

Большое значение для нормального функционирования дыха­тельного аппарата имеют рефлексы с воздухоносных путей. В верхних дыхательных путях воздух согревается, насыщается па­рами воды и очищается от пыли и бактерий. Этому способствует узость этих путей и постоянная гиперемия слизистой оболочки. У северного оленя, вынужденного при быстром беге глубоко и сильно дышать, имеется в трахее специальное приспособление в виде желваков из кровеносных сосудов, в значительной мере со­гревающих холодный воздух.

Слизистая оболочка носа очень чувствительна. Чувствитель­ность в ней разнообразная — термическая, болевая, тактильная, давления и пр. и более высокая, чем на коже. При раздражении слизистой оболочки носа вызывается ряд рефлексов секреторных, сосудистых, двигательных. Механическое раздражение слизистой оболочки носа ведет к рефлексу чихания, но сильное ее раздраже­ние может привести к остановке дыхания. Рефлексы, возникаю­щие при раздражении слизистой оболочки носа, оказывают боль­шое влияние на организм, так как незатрудненное, свободное носовое дыхание обеспечивает нормальное течение многих процес­сов.

Кашлевой рефлекс

Большое значение имеют рефлексы, идущие с гортани, чув­ствительным нервом которой является передний гортанный нерв. Слизистая оболочка дыхательных путей выстлана мерцатель­ным эпителием, который переносит случайно попавшие туда час­тицы к гортани. Раздражение гортани грубыми частицами вызывает рефлекс кашля — сильным выдох при одновременном сужении голосовой щели. При кашле сильной струей воздуха удаляются из трахеи раздражающие ее частицы.

Гуморальная регуляция дыхания Содержание углекислого газа в крови играет важную роль в регуляции дыхания. Увеличенное или уменьшенное содержание в крови углекислого газа, воздействуя на дыхательный центр гуморальным путем, принимает участие в регуляции дыхания. иперкапния

Гиперкапния – это увеличение содержания углекислого газа в крови.

Раздражителем центра дыхания является сдвиг реакции крови в кислую сторону, что наступает при недостатке кислорода или при избытке углекислого газа в крови – гиперкапнии. Гиперкапния может возникнуть, если большое количество людей будут находиться в помещении с закрытыми дверями и окнами долгое время, в результате чего в воздухе увеличится содержание углекислого газа. При дыхании этим воздухом в крови учащихся будет увеличиваться содержание углекислого газа, что приведет к сильному возбуждению дыхательного центра и учащению дыхания. Если класс немедленно не проветрить, то у учеников могут появиться головокружение, сонливость, зевота, общая слабость, одышка и другие нежелательные явления.

Гипокапния

Гипокапния – это снижение содержания углекислого газа в крови. Гипокапния приводит к уменьшению раздражения дыхательного центра, что выражается в урежении дыхания.

Гипокапнию можно вызвать, если с помощью нескольких глубоких выдохов снизить насыщенность крови углекислотой и тем самым понизить возбудимость центра дыхания, то дыхание прекращается на 20-30 секунд. Это состояние называют апноэ.

Понравилась статья? Поделить с друзьями:
  • Подготовка к егэ по биологии генетический код
  • Подготовка к егэ по биологии видеокурс
  • Подготовка к егэ по биологии биофак
  • Подготовка к егэ по биологии биосинтез белка
  • Подготовка к егэ по биологии аудиокурс слушать бесплатно