Подготовка к егэ по математике 2022 профильный уровень ященко

Укажите регион, чтобы мы точнее рассчитали условия доставки

Начните вводить название города, страны, индекс, а мы подскажем

Например: 
Москва,
Санкт-Петербург,
Новосибирск,
Екатеринбург,
Нижний Новгород,
Краснодар,
Челябинск,
Кемерово,
Тюмень,
Красноярск,
Казань,
Пермь,
Ростов-на-Дону,
Самара,
Омск

Главная » Математика » ЕГЭ 2022 Математика. Типовые тестовые задания. Профильный уровень. 14 вариантов — Ященко В.И.

ЕГЭ 2022 Математика. Типовые тестовые задания. Профильный уровень. 14 вариантов - Ященко В.И.

Авторы пособия — ведущие специалисты, принимающие непосредственное участие в разработке методических материалов для подготовки к выполнению контрольных измерительных материалов ЕГЭ. Пособие содержит 14 типовых вариантов экзаменационных заданий, составленных с учётом всех особенностей и требований Единого государственного экзамена по математике профильного уровня в 2022 году. Назначение пособия — предоставить читателям информацию о структуре и содержании контрольных измерительных материалов 2022 г. по математике профильного уровня, степени трудности заданий. В сборнике даны ответы на все варианты тестов и приводятся решения всех заданий одного из вариантов. Кроме того, приведены образцы бланков, используемых на ЕГЭ для записи ответов и решений. Пособие может быть использовано учителями для подготовки учащихся к экзамену по математике в форме ЕГЭ, а также старшеклассниками и выпускниками — для самоподготовки и самоконтроля.

  • Рубрика: Математика / ЕГЭ / ЕГЭ по математике
  • Автор: Ященко И.В.
  • Год: 2022
  • Для учеников: 11 класс
  • Язык учебника: Русский
  • Формат: PDF
  • Страниц: 73

Перейти к содержимому

ЕГЭ 2022 по математике, И.В. Ященко. 36 экзаменационных тренировочных вариантов (задания и ответы)И.В. Ященко, И.Р. Высоцкий, Е. А. Коновалов ЕГЭ-2022. Сборник тренировочных вариантов. Книга предназначена для подготовки учащихся к ЕГЭ по математике. В сборнике представлены: 36 типовых экзаменационных вариантов, составленных в соответствии с проектом демоверсии КИМ ЕГЭ 2022 года; ответы ко всем заданиям и критерии оценивания.

Читать онлайн и скачать сборник в формате PDF: Скачать


* Еще больше пособий ЕГЭ и ОГЭ
* Учебные материалы

Поделиться:

ЕГЭ 2022, Математика, Профильный уровень, Готовимся к итоговой аттестации, Семенов А.В., Трепалин А.С., Ященко И.В.

   Данное пособие предназначено для подготовки к Единому государственному экзамену по математике профильного уровня. Издание включает типовые задания но всем содержательным линиям экзаменационной работы, а также 30 тренировочных вариантов в формате ЕГЭ 2022 года.
Пособие поможет школьникам проверить свои знания и умения по предмету, а учителям — оценить степень достижения требований образовательных стандартов отдельными учащимися и обеспечить их целенаправленную подготовку к экзамену.

ЕГЭ 2022, Математика, Профильный уровень, Готовимся к итоговой аттестации, Семенов А.В., Трепалин А.С., Ященко И.В.

Примеры.
Некоторая компания продает свою продукцию по цене р = 400 руб. за единицу, переменные затраты на производство одной единицы продукции составляют v = 200 руб., постоянные расходы предприятия f = 500000 руб. в месяц. Месячная операционная прибыль предприятия (в рублях) вычисляется по формуле п(q) = q(p — v) — f. Определите месячный объём производства q (единиц продукции), при котором месячная операционная прибыль предприятия будет равна 300 000 руб.

После дождя уровень воды в колодце может повыситься. Мальчик измеряет время t падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле h = 5f2, где h — расстояние (в метрах), t — время падения (в секундах). До дождя время падения камешков составляло 1 с. На сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на 0,2 с? Ответ выразите в метрах.

На рисунке изображена схема вантового моста. Вертикальные пилоны связаны провисающей цепью. Тросы, которые свисают с цепи и поддерживают полотно моста, называются вантами. Введём систему координат: ось Оу направим вертикально вдоль одного из пилонов, а ось Ох направим вдоль полотна моста, как показано на рисунке. В этой системе координат линия, по которой провисает цепь моста, имеет уравнение у = 0,0043×2 — 0,8x + 42, где х и у измеряются в метрах. Найдите длину ванты, расположенной в 90 метрах от пилона. Ответ дайте в метрах.

СОДЕРЖАНИЕ.
Введение.
1. Алгебра.
1.1. Рационалные уравнения и выражения.
1.2. Иррациональные уравнения и выражения.
1.3. Степенные уравнения и выражения.
1.4. Тригонометрические уравнения и выражения.
1.5. Логарифмические уравнения и выражения.
1.6. Функции.
1.7. Вероятность.
2. Геометрия.
2.1. Длины.
2.2. Углы.
2.3. Тригонометрия.
2.4. Площади.
2.5. Стереометрия.
3. Начала математического анализа.
3.1. Геометрический и физический смысл производной.
3.2. Техника дифференцирования.
3.3. Исследование функций.
3.4. Первообразная.
4. Задачи повышенной сложности.
4.1. Тригонометрические уравнения.
4.2. Неравенства и системы неравенств.
4.3. Уравнения и неравенства с параметром.
4.4. Планиметрия.
4.5. Стереометрия.
4.6. Арифметика и алгебра.
4.7. Экономические задачи.
Тренировочные варианты Единого государственного экзамена. Профильный уровень.
Ответы.
Приложение 1. Решения заданий с развёрнутым ответом.
Тренировочный вариант 1.
Тренировочный вариант 6.
Тренировочный вариант 11.
Тренировочный вариант 16.
Тренировочный вариант 21.
Приложение 2. Решения заданий по теме «Вероятность».

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:

Скачать книгу ЕГЭ 2022, Математика, Профильный уровень, Готовимся к итоговой аттестации, Семенов А.В., Трепалин А.С., Ященко И.В. — fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу

Скачать
— pdf — Яндекс.Диск.

Дата публикации: 14.10.2021 06:02 UTC

Теги:

ЕГЭ по математике :: математика :: Семенов :: Трепалин :: Ященко


Следующие учебники и книги:

  • ЕГЭ 2022, Математика, Профильный уровень, 50 вариантов, Типовые варианты, Ященко И.В., Волчкевич М.А.
  • Устное решение задач по теме Объем цилиндра при подготовке к ЕГЭ, Щербакова Э.Н., Вертелецкая О.В., 2021
  • ЕГЭ 2022, Математика, 100 баллов, Профильный уровень, Экономические задачи, Садовничий Ю.В.
  • ЕГЭ 2022, Математика, 100 баллов, Профильный уровень, Практическое руководство, Ерина Т.М.

Предыдущие статьи:

  • ЕГЭ 2022, Математика, Профильный уровень, 14 вариантов, Типовые варианты, Ященко И.В., Волчкевич М.А., Ворончагина О.А.
  • ЕГЭ 2022, Математика, Базовый уровень, 12 вариантов, Типовые тестовые задания, Перспективная модель, Антропов А.В., Ворончагина О.А., Высоцкий И.Р.
  • ЕГЭ, Математика, Базовый уровень, Готовимся к итоговой аттестации, Семенов А.В., Ященко И.В., Высоцкий И.Р., 2022
  • Математика, ЕГЭ, Профильный уровень, Сборник задач, Золотарёва Н.Д., Золотарёв А.Б., 2021

ЕГЭ 2022, полный разбор 36 варианта Ященко ФИПИ школе 36 вариантов. Решаем типовые варианты от Ященко 2022 года ЕГЭ профиль!

Решаем 36 вариант Ященко 2022 года сборника ФИПИ школе 36 вариантов. Разбор 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 задания.

Больше разборов на моем ютуб-канале

Задание 1

Найдите корень уравнения $$sqrt{frac{6}{4x-54}}=frac{1}{7}.$$

Ответ: 87

Скрыть

$$(sqrt{frac{6}{4x-54}})^2=(frac{1}{7})^2$$

$$frac{6}{4x-54}=frac{1}{49}$$

$$4x – 54 = 294$$

$$4x = 294 + 54$$

$$4x = 348$$

$$x = 87$$

Задание 2

На рок-фестивале выступают группы — по одной от каждой из заявленных стран, в том числе группы из Италии, Германии, Австрии и Испании. Порядок выступления определяется жребием. Какова вероятность того, что группа из Германии будет выступать позже групп из Италии, Австрии и Испании? Ответ округлите до сотых.

Ответ: 0,25

Скрыть

Если поставить Германию после трех групп, то количество перестановок без повторений из этих 3 групп (Италии, Австрии и Испании) будет равно 3! . Заметим, что это благоприятствующие исходы m.

А общее количество перестановок из всех 4 групп равно 4! это n.

Таким образом, вероятность того,  что группа из Германии будет выступать позже групп из Италии, Австрии и Испании будет равна

$$P(A)=frac{3!}{4!}=frac{1cdot2cdot3}{1cdot2cdot3cdot4}=frac{1}{4}=0,25$$

Задание 3

Основания равнобедренной трапеции равны 24 и 10. Радиус описанной окружности равен 13. Центр окружности лежит внутри трапеции. Найдите высоту трапеции.

Ответ: 17

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 4

Найдите значение выражения: $$3^{2+log_{3}7}$$

Ответ: 63

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 5

В основании прямой призмы лежит прямоугольный треугольник с катетами 5 и 6. Боковые рёбра призмы равны $$frac{4}{pi}$$. Найдите объём цилиндра, описанного около этой призмы.

Ответ: 61

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 6

Прямая $$y=-5x+6$$ является касательной к графику функции $$28x^2+23x+c$$. Найдите с.

Ответ: 13

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 7

Груз массой 0,58 кг колеблется на пружине. Его скорость $$v$$ (в м/с) меняется по закону $$v=v_{0}sin frac{2pi t}{T}$$, где t — время с момента начала колебаний в секундах, Т=6 с — период колебаний, $$v_{0}$$=2 м/с. Кинетическая энергия Е (в Дж) груза вычисляется по формуле $$E=frac{mv^{2}}{2}$$, где m —  масса груза (в кг), $$v$$ — скорость груза (в м/с). Найдите кинетическую энергию груза через 4 секунды после начала колебаний. Ответ дайте в джоулях.

Ответ: 0,87

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 8

Каждый из двух рабочих одинаковой квалификации может выполнить заказ за 21 час. Через 5 часов после того, как один из них приступил к выполнению заказа, к нему присоединился второй рабочий, и работу над заказом они довели до конца уже вместе. Сколько часов потребовалось на выполнение всего заказа?

Ответ: 13

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 9

На рисунке изображена часть графика функции $$f(x)=|kx+b|.$$ Найдите $$f(-15).$$

Ответ: 1,2

Скрыть

$$f(x)$$ проходит через $$(-2;4)$$ и $$(-7;2).$$

При этом изображено «положительное» раскрытие модуля, т. е. $$f(x)=kx+b,kgeq0.$$

Получим:

$$left{begin{matrix} 4=-2k+b\ 2=-7k+b end{matrix}right.Leftrightarrowleft{begin{matrix} k=0,4\ b=4,8 end{matrix}right.$$

Получим:

$$f(x)=|0,4x+4,8|, тогда: f(-15)=|0,4cdot(-15)+4,8|=|-1,2|=1,2.$$

Задание 10

В викторине участвуют 15 команд. Все команды разной силы, и в каждой встрече выигрывает та команда, которая сильнее. В первом раунде встречаются две случайно выбранные команды. Ничья невозможна. Проигравшая команда выбывает из викторины, а победившая команда играет со следующим случайно выбранным соперником. Известно, что в первых 8 играх победила команда А. Какова вероятность того, что эта команда выиграет девятый раунд?

Ответ: 0,9

Скрыть

Если команда «А» выиграла n раундов, то вероятность, что команда «А» выиграет в n+1 раунде:

$$1-frac{1}{n+2}$$

Тогда:

$$1-frac{1}{8+2}=1-frac{1}{10}=1-0,1=0,9$$

Задание 11

Найдите наименьшее значение функции $$y=6+frac{sqrt{3}pi}{2}-3sqrt{3}x-6sqrt{3}cos x$$ на отрезке $$[0;frac{pi}{2}]$$

Ответ: -3

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 12

а) Решите уравнение: $$cos 4x-sin 2x=0$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $$[0;pi]$$

Ответ: а)$$frac{pi}{12}+frac{pi k}{3}, kin Z$$ б)$$frac{pi}{12};frac{5pi}{12};frac{3pi}{4}$$

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 13

В правильной четырёхугольной пирамиде SABCD все рёбра равны 1. Точка F — середина ребра SB, G — середина ребра SC.

а) Постройте прямую пересечения плоскостей ABG и GDF.

б) Найдите угол между плоскостями ABG и GDF.

Ответ: $$arccos frac{9}{11}$$

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 14

Решите неравенство: $$9^{x}-10cdot 3^{x+1}+81geq 0$$

Ответ: $$(-infty;1]cup[3;+infty)$$

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 15

31 декабря 2014 года Михаил взял в банке некоторую сумму в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Михаил переводит в банк 2 928 200 рублей. Какую сумму взял Михаил в банке, если он выплатил долг четырьмя равными платежами (то есть за четыре года)?

Ответ: 9 282 000 рублей

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 16

Четырёхугольник ABCD вписан в окружность, причём сторона CD — диаметр этой окружности. Продолжение перпендикуляра AH к диагонали BD пересекает сторону CD в точке E, а окружность — в точке F, причём H — середина AE.

а) Докажите, что четырёхугольник BCFE — параллелограмм.

б) Найдите площадь четырёхугольника ABCD, если известно, что АВ=6 и АН=$$2sqrt{5}$$.

Ответ: $$48+18sqrt{5}$$

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 17

Найдите все значения а, при каждом из которых функция

$$f(x)=x^{2}-4|x-a^{2}|-8x$$

имеет хотя бы одну точку максимума.

Ответ: $$ain(-sqrt{6};-sqrt{2})cup(sqrt{2};sqrt{6})$$

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 18

Имеется 8 карточек. На них записывают по одному каждое из чисел -1, 3, 4, -5, 7, -9, -10, 11. Карточки переворачивают и перемешивают. На их чистых сторонах заново пишут по одному каждое из чисел -1, 3, 4, -5, 7, -9, -10, 11. После этого числа на каждой карточке складывают, а полученные восемь сумм перемножают.

а) Может ли в результате получиться 0?

б) Может ли в результате получиться 1?

в) Какое наименьшее целое неотрицательное число может в результате получиться?

Ответ: нет; нет; 16

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Понравилась статья? Поделить с друзьями:
  • Подготовка к егэ по истории мгу
  • Подготовка к егэ по литературе шолохов
  • Подготовка к егэ по истории курсы в туле
  • Подготовка к егэ по литературе термины
  • Подготовка к егэ по истории кратко самое главное