Подводные камни егэ по физике

В прошлом году набрать 80 баллов по физике смогли не более 9,9 % выпускников. Как попасть в их число? Советы по выбору литературы и подводные камни, встречающиеся в вопросах экзамена – обо всем расскажем в этой статье.

В этом материале:

  1. Урок ЕГЭ по физике: структура КИМа
  2. Уроки ЕГЭ по физике: где легче всего набрать баллы
    2.1. Фотоэффект
    2.2. Тепловые машины
    2.3. Вопрос 22
    2.4. Вопрос 23
    2.5. Вопросы 1-5
  3. Уроки ЕГЭ по физике: какие задания требуют повышенного внимания
    3.1. Электричество
    3.2. Движение по параболе
    3.3. Магнетизм
  4. Уроки ЕГЭ по физике: самые распространенные ошибки на экзамене
    4.1. Неверная единица измерения
    4.2. Не решать часть С
    4.3. Забыли указать единицу измерения
    4.4. Ошибки в оформлении
    4.5. Решение без указания формул
    4.6. Использование сторонних формул
  5. Уроки ЕГЭ по физике: как сдать экзамен на 80+ баллов
  6. Уроки ЕГЭ по физике: небольшие советы, как сдать экзамен
  7. Уроки ЕГЭ по физике: подводные камни второй части КИМа
  8. Уроки ЕГЭ по физике: список часто задаваемых вопросов

Урок ЕГЭ по физике: структура КИМа

Экзаменационный бланк состоит из 30 заданий, разделенных на две части. Первая часть включает в себя 23 задания, вторая – 7. Выпускнику выделяется время на написание – 3 часа 55 минут.

Вопросы отличаются по трудности. Проще всего набрать баллы в первых 19 заданиях, остальные 7 и 4 задания повышенной и высокой сложности соответственно.

Первая часть имеет тестовый характер. Это значит, что экзаменуемому нужно будет вписать в бланк только конечный результат. Во второй части выпускнику предстоит решать задачу прямо в КИМе. Тестовая часть поделена на главные разделы физики. Первые два задания обычно самые легкие, но в них попадаются задачи любой группы.

С 3 по 8 вопросы проверяются знания кинематики, далее и до 13 задания включительно экзаменуемому предлагаются задачи по термодинамике. Следующие и до 19 вопроса – электродинамика, затем – квантовая физика, а в последних двух вопросах могут попасться любые темы.

Вторая часть также разделена, но не сильно. В 24 вопросе предлагается решить качественную задачу, в 25 – задание на знание механики, 26 – электричество, квантовая физика или сила магнетизма.

В заданиях повышенной сложности обычно дается молекулярно-кинетическая теория, плюс, вопросы из других разделов – все это 27 вопрос. В 28-м необходимо выполнить задание на магнетизм или электричество. 29 и 30 задание требуют особого внимания, поскольку они относятся к повышенному уровню сложности. В 29-м разбирается оптика или магнетизм, а в 30-м – механика.

Благодаря анализу прошлогодних уроков и ЕГЭ по физике можно точно определить, какие темы будут затронуты во второй части:

  • Если в 24 вопросе предлагается решить задачу на механику, значит, в следующем вопросе эта тема затронута не будет. Скорее всего, 25 вопрос будет основан на молекулярно-кинетической теории.
  • Если в 24 вопросе предлагается решить задачу на оптику, значит, в 29 задании ее не будет. 28 вопрос может содержать задачу на электричество, 29 – на магнетизм.
  • В 29 задании несколько лет применяется два типа задач – квантовая физика и оптика. В прошлом году была затронута первая тема, значит, вероятнее всего, в 2022 году выпускников ожидает вопрос на знание оптики.

На экзамен следует взять линейку и калькулятор. Последний можно брать только в том случае, если прибор непрограммируемый. Для надежности лучше взять сертификат безопасности калькулятора – это такой лист, где указывается, что вычислительный прибор разрешено применять на уроках и ЕГЭ по физике.

Но выбирайте такой калькулятор, который может вычислять тригонометрические функции, чтобы меньше времени уделять вычислениям.

Для сдачи ЕГЭ нужен подходящий калькулятор

Уроки ЕГЭ по физике: где легче всего набрать баллы

Физика – один из самых сложных экзаменов на ЕГЭ. Он требует обширных знаний, запоминания большого количества формул и понимания физических законов. Однако в тестовой части есть ряд простых заданий, на которых можно заработать легкие баллы.

Фотоэффект

Большинство вопросов направлено на знание законов механики. Задания, связанные с фотоэффектом, этого не требуют. По этой теме не так много вопросов, но если запомнить буквально 2-3 формулы, можно считать, что задачи уже решены.

Тепловые машины

Зная только эту тему, выпускник наберет около 10 баллов. Задачи на КПД встречаются как в первой, так и во второй части. Здесь предстоит вспомнить формулу определения КПД, количества теплоты, знание циклов тепловых машин и уравнение теплового баланса.

Вопрос 22

В этом задании выпускник может получить легкий балл, даже если почти не знает физику. Вопрос основывается на определении погрешности прибора по рисунку. От экзаменуемого не требуется почти никаких знаний – достаточно просто посмотреть на картинку и записать результат в бланк.

Вопрос 23

Выпускнику предстоит вспомнить подготовительные уроки ЕГЭ по физике. Задание связано с выполнением лабораторных работ. Нужно выявить зависимость между физическими величинами или выбрать подходящий прибор для их измерения.

Вопросы 1-5

Как правило, это одни из самых легких вопросов. Выпускник должен будет воспользоваться базовыми формулами, знать законы и принцип действия статики, кинематики и динамики. Также предлагается работа с графиками.

Уроки ЕГЭ по физике: какие задания требуют повышенного внимания

В каждой части есть вопросы с подвохом, с которыми нужно быть предельно осторожными.

Электричество

Задачи на электричество занимают около 25 % всех заданий. Проблемы возникают при расчете электрических цепей. В вопросах встречаются разные приборы, включенные в одну схему. Для того чтобы подготовиться к решению, необходимо выучить базу: сила и сопротивление тока, как действует напряжение, ЭДС и основные законы.

Движение по параболе

Большинство ошибок связано с этим типом заданий. Нужно держать в голове много формул, решать сложные уравнения. Особого внимания требуют проекции сил на оси, поскольку в них легко запутаться.

Для решения задач лучше заранее набить руку на выводе формул. Знание, когда ставится sinили cos, может сильно помочь при составлении проекций. Не забывайте про уравнения движения.

Магнетизм

Одна из наиболее заковыристых тем на уроках ЕГЭ по физике. Набрать баллы одними формулами не получится. Экзаменуемый должен разбираться в теме, держать в голове багаж теории. Если вы не знаете, кто такой Ленц и Лоренц, решить задачи будет сложно.

Наймите подходящего  репетитора по физике для подготовки к экзамену и занимайтесь с ним, пока не достигните желаемого уровня и не будете уверены в собственных силах. Запись на пробный урок:

Уроки ЕГЭ по физике: самые распространенные ошибки на экзамене

Основной причиной ошибок является волнение и невнимательность. Зная о том, где выпускники попадаются в «ловушку», можно заранее подготовиться к последствиям и обрести уверенность в положительном исходе экзамена.

Во время решения подготовительных заданий люди постепенно заучивают некоторые фразы. Например, конструкция «сопротивлением воздуха пренебречь» многим хорошо знакома. Иногда выпускник автоматически пропускает целое предложение, поскольку уверен, что в тексте будет написано то же, что и всегда.

Однако это не так. Иногда в знакомых фразах заключена важная деталь. Например, когда встречается конструкция «абсолютно упругое соударение», это значит, что энергия полностью сохраняется. И таких аналогов много.

Taking notes with a pencil

Готовимся к ЕГЭ на уроках по физике

Неверная единица измерения

Составители специально указывают разные величины, чтобы проверить внимательность экзаменуемого. В заданиях часто встречаются приставки «кило-», «микро-» и т.д.

Не решать часть С

Видя сложные задания, многие опускают руки и не пробуют решить их, даже если у них есть на это время. В бланке указано, что за задачу можно получить по 1 баллу, если:

  • В ходе решения была допущена ошибка, но метод выбран правильно.
  • Указаны подходящие для задачи формулы и законы, но отсутствует общее решение.
  • Прослеживается логически обоснованный ход решения задачи.

Не стоит бояться этой части. За предоставление одних только формул выпускник получает балл, которого иногда так может не хватать.

Забыли указать единицу измерения

Проверяющие отнимают 1 балл, если в ответе не указана единица измерения.

Ошибки в оформлении

Проблемы с оформлением возникают при решении задач второй части. Чтобы их избежать, рекомендуется придерживаться следующих моментов:

  1. Записывать поясняющие комментарии. Для удобства можно делать сноски, например: «Так, тело движется по гладкой поверхности, а значит…».
  2. Всегда указывать «Дано»/«рисунок»/«решение»/«ответ». Если проверяющий не увидит конкретного слова, он может списать 1 балл.
  3. При вводе новой величины не забывать давать пояснения, например, «… где D – диаметр окружности».

Кроме этого, старайтесь делать рисунки как можно более детализированными. При отсутствии некоторых элементов можно потерять балл.

Решение без указания формул

Если задача легкая, а решение очевидно, экзаменуемый может пренебречь записью формулы. За это проверяющий отнимет балл.

Использование сторонних формул

Если выпускник готовился к урокам ЕГЭ по физике, руководствуясь дополнительными источниками, в них могут указываться формулы, которых нет в Кодификаторе. Перед подготовкой к экзамену следует подробно прочесть список допускаемых формул. Другие варианты рассматриваться не будут, и вы можете потерять легкие баллы.

Уроки ЕГЭ по физике: как сдать экзамен на 80+ баллов

Подготовиться к сдаче можно с помощью репетитора или собственными силами. Последнее тяжелее, поэтому практикуется реже. Для этого вам понадобится:

  • расписать для себя примерный план;
  • руководствоваться проверенными сборниками;
  • использовать разные методы запоминания;
  • периодически повторять пройденный материал;
  • проводить пробные тестирования.

Сложность самостоятельных занятий в том, что у вас не будет учителя, который наглядно объяснит тонкости решения задания. Расписать план – тоже непростая задача. Поэтому многие выпускники пользуются услугами онлайн-курсов и репетиторов.

Уроки ЕГЭ по физике: небольшие советы, как сдать экзамен

Задания тестовой части редко требуют применения 3-х формул и более. Поэтому если при решении вы руководствовались 3-мя действиями, вероятно, вы допустили ошибку. Кроме того, если в задании сказано округлить итоговый результат, а у вас без того получилось целое число, это верный признак ошибки.

Уроки ЕГЭ по физике: подводные камни второй части КИМа

Перед тем, как приступать к решению, внимательно прочитайте, что от вас требуют указать в ответе. Например, если в задании сказано найти температуру тела, а вы указали температуру воздуха, то рискуете остаться без единого балла.

В качественных задачах выпускнику могут предложить нарисовать график, схему или написать развернутый ответ. Старайтесь решать задание как можно более подробно.

Если вы руководствуетесь формулами, не указанными в решении, проверяющий может лишить вас балла.

Чтобы избежать рисков, рекомендуется записывать законы и итоговые формулы отдельно. Для получения 1 балла достаточно грамотно перечислить необходимые формулы.

Не пропускайте промежуточные преобразования. Если вы запишете законы, а затем перейдете к описанию главной формулы, экзаменатор может не поверить вам и не зачтет задание. Для прозрачности их лучше записывать отдельно, избегая подсчетов «в уме».

Уроки ЕГЭ по физике: список часто задаваемых вопросов

Чтобы не мучать себя поисками, предлагаем список самых распространенных вопросов:

  1. Допускается ли не ставить знак вектора? Да, если это не приводит к ошибке.
  2. Допускается ли сокращать слова? Да, экзаменаторы не списывают за это баллы.
  3. Допускается ли показывать изменение параметра стрелкой вверх/вниз? Да, это один из вариантов сокращения. Баллы за это не списывают, но старайтесь не злоупотреблять.
  4. Допускается ли решать задание поэтапно, а не записывать одну длинную формулу? Да. Главное, во время округления не ошибиться с запятой в ответах.

Помните: проверяющий – вовсе не злой человек, и он не ставит цель списать как можно больше баллов. Достаточно, чтобы написанное было понятно для постороннего человека, и у него не было повода разбираться в конкретной детали.

Федор Григорьев,

к.х.н., в.н.с. МГУ им. М.В. Ломоносова, доцент НИЯУ МИФИ,

эксперт в области ЕГЭ по физике, учитель физики Предуниверситария НИЯУ МИФИ

Существует мнение, что физика — самый сложный предмет ЕГЭ. Как сейчас обстоит дело с физикой в общеобразовательных школах? Насколько хорошо школьники ее знают?

Я согласен с тем, что физика — один из самых трудных ЕГЭ. Существует рейтинг сложности предметов, и физика в нем занимает первое место, а дальше уже идут алгебра, геометрия и русский язык. В обычной школе на физику отводится один или два часа в неделю. Чтобы хорошо подготовиться и сдать ЕГЭ, этого недостаточно, даже если ученик обладает определенными способностями к предмету.

В школе ребята сдают два итоговых экзамена по физике — ОГЭ (ГИА) в конце 9 класса и ЕГЭ в конце 11 класса. Между ними есть разница. ГИА устроен таким образом, чтобы его смогли сдать все школьники, это экзамен за среднюю школу, и он довольно простой. Для подготовки к ГИА вполне достаточно двух часов физики в неделю. Что касается ЕГЭ по физике, он рассматривается как заявка на поступление в вуз естественно-научного профиля. Поэтому считается, что здесь выпускник должен продемонстрировать некую базу, необходимую для дальнейшего обучения в вузе. Экзамен сложный и требует соответствующей подготовки. Сейчас школьники имеют массу возможностей для этого. Есть профильные лицеи, при ведущих вузах работают предуниверситарии, во многих обычных школах есть физико-математические классы.

Какие изменения в ЕГЭ по физике произошли в 2017 году? Насколько они усложнили экзамен?

В этом году в экзамене по физике изменена структура первой части работы. Из нее исключены задания с выбором верного ответа и добавлены задания с кратким ответом. Это немного усложнило экзамен. Теперь надо не выбирать ответ, а получить его. Тем не менее эти задачи нельзя назвать сложными, так как они решаются с применением одного из законов. Фактически это задачи «на подстановку». При этом важно записать ответ именно в требуемых единицах измерения.

По вашему опыту преподавания, какие разделы физики самые сложные для школьников? И какие темы самые простые?

Самыми трудными являются атомная и квантовая физика, интерференция, дифракция, фотоэффект, а также элементы ядерной физики. Это специфические темы, слабо связанные с остальными разделами предмета. Там нужно знать специальные законы и правила, что вызывает сложности. Если говорить о наиболее простых темах, то это традиционно кинематика и динамика. Как правило, с этих разделов и начинается изучение физики в школе.

За какие задания на ЕГЭ по физике ставится наибольшее количество баллов?

Самые «весомые» на экзамене — последние пять задач, с № 27 по № 31, раньше это была часть С. Эти задания подразумевают развернутый ответ, где нужно записать полное решение, их проверяет эксперт. За каждую задачу максимально можно получить три балла.

Как эксперт я каждый год проверяю работы на ЕГЭ. И в большинстве случаев листы с этими задачами ребята сдают пустыми. Они за них даже не берутся, потому что не знают, как решить. Но здесь есть нюанс, который я всегда проговариваю со своими учениками. Дело в том, что в критериях оценки этих заданий есть интересный пункт. Если в работе записаны все необходимые законы и с ними произведены некоторые преобразования, считается, что школьник продемонстрировал действия, направленные на получение правильного ответа. А за это уже выставляется один балл из трех. Поэтому даже если вы не знаете, как решить задачу до конца и дойти до ответа, обязательно нужно записать все законы, которые требуются для ее решения.

Два балла набрать за задачу уже существенно сложнее. Такой результат ставится за полное решение с каким-то недочетом, например, вычислительной ошибкой. Зато один балл получить вполне реально для всех школьников, кто знает законы, пусть даже не очень умеет их применять.

Какие есть подводные камни в заданиях части 2? На что нужно обратить внимание при подготовке к заданиям повышенной сложности?

В решении задач № 24-26 нужно применить два закона. Здесь важно обратить внимание, как именно требуется записать ответ, в каких единицах измерения. Например, многие школьники привыкли писать расстояние или путь в метрах, а бывает, что ответ требуется указать в сантиметрах. Даже если решение верно, а ответ записан неправильно, результат будет нулевым.

Задание № 27 вызывает сложности даже у самых сильных выпускников. Здесь нужно не просто решить задачу, а дать анализ явления, то есть написать, какие именно законы применяются. В этом задании следует указать, как правило, три закона. И в объяснении все эти три закона должны быть отражены либо словесно, либо в виде формулы. Если какой-то из законов отсутствует в решении, балл снижается, даже если ответ верный.

Пара слов о рисунке к задаче. Если в условии сказано, что нужен рисунок, то он должен быть в решении. И он оценивается отдельно (один балл). Если по условию рисунок не требуется, за его отсутствие оценка не снижается. Но здесь важно иметь в виду и обратную ситуацию. Если вы сделали рисунок, который не требуется в условии, и показали на нем что-то неправильно, то за это оценка может быть снижена. Поэтому, если рисунок был нужен для решения, но вы в нем сомневаетесь, то лучше его зачеркнуть.

То же относится и к лишним записям. Если записано лишнее, не относящееся к решению задачи, а бывает так, что выпускник начинает писать все подряд, за это могут снять баллы. Записи, не влияющие прямо на ход решения, всегда лучше зачеркнуть — тогда они не проверяются и не влияют на оценку. Это общие рекомендации, которых следует придерживаться при подготовке к заданиям части 2.

Есть ли «формула успеха», которая поможет подготовиться к ЕГЭ по физике наилучшим образом?

Готовиться надо начинать как минимум за год. В первую очередь нужно открыть кодификатор ЕГЭ, в котором указан некий теоретический минимум для экзамена и кратко изложены основные законы. Для начала надо выучить наизусть все из этого минимума. Если самостоятельно можешь воспроизвести законы и формулы из кодификатора, значит, выучил. Теперь нужно отвечать на вопросы из части 1, там только простые задания, на один закон каждое. Это будет главная проверка, как хорошо ты знаешь законы.

Дальше можно приступать к заданиям № 24-26, они сложнее. Если выражаться шахматным языком, это задачи в два хода, для их решения нужно применить два закона. Если они получаются, можно браться за задачи повышенной сложности с развернутым ответом (№ 27-31). Таким образом, здесь требуется постепенно, системно проходить все задания по мере увеличения сложности.

Выпускникам этого года, у которых осталось до экзамена примерно два месяца, я бы посоветовал в первую очередь повторить специфические темы, которые перечислены выше. Дальше нужно решать задачи вразнобой по всем темам. Полезно найти в интернете варианты из досрочной волны ЕГЭ этого года и прорешать их.

Какие источники вы рекомендуете использовать для самостоятельной подготовки к экзамену?

  • «Сайт ФИПИ». На нем размещены демоверсии ЕГЭ по физике с 2008 по 2017 год; там же вы найдете и кодификаторы.
  • «РешуЕГЭ». Качественный сайт для подготовки по всем предметам ЕГЭ, в том числе по физике.
  • Сборники вариантов ЕГЭ прошлых лет. Их можно приобрести в книжных магазинах или найти в интернете.
  • Черноуцан А.И., «Физика. Задачи с ответами и решениями». Хороший задачник по всем темам. Единственный его серьезный минус — мало задач на графики, а в ЕГЭ они широко используются.
  • Кирик Л.А., Генденштейн Л.Э., Гельфгат И.М., «1001 задача по физике с решениями». Неплохой задачник по разным уровням сложности, с подсказками.

Что нужно делать школьнику, чтобы получить 100 баллов? Реально ли это?

100 баллов получить вполне реально. В прошлом году у меня было два таких ученика, а во всей параллели Предуниверсариума МИФИ (лицей № 1511) было пять стобалльных работ по физике. Для этого не нужно быть гением, но нужны способности и усидчивость. И еще я хочу сказать, что 100 баллов — это в какой-то степени лотерея. На экзамене всегда может попасться экзотический вопрос. Например, кто провел опыты по определению давления света — Лебедев или Столетов? Невозможно ведь знать вообще все. Кроме того, всегда есть вероятность случайной ошибки — каждый год из-за таких ошибок хорошие ученики не добирают один-два балла до 100. Если ты знаешь физику очень хорошо, за 90 баллов ты всегда получишь, а вот для 100 баллов требуется еще и везение. Другое дело, что везет обычно все-таки лучшим.

Как подготовиться к ЕГЭ по физике, на что обратить внимание и как не допустить ошибок на экзамене? Рассказывает Ирина Васильева, эксперт Московского центра качества образования, учитель высшей квалификационной категории, председатель Ассоциации учителей физики города Москвы, кандидат педагогических наук.

– Вариант экзаменационной работы ЕГЭ по физике включает в себя 32 задания и состоит из двух частей, – рассказывает Ирина Васильева. – Контрольно-измерительные материалы, которые выдаются каждому участнику, включают и инструкцию по выполнению работы. Необходимо очень внимательно ознакомиться с ней еще до экзамена. Я рекомендую обратить внимание на время выполнения экзаменационной работы (235 минут) и на образец написания ответов в бланке №1 (правильное написание цифр, отсутствие пробелов, отдельная позиция для запятой, если она есть в ответе).

В контрольно-измерительных материалах также есть справочные данные: десятичные приставки, константы (обозначение, числовое значение и единицы) и необходимые для решения задач постоянные величины (плотности, удельные теплоемкости, молярные массы и т. п.). Постоянные величины, используемые при решении задач, должны быть только из справочного материала. С ним, а также с инструкцией по выполнению работы и другими официальными документами (спецификацией и кодификатором) можно ознакомиться в демонстрационном варианте ЕГЭ по физике на сайте Федерального института педагогических измерений.

Итак, рассмотрим содержание контрольно-измерительных материалов ЕГЭ по физике 2021 года.

Часть 1: 24 задания с кратким ответом, из них 13 – с самостоятельной записью ответа в виде числа, слова или двух чисел и 11 – на установление соответствия и со множественным выбором, ответы на которые необходимо записать в виде последовательности цифр. В части 1 для облегчения восприятия информации задания 1–21 группируются по тематической принадлежности: механика, молекулярная физика, электродинамика, квантовая физика.

Часть 2: 8 заданий, из них 2 – с кратким ответом (25 и 26) и 6 – с развернутым (27–32), предполагающим решение задачи. В части 2 задания группируются по уровню сложности и в соответствии с тематической принадлежностью.

В работе представлены задания трех уровней сложности. Часть 1 состоит из заданий базового уровня. Это простые задачи, нацеленные на проверку знания наиболее важных физических понятий, моделей, явлений и законов, а также свойств космических объектов. Задания повышенного и высокого уровней сложности позволяют оценить степень подготовленности выпускника к переходу на следующий уровень образования – обучению в вузе. Они распределены между первой и второй частями экзаменационной работы (5, 11, 16, 25–28). Последние четыре задачи части 2 (29–32) – высокого уровня сложности.

При оформлении развернутых ответов необходимо помнить, что положения теорий, физические законы и закономерности должны быть взяты из кодификатора. За использование формулы, которой нет в кодификаторе, снимается два балла.

Как может сложиться подобная ситуация? Например, для решения задачи на расчет количества теплоты, полученного одноатомным идеальным газом в изобарном процессе, выпускник использует формулу Q = 5/2νRΔT. Но она, во-первых, отсутствует в кодификаторе, а во-вторых, является результатом решения системы уравнений (I закон термодинамики, элементарная работа в термодинамике, уравнение Менделеева – Клапейрона). Такой ответ будет оценен в один балл, так как в решении отсутствует одна из исходных формул (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами.

Дополнительные материалы и оборудование

На экзамене можно использовать непрограммируемый инженерный калькулятор с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейку. Лучше брать тот калькулятор (повторюсь: если он инженерный и непрограммируемый), с которым школьник привык работать в течение учебного года. Он будет незаменим при решении задач с использованием кратных и дольных единиц и стандартного вида числа.

В условиях жесткого дефицита времени лучше отдавать предпочтение тем инженерным калькуляторам, которые обладают большими возможностями для проведения самых разных расчетов, позволяют вводить числа в естественном виде, использовать степени, рассчитывать различные функции и т. п.

Округление полученного результата

В заданиях с кратким ответом округлений быть не может: здесь должно быть либо целое число либо конечная десятичная дробь. Если в итоге получилась бесконечная десятичная дробь, то, скорее всего, задача решена неверно (за исключением тех случаев, которые прописаны в тексте задания). Например, в заданиях 25 и 26 может получиться бесконечная десятичная дробь. Тогда читаем в условии задачи, до каких значений должно быть сделано округление: до целого, до десятых и т. п. Если округление будет сделано неверно, ответ не засчитается.

Работа с графиками

Для правильного оформления графиков в ответах необходимо:

  1. Зафиксировать названия осей и единицы измерения величин по осям, множители, стоящие рядом с единицами (если есть).
  2. Определить масштаб (единичный отрезок) по осям (следует отметить, что масштаб по осям, как правило, различный).
  3. Зафиксировать направления протекания процессов, изменения величин, интервал (обычно по оси абсцисс – временной интервал), в котором требуется найти изменение какой-либо величины.
  4. Понять вид зависимости: прямая пропорциональность, прямая линия, гипербола, парабола, часть дуги окружности, синус или косинус.

Рассмотрим процесс организации самоподготовки на примере материала из разделов «Молекулярная физика. Термодинамика» и «Механика».

Задания со множественным выбором (два верных ответа из пяти предложенных)

Такие задания составлены по всему материалу из раздела «Молекулярная физика». Здесь необходимо уметь объяснять явления, интерпретировать результаты опытов, представленные в виде таблицы или графика. В задачах данного вида задается некоторый сюжет, который иллюстрируется таблицей, схемой, рисунком или графиком, и предлагается список из пяти утверждений. Выпускнику необходимо выбрать два правильных утверждения относительно проведенного процесса или все верные утверждения, описывающие характеристики спутников планет или звезд (задание 24).

Алгоритмы выполнения таких заданий ЕГЭ различны. Можно порекомендовать следующую последовательность действий:

  1. Закрыть все пять предложенных утверждений.
  2. Прочитать внимательно само задание и проанализировать невербальную информацию (таблицу, график, схему).
  3. Зафиксировать начальное состояние системы, представленной в задании, определить и записать в черновик все изменения, которые произошли в ней.
  4. Провести минимально возможные расчеты, которые видны невооруженным глазом.
  5. Открыть список предложенных утверждений и выполнить анализ их истинности-ложности, опираясь на проведенное исследование.

Такой подход сэкономит время, позволит сконцентрироваться на исходной информации и решать одну большую задачу вместо пяти маленьких. Но этот алгоритм сложно применить к заданию 24: здесь удобнее анализировать каждое утверждение, опираясь на представленную таблицу или диаграмму.

Расчетные задачи (29–32)

В текстах данных заданий не указаны требования к полному правильному решению, они написаны в общей инструкции, которая приведена в каждом варианте экзаменационной работы непосредственно перед заданиями: «Оно должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчеты с численным ответом и при необходимости рисунок, поясняющий решение».

Полное правильное решение выглядит так:

  • в нем записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (например, перечисляются законы и формулы); в качестве исходных принимаются формулы, указанные в кодификаторе;
  • описаны все вновь вводимые в решение буквенные обозначения физических величин, за исключением обозначений констант, указанных в варианте контрольно-измерительных материалов, обозначений величин, представленных в условии задачи, и стандартных обозначений величин, применяемых при написании физических законов. Стандартными считаются обозначения физических величин, принятые в кодификаторе;
  • представлены необходимые математические преобразования и расчеты (подстановка числовых данных в конечную формулу), приводящие к правильному числовому ответу (допускается решение по частям с промежуточными вычислениями);
  • представлен правильный ответ с указанием единиц измерения искомой величины.

При отсутствии в решении одной из необходимых исходных формул ответ к задаче 28 оценивается в 0 баллов, а в заданиях 29–32 за это снимается два балла.

Снижение на один балл происходит в случае, если описаны не все вновь вводимые величины; в решении есть лишние записи (возможно, неверные), которые не отделены от решения и не зачеркнуты; в необходимых математических преобразованиях или вычислениях допущены ошибки и/или в математических преобразованиях или вычислениях пропущены логически важные шаги; не записаны единицы измерения искомой величины или в них допущена ошибка. Если в решении есть рисунок (например, с расстановкой сил при движении тела), и он неверный, то, при отсутствии требования к его представлению в тексте задачи, он также будет отнесен к лишним записям.

Два балла от максимального снимаются в случае, если представлены только положения и формулы, выражающие физические законы, применение которых необходимо и достаточно для решения задачи, без каких-либо преобразований с их использованием; в решении отсутствует одна из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами; в одной из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами.

Далее решается система уравнений, выражается искомая величина или ведутся расчеты по действиям. Обязательно нужно подставлять числовые данные (все постоянные величины для подстановки в уравнение берутся из условия задачи или из таблицы со справочными данными в начале контрольно-измерительных материалов).

Что касается решения и оформления расчетных задач, то стоит обратить внимание на то, что в качестве исходных формул принимаются только те, которые указаны в кодификаторе. При этом форма записи формулы значения не имеет. Если же выпускник использовал в качестве исходной формулу, не указанную в кодификаторе, работа оценивается исходя из отсутствия одной из необходимых для решения формул. Например, ученик может в качестве исходной использовать формулу для внутренней энергии одноатомного идеального газа, поскольку она есть в кодификаторе. А формулу для количества теплоты, полученного газом в изобарном процессе, в качестве исходной использовать нельзя (отсутствует в кодификаторе).

Ответ может оцениваться в два балла при полном правильном решении задачи, если не описаны дополнительно введенные физические величины. Описанием считается словесное указание на величину рядом с ее символическим обозначением, указание символического обозначения величины в записи условия («Дано») или на схематическом рисунке. Допускается введение новых величин без описания, если используются стандартные обозначения элементов содержания, принятые в кодификаторе.

Если в тексте задания требуется сделать рисунок с указанием сил, действующих на тело, то правильным считается рисунок, в котором верно указаны все необходимые силы и их направление. Ошибка в соотношении длины векторов и отсутствие знака вектора не будет считаться ошибкой.

Допускаются округления с учетом числа значащих цифр, которые указаны в условии задачи. Избыточная точность числового ответа не считается ошибкой. При решении задачи по действиям допускается погрешность ответа, не меняющая физической сути числового решения.

Встречаются случаи, когда участник экзамена представляет решение задачи, в котором подменяет условие, и определяет другую физическую величину. Здесь можно рассматривать три варианта оценивания:

  1. Если в задании требовалось определить отношение величин «А/В», а ученик определил значение отношения «В/А», то это не считается ошибкой или погрешностью.
  2. Если подмена сводится к тому, что выпускник определил не ту величину, которую требовалось рассчитать по условию задачи (при условии, что полученный ответ можно считать промежуточным этапом при определении нужной величины и при этом в других вариантах не требуется определить именно найденную участником величину), то это может быть отнесено к ошибке того же порядка, что и ошибки в преобразованиях.
  3. Если же подмена сводится к решению задачи, представленной в другом варианте экзаменационной работы, то такое решение оценивается в 0 баллов.

Кроме того, в задачах данного типа нужно особое внимание уделять пояснениям к решению.

Примеры задач

1. Во сколько раз изменится давление разреженного одноатомного газа, если при увеличении концентрации молекул газа в три раза его абсолютная температура увеличится в два раза?

В заданиях такого типа необходимо очень внимательно изучить вопрос:

  • во сколько раз увеличится (отношение второй величины к первой);
  • во сколько раз уменьшится (отношение первой величины ко второй);
  • во сколько раз изменится (в условии надо понять, какое отношение мы ищем).

Далее нужно зафиксировать постоянные величины и те, которые будут меняться (обязательно проиндексировав их).

Составляем систему простых уравнений и решаем методом почленного деления.

p1 = n1kT1 и p2 = n2kT2 = 3n1k2T1 = 6p1.

При таком подходе очень трудно сделать ошибку. Главное – не выполнять эти действия в уме, так как можно легко ошибиться в индексах и коэффициентах, характеризующих изменение.

2. Относительная влажность воздуха в сосуде, закрытом поршнем, равна 60%. Какой станет относительная влажность воздуха в сосуде, если его объем при неизменной температуре уменьшить в два раза?

Ответ: 100%.

В этом задании важно представить ситуацию в реальности. Если чисто автоматически решать данную задачу, мы получим значение относительной влажности больше 100%. Поэтому, решая физические задачи, производя алгебраические преобразования и математические расчеты, необходимо думать о реальности полученного ответа.

Источник: Activityedu.ru

ЕГЭ по физике: нюансы, подводные камни и алгоритмы решений

Как подготовиться к ЕГЭ по физике, на что обратить внимание и как не допустить ошибок на экзамене? Рассказывает Ирина Васильева, эксперт Московского центра качества образования, учитель высшей квалификационной категории, председатель Ассоциации учителей физики города Москвы, кандидат педагогических наук.

– Вариант экзаменационной работы ЕГЭ по физике включает в себя 32 задания и состоит из двух частей, – рассказывает Ирина Васильева. – Контрольно-измерительные материалы, которые выдаются каждому участнику, включают и инструкцию по выполнению работы. Необходимо очень внимательно ознакомиться с ней еще до экзамена. Я рекомендую обратить внимание на время выполнения экзаменационной работы (235 минут) и на образец написания ответов в бланке №1 (правильное написание цифр, отсутствие пробелов, отдельная позиция для запятой, если она есть в ответе).

В контрольно-измерительных материалах также есть справочные данные: десятичные приставки, константы (обозначение, числовое значение и единицы) и необходимые для решения задач постоянные величины (плотности, удельные теплоемкости, молярные массы и т. п.). Постоянные величины, используемые при решении задач, должны быть только из справочного материала. С ним, а также с инструкцией по выполнению работы и другими официальными документами (спецификацией и кодификатором) можно ознакомиться в демонстрационном варианте ЕГЭ по физике на сайте Федерального института педагогических измерений.

Итак, рассмотрим содержание контрольно-измерительных материалов ЕГЭ по физике 2021 года.

Часть 1: 24 задания с кратким ответом, из них 13 – с самостоятельной записью ответа в виде числа, слова или двух чисел и 11 – на установление соответствия и со множественным выбором, ответы на которые необходимо записать в виде последовательности цифр. В части 1 для облегчения восприятия информации задания 1–21 группируются по тематической принадлежности: механика, молекулярная физика, электродинамика, квантовая физика.

Часть 2: 8 заданий, из них 2 – с кратким ответом (25 и 26) и 6 – с развернутым (27–32), предполагающим решение задачи. В части 2 задания группируются по уровню сложности и в соответствии с тематической принадлежностью.

В работе представлены задания трех уровней сложности. Часть 1 состоит из заданий базового уровня. Это простые задачи, нацеленные на проверку знания наиболее важных физических понятий, моделей, явлений и законов, а также свойств космических объектов. Задания повышенного и высокого уровней сложности позволяют оценить степень подготовленности выпускника к переходу на следующий уровень образования – обучению в вузе. Они распределены между первой и второй частями экзаменационной работы (5, 11, 16, 25–28). Последние четыре задачи части 2 (29–32) – высокого уровня сложности.

При оформлении развернутых ответов необходимо помнить, что положения теорий, физические законы и закономерности должны быть взяты из кодификатора. За использование формулы, которой нет в кодификаторе, снимается два балла.

Как может сложиться подобная ситуация? Например, для решения задачи на расчет количества теплоты, полученного одноатомным идеальным газом в изобарном процессе, выпускник использует формулу Q = 5/2νRΔT. Но она, во-первых, отсутствует в кодификаторе, а во-вторых, является результатом решения системы уравнений (I закон термодинамики, элементарная работа в термодинамике, уравнение Менделеева – Клапейрона). Такой ответ будет оценен в один балл, так как в решении отсутствует одна из исходных формул (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами.

Дополнительные материалы и оборудование

На экзамене можно использовать непрограммируемый инженерный калькулятор с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейку. Лучше брать тот калькулятор (повторюсь: если он инженерный и непрограммируемый), с которым школьник привык работать в течение учебного года. Он будет незаменим при решении задач с использованием кратных и дольных единиц и стандартного вида числа.

В условиях жесткого дефицита времени лучше отдавать предпочтение тем инженерным калькуляторам, которые обладают большими возможностями для проведения самых разных расчетов, позволяют вводить числа в естественном виде, использовать степени, рассчитывать различные функции и т. п.

Округление полученного результата

В заданиях с кратким ответом округлений быть не может: здесь должно быть либо целое число либо конечная десятичная дробь. Если в итоге получилась бесконечная десятичная дробь, то, скорее всего, задача решена неверно (за исключением тех случаев, которые прописаны в тексте задания). Например, в заданиях 25 и 26 может получиться бесконечная десятичная дробь. Тогда читаем в условии задачи, до каких значений должно быть сделано округление: до целого, до десятых и т. п. Если округление будет сделано неверно, ответ не засчитается.

Работа с графиками

Для правильного оформления графиков в ответах необходимо:

  1. Зафиксировать названия осей и единицы измерения величин по осям, множители, стоящие рядом с единицами (если есть).
  2. Определить масштаб (единичный отрезок) по осям (следует отметить, что масштаб по осям, как правило, различный).
  3. Зафиксировать направления протекания процессов, изменения величин, интервал (обычно по оси абсцисс – временной интервал), в котором требуется найти изменение какой-либо величины.
  4. Понять вид зависимости: прямая пропорциональность, прямая линия, гипербола, парабола, часть дуги окружности, синус или косинус.

Рассмотрим процесс организации самоподготовки на примере материала из разделов «Молекулярная физика. Термодинамика» и «Механика».

Задания со множественным выбором (два верных ответа из пяти предложенных)

Такие задания составлены по всему материалу из раздела «Молекулярная физика». Здесь необходимо уметь объяснять явления, интерпретировать результаты опытов, представленные в виде таблицы или графика. В задачах данного вида задается некоторый сюжет, который иллюстрируется таблицей, схемой, рисунком или графиком, и предлагается список из пяти утверждений. Выпускнику необходимо выбрать два правильных утверждения относительно проведенного процесса или все верные утверждения, описывающие характеристики спутников планет или звезд (задание 24).

Алгоритмы выполнения таких заданий ЕГЭ различны. Можно порекомендовать следующую последовательность действий:

  1. Закрыть все пять предложенных утверждений.
  2. Прочитать внимательно само задание и проанализировать невербальную информацию (таблицу, график, схему).
  3. Зафиксировать начальное состояние системы, представленной в задании, определить и записать в черновик все изменения, которые произошли в ней.
  4. Провести минимально возможные расчеты, которые видны невооруженным глазом.
  5. Открыть список предложенных утверждений и выполнить анализ их истинности-ложности, опираясь на проведенное исследование.

Такой подход сэкономит время, позволит сконцентрироваться на исходной информации и решать одну большую задачу вместо пяти маленьких. Но этот алгоритм сложно применить к заданию 24: здесь удобнее анализировать каждое утверждение, опираясь на представленную таблицу или диаграмму.

Расчетные задачи (29–32)

В текстах данных заданий не указаны требования к полному правильному решению, они написаны в общей инструкции, которая приведена в каждом варианте экзаменационной работы непосредственно перед заданиями: «Оно должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчеты с численным ответом и при необходимости рисунок, поясняющий решение».

Полное правильное решение выглядит так:

  • в нем записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (например, перечисляются законы и формулы); в качестве исходных принимаются формулы, указанные в кодификаторе;
  • описаны все вновь вводимые в решение буквенные обозначения физических величин, за исключением обозначений констант, указанных в варианте контрольно-измерительных материалов, обозначений величин, представленных в условии задачи, и стандартных обозначений величин, применяемых при написании физических законов. Стандартными считаются обозначения физических величин, принятые в кодификаторе;
  • представлены необходимые математические преобразования и расчеты (подстановка числовых данных в конечную формулу), приводящие к правильному числовому ответу (допускается решение по частям с промежуточными вычислениями);
  • представлен правильный ответ с указанием единиц измерения искомой величины.

При отсутствии в решении одной из необходимых исходных формул ответ к задаче 28 оценивается в 0 баллов, а в заданиях 29–32 за это снимается два балла.

Снижение на один балл происходит в случае, если описаны не все вновь вводимые величины; в решении есть лишние записи (возможно, неверные), которые не отделены от решения и не зачеркнуты; в необходимых математических преобразованиях или вычислениях допущены ошибки и/или в математических преобразованиях или вычислениях пропущены логически важные шаги; не записаны единицы измерения искомой величины или в них допущена ошибка. Если в решении есть рисунок (например, с расстановкой сил при движении тела), и он неверный, то, при отсутствии требования к его представлению в тексте задачи, он также будет отнесен к лишним записям.

Два балла от максимального снимаются в случае, если представлены только положения и формулы, выражающие физические законы, применение которых необходимо и достаточно для решения задачи, без каких-либо преобразований с их использованием; в решении отсутствует одна из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами; в одной из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами.

Далее решается система уравнений, выражается искомая величина или ведутся расчеты по действиям. Обязательно нужно подставлять числовые данные (все постоянные величины для подстановки в уравнение берутся из условия задачи или из таблицы со справочными данными в начале контрольно-измерительных материалов).

Что касается решения и оформления расчетных задач, то стоит обратить внимание на то, что в качестве исходных формул принимаются только те, которые указаны в кодификаторе. При этом форма записи формулы значения не имеет. Если же выпускник использовал в качестве исходной формулу, не указанную в кодификаторе, работа оценивается исходя из отсутствия одной из необходимых для решения формул. Например, ученик может в качестве исходной использовать формулу для внутренней энергии одноатомного идеального газа, поскольку она есть в кодификаторе. А формулу для количества теплоты, полученного газом в изобарном процессе, в качестве исходной использовать нельзя (отсутствует в кодификаторе).

Ответ может оцениваться в два балла при полном правильном решении задачи, если не описаны дополнительно введенные физические величины. Описанием считается словесное указание на величину рядом с ее символическим обозначением, указание символического обозначения величины в записи условия («Дано») или на схематическом рисунке. Допускается введение новых величин без описания, если используются стандартные обозначения элементов содержания, принятые в кодификаторе.

Если в тексте задания требуется сделать рисунок с указанием сил, действующих на тело, то правильным считается рисунок, в котором верно указаны все необходимые силы и их направление. Ошибка в соотношении длины векторов и отсутствие знака вектора не будет считаться ошибкой.

Допускаются округления с учетом числа значащих цифр, которые указаны в условии задачи. Избыточная точность числового ответа не считается ошибкой. При решении задачи по действиям допускается погрешность ответа, не меняющая физической сути числового решения.

Встречаются случаи, когда участник экзамена представляет решение задачи, в котором подменяет условие, и определяет другую физическую величину. Здесь можно рассматривать три варианта оценивания:

  1. Если в задании требовалось определить отношение величин «А/В», а ученик определил значение отношения «В/А», то это не считается ошибкой или погрешностью.
  2. Если подмена сводится к тому, что выпускник определил не ту величину, которую требовалось рассчитать по условию задачи (при условии, что полученный ответ можно считать промежуточным этапом при определении нужной величины и при этом в других вариантах не требуется определить именно найденную участником величину), то это может быть отнесено к ошибке того же порядка, что и ошибки в преобразованиях.
  3. Если же подмена сводится к решению задачи, представленной в другом варианте экзаменационной работы, то такое решение оценивается в 0 баллов.

Кроме того, в задачах данного типа нужно особое внимание уделять пояснениям к решению.

Примеры задач

1. Во сколько раз изменится давление разреженного одноатомного газа, если при увеличении концентрации молекул газа в три раза его абсолютная температура увеличится в два раза?

В заданиях такого типа необходимо очень внимательно изучить вопрос:

  • во сколько раз увеличится (отношение второй величины к первой);
  • во сколько раз уменьшится (отношение первой величины ко второй);
  • во сколько раз изменится (в условии надо понять, какое отношение мы ищем).

Далее нужно зафиксировать постоянные величины и те, которые будут меняться (обязательно проиндексировав их).

Составляем систему простых уравнений и решаем методом почленного деления.

p1 = n1kT1 и p2 = n2kT2 = 3n1k2T1 = 6p1.

При таком подходе очень трудно сделать ошибку. Главное – не выполнять эти действия в уме, так как можно легко ошибиться в индексах и коэффициентах, характеризующих изменение.

2. Относительная влажность воздуха в сосуде, закрытом поршнем, равна 60%. Какой станет относительная влажность воздуха в сосуде, если его объем при неизменной температуре уменьшить в два раза?

Ответ: 100%.

В этом задании важно представить ситуацию в реальности. Если чисто автоматически решать данную задачу, мы получим значение относительной влажности больше 100%. Поэтому, решая физические задачи, производя алгебраические преобразования и математические расчеты, необходимо думать о реальности полученного ответа.


Источник

Названы самые частые ошибки в ЕГЭ по физике

Новостной редактор, редактор канала «Просвещение»

В России начался основной период сдачи ЕГЭ, до одного из самых популярных экзаменов у выпускников — физики — остается меньше двух недель. Есть несколько распространенных ошибок, которые встречаются из года в года и о которых одиннадцатиклассникам стоит знать, пишет Мел.fm со ссылкой на ответственного секретаря предметной комиссии ЕГЭ по физике города Москвы Ларису Капустину.

В экзаменационной работе две части. По сравнению с прошлым годом структура и содержание контрольных измерительных материалов (КИМ) ЕГЭ не изменились.

Первая состоит из 24 вопросов, ответы на них надо занести в бланк ответов № 1. За эту часть можно получить 34 балла. Во второй части работы — восемь задач, большая часть из них проверяются эксперта и заносятся в бланк ответов № 2. Лишь две задачи (25 и 26) предполагают краткий ответ, а их решения записываются в бланк ответов № 1.

К самым частым ошибкам в ЕГЭ по физике относятся следующие.

Использование формул, которых нет в кодификаторе. Эксперты могут снизить два балла за задание, в котором используются формулы, не указанные в кодификаторе. Чаще всего ученики забывают об этом применяют «запрещенные» формулы в задачах по термодинамике и на движение тела, брошенного под углом к горизонту или горизонтально. Также в задачах по баллистике нельзя использовать готовую формулы для максимальной дальности полета, сдающий должен вывести их самостоятельно. 

Ту же ошибку можно сделать в задачах по термодинамике — в них нельзя использовать готовую формулу для количества теплоты. В действительности ее тоже надо вывести самим. 

Решение задач только числами. Некоторые выпускники забывают записать формулу в общем виде, сразу подставляя в нее числа. Это ошибка, за такое выполнение задание ученик рискует получить 0 баллов. 

Не подставлены числа в формулу при расчете. Кроме того, ученики должны помнить, что для расчетов нужно подставлять числа в выведенную при решении формулу, в которой искомая физическая величина выражена через известные в задаче физические величины. Также их надо подставлять и при расчете задачи по частям.

Кроме того, Капустина дала несколько рекомендаций, которые помогут ученикам на ЕГЭ.

До экзамена школьникам следует разобраться в критериях оценивания и внимательно изучить, за что снимаются балл, а также изучить открытый банк заданий ФИПИ.

Также необходимо ознакомиться с кодификатором, поскольку на экзамене разрешается использовать только формулы из него (исключение — законы Кирхгофа и теорема Гаусса).

Каждый раз внимательно читать задание и обращать внимание на формулировки: требования могут быть разными.

Надо обязательно построить графики в ответах к заданиям, где это указано в условии. Даже если рассуждения будут верными, но графика в итоговом решении не будет, задачу оценят в один балл.

О правилах сдачи ЕГЭ можно прочесть здесь, а том, как подавать апелляцию — здесь.

Точные даты ЕГЭ-2021 можно узнать по ссылке.

Если вам нравятся материалы на Педсовете, подпишитесь на наш канал в Телеграме, чтобы быть в курсе событий раньше всех.

Подписаться

Алена Ковалева

Новостной редактор, редактор канала «Просвещение»

Согласно анализу результатов ЕГЭ по физике 2021 от ФИПИ, задания базового уровня сложности выполнило всего 65,9% сдающих. Как не потерять баллы на лёгких заданиях и на что обратить внимание, чтобы избежать типичных ошибок, расскажем в этой статье.

Почему выпускники ошибаются

Нередко ученики ошибаются в том, что знают достаточно хорошо. Главные причины этого — невнимательность и волнение. 

Вот несколько советов, которые помогут не допустить этих досадных ошибок.

Читайте условия задач полностью

Если вы много раз прорешивали варианты ЕГЭ, то уже отчасти запомнили формулировки задач. Из-за этого возникает пагубная привычка: вы читаете не полное условие, а отдельные числа, поэтому рискуете пропустить важное уточнение. Перечитывайте условие несколько раз, чтобы избежать ошибок. 


Собрали
6 сайтов, где решать пробники ЕГЭ по физике.

Оставьте время на проверку своей работы

Старайтесь проверять задания не только по очереди, но и в хаотичном порядке. Также не игнорируйте проверку математических вычислений — пересчитывайте на калькуляторе, даже если всё кажется правильным.  


Какой калькулятор выбрать для ЕГЭ по физике, чтобы его не отобрали на входе, рассказали в
нашей статье.

Используйте методику глубокого дыхания

Глубокие вдохи помогут снизить волнение. Необходимо вдыхать носом в течение четырёх секунд, потом задержать дыхание на восемь секунд и выдыхать тоже в течение восьми. Рекомендуем повторить несколько раз. 


Как справиться с волнением перед экзаменом, рассказали
в этой статье.

Концентрируйтесь на текущем моменте

Не думайте, что будет после экзамена. Это только отвлекает. Как бы тяжело ни было, отталкивайте эти мысли. 

Составьте план

Подумайте, в каком порядке вы будете решать задания КИМа, сколько времени придётся потратить на каждое. Планирование придаст вам уверенности и уменьшит волнение, потому что у вас всё будет под контролем. 

Какие ошибки чаще всего допускают на ЕГЭ по физике

Ошибки в заданиях на ЕГЭ по физике можно разделить на три группы: ошибки в физической и в математической частях, а также ошибки в оформлении. 

Ошибки в физической части

На экзамене в 2021 году сложности вызывали следующие типы заданий:

  • Определение значения физической величины. В этой группе заданий большинство ошибок были в задачах на формулы Архимеда, периода колебаний математического маятника, закона Кулона, закона Ома для участка цепи, на формулы Томсона, ЭДС самоиндукции, частоты электромагнитных колебаний в колебательном контуре, импульса фотона, закона радиоактивного распада. 
  • Анализ изменения характера физических величин. Затруднение вызывали следующие процессы и явления: плавание тел, движение заряженной частицы в магнитном поле, явление фотоэффекта (максимальная кинетическая энергия фотоэлектрона), излучение света атомом.
  • Работа с графиками электромагнитных колебаний в колебательном контуре
  • Определение направления силы Ампера, действующей на проводник с током со стороны другого проводника, и силы Лоренца, действующей на заряженную частицу, движущуюся вдоль проводника с током. Повторите правило левой руки для этих сил. 
  • Снятие показаний с приборов по фотографии в задании 22. Каким бы лёгким ни казался этот номер, не пренебрегайте подготовкой к нему. Рекомендуем прорешать как можно больше задач, чтобы точно разобраться в погрешностях. Набить руку можно на бесплатных пробниках по физике от Вебиума.

Есть ещё типичные ошибки в ЕГЭ по физике, которые не зависят от года сдачи экзамена.

  • Неверный выбор формул. Подсказка о формуле, которую нужно выбрать для решения задачи, находится в условии. Приведём несколько слов-маркеров:

– если есть слова «доска», «стержень», «лестница», то используйте уравнение равновесия

– если есть слова «удар», «взрыв», «выстрел», то используйте закон сохранения импульса

– если есть фраза «идеальный одноатомный газ», то используйте первый закон термодинамики, формулу внутренней энергии и уравнение Клапейрона-Менделеева;

– если есть слова «калориметр» или «теплоизолированный сосуд», то используйте уравнение теплового баланса, а если есть словосочетание «тепловой двигатель», то подойдёт формула КПД и первый закон термодинамики;

– если говорится про контур без источника тока или про возникновение тока, то пригодится закон электромагнитной индукции.


В нашей
Шпаргалке по физике собрали все формулы, которые могут пригодиться на ЕГЭ. Её удобно распечатать или сохранить на телефон.

  • Объём погружённой части в формуле силы Архимеда. Многие забывают, что в формуле силы Архимеда присутствует не объём тела, а объём погружённой части тела в жидкость или газ. Здесь вас может ждать подвох от составителей: если в условии задачи дан объём тела и при этом сказано, что оно находится в воде не полностью, то использовать полный объём нельзя. Найдите часть от этого объёма или ищите значение силы Архимеда через равенство сил. 
  • Угол в формуле потока вектора магнитной индукции. В этой формуле косинус угла равен углу между вектором магнитной индукции и нормалью к поверхности. Иногда в задачах дают не этот угол, а угол между поверхностью и вектором магнитной индукции
  • Работа газа и внешних сил. В задачах на термодинамику часто встречаются подвохи со знаками. Когда вы записываете первый закон термодинамики, учтите, что:

– если внутренняя энергия уменьшилась на какое-то число, то это значение вы должны написать с минусом и наоборот; 

– если вы получили работу внешних сил, а в условии требуют найти работу газа, то ответ нужно записать со знаком «минус».

  • Запись в бланк ответов не того, что нужно. Часто выпускники решают задачу верно, но в ответ записывают не то, что требовалось в задании: указывают температуру нагревателя вместо температуры холодильника, путают «во сколько» и «на сколько» или при поиске отношения величин меняют местами числитель и знаменатель, находя обратное значение. Чтобы избежать ошибки, перечитывайте задачу полностью и до конца, прежде чем записать что-то в ответ.. 
  • Направление и точка приложения сил. Помимо сил Лоренца и Ампера, ученики путают направления силы реакции опоры, силы трения, веса, прикладывают силу тяжести не к центру масс тела. Если в задании требуется сделать чертёж со схемой приложения сил, то за их направлением и точкой приложения нужно внимательно следить. 
  • Запись ответов не в тех единицах измерения. В КИМе, справа от графы с ответом, написаны единицы измерения, в которых необходимо дать ответ. Нередко при решении задачи ответ получается не в нужных единицах, и его нужно перевести в требуемые. Если не заметить этот момент, то задание на засчитают. 
  • Отсутствие ответа на вопрос в качественной задаче. Если в условии просят указать, как изменится величина, то в конце своего решения напишите конкретную фразу: «Величина уменьшится/увеличится/не изменится». За отсутствие ответа снимают 1 балл. 
  • Невнимательность к мелким поясняющим словам. Иногда мы читаем задачу не до конца, а до вопроса, потому что привыкли видеть в конце задания банальные фразы «сопротивлением воздуха пренебречь». Но иногда там могут скрываться ключевые моменты для решения задачи: 

– фраза «оболочка шара не оказывает сопротивления изменению объёма шара» даст два уравнения: давление гелия равно давлению воздуха, температура гелия равна температуре воздуха; 

– если ключ замкнули на «достаточно долгое время», то конденсатор за это время успел зарядиться или в катушке прекратилась самоиндукция, то есть она перестала оказывать сопротивление движению тока; если жидкость находится в сосуде «достаточно долгое время», то над ней образуется насыщенный водяной пар;

– фразы «тело движется по шероховатой поверхности» или «тело движется по гладкой поверхности» говорят о наличии или отсутствии силы трения соответственно; 

– если в задаче сказано, что тело плавает, то сила Архимеда равна силе тяжести;

– упоминание «массивного поршня» намекает на то, что к атмосферному давлению добавляется давление поршня, а фраза «невесомый поршень» указывает на то, что его давление учитывать не нужно;

– слова «идеальная тепловая машина» подсказывают, что нужно использовать формулу КПД через зависимость температур; 

– словосочетание «теплоизолированный сосуд» означает сохранение внутренней энергии; 

– «идеальный колебательный контур» означает, что в нём нет тепловых потерь и выполняется закон сохранения энергии;

– если в задаче сказано, что тело отрывается от опоры, то сила реакции опоры становится равной нулю;

– фраза «абсолютно упругое соударение» подразумевает, что энергия полностью сохраняется.

Ошибки в математической части

Чтобы хорошо сдать ЕГЭ по физике, нужно иметь такие же хорошие знания в математике. Старайтесь не допускать следующих ошибок: 

  • Не путать проекции синуса и косинуса. Обычно это происходит, когда тело находится на наклонной поверхности и надо спроецировать силу тяжести. Если вы сомневаетесь, всегда рисуйте небольшой прямоугольный треугольник и обозначайте углы там. Лучше потратить на это несколько секунд, чем потерять драгоценные баллы. 
  • Неверно вычислять производную. Эта тема встретится не только в профильной математике, но и в заданиях на механические колебания, поэтому обязательно разберитесь с ней. 
  • Не округлять сильно. Проблема в решении задачи по частям в том, что округлить придётся несколько раз и ответ получится неточным. Помните, что расхождение более, чем в 10% недопустимо, поэтому идеальный вариант решения — составить итоговую формулу и подставлять числа в неё. 
  • Не совершать рядовые вычислительные ошибки. Не пренебрегайте проверкой своих вычислений на калькуляторе, проверяйте правильность ввода всех значений и следите за знаками после запятой. Лучше лишний раз проверить, сколько будет 2х2, чем потерять несколько баллов. 

Ошибки при оформлении задач второй части

При неправильном оформлении задачи эксперты снимают баллы. Что учитывать при переносе заданий на бланк ответов?

  • Придерживайтесь схемы «Дано — Рисунок — Решение — Ответ». Это структурирует ваш ответ. К тому же при отсутствии слова «Ответ» эксперты могут снять балл. 
  • Записывайте небольшие пояснения, например: «Так как тело движется без трения, то запишем закон сохранения энергии» или «Запишем второй закон Ньютона для этого тела» при использовании новой формулы.
  • Вводя новую величину, которой не было дано в условии, обязательно пропишите отдельно, что это, в формате «…где R — радиус окружности».
  • Делайте подробный рисунок, если это требуется, и указывайте там всю нужную информацию: обозначения, систему координат. К сожалению, эксперты могут снять баллы за отсутствие важных деталей на рисунке, поясняющем решение задачи. 

Чтобы избежать большого количества ошибок на экзамене, необходимо систематизировать знания, которые вы получали в течение года. Этим мы занимаемся на наших курсах в Вебиуме. Посмотрите бесплатный пробный урок и готовьтесь к ЕГЭ вместе с нами!

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!

Понравилась статья? Поделить с друзьями:
  • Подготовительные курсы по егэ в омске
  • Подводные камни егэ по истории
  • Подготовительные курсы по биологии егэ
  • Подводные камни егэ по биологии
  • Подготовительные курсы огэ егэ