Показательные уравнения 2 часть егэ по математике с решениями

Как решать
показательные уравнения?

Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Это поможет решить задания №5, 13 и 15 из профильного уровня математики.

Одна из их разновидностей – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие переменной (х) не в основании степени, а в самом показателе. Как это выглядит:

Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:

Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение (х). Познакомиться с понятием степени и ее свойствами можно тут и тут.

И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:

И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением. Кроме самой показательной функции в уравнении могут быть любые другие математические конструкции – тригонометрические функции, логарифмы, корни, дроби и т.д. Если вы видите степень, значит перед вам показательное уравнение.

Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.

Простейшие показательные уравнения

Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:

Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо (х) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:

Значит, если (х=3), то мы получим верное равенство, а значит мы решили уравнение.

Решим что-нибудь посложнее.

Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:

Мы применили свойство отрицательной степени по формуле:

Теперь наше уравнение будет выглядеть так:

Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны (3), только вот степени разные – слева степень ((4х-1)), а справа ((-2)). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:

Такое мы решать умеем, ведь это обыкновенное линейное уравнение.

Поздравляю, мы нашли корень нашего показательного уравнения.

Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что (125=5*5*5=5^3), а (25=5*5=5^2), подставим:

Воспользуемся одним из свойств степеней ((a^n)^m=a^):

И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:

И еще один пример:

Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить (2) в различную степень, вы никогда не сможете получить отрицательное число.

Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.

Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.

Общий метод решения показательных уравнений

Пусть у нас есть вот такой пример:

Где (a,b) какие-то положительные числа. ((a>0, ; b>0).

Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.

Слева у нас уже стоит (a^x), с этим ничего делать не будем, а вот справа у нас стоит загадочное число (b), которое нужно попытаться представить в виде (b=a^m). Тогда уравнение принимает вид:

Раз основания одинаковые, то мы можем просто приравнять степени:

Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:

Замечаем, что (16=2*2*2*2=2^4) это степень двойки:

Основания одинаковые, значит можно приравнять степени:

$$x=4.$$
Пример 6 $$5^<-x>=125 Rightarrow 5^<-x>=5*5*5 Rightarrow 5^<-x>=5^3 Rightarrow –x=3 Rightarrow x=-3.$$
Пример 7 $$9^<4x>=81 Rightarrow (3*3)^<4x>=3*3*3*3 Rightarrow(3^2)^<4x>=3^4 Rightarrow 3^<8x>=3^4 Rightarrow 8x=4 Rightarrow x=frac<1><2>.$$

Здесь мы заметили, что (9=3^2) и (81=3^4) являются степенями (3).

Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:

(3) и (2) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число (b>0), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице (a>0, ; a neq 1):

Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим (2) в виде (3) в какой-то степени, где (a=3), а (b=2):

Подставим данное преобразование в наш пример:

Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:

Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.

Кто забыл, что такое логарифм, можно посмотреть здесь.

Рассмотрим еще несколько аналогичных примеров.

Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:

Все эти варианты ответа верные, их можно смело писать в ответ.

И так, мы с вами научились решать любые показательные уравнения вот такого вида: (a^x=b), где (a>0; ; b>0).

Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа (a^x=b), где (a>0; ; b>0). Рассмотрим типы сложных уравнений, которые могут попасться:

Решение показательных уравнений при помощи замены

Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.

Здесь это сделать легко, замечаем, что (9=3^2), тогда (9^x=(3^2)^x=3^<2x>=(3^x)^2). Здесь мы воспользовались свойством степеней: ((a^n)^m=a^). Подставим:

Обратим внимание, что во всем уравнении все (х) «входят» в одинаковую функцию — (3^x). Сделаем замену (t=3^x, ; t>0), так как показательная функция всегда положительна.

Квадратное уравнение, которое решается через дискриминант:

Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:

И второй корень:

И еще один пример на замену:

Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание (3). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Но если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член (3=2+1) и вынести общий множитель (2):

Подставим в исходное уравнение:

Теперь показательные функции одинаковы и можно сделать замену:

Обратная замена, и наше уравнение сводится к простейшему:

И второе значение (t):

Тут у нас две показательные функции с основаниями (7) и (3), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на (3^x):

Здесь нам придется воспользоваться свойствами степеней:

Разберем каждое слагаемое:

Теперь подставим получившееся преобразования в исходное уравнение:

Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену (t=(frac<7><3>)^x):

Сделаем обратную замену:

И последний пример на замену:

Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:

Разберем каждое слагаемое нашего уравнения:

Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны — отрицательная степень не имеет никакого отношения к знаку показательной функции!

И последнее слагаемое со степенью:

Подставим все наши преобразования в исходное уравнение:

Теперь можно сделать замену (t=2^x) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель (2^x)):

Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера. Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.

И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут

Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании (2), (5) и (10). Очевидно, что (10=2*5). Воспользуемся этим и подставим в наше уравнение:

Воспользуемся формулой ((a*b)^n=a^n*b^n):

И перекинем все показательные функции с основанием (2) влево, а с основанием (5) вправо:

Сокращаем и воспользуемся формулами (a^n*a^m=a^) и (frac=a^):

Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.

Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!

Показательные уравнения

Показательными называют такие уравнения, в которых неизвестное содержится в показателе степени.

При решении показательных уравнений используются свойства степеней, вспомним некоторые из них:

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются

3. При возведении степени в степень основание остается прежним, а показатели перемножаются

4. При возведении в степень произведения в эту степень возводится каждый множитель

5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель

6. При возведении любого основания в нулевой показатель степени результат равен единице

7. Основание в любом отрицательном показателе степени можно представить в виде основания в таком же положительном показателе степени, изменив положение основания относительно черты дроби

8. Радикал (корень) можно представить в виде степени с дробным показателем

Показательные уравнения часто сводятся к решению уравнения $a^x=a^m$, где, $а >0, a≠1, x$ — неизвестное. Для решения таких уравнений воспользуемся свойством степеней: степени с одинаковым основанием $(а >0, a≠1)$ равны только тогда, когда равны их показатели.

Решить уравнение $25·5^х=1$

В левой части уравнения необходимо сделать одну степень с основанием $5$ и в правой части уравнения представить число $1$ в виде степени с основанием $5$

При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются

Далее проговариваем: степени с одинаковым основанием $(а >0, a≠1)$ равны только тогда, когда равны их показатели

Чтобы решить данное уравнение, вынесем степень с наименьшим показателем как общий множитель

Показательные уравнения и неравенства с примерами решения

Содержание:

Рассмотрим уравнения, в которых переменная (неизвестное) находится в показателе степени. Например:

Уравнения такого вида принято называть показательными.

Решении показательных уравнений

При решении показательных уравнений нам будет полезно следствие из теоремы о свойствах показательной функции.

Пусть

Каждому значению показательной функции соответствует единственный показатель s.

Пример:

Решение:

Согласно следствию из равенства двух степеней с одинаковым основанием 3 следует равенство их показателей. Таким образом, данное уравнение равносильно уравнению

Пример:

Решение:

а) Данное уравнение равносильно (поясните почему) уравнению

Если степени с основанием 3 равны, то равны и их показатели:

Решив это уравнение, получим

Ответ:

При решении каждого уравнения из примера 2 сначала обе части уравнения представили в виде степени с одним и тем же основанием, а затем записали равенство показателей этих степеней.

Пример:

Решение:

а) Данное уравнение равносильно уравнению

Решая его, получаем:

Так как две степени с одинаковым основанием 2 равны, то равны и их показатели, т. е. откуда находим

б) Разделив обе части уравнения на получим уравнение равносильное данному. Решив его, получим

Ответ:

При решении примера 3 а) левую часть уравнения разложили на множители. Причем за скобку вынесли такой множитель, что в скобках осталось числовое выражение, не содержащее переменной.

Пример:

Решить уравнение

Решение:

Обозначим тогда

Таким образом, из данного уравнения получаем

откуда находим:

Итак, с учетом обозначения имеем:

При решении примера 4 был использован метод введения новой переменной, который позволил свести данное уравнение к квадратному относительно этой переменной.

Пример:

Решить уравнение

Решение:

Можно заметить, что 2 — корень данного уравнения. Других корней уравнение не имеет, так как функция, стоящая в левой части уравнения, возрастающая, а функция, стоящая в правой части уравнения, убывающая. Поэтому уравнение имеет не более одного корня (см. теорему из п. 1.14).

Пример:

Решить уравнение

Решение:

Пример:

При каком значении а корнем уравнения является число, равное 2?

Решение:

Поскольку х = 2 — корень, то верно равенство

Решив это уравнение, найдем

Ответ: при

Показательные уравнения и их системы

Показательным уравнением называется уравнение, в ко тором неизвестное входит в показатель степени. При решении показательных уравнений полезно использовать следующие тождества:

Приведем методы решения некоторых типов показательных уравнений.

1 Приведение к одному основанию.

Метод основан на следующем свойстве степеней: если две степени равны и равны их основания, то равны и их показатели, т.е. уравнения надо попытаться привести к виду . Отсюда

Пример №1

Решите уравнение

Решение:

Заметим, что и перепишем наше уравнение в виде

Применив тождество (1), получим Зх — 7 = -7х + 3, х = 1.

Пример №2

Решить уравнение

Решение:

Переходя к основанию степени 2, получим:

Согласно тождеству (2), имеем

Последнее уравнение равносильно уравнению 4х-19 = 2,5х.

2 Введение новой переменной.

Пример №3

Решить уравнение

Решение:

Применив тождество 2, перепишем уравнение как

Введем новую переменную: Получим уравнение

которое имеет корни Однако кореньне удовлетворяет условию Значит,

Пример №4

Решить уравнение

Решение:

Разделив обе части уравнения на получим:

последнее уравнение запишется так:

Решая уравнение, найдем

Значение не удовлетворяет условию Следовательно,

Пример №5

Решить уравнение

Решение:

Заметим что Значит

Перепишем уравнение в виде

Обозначим Получим

Получим

Корнями данного уравнения будут

Следовательно,

III Вынесение общего множителя за скобку.

Пример №6

Решить уравнение

Решение:

После вынесения за скобку в левой части , а в правой , получим Разделим обе части уравнения на получим

Системы простейших показательных уравнений

Пример №7

Решите систему уравнений:

Решение:

По свойству степеней система уравнений равносильна следующей

системе :Отсюда получим систему

Очевидно, что последняя система имеет решение

Пример №8

Решите систему уравнений:

Решение:

По свойству степеней система уравнений равносильна следующей системе: Последняя система, в свою очередь, равносильна системе:

Умножив второе уравнение этой системы на (-2) и сложив с первым, получим уравнение —9х=-4. Отсюда, найдем Подставив полученное значение во второе уравнение, получим

Пример №9

Решите систему уравнений:

Решение:

Сделаем замену: Тогда наша система примет вид:

Очевидно, что эта система уравнений имеет решение

Тогда получим уравнения

Приближенное решение уравнений

Пусть многочлен f(х) на концах отрезка [a,b] принимает значения разных знаков, то есть . Тогда внутри этого отрезка существует хотя бы одно решение уравнения Дх)=0. Это означает, что существует такое (читается как «кси»), что

Это утверждение проиллюстрировано на следующем чертеже.

Рассмотрим отрезок содержащий лишь один корень уравнения .

Метод последовательного деления отрезка пополам заключается в последовательном разделении отрезка [a, b] пополам до тех пор, пока длина полученного отрезка не будет меньше заданной точности

  1. вычисляется значение f(х) выражения
  2. отрезок делится пополам, то есть вычисляется значение
  3. вычисляется значение выражения f(х) в точке
  4. проверяется условие
  5. если это условие выполняется, то в качестве левого конца нового отрезка выбирается середина предыдущего отрезка, то есть полагается, что (левый конец отрезка переходит в середину);
  6. если это условие не выполняется, то правый конец нового отрезка переходит в середину, то есть полагается, что b=x;
  7. для нового отрезка проверяется условие
  8. если это условие выполняется , то вычисления заканчиваются. При этом в качестве приближенного решения выбирается последнее вычисленное значение х. Если это условие не выполняется, то, переходя к пункту 2 этого алгоритма, вычисления продолжаются.

Метод последовательного деления пополам проиллюстрирован на этом чертеже:

Для нахождения интервала, содержащего корень уравнения вычисляются значения

Оказывается, что для корня данного уравнения выполнено неравенство. Значит, данное уравнение имеет хотя бы один корень, принадлежащий интервалу (-1 -А; 1+А). Для приближенного вычисления данного корня найдем целые и удовлетворяющие неравенству

Пример №10

Найдите интервал, содержащий корень уравнения

Решение:

Поделив обе части уравнения на 2 , получим,

Так как, для нового уравнения

Значит, в интервале, уравнение имеет хотя бы один корень. В то же время уравнение при не имеет ни одного корня, так как,

выполняется. Значит, корень уравнения лежит в (-2,5; 0). Для уточнения этого интервала положим Для проверим выполнение условия

Значит, уравнение имеет корень, принадлежащий интервалу (-1; 0).

Нахождение приближенного корня с заданной точностью

Исходя из вышесказанного, заключаем, что если выполнено неравенство корень уравнения принадлежит интервалу

ПустьЕсли приближенный

корень уравнения с точностью . Если то корень лежит в интервале если то корень лежит в интервале . Продолжим процесс до нахождения приближенного значения корня с заданной точностью.

Пример №11

Найдите приближенное значение корня уравнения с заданной точностью

Решение:

Из предыдущего примера нам известно, что корень лежит в интервале

(-1; 0). Из того, что заключаем, что корень лежит в интервале (-0,5; 0).

Так как, |(-0,25)41,5(-0,25)2+2,5(-0,25)+0,5| = |-0,046| 1. Если

Пусть

Изображения графиков показательной функции подсказывают это свойство. На рисунке 27 видно, что при а > 1 большему значению функции соответствует большее значение аргумента. А на рисунке 30 видно, что при 0

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

источники:

http://examer.ru/ege_po_matematike/teoriya/pokazatelnye_uravneniya

http://www.evkova.org/pokazatelnyie-uravneniya-i-neravenstva

Показательные уравнения

Рассмотрим уравнение 2x = 8. В какую степень надо возвести 2, чтобы получить 8? Ясно, что в степень 3.

Более того, x = 3 — единственное решение данного уравнения. Почему? Это легко понять, посмотрев на график показательной функции y = 2x: данная функция монотонно возрастает и потому каждое своё значение принимает ровно один раз. Иными словами, не существует других значений x, кроме 3, таких, что 2x = 8.


Простейшее показательное уравнение — это уравнение вида

где a > 1 или 0 < a < 1.

Если b > 0, то уравнение (1) имеет решение, и притом единственное. Действительно, при a > 1 показательная функция монотонно возрастает, а при 0 < a < 1 — монотонно убывает; в любом случае она принимает каждое своё значение ровно один раз.

А вот если b ⩽ 0, то уравнение (1) не имеет решений: ведь показательная функция может принимать только положительные значения.

Любое показательное уравнение после соответствующих преобразований сводится к решению одного или нескольких простейших.

В задачах достаточно представить левую и правую части в виде степеней с одинаковым основанием.

1.

Вспоминаем, что 125 = 53. Уравнение приобретает вид: 5x−7 = 5−3.

В силу монотонности показательной функции показатели степени равны: x − 7 = −3, откуда x = 4.

2.
Поскольку  , уравнение можно записать в виде:
Дальнейшее ясно:
Теперь рассмотрим более сложные уравнения.

3.

Здесь лучше всего вынести за скобку двойку в наименьшей степени:

4.

Делаем замену

Тогда   и относительно t мы получаем квадратное уравнение: Его корни: и

В первом случае имеем: откуда

Во втором случае: решений нет.

Ответ: 3.

5.

Замечаем, что а :


Делим обе части на положительную величину :

Делаем замену:
Полученное квадратное уравнение имеет корни −1 и  .

В случае
решений нет.

В случае

имеем единственный корень

Ответ:

Вообще, показательные уравнения вида

называются однородными. Для них существует стандартный приём решения — деление обеих частей на  (эта величина не равна нулю, так как показательная функция может принимать только положительные значения). Именно этим приёмом мы в данной задаче и воспользовались.

С однородными уравнениями, кстати, мы уже встречались — в тригонометрии. Это были уравнения вида
Их мы решали похожим приёмом — делением на

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Показательные уравнения» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.03.2023

Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Он поможет решить задания №4, 12 и 14 из профильного уровня математики.

Одна из их разновидностей уравнений – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие степеней и переменной (х) не в основании степени, а в самом показателе. Как это выглядит:

$$ a^{f(x)}=b^{g(x)}; $$

Где (a) и (b) — некоторые числа, а (f(x)) и (g(x)) — какие-то выражения, зависящие от (x). Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:

$$2^x=8;$$
$$ 2^x=2^{2x+1};$$
$$3^{x^2}=2^{x^2-2x+3};$$

Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение (х). Познакомиться с понятием степени и ее свойствами можно тут и тут.

И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:

$$ 7x+2=16;$$
$$x^2-4x+5=0;$$

И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением.

Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.

Простейшие показательные уравнения

Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:

Пример 1
$$ 2^x=8;$$

Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо (х) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:

$$ 2^3=2*2*2=8; $$

Значит, если (х=3), то мы получим верное равенство, а значит мы решили уравнение.

Решим что-нибудь по-сложнее.

Пример 2
$$ 3^{4x-1}=frac{1}{9};$$

Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:

$$frac{1}{9}=frac{1}{3^2}=3^{-2};$$

Мы применили свойство отрицательной степени по формуле:

$$ a^{-n}=frac{1}{a^n};$$

Теперь наше уравнение будет выглядеть так:

$$ 3^{4x-1}=3^{-2};$$

Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны (3), только вот степени разные – слева степень ((4х-1)), а справа ((-2)). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:

$$ 4x-1=-2;$$

Такое мы решать умеем, ведь это обыкновенное линейное уравнение.

$$4х=-2+1;$$
$$4x=-1;$$
$$x=-frac{1}{4}.$$

Поздравляю, мы нашли корень нашего показательного уравнения.

Пример 3
$$125^x=25;$$

Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что (125=5*5*5=5^3), а (25=5*5=5^2), подставим:

$$ (5^3)^x=5^2;$$

Воспользуемся одним из свойств степеней ((a^n)^m=a^{n*m}):

$$ 5^{3*x}=5^2;$$

И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:

$$ 3*x=2;$$
$$ x=frac{2}{3};$$

И еще один пример:

Пример 4
$$2^x=-4;$$

Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить (2) в различную степень, вы никогда не сможете получить отрицательное число.

Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.

Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.

Общий метод решения показательных уравнений

Пусть у нас есть вот такой пример:

$$ a^x=b;$$

Где (a,b) какие-то положительные числа. ((a>0, ; b>0)).

Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.

Слева у нас уже стоит (a^x), с этим ничего делать не будем, а вот справа у нас стоит загадочное число (b), которое нужно попытаться представить в виде (b=a^m). Тогда уравнение принимает вид:

$$ a^x=a^m;$$

Раз основания одинаковые, то мы можем просто приравнять степени:

$$x=m.$$

Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:

Пример 5
$$2^x=16;$$

Замечаем, что (16=2*2*2*2=2^4) это степень двойки:

$$2^x=2^4$$

Основания одинаковые, значит можно приравнять степени:

$$x=4.$$

Пример 6
$$5^{-x}=125 Rightarrow 5^{-x}=5*5*5 Rightarrow 5^{-x}=5^3 Rightarrow –x=3 Rightarrow x=-3.$$

Пример 7
$$9^{4x}=81 Rightarrow (3*3)^{4x}=3*3*3*3 Rightarrow(3^2)^{4x}=3^4 Rightarrow 3^{8x}=3^4 Rightarrow 8x=4 Rightarrow x=frac{1}{2}.$$

Здесь мы заметили, что (9=3^2) и (81=3^4) являются степенями (3).

Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:

Пример 8
$$ 3^x=2;$$

(3) и (2) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число (b>0), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице (a>0, ; a neq 1):

$$ b=a^{log_{a}(b)};$$

Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим (2) в виде (3) в какой-то степени, где (a=3), а (b=2):

$$ 2=3^{log_{3}(2)};$$

Подставим данное преобразование в наш пример:

$$3^x=3^{log_{3}(2)};$$

Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:

$$x=log_{3}(2).$$

Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.

Кто забыл, что такое логарифм, можно посмотреть здесь.

Рассмотрим еще несколько аналогичных примеров.

Пример 9
$$ 7^{2x}=5;$$
$$ 7^{2x}=7^{log_{7}(5)};$$
$$2x=log_{7}(5);$$
$$x=frac{1}{2}*log_{7}(5).$$

Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:

$$ x=frac{1}{2}*log_{7}(5)=log_{7}(5^{frac{1}{2}})=log_{7}(sqrt{5});$$

Все эти варианты ответа верные, их можно смело писать в ответ.

И так, мы с вами научились решать любые показательные уравнения вот такого вида: (a^x=b), где (a>0; ; b>0).

Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа (a^x=b), где (a>0; ; b>0). Рассмотрим типы сложных уравнений, которые могут попасться:

Решение показательных уравнений при помощи замены

Рассмотрим уравнение:

Пример 10
$$ 9^x-5*3^x+6=0;$$

Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.

Здесь это сделать легко, замечаем, что (9=3^2), тогда (9^x=(3^2)^x=3^{2x}=(3^x)^2). Здесь мы воспользовались свойством степеней: ((a^n)^m=a^{n*m}). Подставим:

$$(3^x)^2-5*3^x+6=0;$$

Обратим внимание, что во всем уравнении все (х) «входят» в одинаковую функцию — (3^x). Сделаем замену (t=3^x, ; t>0), так как показательная функция всегда положительна.

$$t^2-5t+6=0;$$

Квадратное уравнение, которое решается через дискриминант:

$$D=5^2-4*6=25-24=1; Rightarrow t_{1}=frac{5+sqrt{1}}{2}=3; Rightarrow t_{2}=frac{5-sqrt{1}}{2}=2;$$

Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:

$$ 3^x=3;$$
$$3^x=3^1;$$
$$x=1.$$

И второй корень:

$$ 3^x=2;$$
$$3^x=3^{log_{3}(2)};$$
$$x=log_{3}(2).$$

Ответ: (x_{1}=1; ; x_{2}=log_{3}(2).)

И еще один пример на замену:

Пример 11
$$3^{4x^2-6x+3}-10*3^{2x^2-3x+1}+3=0;$$

Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание (3). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Преобразуем первое слагаемое. Если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член (3=2+1) и вынести общий множитель (2):

$$ 3^{4x^2-6x+3}=3^{4x^2-6x+2+1}=3^{2(2x^2-3x+1)+1}=3^{2*(2x^2-3x+1)}*3^1=3*(3^{2x^2-3x+1})^2;$$

Подставим в исходное уравнение:

$$3*(3^{2x^2-3x+1})^2-10*3^{2x^2-3x+1}+3=0;$$

Теперь показательные функции одинаковы и можно сделать замену:

$$t=3^{2x^2-3x+1}; ; t>0;$$
$$3*t^2-10t+3=0;$$
$$D=100-36=64; Rightarrow t_{1}=3; t_{2}=frac{1}{3};$$

Обратная замена, и наше уравнение сводится к простейшему:

$$ 3^{2x^2-3x+1}=3;$$
$$ 2x^2-3x+1=1;$$
$$x(2x-3)=0;$$
$$x=0; ; x=frac{3}{2}.$$

И второе значение (t):

$$3^{2x^2-3x+1}=frac{1}{3};$$
$$3^{2x^2-3x+1}=3^{-1};$$
$$2x^2-3x+1=-1;$$
$$2x^2-3x+2=0;$$
$$D=9-16=-7<0;$$

Раз дискриминант получился меньше нуля, то вторая ветка решений нам корней не дает.

Ответ: (x_{1}=0; ; x_{2}=frac{3}{2}.)

Однородные показательные уравнения

Иногда встречаются такие показательные уравнения, в которых не сразу видно, как сделать одинаковые функции, а именно одинаковые основания, чтобы произвести замену. Посмотрим на такой пример:

Пример 12
$$ 7^{x+1}+3*7^{x}=3^{x+2}+3^{x};$$

Тут у нас две показательные функции с основаниями (7) и (3), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на (3^x):

$$ 7^{x+1}+3*7^{x}=3^{x+2}+3^{x} ; ; :3^x$$
$$ frac{7^{x+1}}{3^x}+frac{3*7^{x}}{3^x}=frac{3^{x+2}}{3^x}+frac{3^{x}}{3^x};$$

Здесь нам придется воспользоваться свойствами степеней:

$$frac{a^n}{a^m}=a^{n-m};$$
$$ a^n*a^m=a^{n+m};$$
$$ frac{a^n}{b^n}=(frac{a}{b})^n;$$

Разберем каждое слагаемое:

$$ frac{7^{x+1}}{3^x}=frac{7*7^x}{3^x}=7*frac{7^x}{3^x}=7*(frac{7}{3})^x;$$
$$ frac{3*7^{x}}{3^x}=3*frac{7^x}{3^x}=3*(frac{7}{3})^x;$$
$$ frac{3^{x+2}}{3^x}=3^2*frac{3^x}{3^x}=3^2*1=9;$$
$$ frac{3^{x}}{3^x}=1;$$

Теперь подставим получившееся преобразования в исходное уравнение:

$$ 7*(frac{7}{3})^x+3*(frac{7}{3})^x=9+1;$$

Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену (t=(frac{7}{3})^x):

$$7t+3t=10;$$
$$10t=10;$$
$$t=1;$$

Сделаем обратную замену:

$$(frac{7}{3})^x=1;$$

Вспоминаем, что (1=(frac{7}{3})^0):

$$(frac{7}{3})^x=(frac{7}{3})^0;$$
$$x=0.$$

Ответ: (x=0).

И последний пример на замену:

Пример 13
$$2^{x+2}+0,5^{-x-1}+4*2^{x+1}=28;$$

Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:

$$ a^n*a^m=a^{n+m};$$
$$a^{-n}=frac{1}{a^n};$$
$${(a^n)}^m=a^{n*m};$$

Разберем каждое слагаемое нашего уравнения:

$$2^{x+2}=2^x*2^2=4*2^x;$$

Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны — отрицательная степень не имеет никакого отношения к знаку показательной функции!

$$0,5^{-x-1}=0,5^{-(x+1)}={(frac{1}{2})}^{-(x+1)}={(2^{-1})}^{-(x+1)}=2^{x+1}=2^x*2^1=2*2^x;$$

И последнее слагаемое со степенью:

$$ 4*2^{x+1}=4*2^x*2^1=8*2^x;$$

Подставим все наши преобразования в исходное уравнение:

$$4*2^x+2*2^x+8*2^x=28;$$

Теперь можно сделать замену (t=2^x) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель (2^x)):

$$2^x*(4+2+8)=28;$$
$$14*2^x=28;$$
$$2^x=frac{28}{14}=2;$$
$$2^x=2^1;$$
$$x=1.$$

Ответ: (x=1.)

Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера.
Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.

И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут

Пример 14
$$2^{x+1}*5^x=10^{x+1}*5^{x+2};$$

Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании (2), (5) и (10). Очевидно, что (10=2*5). Воспользуемся этим и подставим в наше уравнение:

$$2^{x+1}*5^x=(2*5)^{x+1}*5^{x+2};$$

Воспользуемся формулой ((a*b)^n=a^n*b^n):

$$ 2^{x+1}*5^x=2^{x+1}*5^{x+1}*5^{x+2};$$

И перекинем все показательные функции с основанием (2) влево, а с основанием (5) вправо:

$$frac{2^{x+1}}{2^{x+1}}=frac{5^{x+1}*5^{x+2}}{5^x};$$

Сокращаем и воспользуемся формулами (a^n*a^m=a^{n+m}) и (frac{a^n}{a^m}=a^{n-m}):

$$1=frac{5^{x+1+x+2}}{5^x};$$
$$1=frac{5^{2x+3}}{5^x};$$
$$1=5^{2x+3-x};$$
$$1=5^{x+3};$$
$$5^0=5^{x+3};$$
$$x+3=0;$$
$$x=-3.$$
Ответ: (x=-3).

Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.

Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!

Что такое показательные уравнения

Если ты забыл следующие темы, то для получения наилучшего результата, пожалуйста, повтори:

  • Свойства степени и корня
  • Решение линейных и квадратных уравнений
  • Разложение на множители

Повторил? Замечательно!

Тогда тебе не составит труда заметить, что корнем уравнения ( 3x+5=2{x} -1) является число ( x=-6).

Ты точно понял, как я это сделал? Правда? Тогда продолжаем. Теперь ответь мне на вопрос, чему равно ( 5) в третьей степени? Ты абсолютно прав:

( {{5}^{3}}=5cdot 5cdot 5=125).

А восьмерка – это какая степень двойки? Правильно – третья! Потому что:

( 2cdot 2cdot 2={{2}^{3}}=8).

Ну вот, теперь давай попробуем решить следующую задачку: Пусть я ( x) раз умножаю само на себя число ( 2) и получаю в результате ( 16).

Спрашивается, сколько раз я умножил ( 2) само на себя? Ты, конечно, можешь проверить это непосредственно:

( begin{align} & 2=2 \ & 2cdot 2=4 \ & 2cdot 2cdot 2=8 \ & 2cdot 2cdot 2cdot 2=16 \ end{align} )

Тогда ты можешь сделать вывод, что ( 2) само на себя я умножал ( displaystyle 4) раза.

Как еще это можно проверить?

А вот как: непосредственно по определению степени: ( displaystyle {{2}^{4}}=16).

Но, согласись, если бы я спрашивал, сколько раз два нужно умножить само на себя, чтобы получить, скажем ( displaystyle 1024), ты бы сказал мне: я не буду морочить себе голову и умножать ( displaystyle 2) само на себя до посинения.

И был бы абсолютно прав. Потому как ты можешь записать все действия кратко (а краткость – сестра таланта)

( displaystyle {{2}^{x}}=1024),

где ( displaystyle x) – это и есть те самые «разы», когда ты умножаешь ( displaystyle 2) само на себя.

Я думаю, что ты знаешь ( а если не знаешь, срочно, очень срочно повторяй степени!), что ( displaystyle 1024={{2}^{10}}), тогда моя задачка запишется в виде:

( displaystyle {{2}^{x}}={{2}^{10}}), откуда ты можешь сделать вполне оправданный вывод, что:

( x=10).

Вот так вот незаметно я записал простейшее показательное уравнение:

( {{2}^{x}}={{2}^{10}})

И даже нашел его корень ( x=10). Тебе не кажется, что все совсем тривиально? Вот и я думаю именно так же.

Вот тебе еще один пример:

( {{1000}^{x}}=100).

Но что же делать?

Ведь ( 100) нельзя записать в виде степени (разумной) числа ( 1000).

Давай не будем отчаиваться и заметим, что оба этих числа прекрасно выражаются через степень одного и того же числа.

Какого?

Верно: ( 100={{10}^{2}},~1000={{10}^{3}}).

Тогда исходное уравнение преобразуется к виду:

( {{10}^{3x}}={{10}^{2}}),

откуда, как ты уже понял, ( 3x=2,~x=frac{2}{3}).

Давай более не будем тянуть и запишем определение:

Пример 1 (меркантильный)

Пусть у тебя есть ( displaystyle 1000000) рублей, а тебе хочется превратить его в ( displaystyle 1500000) рублей.

Банк предлагает тебе взять у тебя эти деньги под ( displaystyle 12%) годовых с ежемесячной капитализацией процентов (ежемесячным начислением).

Спрашивается, на сколько месяцев нужно открыть вклад, чтобы набрать нужную конечную сумму?

Вполне приземленная задача, не так ли?

Тем не менее ее решение связано с построением соответствующего показательного уравнения:

Пусть ( Sn) – начальная сумма, ( Sk) – конечная сумма, ( i) – процентная ставка за период, ( x) – количество периодов.

Тогда:

( Sk=Sn{{left( 1+frac{i}{100} right)}^{x}})

В нашем случае ( displaystyle Sn=1000000={{10}^{6}},~Sk=1500000=1.5cdot {{10}^{6}},~i=1) (если ставка ( 12%) годовых, то за месяц начисляют ( 1%)).

А почему ( i) делится на ( 100)? Если не знаешь ответ на этот вопрос, вспоминай тему «Проценты»!

Тогда мы получим вот такое уравнение:

( 1.5cdot {{10}^{6}}={{10}^{6}}{{left( 1+0.01 right)}^{x}})

( 1.5={{1.01}^{x}})

Данное показательное уравнение уже можно решить только при помощи калькулятора (его внешний вид на это намекает, причем для этого требуется знание логарифмов, с которыми мы познакомимся чуть позже), что я и сделаю: ( xtilde{ }40.7489)…

Таким образом, для получения ( 1.5) млн. нам потребуется сделать вклад на ( 41) месяц (не очень быстро, не правда ли?)

Пример 1. Метод простой замены

( {{4}^{x}}+{{2}^{x+1}}-3=0)

Решение:

Это уравнение решается при помощи «простой замены», как ее пренебрежительно называют математики.

В самом деле, замена здесь – самая очевидная. Стоит лишь увидеть, что

( {{4}^{x}}={{2}^{2x}}={{({{2}^{x}})}^{2}})

Тогда исходное уравнение превратится вот в такое:

( {{({{2}^{x}})}^{2}}+{{2}^{x+1}}-3=0)

Если же дополнительно представить ( {{2}^{x+1}}) как ( 2cdot {{2}^{x}}), то совершенно ясно, что надо заменять: конечно же, ( t={{2}^{x}}). Во что тогда превратится исходное уравнение? А вот во что:

( {{t}^{2}}+2t-3=0)

Ты без проблем самостоятельно отыщешь его корни: ( {{t}_{1}}=-3,~{{t}_{2}}=1).

Что нам делать теперь?

Пришло время возвращаться к исходной переменной ( displaystyle x).

А что я забыл указать? Именно: при замене некоторой степени на новую переменную (то есть при замене вида ( t={{a}^{x}})), меня будут интересовать только положительные корни!

Ты и сам без труда ответишь, почему.

Таким образом, ( {{t}_{1}}=-3) нас с тобой не интересует, а вот второй корень нам вполне подходит:

( {{t}_{2}}=1), тогда ( {{2}^{x}}=1), откуда ( x=0).

Ответ: ( x=0)

Как видишь, в предыдущем примере, замена так и просилась к нам в руки. К сожалению, так бывает далеко не всегда.

Однако давай не будем переходить сразу к грустному, а потренируемся еще на одном примере с достаточно простой заменой.

Пример 2. Метод простой замены

( {{3}^{3x+1}}-4cdot {{9}^{x}}=17cdot {{3}^{x}}-6)

Решение:

Ясно, что скорее всего заменять придется ( {{3}^{x}}) (это наименьшая из степеней, входящая в наше уравнение).

Однако прежде чем вводить замену, наше уравнение нужно к ней «подготовить», а именно:

( {{3}^{3x+1}}=3cdot {{left( {{3}^{x}} right)}^{3}}), ( {{9}^{x}}={{({{3}^{x}})}^{2}}).

Тогда можно заменять ( t={{3}^{x}}), в результате я получу следующее выражение:

( 3{{t}^{3}}-4{{t}^{2}}=17t-6)

( 3{{t}^{3}}-4{{t}^{2}}-17t+6=0)

О ужас: кубическое уравнение с совершенно жуткими формулами его решения (ну если говорить в общем виде). Но давай не будем сразу отчаиваться, а подумаем, что нам делать.

Я предложу смошенничать: мы знаем, что для получения «красивого» ответа, нам нужно получить ( t) в виде некоторой степени тройки (с чего бы это, а?).

А давай попробуем угадать хотя бы один корень нашего уравнения (я начну гадать со степеней тройки).

Первое предположение ( displaystyle t=1). Не является корнем. Увы и ах! Хорошо, а теперь возьмем…

Как видишь, отбор корней показательных уравнений требует достаточно глубокого знания свойств логарифмов, так что я советую тебе быть как можно внимательнее, когда решаешь показательные уравнения.

Как ты понимаешь, в математике все взаимосвязано! Как говорила моя учительница по математике, математику, как историю, за ночь не прочитаешь.

Как правило, всю сложность при решении задач повышенной сложности составляет именно отбор корней уравнения.

Еще один пример для тренировки

( {{9}^{x+1}}-2cdot {{3}^{x+2}}+5=0,~) при ( ~xin (lo{{g}_{3}}frac{3}{2};sqrt{5}))

Решение:

Ясно, что само уравнение решается довольно просто. Сделав замену ( t={{3}^{x}}) мы сведем наше исходное уравнение к следующему:

( {{t}^{2}}-18t+5=0)

( {{t}_{1}}=frac{1}{3},~{{t}_{2}}=frac{5~}{3})

Тогда ( {{x}_{1}}=-1,~{{x}_{2}}=mathbf{lo}{{mathbf{g}}_{3}}left( frac{5}{3} right)~~~)

Вначале давай рассмотрим первый корень. 

Сравним ( -1) и ( lo{{g}_{3}}left( frac{3}{2} right)):

так как ( frac{3}{2}>1), то ( lo{{g}_{3}}left( frac{3}{2} right)>0). (свойство логарифмической функции ( y=lo{{g}_{a}}x) при ( a>1)).

Тогда ясно, что( lo{{g}_{3}}left( frac{3}{2} right)>-1) и первый корень не принадлежит нашему промежутку.

Теперь второй корень:

Пример уравнения с нестандартной заменой!

( displaystyle 4sqrt[x]{81}-12sqrt[x]{36}+9sqrt[x]{16}=0)

Решение:

Давай сразу начнем с того, что делать можно, а что – в принципе можно, но лучше не делать.

Можно – представить все через степени тройки, двойки и шестерки. К чему это приведет?

Да ни к чему и не приведет: мешанина степеней, причем от некоторых будет довольно сложно избавиться.

А что же тогда нужно?

Давай заметим, что ( 81={{9}^{2}},~16={{4}^{2}},~) а ( 36=4cdot 9.)

И что нам это даст? А то, что мы можем свести решение данного примера к решению достаточно простого показательного уравнения!

Вначале давай перепишем наше уравнение в виде:

( displaystyle 4cdot {{9}^{frac{2}{x}}}~-12cdot {{4}^{frac{1}{x}}}{{9}^{frac{1}{x}}}+9cdot {{4}^{frac{2}{x}}}=0)

Такие уравнения называются однородными (подробнее читай в теме «Однородные уравнения»).

Теперь разделим обе части получившегося уравнения на ( {{4}^{frac{2}{x}}}):

Например, уравнение вида:

( {{a}^{F(x)}}=b(x)), причем ( b(x)ne {{a}^{i}}), ( i)( in R/Q)

В общем случае можно решить только логарифмированием обеих частей (например по основанию ( a)), при котором исходное уравнение превратится в следующее:

( F(x)=lo{{g}_{a}}b(x))

Давай рассмотрим следующий пример:

( {{x}^{1+lgx}}=10x)

Ясно, что по ОДЗ логарифмической функции, нас интересуют только ( x>0). Однако, это следует не только из ОДЗ логарифма, а еще по одной причине. Я думаю, что тебе не будет трудно угадать, по какой же именно.

Давай прологарифмируем обе части нашего уравнения по основанию ( 10):

( lg({{x}^{1+lgx}})=lg(10x))

( (1+lg(x))cdot lg(x)=1+lg(x))

( (1+lg(x))(lg(x)-1)=0)

( lg(x)=1,~lg(x)=-1)

( {{x}_{1}}=10,~{{x}_{2}}=0,1)

Как видишь, логарифмирование нашего исходного уравнения достаточно быстро привело нас к правильному (и красивому!) ответу.

Давай потренируемся еще на одном примере:

( {{x}^{lo{{g}_{4}}x-2}}={{2}^{2(lo{{g}_{4}}x-1)}})

Здесь тоже нет ничего страшного: прологарифмируем обе стороны уравнения по основанию ( 4), тогда получим:

( lo{{g}_{4}}({{x}^{lo{{g}_{4}}x-2}})=lo{{g}_{4}}({{2}^{2(lo{{g}_{4}}x-1)}});)

( left( lo{{g}_{4}}x-2 right)text{lo}{{text{g}}_{4}}x=2left( text{lo}{{text{g}}_{4}}x-1 right)text{lo}{{text{g}}_{4}}2;)

( (lo{{g}_{4}}x-2)lo{{g}_{4}}x=(lo{{g}_{4}}x-1);)

Сделаем замену: ( t=lo{{g}_{4}}x)

( {{t}_{1}}=frac{3+sqrt{5}}{2},~{{t}_{2}}=frac{3-sqrt{5}}{2})

Тогда ( {{x}_{1}}=lo{{g}_{4}}left( frac{3+sqrt{5}}{2} right),~{{x}_{2}}=lo{{g}_{4}}left( frac{3-sqrt{5}}{2} right),~)

Однако мы кое-что упустили! Ты заметил, где я сделал промах?

Ведь ( frac{3-sqrt{5}}{2}<1,~) тогда:

( {{x}_{2}}=lo{{g}_{4}}left( frac{3-sqrt{5}}{2} right)<0,~~) что не удовлетворяет требованию ( x>0) (подумай откуда оно взялось!)

Ответ: ( lo{{g}_{4}}left( frac{3+sqrt{5}}{2} right))

Попробуй самостоятельно записать решение показательных уравнений, приведенных ниже

  • ( {{x}^{2l{{g}^{3}}x-1.5lgx}}=sqrt{10})
  • ( {{(x+5)}^{lo{{g}_{7}}(x+5)}}=7)

А теперь сверь свое решение с этим:

1. Логарифмируем обе части по основанию ( 10), учитывая, что ( x>0):

( lg left( {{x}^{2l{{g}^{3}}x-1.5lgx}} right)=lgsqrt{10})

( left( 2l{{g}^{3}}x-1.5lgx right)lgx=frac{1}{2},~), замена ( ~t=l{{g}^{2}}xge 0)

( 4{{t}^{2}}-3t-1=0)

( 4{{t}^{2}}-3t-1=0) (второй корень нам не подходит ввиду замены)

( l{{g}^{2}}x=1,~{{x}_{1}}=1,~{{x}_{2}}=0.1~)

2. Логарифмируем по основанию ( displaystyle 7):

( displaystyle lo{{g}_{7}}{{left( x+5 right)}^{lo{{g}_{7}}left( x+5 right)}}=lo{{g}_{7}}7)

Преобразуем полученное выражение к следующему виду:

( displaystyle left( lo{{g}_{7}}left( x+5 right)+1 right)left( lo{{g}_{7}}left( x+5 right)-1 right)=0)

( displaystyle {{x}_{1}}=2,~{{x}_{2}}=-frac{34}{7})

На этапе подготовки к заключительному тестированию учащимся старших классов необходимо подтянуть знания по теме «Показательные уравнения». Опыт прошлых лет свидетельствует о том, что подобные задания вызывают у школьников определенные затруднения. Поэтому старшеклассникам, независимо от уровня их подготовки, необходимо тщательно усвоить теорию, запомнить формулы и понять принцип решения таких уравнений. Научившись справляться с данным видом задач, выпускники смогут рассчитывать на высокие баллы при сдаче ЕГЭ по математике.

Готовьтесь к экзаменационному тестированию вместе со «Школково»!

При повторении пройденных материалов многие учащиеся сталкиваются с проблемой поиска нужных для решения уравнений формул. Школьный учебник не всегда находится под рукой, а отбор необходимой информации по теме в Интернете занимает долгое время.

Образовательный портал «Школково» предлагает ученикам воспользоваться нашей базой знаний. Мы реализуем совершенно новый метод подготовки к итоговому тестированию. Занимаясь на нашем сайте, вы сможете выявить пробелы в знаниях и уделить внимание именно тем заданиям, которые вызывают наибольшие затруднения.

Преподаватели «Школково» собрали, систематизировали и изложили весь необходимый для успешной сдачи ЕГЭ материал в максимально простой и доступной форме.

Основные определения и формулы представлены в разделе «Теоретическая справка».

Для лучшего усвоения материала рекомендуем попрактиковаться в выполнении заданий. Внимательно просмотрите представленные на данной странице примеры показательных уравнений с решением, чтобы понять алгоритм вычисления. После этого приступайте к выполнению задач в разделе «Каталоги». Вы можете начать с самых легких заданий или сразу перейти к решению сложных показательных уравнений с несколькими неизвестными или иррациональным уравнениям со знаком корня. База упражнений на нашем сайте постоянно дополняется и обновляется.

Те примеры с показателями, которые вызвали у вас затруднения, можно добавить в «Избранное». Так вы можете быстро найти их и обсудить решение с преподавателем.

Чтобы успешно сдать ЕГЭ, занимайтесь на портале «Школково» каждый день!

Понравилась статья? Поделить с друзьями:
  • Показательные параметры егэ
  • Показательные неравенства с модулем егэ
  • Показательные неравенства примеры с решением егэ
  • Показательные неравенства как решать егэ профиль
  • Показательные неравенства егэ 2023