Как решать
показательные уравнения?
Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Это поможет решить задания №5, 13 и 15 из профильного уровня математики.
Одна из их разновидностей – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие переменной (х) не в основании степени, а в самом показателе. Как это выглядит:
Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:
Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение (х). Познакомиться с понятием степени и ее свойствами можно тут и тут.
И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:
И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением. Кроме самой показательной функции в уравнении могут быть любые другие математические конструкции – тригонометрические функции, логарифмы, корни, дроби и т.д. Если вы видите степень, значит перед вам показательное уравнение.
Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.
Простейшие показательные уравнения
Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:
Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо (х) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:
Значит, если (х=3), то мы получим верное равенство, а значит мы решили уравнение.
Решим что-нибудь посложнее.
Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:
Мы применили свойство отрицательной степени по формуле:
Теперь наше уравнение будет выглядеть так:
Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны (3), только вот степени разные – слева степень ((4х-1)), а справа ((-2)). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:
Такое мы решать умеем, ведь это обыкновенное линейное уравнение.
Поздравляю, мы нашли корень нашего показательного уравнения.
Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что (125=5*5*5=5^3), а (25=5*5=5^2), подставим:
Воспользуемся одним из свойств степеней ((a^n)^m=a^):
И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:
И еще один пример:
Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить (2) в различную степень, вы никогда не сможете получить отрицательное число.
Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.
Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.
Общий метод решения показательных уравнений
Пусть у нас есть вот такой пример:
Где (a,b) какие-то положительные числа. ((a>0, ; b>0).
Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.
Слева у нас уже стоит (a^x), с этим ничего делать не будем, а вот справа у нас стоит загадочное число (b), которое нужно попытаться представить в виде (b=a^m). Тогда уравнение принимает вид:
Раз основания одинаковые, то мы можем просто приравнять степени:
Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:
Замечаем, что (16=2*2*2*2=2^4) это степень двойки:
Основания одинаковые, значит можно приравнять степени:
$$x=4.$$
Пример 6 $$5^<-x>=125 Rightarrow 5^<-x>=5*5*5 Rightarrow 5^<-x>=5^3 Rightarrow –x=3 Rightarrow x=-3.$$
Пример 7 $$9^<4x>=81 Rightarrow (3*3)^<4x>=3*3*3*3 Rightarrow(3^2)^<4x>=3^4 Rightarrow 3^<8x>=3^4 Rightarrow 8x=4 Rightarrow x=frac<1><2>.$$
Здесь мы заметили, что (9=3^2) и (81=3^4) являются степенями (3).
Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:
(3) и (2) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число (b>0), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице (a>0, ; a neq 1):
Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим (2) в виде (3) в какой-то степени, где (a=3), а (b=2):
Подставим данное преобразование в наш пример:
Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:
Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.
Кто забыл, что такое логарифм, можно посмотреть здесь.
Рассмотрим еще несколько аналогичных примеров.
Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:
Все эти варианты ответа верные, их можно смело писать в ответ.
И так, мы с вами научились решать любые показательные уравнения вот такого вида: (a^x=b), где (a>0; ; b>0).
Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа (a^x=b), где (a>0; ; b>0). Рассмотрим типы сложных уравнений, которые могут попасться:
Решение показательных уравнений при помощи замены
Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.
Здесь это сделать легко, замечаем, что (9=3^2), тогда (9^x=(3^2)^x=3^<2x>=(3^x)^2). Здесь мы воспользовались свойством степеней: ((a^n)^m=a^). Подставим:
Обратим внимание, что во всем уравнении все (х) «входят» в одинаковую функцию — (3^x). Сделаем замену (t=3^x, ; t>0), так как показательная функция всегда положительна.
Квадратное уравнение, которое решается через дискриминант:
Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:
И второй корень:
И еще один пример на замену:
Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание (3). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Но если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член (3=2+1) и вынести общий множитель (2):
Подставим в исходное уравнение:
Теперь показательные функции одинаковы и можно сделать замену:
Обратная замена, и наше уравнение сводится к простейшему:
И второе значение (t):
Тут у нас две показательные функции с основаниями (7) и (3), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на (3^x):
Здесь нам придется воспользоваться свойствами степеней:
Разберем каждое слагаемое:
Теперь подставим получившееся преобразования в исходное уравнение:
Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену (t=(frac<7><3>)^x):
Сделаем обратную замену:
И последний пример на замену:
Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:
Разберем каждое слагаемое нашего уравнения:
Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны — отрицательная степень не имеет никакого отношения к знаку показательной функции!
И последнее слагаемое со степенью:
Подставим все наши преобразования в исходное уравнение:
Теперь можно сделать замену (t=2^x) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель (2^x)):
Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера. Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.
И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут
Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании (2), (5) и (10). Очевидно, что (10=2*5). Воспользуемся этим и подставим в наше уравнение:
Воспользуемся формулой ((a*b)^n=a^n*b^n):
И перекинем все показательные функции с основанием (2) влево, а с основанием (5) вправо:
Сокращаем и воспользуемся формулами (a^n*a^m=a^) и (frac=a^):
Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.
Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!
Задание №13 ЕГЭ по математике профильного уровня
Уравнения
В 13 задании профильного уровня ЕГЭ по математике необходимо решить уравнение, но уже повышенного уровня сложности, так как с 13 задания начинаются задания бывшего уровня С, и данное задание можно назвать С1. Перейдем к рассмотрению примеров типовых заданий.
Разбор типовых вариантов заданий №13 ЕГЭ по математике профильного уровня
Первый вариант задания (демонстрационный вариант2018)
Алгоритм решения:
- При помощи тригонометрических формул приводим уравнение к виду, содержащему только одну тригонометрическую функцию.
- Заменяем эту функцию переменной t и решаем получившееся квадратное уравнение.
- Делаем обратную замену и решаем
Простейшие (Protozoa) — тип одноклеточных животных.
- Строим числовую ось.
- Наносим на нее корни.
- Отмечаем концы отрезка.
- Выбираем те значения, которые лежат внутри промежутка.
- Записываем ответ.
Решение:
сos2x = 1 – sin x.
Преобразуем левую часть уравнения, используя формулу косинуса двойного аргумента, с использованием синуса:
Получаем такое уравнение: 1−sin 2 x=1− sinx Теперь в уравнении присутствует только одна тригонометрическая функция sinx. 2. Вводим замену: t = sinx. Решаем получившееся квадратное уравнение:
3. Делаем обратную замену:
Решаем эти уравнения:
Следовательно, получаем два семейства решений. Пункт б):
1. В предыдущем пункте получено два семейства, в каждом из которых бесконечно много решений. Необходимо выяснить, какие из них, находятся в заданном промежутке. Для этого строим числовую прямую.
2. Наносим на нее корни обоих семейств, пометив их зеленым цветом (первого) и синим (второго).
3. Красным цветом помечаем концы промежутка. 4. В указанном промежутке расположены три
Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.
Второй вариант задания (из Ященко, №1)
Алгоритм решения:
- Заменяем эту функцию переменной t и решаем получившееся квадратное уравнение.
- Делаем обратную замену и решаем простейшие показательные, потом тригонометрические уравнения.
- Строим координатную плоскость и окружность единичного радиуса на ней.
- Отмечаем точки, являющиеся концами отрезка.
- Выбираем те значения, которые лежат внутри отрезка.
- Записываем ответ.
Решение:
Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.
D=b 2 – c = 81 – 4∙4∙2 =49,
3. Возвращаемся к переменной х: Пункт б) 1. Строим координатную плоскость и окружность единичного радиуса на ней. 2. Отмечаем точки, являющиеся концами отрезка. 3. Выбираем те значения, которые лежат внутри отрезка.. Это корни . Их два. Ответ: а) б)
Третий вариант задания (из Ященко, № 6)
Алгоритм решения:
- При помощи тригонометрических формул приводим уравнение к виду, содержащему только одну тригонометрическую функцию.
- Заменяем эту функцию переменной t и решаем получившееся квадратное уравнение.
- Делаем обратную замену и решаем простейшие показательные, а затем тригонометрические уравнения.
- Решаем неравенства для каждого случая.
- Записываем ответ.
Задание № 13 ЕГЭ по математике — подборка задач с решениями
Подборка задач № 13 ЕГЭ по профильной математике с решениями.
Задание № 13. Уметь решать уравнения и неравенства
Из кодификатора на этой позиции могут встретиться темы:
Уравнения
Равносильность уравнений, систем уравнений
Простейшие системы уравнений с двумя неизвестными
Основные приёмы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных
Использование свойств и графиков функций при решении уравнений
Изображение на координатной плоскости множества решений уравнений с двумя переменными и их систем
Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учёт реальных ограничений.
Неравенства
Системы линейных неравенств
Системы неравенств с одной переменной
Равносильность неравенств, систем неравенств
Использование свойств и графиков функций при решении неравенств
Изображение на координатной плоскости множества решений неравенств с двумя переменными и их систем
источники:
http://spadilo.ru/zadanie-13-ege-po-matematike-profilnyj/
http://vpr-ege.ru/ege/matematika/706-zadanie-13-ege-po-matematike-podborka-zadach-s-resheniyami
Задание №12. Уравнения — профильный ЕГЭ по математике
Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.
Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.
Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.
Что необходимо помнить при решении уравнений?
1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть — помним, что он существует, только если
2) Стараемся записывать решение в виде цепочки равносильных переходов.
3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.
4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.
5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.
Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка . От нее и будем отсчитывать. Получим:
6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие промежутку
Упростим левую часть по формуле приведения.
Вынесем за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.
б) Отметим на тригонометрическом круге найденные серии решений и отрезок
Видим, что указанному отрезку принадлежат решения
Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.
Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка От нее и отсчитываем.
2. а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.
Степени равны, их основания равны. Значит, равны и показатели.
Это ответ в пункте (а).
б) Отберем корни, принадлежащие отрезку
Отметим на тригонометрическом круге отрезок и найденные серии решений.
Видим, что указанному отрезку принадлежат точки и из серии
Точки серии не входят в указанный отрезок.
А из серии в указанный отрезок входит точка
Ответ в пункте (б):
3. а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
Применим формулу косинуса двойного угла:
Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.
Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.
б) Для разнообразия отберем корни на отрезке с помощью двойного неравенства.
Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».
Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.
Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии на отрезке Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.
4. а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
Самое сложное здесь — область допустимых значений (ОДЗ). Условие заметно сразу. А условие появляется, поскольку в уравнении есть
Уравнение равносильно системе:
Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси .
Ответ в пункте а)
б) Отметим на тригонометрическом круге найденные серии решений и отрезок
Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки
5. а) Решите уравнение
б) Найдите корни, принадлежащие отрезку
Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.
Это значит, что уравнение равносильно системе:
Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых или . Заметим, что среди них находятся и углы, для которых
Числа серии не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие . Остальные серии решений нас устраивают.
Тогда в ответ в пункте (а) войдут серии решений:
б) Отберем корни, принадлежащие отрезку любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.
Материал для подготовки к заданию номер 12 из ЕГЭ по профильной математике
Все уравнения можно разделить на несколько групп:
— Целые рациональные уравнения
Каждая группа уравнений имеет свои особенности. На первый взгляд может показаться, что это очень большой материал и на его изучение понадобится много времени, однако на самом деле для подготовки в экзамену и выполнению задания номер 12 можно подготовиться достаточно быстро, используя верно подобранные материалы и разбирая примеры заданий
Комбинируя все представленные в данных материалах способы и обладая базовыми знаниями математики, можно успешно решить большинство уравнений, которые могут встретиться учащимся во время обучения в средней и старшей школе а так же успешно решить задания на данную тему в контрольно-измерительных материалах
СОВЕТ: после прохождения какой-либо темы в моём пособии, необходимо прорешать похожие уравнения (этой же группы) на одном из подобранных мной сайтов (смотрите ниже)
Часть I. Способы решения уравнений. Метод “Замена переменной”
Уравнение вида af²(x)+bf (x)+c=0 Такие уравнения (их иногда называют трехчленными) являются одними из наиболее распространенных. Скорее всего, самый известный и яркий пример этого типа уравнений — биквадратное уравнение ax⁴ + bx2 + c = 0 (здесь f (x) = x 2 ). Заменой переменной t = f (x) трехчленное уравнение сводится к квадратному относительно переменной t уравнению at² + bt + c = 0
Решить уравнение (2x² – 3x + 1) = 22x² – 33x + 1.
Как решать
показательные уравнения?
Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Это поможет решить задания №5, 13 и 15 из профильного уровня математики.
Одна из их разновидностей – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие переменной (х) не в основании степени, а в самом показателе. Как это выглядит:
Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:
Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение (х). Познакомиться с понятием степени и ее свойствами можно тут и тут.
И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:
И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением. Кроме самой показательной функции в уравнении могут быть любые другие математические конструкции – тригонометрические функции, логарифмы, корни, дроби и т.д. Если вы видите степень, значит перед вам показательное уравнение.
Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.
Простейшие показательные уравнения
Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:
Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо (х) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:
Значит, если (х=3), то мы получим верное равенство, а значит мы решили уравнение.
Решим что-нибудь посложнее.
Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:
Мы применили свойство отрицательной степени по формуле:
Теперь наше уравнение будет выглядеть так:
Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны (3), только вот степени разные – слева степень ((4х-1)), а справа ((-2)). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:
Такое мы решать умеем, ведь это обыкновенное линейное уравнение.
Поздравляю, мы нашли корень нашего показательного уравнения.
Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что (125=5*5*5=5^3), а (25=5*5=5^2), подставим:
Воспользуемся одним из свойств степеней ((a^n)^m=a^):
И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:
И еще один пример:
Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить (2) в различную степень, вы никогда не сможете получить отрицательное число.
Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.
Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.
Общий метод решения показательных уравнений
Пусть у нас есть вот такой пример:
Где (a,b) какие-то положительные числа. ((a>0, ; b>0).
Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.
Слева у нас уже стоит (a^x), с этим ничего делать не будем, а вот справа у нас стоит загадочное число (b), которое нужно попытаться представить в виде (b=a^m). Тогда уравнение принимает вид:
Раз основания одинаковые, то мы можем просто приравнять степени:
Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:
Замечаем, что (16=2*2*2*2=2^4) это степень двойки:
Основания одинаковые, значит можно приравнять степени:
$$x=4.$$
Пример 6 $$5^<-x>=125 Rightarrow 5^<-x>=5*5*5 Rightarrow 5^<-x>=5^3 Rightarrow –x=3 Rightarrow x=-3.$$
Пример 7 $$9^<4x>=81 Rightarrow (3*3)^<4x>=3*3*3*3 Rightarrow(3^2)^<4x>=3^4 Rightarrow 3^<8x>=3^4 Rightarrow 8x=4 Rightarrow x=frac<1><2>.$$
Здесь мы заметили, что (9=3^2) и (81=3^4) являются степенями (3).
Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:
(3) и (2) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число (b>0), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице (a>0, ; a neq 1):
Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим (2) в виде (3) в какой-то степени, где (a=3), а (b=2):
Подставим данное преобразование в наш пример:
Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:
Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.
Кто забыл, что такое логарифм, можно посмотреть здесь.
Рассмотрим еще несколько аналогичных примеров.
Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:
Все эти варианты ответа верные, их можно смело писать в ответ.
И так, мы с вами научились решать любые показательные уравнения вот такого вида: (a^x=b), где (a>0; ; b>0).
Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа (a^x=b), где (a>0; ; b>0). Рассмотрим типы сложных уравнений, которые могут попасться:
Решение показательных уравнений при помощи замены
Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.
Здесь это сделать легко, замечаем, что (9=3^2), тогда (9^x=(3^2)^x=3^<2x>=(3^x)^2). Здесь мы воспользовались свойством степеней: ((a^n)^m=a^). Подставим:
Обратим внимание, что во всем уравнении все (х) «входят» в одинаковую функцию — (3^x). Сделаем замену (t=3^x, ; t>0), так как показательная функция всегда положительна.
Квадратное уравнение, которое решается через дискриминант:
Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:
И второй корень:
И еще один пример на замену:
Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание (3). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Но если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член (3=2+1) и вынести общий множитель (2):
Подставим в исходное уравнение:
Теперь показательные функции одинаковы и можно сделать замену:
Обратная замена, и наше уравнение сводится к простейшему:
И второе значение (t):
Тут у нас две показательные функции с основаниями (7) и (3), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на (3^x):
Здесь нам придется воспользоваться свойствами степеней:
Разберем каждое слагаемое:
Теперь подставим получившееся преобразования в исходное уравнение:
Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену (t=(frac<7><3>)^x):
Сделаем обратную замену:
И последний пример на замену:
Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:
Разберем каждое слагаемое нашего уравнения:
Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны — отрицательная степень не имеет никакого отношения к знаку показательной функции!
И последнее слагаемое со степенью:
Подставим все наши преобразования в исходное уравнение:
Теперь можно сделать замену (t=2^x) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель (2^x)):
Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера. Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.
И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут
Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании (2), (5) и (10). Очевидно, что (10=2*5). Воспользуемся этим и подставим в наше уравнение:
Воспользуемся формулой ((a*b)^n=a^n*b^n):
И перекинем все показательные функции с основанием (2) влево, а с основанием (5) вправо:
Сокращаем и воспользуемся формулами (a^n*a^m=a^) и (frac=a^):
Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.
Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!
источники:
http://vc.ru/u/1019775-egor-borodin/330865-material-dlya-podgotovki-k-zadaniyu-nomer-12-iz-ege-po-profilnoy-matematike
http://sigma-center.ru/exponential_equations
Технологическая карта урока
Автор |
Косткина Марина Александровна |
Предмет |
Математика |
Класс |
11Б класс |
УМК |
Алгебра и начала математического анализа.10-11 классы. В 2ч. Ч.1Учебник для учащихся общеобразовательных учреждений. Ч. 2Задачник для учащихся общеобразовательных учреждений./ А.Г.Мордкович .- 13-е изд.,-М.:Мнемозина,2012. |
Тема урока |
Показательные уравнения. Подготовка к ЕГЭ. |
Тип урока |
Урок обобщения, систематизации знаний |
Цель урока |
Обобщить, систематизировать изученный материал по теме «Показательные уравнения. Подготовка к ЕГЭ.». Способствовать развитию речи; закрепить основные методы решения показательных уравнений, воспитывать культуру поведения на уроке при различных видах работ. |
Задачи: |
провести диагностику выявления уровня подготовленности детей по теме «Показательные уравнения. Подготовка к ЕГЭ.»
умение слушать и вступать в диалог, участвовать в коллективном обсуждении проблем, строить в паре продуктивное взаимодействие, воспитывать ответственность и аккуратность; осуществлять рефлексию своего отношения к содержанию темы.
работать над развитием понятийного аппарата, развивать навыки самоконтроля контроль и оценки результатов деятельности. |
Методы: |
|
Формы работы обучающихся |
Фронтальная, парная, самостоятельная, коллективная. |
Организация деятельности обучающихся на уроке: |
(1 часть: проверка выполнения дом.работы 2 часть:решение заданий из банка ЕГЭ)
|
Необходимое учебное оборудование |
Учебник, интерактивная доска, раздаточный материал( раздаточнвый материал имеет различие по вариантам, степени трудности,профилю) |
Структура и ход урока
Этап урока |
Задачи этапа |
Деятельность учителя |
Деятельность учеников |
Время (в мин) |
Формируемые УУД |
1. Организационный этап |
Создать благоприятный психологический настрой на работу |
Приветствие, проверка подготовленности к учебному занятию, организация внимания детей. |
Включаются в деловой ритм урока. |
1 |
Коммуникативные: планируют учебное сотрудничество с учителем и сверстниками. Регулятивные: организация своей учебной деятельности Личностные: мотивация учения |
2. Мотивация учебной деятельности |
Актуализация опорных знаний и способов действий. |
Мотивирует учащихся, вместе с ними определяет тему урока; акцентирует внимание учащихся на значимость темы. |
В беседе с учителем отвечают на поставленные вопросы |
3 |
Познавательные: структурирование собственных знаний. Коммуникативные: организовывать и планировать учебное сотрудничество с учителем и сверстниками. Регулятивные: контроль и оценка процесса и результатов деятельности. Личностные: оценивание усваиваемого материала. |
3. Целеполагание |
Обеспечение мотивации учения детьми, принятие ими тему и целей урока. |
Мотивирует учащихся, вместе с ними определяет цель урока; акцентирует внимание учащихся на значимость темы. |
Записывают дату в тетрадь, определяют тему и цель урока. |
3 |
Познавательные: умение осознанно и произвольно строить речевое высказывание в устной форме. Личностные: самоопределение. Регулятивные: целеполагание. Коммуникативные:умение вступать в диалог, участвовать в коллективном обсуждении вопроса. |
4. Этап обобщения изученногоматериала. |
Уметь раличать типы показательных урав- нений,проверка навыков решения показательных уравнений из Д.З |
Мотивирует учащихся выбрать маршрут проверки Д.З. |
Выполняют на листах Д.З.,по выбранному маршруту. |
12 |
Познавательные:отработка алгоритмов решения показательных уравнений умения анализировать,обобщать. Личностные: формировать способность к самоопределению Регулятивные: умения сверять свои действияч с целью и исправлять ошибки. Коммуникативные: оформление своих мыслей в письменной речи. |
Физкультминутка (2 физпаузы на 4 этапе урока) |
Смена деятельности. |
Сменить деятельность, обеспечить эмоциональную разгрузку учащихся. |
Учащиеся сменили вид деятельности и готовы продолжить работу. |
2 |
выполняют физкультминутку |
5.Этап подготовки к ЭГЭ |
Уметь раличать типы показательных урав- нений,проверка навыков решения показательных уравнений из банка ЕГЭ. |
Мотивирует учащихся выбрать индивидуальный маршрут :профиль (база), вариант. |
Выполняют на листах .С.Р.,по выбранному маршруту. |
20 |
Познавательные: формировать умения и навыки решения различных уравнений,формирование познавательного интереса к предмету через пратические задачи Личностные: самоопределение. Регулятивные: определение степени успешности своей работы. Коммуникативные:учебное сотрудничество,умение слушать и слышать, оформление своих мыслей в письменной речи. |
6. Рефлексия (подведение итогов урока) |
Дать количественную оценку работы учащихся |
Подводит итоги работы класса в целом. |
Учащиеся сдают рабочие листы |
3 |
Регулятивные: оценивание собственной деятельности на уроке |
7. Домашнее задание |
Обеспечение понимания детьми содержания и способов выполненидомашнего задания |
Дает комментарий к домашнему заданию |
Учащиеся записывают в дневники задание. |
2 |
Ход урока
Этапы урока |
Деятельность учителя |
Деятельность учеников |
1. Организационный этап – 1 мин. |
Косткина М.А. Здравствуйте, ребята! Садитесь! Открыли тетради ,записали дату 16.11.17 Классная работа видеофрагмент «Живая природа.» Ребята, сегодня мы проведем необычный урок, поскольку у нас присутствуют -гости. НО,мне хочется ,чтобы сегодня на уроке вы были спокойны и уравновешены, как тюлени .Быстры и целеустремлённы, как мустанги и свободны, как птицы в полёте. |
Слушают учителя Смотрят видеофрагмент. |
2. Мотивация учебной деятельности – 4мин |
Итак, устные упражнения. 3x=9 ; 4x=1/16 ; (1/9)x =1 ; 10x = ; 3x+1 – 3x =9 |
|
3. Целеполагание –2 мин. |
Косткина М.А. -Как называются эти уравнения?Так как же будет звучать тема нашего урока? Косткина М.А. -Ребята,тема нашего занятия «Решение показательных уравнений» Подумайте и задайте вопросы ,на которые вы бы хотели получить ответ на уроке. — Давайте попробуем определить цели нашего сегодняшнего урока, что мы должны делать на уроке? Используйте инструкцию№1. — Итак, цели поставлены. Начинаем работу. ЗАДАЧИ УРОКА: провести диагностику выявления уровня подготовленности детей по теме«Показательные уравнения. Подготовка к ЕГЭ.» Отработать навыки различия типов уравнений и применения необходимых алгоритмов.Тренировка умения анализировать условие задания для выбора нестандартного способа решения. Вам выданы чистые листы для работы на уроке,в конце урока вы сами подведете итоги и сдатите свои рабочие листы на проверку. |
Учащиеся устно решают и определяют тему урока.Записывают дату и тему урока в тетрадь. «Показательные уравнения. Подготовка к ЕГЭ.» Обобщить знания по теме «Решение показательных уравнений». Знать методы решения показательных уравнений и уметь их применять. |
4. Этап обобщения изученного материала (13мин.) |
— Выполним самостоятельную работу по материалам домашнего задания. Эта работа выполняем по вариантам .Определим методы решения уравнений в данной работе. -Каким методом решаем уравнения №1-1вариант(2 вариант) достаточно выбрать одно и решить его. -Каким методом решаем уравнения №2-1вариант(2 вариант) достаточно выбрать одно и решить его. -Каким методом решаем уравнения №1-1вариант(2 вариант) Прошу заметить уравнения №4,№5-требуют творческого подхода. Проверку ответа можно выполнить используя ответы в задачнике. Уравнения(№1,№2) –легкие проверим с помощью интерактивной доски. Оцените свою работу за первые три уравнения -5 баллов; — за первые 2 уравнения -4балла; за одно 1 Уравнение- 1 балл -3а каждое уравнение №4 -2 балла; №5-3 балла(если решили..) |
Отвечают на вопросы,выбирают маршрут ответа. Записывают решения в свой лист. Делают вывод о правильности решения по готовым ответам,в случае затруднения обращаются к товарищу или учителю. |
5Физкультминутка (2 мин) |
—Устали? Прежде чем идти дальше, давайте отдохнем! 1. Сцепите руки в замок над головой и потянитесь. Учёные говорят, что в этот момент выделяется гормон удовольствия. 2. Быстро поморгайте 3. Теперь закройте глаза. 4. Предствьте, что вы на берегу моря и ваше лицо нежно ласкают солнышко… |
Слушают музыку моря…. |
5.Этап подготовки к ЕГЭ. |
А теперь второй этап урока. Подготовка к ЕГЭ. _- Выбираем тип подготовки: база или профиль, для профиля номер варианта. Выможете решать с товарищем один вариант а можете разные. -Кто выбрал профиль поднимите руки и Решите задачу с практическим содержанием -Кто базовый уровень выполняйте задания по выбору,в случае необходимости обращайтесь к товарищу или к учителю. Решим задачу с практическим содержанием … — Кто первый проверяем решение на доске. -решаем уравнение №13… -Желающий к доске.Выяснить кто решает №13(2 вариант)Готовое решение сканировать.(в крайнем случае подготовить сканы решений учителя) за №10 -2балла за№13-4 балла за каждое верное задание базы 0,5 балла (учитель дает листы для проверки базы) ИТОГ 9 баллов-и выше- оценка отлично 7балллов –оценка хорошо; |
Решают и решения записывают в рабочий лист. |
6. Рефлексия (подведение итогов урока) |
А теперь подведем итоги урока.. Используйте инструкцию№2. |
Учащиеся анализируют свою работу, выражают вслух свои впечатления. Сдают карточки самооценивания и листы с практической работой. |
7. Домашнее задание |
Всем — работать с базовыми заданиями(по полученным материалам)Профиль уметь решать все полученные задания данных вариантов. учебник №40.10-доп-но |
индивидуальные задания на карточках |
Е.Евтушенко
Людей неинтересных в мире нет.
Их судьбы -как истории планет.
У каждой всё особое, своё,
И нет планет похожих на неё.