Получение фенолформальдегидной смолы егэ

Задания

Версия для печати и копирования в MS Word

Установите соответствие между названием полимера и названием реакции его получения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВЕЩЕСТВО

А)  фенолформальдегидная смола

Б)  натуральный каучук

В)  резина

РЕАКЦИЯ ПОЛУЧЕНИЯ

1)  поликонденсация

2)  дегидрогенизация

3)  вулканизация

4)  полимеризация

Запишите в таблицу выбранные цифры под соответствующими буквами.

Спрятать решение

Решение.

Установим соответствие.

A.  Поликонденсация  — процесс синтеза полимеров из полифункциональных соединений, обычно сопровождающийся выделением низкомолекулярных побочных продуктов (воды, спиртов и т. п.). Для получения фенолформальдегидной смолы используется реакция поликонденсации фенола и формальдегида в соотношении 2:1 (1).

Б.  Натуральный каучук получают полимеризацией изопрена (4).

В.  Резину получают главным образом вулканизацией каучука (3).

Ответ: 143.

Методика проведения эксперимента: в пробирку помещаем несколько кристалликов фенола и добавляем 2-3 мл раствора формальдегида. Смесь нагреваем до растворения фенола.

Через 3 минуты к раствору добавляем 1 мл концентрированной соляной кислоты и продолжаем нагревание до расслоения смеси.

Пробирку помещаем в стакан холодной воды. После образования границы между слоями сливаем воду и быстро выливаем смолу на предметное стекло.

Испытываем образовавшуюся смолу на растворимость в этиловом спирте.

Небольшое количество смолы нагреваем в фарфоровой чашке до затвердевания и также испытываем на растворимость в спирте.

Опыт выполнен под руководством учителя химии, с соблюдением техники безопасности. Просим не повторять вас без соответствующей подготовки.

Видеофрагмент:

Химизм процессаТеоретическое обоснование

Задания №26 ЕГЭ по Химии 2021(Часть 2). Полный разбор с объяснениями.

Задание №1:

Установите соответствие между веществом и схемой его получения:
ВЕЩЕСТВО:
А) дивиниловый каучук
Б) фенолформальдегидная смола
В) нейлон

СХЕМА ПОЛУЧЕНИЯ:
1) nCH2=CHꟷCH=CH2
2) nCH2=C(CH3)ꟷCH=CH2
3) nC6H5OH + nCH2OH
4) nHOOCꟷ(CH2)4ꟷCOOH + nH2Nꟷ(CH2)6ꟷNH2
5) nCH2(OH)ꟷCH2OH + nHOOCꟷC6H4ꟷCOOH→

Решение:
Первое вещество — дивиниловый каучук; создание этого полимера привело к огромному скачку в химической промышленности, отчасти благодаря синтезу Лебедева, который получил бутадиеновый(дивиниловый) каучук путем пиролиза этилового спирта(1926 г.); соответственно, этот каучук получают из дивинила, ответ 1.

Дивинил непосредственно связан с названием углеводородного непредельного радикала винила (CH2=CHꟷ) . Название «винил» с латинского vinum означает «вино»(указывает на связь с этиловым спиртом).

Второе соединение — фенолформальдегидная смола; по самому названию видно, что данная смола состоит из двух органических веществ — фенола(C6H5OH) и формальдегида(HCOH), которые в процессе поликонденсации образуют столь важное соединение, ответ 3.

Последнее вещество — нейлон(искусственное волокно, класса полиамидов, используется в качестве ткани для одежды), его получают поликонденсацией адипиновой кислоты(HOOCꟷ(CH2)4ꟷCOOH) и гексаметилендиамина(H2Nꟷ(CH2)6ꟷNH2), ответ 4.

Задание №2:

Установите соответствие между веществом, и процессом/оборудованием, который используется для его получения.
ВЕЩЕСТВО:
А) чугун
Б) сталь
В) алюминий

ПРОЦЕСС/ОБОРУДОВАНИЕ:
1) электролиз расплава поваренной соли
2) доменная печь
3) электролиз боксита в расплавленном криолите
4) мартеновская печь

Решение:
Итак, чугун, как ты знаешь, это сплав железа и углерода(С более 2,14%), для его получения используют доменную печь(1200 С), в которой происходит множество реакций, которые в совокупности приводят к образованию твердого, не пластичного, но хрупкого материала, ответ 2.
Сталь, как и чугун, имеет в своем составе углерод и железо, однако, имеет существенное различие в соотношении этих элементов(C до 2,14%), обладает легкостью, высокой пластичностью, стойкостью; сталь получают в мартеновской печи(1700 С), ответ 4.
Алюминий получают электролизом боксита в расплаве криолита, об этом я уже писала на предыдущем уроке, ответ 3.

Задание №3:

Установите соответствие между веществом и способом его получения:
ВЕЩЕСТВО:
А) полипропилен
Б) фторопласт
В) бутадиенстирольный каучук

СПОСОБ ПОЛУЧЕНИЯ:
1) вулканизация
2) полимеризация
3) поликонденсация
4) сополимеризация

Решение:
Полипропилен((C3H6)n) — это полимер, который образуется путем полимеризации соответствующего алкена пропилена(C3H6), ответ 2.
Фторопласт — общее название фторсодержащих полимеров, к которым, в частности, относится политетрафторэтилен(тефлон). Его можно получить реакцией полимеризации тетрафторэтилена, ответ 2.
Бутадиенстирольный каучук является важнейшим сырьем для изготовления таких продуктов, как шины, кабели, и жевательные резинки(!), получить в промышленности такой каучук можно сополимеризацией, ответ 4.

Сополимеризация — это процесс получения сополимеров, по сути представляет совместную полимеризацию нескольких мономеров, например, бутадиена и стирола(оба имеют кратную связь). Различают радикальную, анионную и катионную сополимеризацию.

Задание №4:

Установите соответствие между веществом и областью его применения:
ВЕЩЕСТВО:
А) целлюлоза
Б) фосфоритная мука
В) медь
Г) алюминий

ОБЛАСТЬ ПРИМЕНЕНИЯ:
1) производство суперфосфата
2) искусственные волокна
3) электротехническая промышленность
4) получение стекла
5) производство аммиака

Решение:
Целлюлоза, (C6H10O5)n — это органический полимер, растительный углевод, из которого делают искусственные волокна, ответ 2.
Фосфоритная мука представляет собой минеральное фосфорное удобрение с <30% ортофосфата кальция, используется в производстве суперфосфата(кристаллогидрат дигидрофосфата кальция), ответ 1.
Медь используется в электротехнической промышленности за счет идеальной электропроводности и высоких параметров проводимости тепла, ответ 3.
Алюминий, также как медь, нашел свое применение в электротехнической промышленности в качестве материала для кабелей, шинопроводов, выпрямителей переменного тока, ответ 1.

Задание №5:

Установите соответствие между веществом и его воздействием на организм:
ВЕЩЕСТВО:
А) аргон и азот
Б) метанол
В) этанол
Г) соли свинца

ВОЗДЕЙСТВИЕ НА ОРГАНИЗМ:
1) наркотическое воздействие
2) токсическое воздействие, быстро приводящее к летальному исходу
3) токсическое воздействие, приводящее к тяжелым заболеваниям
4) не влияет на жизнеспособность организма
5) улучшает состояние организма

Решение:
Аргон и азот — это два газа, являются составными частями воздуха(азот>70%, аргон<1%), а значит, не имеют отрицательного влияния на организм, ответ 4.
Метанол — это яд, который в целом внешне похож на этанол, однако, употребление его перорально вызывает слепоту, а в дальнейшем смерть от удушья, ответ 2.
Этанол — это токсическое вещество, которое оказывает наркотическое действие на мозг, заставляя организм входить в непривычное и неестественное состояние опьянения, со временем оказывает только отрицательное влияние в виде проблем с почками, кожей, желудком, печенью, усугубляющее нормальное состояние человека, ответ 1.
Соли свинца воздействуют на организм человека отрицательно, приводя к тяжелым заболеваниям, ответ 3.

Задание №6:

Установите соответствие между схемой химической реакции и областью ее применения:
СХЕМА РЕАКЦИИ:
А) 2AgHal(облучение) → 2Ag + Hal2
Б) PbS + 4H2O2 = PbSO4 + 4H2O
В) 2(OCl) = Cl2 + O2
Г) 2(NH4)2CO3 → 2NH3 + CO2 + H2O

ОБЛАСТЬ ПРИМЕНЕНИЯ:
1) реставрация картин
2) отбеливание тканей и дезинфекция
3) черно-белая фотография
4) хлебопекарная и кондитерская промышленность
5) получение синтетических красителей

Решение:
Первая реакция — облучение галогенида серебра применяется для черно-белых фотографий, ответ 3.
Вторая реакция — окисление сульфида свинца применяют в реставрации картин, ответ 1.
Третий процесс — получение чистого хлора и кислорода — всем известные процессы отбеливания и дезинфекции, ответ 2.
Последняя реакция — это разложение карбоната аммония, используется в хлебопекарной промышленности, ответ 4.

Задание №7:

Установите соответствие между раствором вещества и его применением в лаборатории:
РАСТВОР ВЕЩЕСТВА:
А) аммиачный раствор оксида серебра
Б) известковая вода
В) нитрат серебра
Г) бромная вода

ПРИМЕНЕНИЕ В ЛАБОРАТОРИИ:
1) обнаружение карбонат-ионов
2) обнаружение йодид-ионов
3) обнаружение альдегидов
4) обнаружение алкенов
5) обнаружение этанола

Решение:
Начнем с аммиачного раствора оксида серебра — это достаточно известная качественная реакция на альдегиды(в результате выделяется чистое серебра и аммоний — производное карбоновой кислоты), ответ 3.

!ВАЖНО: Муравьиная кислота(HCOOH) также может вступать в реакцию «серебрянного зеркала«.

Известковая вода(гашеная известь, Ca(OH)2) используется в качестве обнаружения карбонат-ионов(карбонат кальция — это осадок белого цвета), ответ 1.
Нитрат серебра — эта соль может обнаруживать йодид-ионы(за счет осадка AgI), ответ 2.
Бромная вода является качественным реагентом на кратные связи, в том числе на алкены, ответ 4.

Задание №8:

Установите соответствие между веществом/ группой веществ и правилами работы с ними в лаборатории:
ВЕЩЕСТВО:
А) приготовление растворов кислот
Б) пламя горящего натрия можно погасить, используя
В) приготовление растворов твердых щелочей проводят
Г) пламя горящих органических веществ можно погасить, используя

ПРАВИЛА РАБОТЫ:
1) песок или порошковый огнетушитель
2) растворение проводят осторожно и в фарфоровой посуде
3) песок или углекислотный огнетушитель
4) растворение проводят осторожно, приливая холодную воду к веществу
5) растворение проводят осторожно, приливая вещество к холодной кислоте

Решение:
Приготовление растворов кислот — это ответственный процесс, так как большинство минеральных кислот являются опасными для органических субъектов, это действие проводят ПРИЛИВАЯ ВЕЩЕСТВО К ВОДЕ! Ответ 5.
Пламя горящего натрия можно погасить с помощью песка или порошкового огнетушителя(горящие щелочные металлы водой тушить НЕЛЬЗЯ), ответ 1.
Приготовление растворов твердых щелочей проводят естественно осторожно и в фарфоровой посуде, ответ 2.
Пламя горящих органических веществ можно погасить, используя песок или углекислотный огнетушитель, ответ 3.

Задание №9:

Установите соответствие между формулой вещества и его токсическими свойствами:
ФОРМУЛА ВЕЩЕСТВА:
А) CO2
Б) CO
В) HCl
Г) N2

ТОКСИЧЕСКИЕ СВОЙСТВА:
1) ядовитый газ желто-зеленого цвета
2) ядовитый газ с резким запахом
3) ядовитый газ без цвета и запаха
4) не ядовитый газ без цвета и запаха
5) ядовитый газ с запахом тухлых яиц

Решение:
Первый в списке — углекислый газ, каждый знает его физические свойства, потому что он является составной частью воздуха, а также представляет собой тот газ, который мы выдыхаем, ответ 4.
Следующий газ — угарный, это ядовитый газ без цвета и запаха, ответ 3.
Хлороводород — это ядовитый газ с резким запахом, ответ 2.
Последним веществом является азот, этот газ входит в состав воздуха(>70%), это газ без запаха и цвета, ответ 4.

Задание №10:

Установите соответствие между формулой вещества и областью его применения:
ФОРМУЛА ВЕЩЕСТВА:
А) C3H8O3
Б) AlCl3
В) CCl4
Г) CH4

ОБЛАСТЬ ПРИМЕНЕНИЯ:
1) в качестве топлива
2) в качестве катализатора в органическом синтезе
3) в качестве растворителя
4) в медицине и в косметических средствах
5) получение каучука

Решение:
C3H8O3 это глицерин, трехатомный спирт, который используется в косметических средствах и медицине, ответ 4.
Хлорид алюминия является катализатором в реакции изомеризации алканов, ответ 2.
Тетрахлоруглерод — это галогенпроизводное алканов, используемое в качестве растворителя, ответ 3.
Последнее вещество из списка — метан, так как он входит в состав нефти, то из него получают топливо для двигателей внутреннего сгорания, ответ 1.
На этом все!

    • Дисциплина: Химия
    • Номер вопроса в билете: 26
    • Баллы: 1
    • Сложность: Базовый
  • Установите соответствие между высокомолекулярным веществом и способом его промышленного получения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

      ВЫСОКОМОЛЕКУЛЯРНОЕ ВЕЩЕСТВО

    • А)фенолформальдегидная смола
    • Б)резина
    • В)каучук
      СПОСОБ ПОЛУЧЕНИЯ

    • 1)полимеризация
    • 2)вулканизация каучука
    • 3)гидрогенизация
    • 4)сополиконденсация

    Баллы: 0 из 1

  • Подробное решение
  • фенолформальдегидная смола — это надо помнить, что формально реакция получения фенолформальдегидной смолы — это реакция поликонденсации. Поликонденсация — процесс синтеза полимеров из полифункциональных (чаще всего бифункциональных) соединений, обычно сопровождающийся выделением низкомолекулярных побочных продуктов (воды, спиртов и т. п.) при взаимодействии функциональных групп. Но тут нет поликонденсации, а есть сополимеризация. сополимеры  — разновидность полимеров, цепочки молекул которых (макромолекулы) состоят из двух или более различных структурных звеньев.  А тут как раз 2 молекулы мономеров  фенол и формальдегид.

     

    n

    O
    H
    H
    +
    n

    H
    C
    O
    H

    O
    H
    C
    H
    2

    n
    +
    (n-1)
    H
    2
    O
     

    резина — вулканизация каучука серой.  Вулканизация  — технологический процесс взаимодействия каучуков с
    вулканизирующим реагентом, при котором происходит сшивание молекул
    каучука в единую пространственную сетку

    каучук —  скорее всего речь идет про синтетический каучук, который часто неправильно называют и «натуральным»
    это цис- полимер изопрена. Реакция полимеризации.

     

    n

    H
    2
    C
    C
    H
    3
    C
    C
    H
    C
    H
    2

    C
    H
    2
    C
    H
    3
    C
    C
    H
    C
    H
    2

    n
     

1

H

1,008

1s1

2,2

Бесцветный газ

пл=-259°C

кип=-253°C

2

He

4,0026

1s2

Бесцветный газ

кип=-269°C

3

Li

6,941

2s1

0,99

Мягкий серебристо-белый металл

пл=180°C

кип=1317°C

4

Be

9,0122

2s2

1,57

Светло-серый металл

пл=1278°C

кип=2970°C

5

B

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

пл=2300°C

кип=2550°C

6

C

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

пл=3550°C

кип=4830°C

7

N

14,007

2s2 2p3

3,04

Бесцветный газ

пл=-210°C

кип=-196°C

8

O

15,999

2s2 2p4

3,44

Бесцветный газ

пл=-218°C

кип=-183°C

9

F

18,998

2s2 2p5

4,0

Бледно-желтый газ

пл=-220°C

кип=-188°C

10

Ne

20,180

2s2 2p6

Бесцветный газ

пл=-249°C

кип=-246°C

11

Na

22,990

3s1

0,93

Мягкий серебристо-белый металл

пл=98°C

кип=892°C

12

Mg

24,305

3s2

1,31

Серебристо-белый металл

пл=649°C

кип=1107°C

13

Al

26,982

3s2 3p1

1,61

Серебристо-белый металл

пл=660°C

кип=2467°C

14

Si

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

пл=1410°C

кип=2355°C

15

P

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

пл=44°C

кип=280°C

16

S

32,065

3s2 3p4

2,58

Светло-желтый порошок

пл=113°C

кип=445°C

17

Cl

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

пл=-101°C

кип=-35°C

18

Ar

39,948

3s2 3p6

Бесцветный газ

пл=-189°C

кип=-186°C

19

K

39,098

4s1

0,82

Мягкий серебристо-белый металл

пл=64°C

кип=774°C

20

Ca

40,078

4s2

1,0

Серебристо-белый металл

пл=839°C

кип=1487°C

21

Sc

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

пл=1539°C

кип=2832°C

22

Ti

47,867

3d2 4s2

1,54

Серебристо-белый металл

пл=1660°C

кип=3260°C

23

V

50,942

3d3 4s2

1,63

Серебристо-белый металл

пл=1890°C

кип=3380°C

24

Cr

51,996

3d5 4s1

1,66

Голубовато-белый металл

пл=1857°C

кип=2482°C

25

Mn

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

пл=1244°C

кип=2097°C

26

Fe

55,845

3d6 4s2

1,83

Серебристо-белый металл

пл=1535°C

кип=2750°C

27

Co

58,933

3d7 4s2

1,88

Серебристо-белый металл

пл=1495°C

кип=2870°C

28

Ni

58,693

3d8 4s2

1,91

Серебристо-белый металл

пл=1453°C

кип=2732°C

29

Cu

63,546

3d10 4s1

1,9

Золотисто-розовый металл

пл=1084°C

кип=2595°C

30

Zn

65,409

3d10 4s2

1,65

Голубовато-белый металл

пл=420°C

кип=907°C

31

Ga

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

пл=30°C

кип=2403°C

32

Ge

72,64

4s2 4p2

2,0

Светло-серый полуметалл

пл=937°C

кип=2830°C

33

As

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

субл=613°C

(сублимация)

34

Se

78,96

4s2 4p4

2,55

Хрупкий черный минерал

пл=217°C

кип=685°C

35

Br

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

пл=-7°C

кип=59°C

36

Kr

83,798

4s2 4p6

3,0

Бесцветный газ

пл=-157°C

кип=-152°C

37

Rb

85,468

5s1

0,82

Серебристо-белый металл

пл=39°C

кип=688°C

38

Sr

87,62

5s2

0,95

Серебристо-белый металл

пл=769°C

кип=1384°C

39

Y

88,906

4d1 5s2

1,22

Серебристо-белый металл

пл=1523°C

кип=3337°C

40

Zr

91,224

4d2 5s2

1,33

Серебристо-белый металл

пл=1852°C

кип=4377°C

41

Nb

92,906

4d4 5s1

1,6

Блестящий серебристый металл

пл=2468°C

кип=4927°C

42

Mo

95,94

4d5 5s1

2,16

Блестящий серебристый металл

пл=2617°C

кип=5560°C

43

Tc

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

пл=2172°C

кип=5030°C

44

Ru

101,07

4d7 5s1

2,2

Серебристо-белый металл

пл=2310°C

кип=3900°C

45

Rh

102,91

4d8 5s1

2,28

Серебристо-белый металл

пл=1966°C

кип=3727°C

46

Pd

106,42

4d10

2,2

Мягкий серебристо-белый металл

пл=1552°C

кип=3140°C

47

Ag

107,87

4d10 5s1

1,93

Серебристо-белый металл

пл=962°C

кип=2212°C

48

Cd

112,41

4d10 5s2

1,69

Серебристо-серый металл

пл=321°C

кип=765°C

49

In

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

пл=156°C

кип=2080°C

50

Sn

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

пл=232°C

кип=2270°C

51

Sb

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

пл=631°C

кип=1750°C

52

Te

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

пл=450°C

кип=990°C

53

I

126,90

5s2 5p5

2,66

Черно-серые кристаллы

пл=114°C

кип=184°C

54

Xe

131,29

5s2 5p6

2,6

Бесцветный газ

пл=-112°C

кип=-107°C

55

Cs

132,91

6s1

0,79

Мягкий серебристо-желтый металл

пл=28°C

кип=690°C

56

Ba

137,33

6s2

0,89

Серебристо-белый металл

пл=725°C

кип=1640°C

57

La

138,91

5d1 6s2

1,1

Серебристый металл

пл=920°C

кип=3454°C

58

Ce

140,12

f-элемент

Серебристый металл

пл=798°C

кип=3257°C

59

Pr

140,91

f-элемент

Серебристый металл

пл=931°C

кип=3212°C

60

Nd

144,24

f-элемент

Серебристый металл

пл=1010°C

кип=3127°C

61

Pm

146,92

f-элемент

Светло-серый радиоактивный металл

пл=1080°C

кип=2730°C

62

Sm

150,36

f-элемент

Серебристый металл

пл=1072°C

кип=1778°C

63

Eu

151,96

f-элемент

Серебристый металл

пл=822°C

кип=1597°C

64

Gd

157,25

f-элемент

Серебристый металл

пл=1311°C

кип=3233°C

65

Tb

158,93

f-элемент

Серебристый металл

пл=1360°C

кип=3041°C

66

Dy

162,50

f-элемент

Серебристый металл

пл=1409°C

кип=2335°C

67

Ho

164,93

f-элемент

Серебристый металл

пл=1470°C

кип=2720°C

68

Er

167,26

f-элемент

Серебристый металл

пл=1522°C

кип=2510°C

69

Tm

168,93

f-элемент

Серебристый металл

пл=1545°C

кип=1727°C

70

Yb

173,04

f-элемент

Серебристый металл

пл=824°C

кип=1193°C

71

Lu

174,96

f-элемент

Серебристый металл

пл=1656°C

кип=3315°C

72

Hf

178,49

5d2 6s2

Серебристый металл

пл=2150°C

кип=5400°C

73

Ta

180,95

5d3 6s2

Серый металл

пл=2996°C

кип=5425°C

74

W

183,84

5d4 6s2

2,36

Серый металл

пл=3407°C

кип=5927°C

75

Re

186,21

5d5 6s2

Серебристо-белый металл

пл=3180°C

кип=5873°C

76

Os

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

пл=3045°C

кип=5027°C

77

Ir

192,22

5d7 6s2

Серебристый металл

пл=2410°C

кип=4130°C

78

Pt

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

пл=1772°C

кип=3827°C

79

Au

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

пл=1064°C

кип=2940°C

80

Hg

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

пл=-39°C

кип=357°C

81

Tl

204,38

6s2 6p1

Серебристый металл

пл=304°C

кип=1457°C

82

Pb

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

пл=328°C

кип=1740°C

83

Bi

208,98

6s2 6p3

Блестящий серебристый металл

пл=271°C

кип=1560°C

84

Po

208,98

6s2 6p4

Мягкий серебристо-белый металл

пл=254°C

кип=962°C

85

At

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

пл=302°C

кип=337°C

86

Rn

222,02

6s2 6p6

2,2

Радиоактивный газ

пл=-71°C

кип=-62°C

87

Fr

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

пл=27°C

кип=677°C

88

Ra

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

пл=700°C

кип=1140°C

89

Ac

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

пл=1047°C

кип=3197°C

90

Th

232,04

f-элемент

Серый мягкий металл

91

Pa

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

238,03

f-элемент

1,38

Серебристо-белый металл

пл=1132°C

кип=3818°C

93

Np

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

Получение фенолформальдегидной смолы уравнение реакции

Фенолформальдегидные смолы [-C6H3(OH)-CH2-]n – продукты поликонденсации фенола C6H5OH с формальдегидом CH2=O.
Взаимодействие фенола с формальдегидом идет по схеме:

Роль реакционноспособных функциональных групп в этих соединениях играют:

  • в феноле – три С-Н-связи в орто— и пара-положениях (легче идет замещение в двух орто-положениях);
  • в формальдегиде – двойная связь С=О, способная к присоединению по атомам С и О.

Это определяет возможность образования цепных макромолекул по схеме поликонденсации:

Реакция проводится в присутствии кислых (соляная, серная, щавелевая и другие кислоты) или щелочных катализаторов (аммиак, гидроксид натрия, гидроксид бария).

Механизм конденсации фенола с формальдегидом в условиях кислотного катализа

При избытке фенола и кислом катализаторе образуется линейный полимер –новолак, цепь которого содержит приблизительно 10 фенольных остатков, соединенных между собой метиленовыми (-СН2-) мостиками.

Новолаки – термопластичные полимеры, которые сами по себе не способны переходить в неплавкое и нерастворимое состояние. Но они могут превращаться в трехмерный полимер при нагревании их с дополнительной порцией формальдегида в щелочной среде. При использовании щелочных катализаторов и избытка альдегида в начальной стадии поликонденсации получаются линейные цепи резола:

При дополнительном нагревании эти цепи «сшиваются» между собой за счет групп -CH2OH, находящихся в пара-положении фенольного кольца, с образованием трехмерного полимера – резита:

Таким образом, резолы являются термореактивными полимерами. Фенолоформальдегидные полимеры применяются в виде прессовочных композиций с различными наполнителями, а также в производстве лаков и клея.

Учебный фильм «Фенолоформальдегидные пластмассы»

Учебный фильм «Термоактивные пластмассы»

Свойства, применение и структурная формула фенолформальдегидной смолы

Смолы могут быть получены из натуральных элементов либо промышленным методом, последние называются синтетическими. Они отличаются более приемлемой стоимостью и дают надежный результат при применении. Фенолформальдегидная смола является востребованным типом материала, который используется при строительстве и других работах. Подробно об особенностях формальдегидной смолы будет рассказано далее.

Свойства смолы

Смола с основой из фенола и формальдегида относится к синтетическому типу. Химическое уравнение элемента — C6H3(OH)-CH2-]n. Первым разработал вещество А. Байер, поняв, что реакция фенола и формальдегида при нагревании производит образование воды и полимера. Тот эксперимент дал хрупкий элемент, после его улучшили, сейчас в состав добавляются разные вещества для получения лучших свойств.

Фенол смолы химические свойства заключаются в следующем:

  • Структурная характеристика – жидкие либо твердые;
  • Образуется в кислой либо щелочной среде;
  • Обладает высокой степенью электроизоляции;
  • Устойчивость к механическим нагрузкам;
  • Стойкость к ржавчине;
  • Растворяется в щелочах, углеводороде, кетон, разбавитель хлористого типа.

Резольные смолы

Данный тип смол выделяется тем, что при нагреве и долгом сроке хранения получают неплавкое свойство, также не растворяются. Чтобы при производстве получить смолы под названием резольные они проходят следующие этапы:

  • Резолы проходят этапы расплавления либо растворяются в спиртовом, ацетонном или водно-щелочном растворе. Способ дает смесь низко молекулярных слияний элементов реакции;
  • Резитолы, получаются из веществ, которые называют резолами. Когда те долго хранятся либо подвергаются влиянию высоких температур. Не растворяются в спиртовом или ацетоном растворе, лишь немного набухают, однако при нагреве размягчаются;
  • Резиты, на этой стадии отсутствует набухание в растворителях, размягчение тоже не происходит.

Применение материала

Фенолформальдегидная смола применяется в разных сферах деятельности, с помощью нее в промышленности изготавливают разные классы пластмассы. Использование в быту популярно, разный пластик получают при разном типе воздействия. Пластмасса часто используется в медицине.

Фенолформальдегид применяется при производстве лаковой продукции, клеевых растворов, герметиков.

Так она применяется для производства следующих изделий:

  • Тормозные колодки в поездах, элементы автомобиля и т.п.;
  • Абразивные приспособления;
  • Детали электрических приборов;
  • Корпусные части смартфонов;
  • В радио-промышленной сфере;
  • Для изготовления оружия и другой военной техники;
  • Для изготовления посуды, которую не подвергают нагреву;
  • Для бижутерии, сувенирной продукции;
  • Другое.

Не используется смола для изделий, которые будут напрямую контактировать с пищей.

Механизм образования фенолоформальдегидных смол

Механизм получения смолы предполагает соединение к 1-му молю фенола от 1-3-х молей формальдегида в 2-х ортоположениях и пароположении. Когда второго элемента больше, то вырабатывается резольный тип вещества. Если фенола больше, то образуется новолачный тип.

Первая стадия реакции характеризуется получением в итоге резольной смолы типа А. Присутствие в данном процессе метилольных групп, способствует созданию реакционного взаимодействия поликонденсации, когда мономеры переходят в полимеры. Нагревательный процесс вырабатывает резит.

Фенолспиртовые вещества, когда фенола много образует метилолдиоксидифенилметан. После поликонденсации переходит в новолачный тип смолы.

Производство фенолформальдегидной смолы

Можно получить материал с использованием метана и метанола, тогда преобразуется формальдегид, который соединяют с фенолом. Технологический процесс выполняются следующим образом:

  • Используется 40-процентный раствор формальдегида в объеме 3 мл;
  • Смешивается раствор с 2-граммами кристаллического фенола;
  • Добавляется 3 капли соляной кислоты;
  • После закипания раствора он станет прозрачным;
  • Если реакция должна проходить медленнее, то тару остужают;
  • Чтобы проверить результат, можно в стадии резола использовать спирт, где он легко растворяется;
  • Если раствор простоит долгое время, то способность растворяться исчезнет, вещество перейдет в резитол;
  • В конце раствор нагревается и становится твердым, цвет переходит в красный.

Горение продукта не происходит, он подвергается обугливанию. Огонь приобретет желтый оттенок, и появится неприятный запах фенола.

Технологический процесс получения фенолоформальдегидной резольной смолы

Сырьевыми компонентами при создании резольных смол могут выбираться фенол, крезол, ксиленол, крезольно-фенольные фракции. Формальдегид используется в концентрации 36-40-процентов.

Могут производиться разные типы материала. Есть жидкие и твёрдые виды, последние применяются при изготовлении лаковой продукции. Бывают другие типы смол с использованием вместо фенола карбамида, карбамидные смолы тоже пользуются популярностью.

Экологические аспекты

Для экологии использование ядовитых компонентов при производстве смолы становится опасностью. Проблемой считается вредность токсичных элементов, а именно процесс их утилизации. Так СанПиН следит за использование элементов, и количеством которые применяются.

Вред материала

Положительные стороны применения смолы сопровождаются вредом, которые вещества могут принести физическому здоровью человека. Фенол и формалин относятся к ядовитым элементам. Им характерны следующие вредные свойства:

  • Влияют негативно на нервную систему организма;
  • Способствуют появлению сыпи и дерматитов;
  • Могут вызвать аллергическую реакцию и бронхиальную астму.

Регулируется не только количество используемых веществ при производстве, но также безопасность работы. Из-за этого фенолформальдегидная смола вреднее эпоксидной.

Процесс изготовления

В прибор добавляется фенол, аммиак и формалин, производится нагревательный процесс, температурный режим ставится на 80-градусов. Когда нужная температура достигнута, то подача пара останавливается. В котле же температура увеличивается и дальше до 100-радусов, способствуя продолжению реакции. Проверяется результат по степени помутнения вещества, когда результат достигает 75-80 градусов, процесс завершается.

Может производиться дальнейшая сушка смолы, если необходимо получить твердый вариант. Если нужен жидкий тип, то процесс завершается после получения конденсата и проверки результата. После отделяется вода от полученной смолы. Резол переливается в емкость.

Крезолоформальдегидные смолы

Данный тип смол получают с использованием пара-, орто- и метакрезола. Берется крезол с формалином в равных пропорциях. Если больше формалины, то вырабатывается резольные смолы, если крезола, то новолачные. Технологический процесс производства одинаков с изготовлением фенолформальдегидных смол.

Жидкие бесспиртовые бакелитовые смолы

При промышленном производстве электроизоляционной техники часто используется данный тип смол. Выбираются типы ОФ и ОК. Связано это с возможностью не использовать дорогой этиловый спирт (этанол).

Смолу получают с помощью конденсации фенола с формальдегидом, также необходим аммиачный вид катализатора. Устройства для изготовления используются те же, что и для работы с сухими смолами. Применяется температурный режим более низкий, до 85-градусов. Не проводится этап просушки, просто удаляется вода от смолы.

Малорастворимые фенолоформальдегидные смолы

Когда применяется реакция конденсации фенола и формальдегида, то получаются не растворяющиеся в масле смолы. Смена фенола на его производные способствует получению маслорастворимых смол. Смешения элементов с маслами дает возможность получить качественные лаки.

Также можно получить масляные эмаль-лаки, которые применяются для эмалирования проводов. Распространено создание разных реакций для получения смол, используемых в электроизоляционных работах.

Этерифицированные смолы

Этерификация способствует соединению смолы с растительными маслами и иными типами смол. Процесс производится с помощью бутилового спирта. Так при определённых условиях можно, например, получить бутоксикрезолоформальдегидную смолу РБ.

Смола производится растворного типа в бутаноле, выделится нижеописанными свойствами:

  • Бесцветная жидкость с желто-красным оттенком по виду;
  • Уровень вязкости ВЗ4 при 2-градусном воздействие составляет 100-300с.

Данный тип материала используется в 60%-растворе для изготовления электроизоляционных лаковых продуктов (Фл-98, ПЭ-933).

Фенолформальдегидная смола позволяет повысить качество разнообразной продукции, с помощью нее производят различные материалы. Она отличается рядом положительных свойств. Но является опасным веществом, поэтому при производстве должны соблюдаться правила СанПиНа. Ее изобретение важным звеном для получения разнообразных материалов.

Видео: Получение фенолформальдегидной смолы

Фенолоформальдегидные смолы

В зависимости от природы и соотношения компонентов, а также от применяемого катализатора фенолоформальдегидные смолы делят на два вида:

  1. термореактивные или резольные;
  2. термопластичные или новолачные смолы.

Резольные смолы

При нагревании или длительном хранении эти смолы переходят в неплавкое и нерастворимое состояние, а новолачные смолы термопластичны и могут сохранять плавкость и растворимость при длительном хранении, а также при нагреве до 200 °С. Резольные смолы при переходе из плавкого растворимого состояния в неплавкое и нерастворимое проходят три стадии, характеризующие их состояние:

  1. Резолы — смолы в стадии А. Плавятся при нагревании и растворяются в спирте, ацетоне и в водных растворах щелочей. Представляют собой смесь низкомолекулярных соединений продуктов реакции.
  2. Резитолы — смолы в стадии В. Образуются при нагревании или длительном хранении резолов, представляют собой смесь резольной смолы и высокомолекулярных неплавких и нерастворимых соединений. Они нерастворимы в спирте и ацетоне, а только набухают в них, не плавятся, но размягчаются при нагревании.
  3. Резиты — смолы в стадии С. Содержат в основном трехмерные высокомолекулярные соединения. Не плавятся и не размягчаются при нагревании и нерастворимы и не набухают ни в каких растворителях. Резольные смолы в стадии С обладают высокими физико-электрическими свойствами.

Механизм образования фенолоформальдегидных смол

Функциональность фенола составляет 1–3, т. е. на 1 моль фенола может присоединяться от 1 до 3 молей формальдегида в двух ортоположениях и в параположении (рис. 1).

Рис. 1.

При эквимолекулярных количествах реагентов или при избытке формальдегида в присутствии щелочного катализатора образуются смолы резольного типа, при избытке фенола в кислой среде — новолачные. При синтезе резольных смол обычно берут на 6 молей фенола 7 молей формальдегида, и реакция идет по схеме, приведенной на рис. 2.

Рис. 2.

На первой стадии процесса одновременно получаются оксибензиловый спирт, ди- и триметилольные производные фенола (рис. 3), которые реагируют между собой с образованием макромолекулы резольной смолы. В щелочной среде в результате взаимодействия фенолоспиртов за счет метилольных групп в пароположении образуется резольная смола в стадии А (рис. 4).

Рис. 3.

Рис. 4.

Наличие в этих макромолекулах метилольных групп позволяет им вступать в дальнейшие реакции поликонденсации между собой. Под влиянием дальнейшего нагрева происходит процесс отверждения смолы с выделением воды и образованием молекул трехмерной структуры резита (рис. 5).

Рис. 5.

Процесс отверждения, то есть превращения в резит, может происходить в условиях нормальной температуры, но длительное время (от 6 мес. до 1 года). При повышении температуры скорость сильно возрастает.

Новолачные смолы образуются при избытке фенола в кислой среде. Обычно берут 7 молей фенола и 6 молей формальдегида, в качестве катализатора применяют соляную кислоту. В этом случае реакция идет по схеме, указанной на рис. 6.

Рис. 6.

Фенолоспирты при избытке фенола реагируют с фенолом и образуют метилолдиоксидифенилметан (рис. 7), который при дальнейшей поликонденсации дает новолачные смолы, имеющие строение, показанное на рис. 8.

Рис. 7.

Рис. 8.

В новолачную смолу входит смесь соединений линейного строения с молекулярной массой 200–1300. В отличие от резола молекулы новолачной смолы не содержат метилольных групп и поэтому не способны вступать в реакцию поликонденсации между собой и не образуют пространственных структур. Новолачные смолы могут быть переведены в неплавкое и нерастворимое состояние путем обработки их формальдегидом, параформом или чаще всего гексаметилентетрамином при повышенной температуре.

Технологический процесс получения фенолоформальдегидной резольной смолы

В производстве резольных смол в качестве сырья применяют фенол, крезол, ксиленол, а также фенольно-крезольные фракции, содержащие их смесь. Применяется и смесь ФДК (фенол, дикрезол, ксиленол). Формальдегид применяют в виде 36–40-процентного раствора (формалин).

Резольные фенолоформальдегидные смолы изготавливают различных марок, в виде жидких (ОФ, ОК) или твердых смол (ИФ, ИК) для получения спиртовых лаков. Приведем процесс получения резольной (бакелитовой) смолы.

Состав:
Фенол 100% — 6 молей
Формалин 40% — 7 молей
Аммиак 25% — 5% (по массе фенола)

Процесс изготовления

В реактор загружают фенол (в виде водного раствора), формалин и аммиак. Смесь в котле нагревают до 80 °С, подавая в рубашку котла водяной пар. При достижении 80 °С начинается экзотермическая реакция, и подачу пара прекращают. Вследствие экзотермичности процесса температура в котле поднимается до 100 °С, и реакция продолжается. В это время холодильник работает по обратной схеме для возможности возврата паров формалина в котел. Процесс варки смолы контролируют по температуре, при которой происходит помутнение охлаждаемой в стаканчике пробы смолы.

Процесс изготовления смолы заканчивают, когда температура помутнения пробы смолы (разделение на два слоя) достигнет 75–80 °С.

Для процесса сушки смолы холодильник переключают на прямую схему и соединяют со сборником конденсата и вакуум-насосом. Массу в реакторе нагревают до70–80 °С и при этой температуре и вакууме 600–700 мм рт. ст. сушат до момента, когда скорость полимеризации будет в пределах 90–120 с при нормальных условиях (температура 18 °C и давление 760 мм рт. ст.). Готовую смолу выгружают через нижний сливной штуцер либо (при получении лака) разбавляют спиртом.

Для получения жидких резольных смол сушку смолы под вакуумом не производят, а процесс изготовления смолы заканчивают после процесса конденсации и определения готовности смолы. После этого смолу перекачивают с помощью сжатого воздуха в отстойник, где происходит отделение надсмольной воды от смолы. После отделения водного слоя жидкий резол (нижний слой) сливают в тару.

Рис. 9. Схема производства фенолоформальдегидных смол и лаков
1 — котел для варки бакелитовых смол;
2 — феноловыплавитель;
3 — конденсатор;
4 — монжус для фенола;
5 — монжус для формалина;
6 — резервуар с обогревом;
7 — резервуар для формалина;
8 — резервуар для аммиака;
9 — монжус для аммиака,
10 — бак для спиртовых лаков;
11 — бак_отстойник;
12 — весовой мерник для фенола;
13 — весовой мерник для формалина;
14 — мерник для аммиака;
15 — мерник для растворителя;
16 — конденсатор;
17 — пеноловушка;
18 — вакуум_насос;
19 — шестеренчатый насос;
20 — вакуум_ловушка

Крезолоформальдегидные смолы

Технический трикрезол, применяемый для производства смол, представляет собой смесь трех изомеров крезола: орто-, мета- и паракрезола (рис. 10).

Рис. 10.

При взаимодействии с формальдегидом орто- и паракрезол реагируют только в двух точках, а метакрезол в трех точках, поэтому могут образоваться смолы с различными свойствами. Так, орто- и паракрезолы образуют термопластичные смолы, метакрезол может образовывать термореактивные. Поэтому количество метакрезола в трикрезоле должно быть не менее 40%. Трикрезол с таким содержанием метакрезола реагирует с формальдегидом так же, как и фенол.

При изготовлении крезолоформальдегидных смол крезол и формалин берут примерно в равных количествах. При избытке формалина получаются резольные смолы, а при избытке крезола — новолачные. Процессы изготовления этих смол аналогичны процессам изготовления фенолоформальдегидных смол.

Свойства крезольных смол несколько отличаются от фенольных. У крезольных смол время полимеризации, влагостойкость и электрические свойства выше.

В таблице 1 приведены сравнительные характеристики фенольных и крезольных смол, в таблице 2 — свойства смолы в стадии С.

Смола

Температура размягчения, °С

Период полимеризации при 160 °С, с

Содержание

свободного фенола, %

Влажность, %

Фенолоформальдегидная спирторастворимая марки ИФ

источники:

http://kraski-net.ru/spetsialnye-materialy/dopolnitelnye-sredstva/svojstva-primenenie-i-strukturnaya-formula-fenolformaldegidnoj-smoly

http://kit-e.ru/circuitbrd/fenoloformaldegidnye-smoly/

Таблица 1. Свойства фенолоформальдегидных (бакелитовых) смол

  • Предельные спирты

  • Фенолы

  • Альдегиды

  • Карбоновые кислоты

  • Жиры

  • Углеводы

Фенолы

Фенолы — кислородсодержащие ароматические соединения, в молекулах которых содержится одна или несколько гидроксильных
групп (OH), присоединенных к бензольному кольцу.

Номенклатура фенолов

Нумерацию атомов углерода в молекуле фенола начинают в такой последовательности, чтобы заместители получили наименьшие
номера (идут кратчайшим путем). В основе названия принято сохранять тривиальное название «фенол».

Номенклатура фенолов

Напомню, что гидроксильная группа является ориентантом I порядка (орто-, пара-ориентант). Поэтому реакции галогенирования,
нитрования протекают в орто- и пара-положениях.

Получение фенолов
  • Гидролиз галогенбензолов
  • При гидролизе галогенбензолов происходит обмен: гидроксогруппа встает на место атома галогена.

    Гидролиз галогенбензола

  • Кумольный способ
  • Этим способом получают 95% всего производимого фенола. В ходе этой реакции кумол (изопропилбензол) подвергают окислению,
    в результате получается фенол и ацетон.

    Кумольный способ получения фенола

Химические свойства фенолов
  • Кислотные свойства
  • Щелочные металлы (Li, Na, K) способны вытеснять водород из фенолов с образованием солей — фенолятов.
    В отличие от алифатических одноатомных спиртов, фенолы способны вступать в реакцию с щелочами (KOH, LiOH, NaOH)

    Кислотные свойства фенолов

  • Галогенирование
  • Реакция фенола с бромной водой является качественной: в ходе нее выпадает белая взвесь — осадок
    трибромфенола.

    Реакция фенола с бромной водой

  • Реакции с кислотами
  • Реакция между фенолом и азотной кислотой происходит по типу замещения. В бензольном кольце появляется новый радикал —
    нитрогруппа. Важно учитывать, что OH группа фенола является ориентантом I порядка: замещение идет в орто-, пара-положении.

    Реакции фенола с азотной кислотой

  • Гидрирование
  • При гидрировании разрываются двойные связи бензольного кольца, образуется циклогексанол.

    Гидрирование фенола

  • Поликонденсация фенолов с формальдегидом
  • В промышленности получила широкое распространение реакция поликонденсации фенола с формальдегидом, приводящая к образованию
    смолообразных полимеров (фенолформальдегидные смолы) и воды.

    Поликонденсация фенола с метаналем

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.


Блиц-опрос по теме Фенолы

1. В отличие от предельных одноатомных спиртов, фенолы реагируют с

Na
NaOH
CH3COOH
HCOOH

В отличие от предельных одноатомных спиртов, фенолы реагируют с щелочами, например NaOH.

2. Качественной реакцией на фенол является реакция с

Азотистой кислотой
Азотной кислотой
Натрием
Бромной водой

Качественной реакцией на фенол является реакция c бромной водой.

3. В результате кумольного синтеза фенола, помимо фенола, получают

Ацетон
Этан
Ацетилен
Пропадиен

В результате кумольного синтеза фенола, помимо фенола, получают ацетон (пропанон-2)

4. Гидроксогруппа в молекуле фенола вступает как

Ориентант II порядка
Ориентант I порядка

Гидроксогруппа в молекуле фенола вступает как ориентант I порядка.

5. Фенол с метаналем вступает в реакцию

Гидратации
Поликонденсации
Дегидрирования
Дегидратации

Фенол с метаналем вступает в реакцию поликонденсации, в результате которой получают фенолформальдегидную смолу.

Понравилась статья? Поделить с друзьями:
  • Получение серной кислоты в промышленности егэ
  • Получение процента при погашении ценной бумаги егэ
  • Получение прав через госуслуги после экзамена в гибдд образец заполнения
  • Получение прав через госуслуги после экзамена в гибдд как получить
  • Получение прав после сдачи экзамена через мфц