Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Установите правильную последовательность процессов, протекающих при фотосинтезе.
1) использование углекислого газа
2) образование кислорода
3) синтез углеводов
4) синтез молекул АТФ
5) возбуждение хлорофилла
2
Установите правильную последовательность процессов фотосинтеза.
1) Преобразование солнечной энергии в энергию АТФ.
2) Возбуждение светом электронов хлорофилла.
3) Фиксация углекислого газа.
4) Образование крахмала.
5) Использование энергии АТФ для синтеза глюкозы.
3
Укажите правильную последовательность реакций фотосинтеза
1) образование глюкозы
2) образование запасного крахмала
3) поглощение молекулами хлорофилла фотонов (квантов света)
4) соединение СО2 с рибулозодифосфатом
5) образование АТФ и НАДФ · Н
4
Установите последовательность этапов окисления молекул крахмала в ходе энергетического обмена.
1) образование молекул ПВК (пировиноградной кислоты)
2) расщепление молекул крахмала до дисахаридов
3) образование углекислого газа и воды
4) образование молекул глюкозы
Раздел: Общая биология. Метаболизм
5
Какова последовательность процессов энергетического обмена в клетке?:
1) расщепление биополимеров до мономеров
2) лизосома сливается с частицей пищи, содержащей белки, жиры и углеводы
3) расщепление глюкозы до пировиноградной кислоты и синтез двух молекул АТФ
4) поступление пировиноградной кислоты (ПВК) в митохондрии
5) окисление пировиноградной кислоты и синтез 36 молекул АТФ
Раздел: Общая биология. Метаболизм
Источник: Банк заданий ФИПИ
Пройти тестирование по этим заданиям
Типы питания
По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ — пища)
— организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος
— иной + τροφή — пища) — организмы, использующие для питания готовые органические вещества.
Наконец, миксотрофы (греч. μῖξις — смешение + τροφή — пища) — организмы, которые могут использовать как гетеротрофный, так и
автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.
Фотосинтез
Фотосинтез (греч. φῶς — свет и σύνθεσις — синтез) — сложный химический процесс преобразования энергии квантов света в
энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.
Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός — зелёный и φύλλον — лист) — зеленого пигмента, окрашивающего органы растений в
зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую
или светозащитную функции.
Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится
ион Mg.
В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества,
как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли
от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось
органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь
из вещества неорганического»
Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой)
и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют
более глубокому (и правильному!) пониманию фотосинтеза.
Светозависимая фаза (световая)
Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты,
белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.
Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон,
переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов,
тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):
H2O —> H+ + OH—
Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).
4OH —> 2H2O + O2↑
Образовавшиеся при фотолизе воды протоны (H+) скапливаются с внутренней стороны мембраны тилакоидов, а
электроны — с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.
При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы.
В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:
Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который
используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная
форма — НАДФ+ превращается в восстановленную — НАДФ∗H2.
Предлагаю создать квинтэссенцию из полученных нами знаний. Итак, в результате светозависимой фазы фотосинтеза образуются:
- Свободный кислород O2 — в результате фотолиза воды
- АТФ — универсальный источник энергии
- НАДФ∗H2 — форма запасания атомов водорода
Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2
в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой
фазе фотосинтеза.
Светонезависимая (темновая) фаза
Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью — вне зависимости от
освещения.
При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6.
В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы
требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.
Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована
в крахмал, служащий для запасания питательных веществ у растений.
Значение фотосинтеза
Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие
чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.
В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать
первые фотосинтезирующие бактерии — сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле
стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.
Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений. Итак, растения за счет фотосинтеза:
- Синтезируют органические вещества, являющиеся пищей для всего живого на планете
- Преобразуют энергию света в энергию химических связей, создают органическую массу
- Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
- Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение
Хемосинтез (греч. chemeia – химия + synthesis — синтез)
Хемосинтез — автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические
вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений
(железо- , азото-, серосодержащих веществ).
Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится
к аэробам, для жизни им необходим кислород.
При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей.
Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем — нитрата. Нитраты могут быть усвоены
растениями и служат удобрением.
Помимо нитрифицирующих бактерий, встречаются:
- Серобактерии — окисляют H2S —> S 0 —> (S+4O3)2- —> (S+6O4)2-
- Железобактерии — окисляют Fe+2 —>Fe+3
- Водородные бактерии — окисляют H2 —> H+12O
- Карбоксидобактерии — окисляют CO до CO2
Значение хемосинтеза
Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.
Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества — аммиака. Они также обогащают
почву нитратами, которые очень важны для нормального роста и развития растений.
Усвоение нитратов происходит за счет клубеньковых бактерий на корнях бобовых
растений, однако важно помнить, что клубеньковые (азотфиксирующие) бактерии, в отличие от нитрифицирующих бактерий, питаются гетеротрофно.
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Чем растения отличаются от других царств живой природы? Несмотря на то, что отличий масса, скорее всего, в первую очередь вы подумаете о фотосинтезе. Так что именно о фотосинтезе на ЕГЭ и ОГЭ мы сейчас и поговорим.
Что такое фотосинтез?
Почему растения фотосинтезируют? Стандартный ответ: «Потому что они зеленые».
На самом деле, растения получили способность к фотосинтезу благодаря наличию симбиотических органоидов — хлоропластов, в которых и происходят темновая и световая фазы, а в хлоропластах содержится пигмент хлорофилл, именно он окрашивает растения в зеленый цвет.
Фотосинтез — одна из реакций обмена веществ. Как любая реакция метаболизма, он идет поэтапно (световая и темновая фазы) и с участием ферментов. Фотосинтез относится к реакциям пластического обмена. Особенность пластического обмена в том, что органические вещества синтезируются, а энергия на это тратится.
Фотосинтез — это синтез органических веществ из неорганических веществ с использованием энергии солнечного света.
Далее разберем подробно обе фазы и процессы, происходящие в них.
Как идет процесс фотосинтеза?
Световая фаза фотосинтеза для ЕГЭ и ОГЭ
Световая фаза проходит в хлоропластах на тилакоидах. Там хранится пигмент хлорофилл, с которого все начинается — именно из-за него растения имеют зеленую окраску. Квант света попадает на тилакоид и возбуждает молекулу хлорофилла. В этот момент инициируется процесс фотосинтеза. При этом выделяется энергия АТФ.
Самые внимательные из вас могут заметить некоторую несостыковку. Почему выделяется? Это же реакция пластического обмена, а не энергетического, значит, энергия должна тратиться. Да, действительно при фотосинтезе выделяется АТФ, но она не накапливается и не тратится на другие реакции, как при энергетическом обмене, а вся уходит на фотосинтез. Поэтому это реакция анаболизма, хоть и с выделением АТФ.
Параллельно идет фотолиз воды.
Название процесса говорит само за себя: «фото» — свет, «лизис» — расщепление. Буквально переводится как расщепление воды на свету. Легко запомнить, что проходит фотолиз в световую фазу.
На что же может распасться молекула воды? На свободный кислород и водород. У каждого из этих элементов свой путь.
Кислород — это сильный окислитель, буквально смерть для любой неспециализированной клетки, поэтому растения быстро от него избавляются, выделяя в атмосферу как побочный продукт. А уже из атмосферы аэробные организмы (в том числе, растения) поглощают его и используют для дыхания. Так что нам повезло! Не было бы процесса фотосинтеза, не было бы кислорода и что было бы с жизнью на нашей планете представить сложно.
Но помимо кислорода, выделяется еще водород, если бы он был человеком, мы бы сказали, что он растерян и нуждается в помощи. На помощь к нему приходит молекула-переносчик НАДФ (полное ее название —никотинамиддинуклеотидфосфат, но мы ласково зовем ее НАДФ). Она использует водород для восстановления до НАДФ*Н2. Задача этой молекулы переносить водород из тилакоидов в строму, поэтому мы называем ее молекула-переносчик. На этом световая фаза заканчивается.
Резюмируем
- Квант света возбуждает молекулу хлорофилла
- Инициируется процесс фотосинтеза
- Выделяется АТФ
- Фотолиз воды
- Кислород выходит в окружающую среду как побочный продукт фотосинтеза
- Водород соединяется с молекулой переносчиком НАДФ*
Темновая фаза фотосинтеза для ЕГЭ и ОГЭ
В некоторых источниках эту фазу еще называют светонезависимой фазой. Действительно, название «темновая стадия» часто вызывает затруднения. Кажется, что световая проходит на свету, а темновая тогда в темноте, но это не так. Для темновой фазы действительно не нужен свет, соответственно, у нее есть варианты — может проходить и на свету, и в темноте. Она идет практически параллельно со световой и в ней используются продукты, образовавшиеся в световой фазе.
Для того чтобы фазы друг другу не мешали, они проходят в разных частях хлоропласта. Световая, как мы уже выяснили, идет на тилакоидах, а темновая в строме — это внутренняя полужидкая среда хлоропласта.
В строму приходят АТФ, молекула-переносчик приносит водород. Но из водорода и энергии ничего органического создать не получится, нужны еще элементы. Растения нашли гениальный выход, они используют вещество, которого достаточно в атмосфере, следовательно, за него нет конкуренции. Это вещество — углекислый газ.
Дальше начинается очень сложный циклический процесс, который называется цикл Кальвина. Мы не будем слишком подробно его рассматривать, это не пригодится для государственных экзаменов, но именно в нем активно работают ферменты, и на него тратится энергия АТФ, полученная в световой фазе. В результате цикла Кальвина образуется шестиуглеродный сахар-глюкоза. Далее эта глюкоза может быть переработана в крахмал и откладываться растением как запасной углевод.
Резюмируем
- Фиксация СО2
- Цикл Кальвина
- Синтез глюкозы
- Образование крахмала
Значение фотосинтеза
На Земле, пожалуй, практически не существует процессов, которые повлияли на эволюцию планеты так же сильно, как фотосинтез. Давайте разберем основные значения фотосинтеза:
- Сформировалась атмосфера с высоким содержанием кислорода, пригодная для дыхания. Аэробные организмы, включая человека, проводят энергетический обмен с использованием кислорода и получают энергию для жизнедеятельности.
- Возникновение озонового слоя. Вследствие фотосинтеза в атмосфере накопился кислород, что привело к появлению озонового экрана. Жизнь, которая до этого вынуждена была развиваться под водой, боясь ультрафиолета, смогла выйти на сушу и освоить ее.
- Синтез органических веществ. Растения — автотрофные организмы, сами производят органические вещества, которые затем используют гетеротрофы. Вещества, которые образуют растения в процессе фотосинтеза, являются первичным источником веществ и энергии практически для всех живых организмов.
Примеры заданий на фотосинтез в ЕГЭ и ОГЭ по биологии
Вопросы по фотосинтезу встречаются как в ЕГЭ, так и в ОГЭ. Причем, если для 9 класса достаточно знать что это такое и основные этапы, то для ЕГЭ необходимо понимание последовательности процессов. Кстати, актуальна эта тема для решения новых заданий по экспериментам (2 и 22 линии в ЕГЭ 2022).
Задание на фотосинтез в ОГЭ по биологии
Решение. Типичный вопрос для первой части ОГЭ из открытого банка ФИПИ. Какие из этих процессов происходят во время фотосинтеза? Возбуждение молекул хлорофилла квантом света, расщепление (фотолиз) воды и образование глюкозы.
Во время фотосинтеза, наоборот, выделяется кислород, как побочный продукт, и поглощается углекислый газ. А синтез белка вообще проходит на рибосомах.
Ответ. 123
Задание на фотосинтез в ЕГЭ по биологии
Решение. Это задание из открытого варианта 2021 года (в 2021 эти варианты заменяли варианты досрочного ЕГЭ). Необходимо соотнести процессы и фазы. В световой фазе происходит возбуждение молекулы хлорофилла, фотолиз воды и образование энергии. В темновую фазу фиксируется углекислый газ и восстановление углерода водородом для синтеза глюкозы.
Ответ. 12212
Конечно, процесс фотосинтеза значительно сложнее, чем мы с вами разобрали. Да и на ОГЭ и ЕГЭ проверяют знание многих других тем. Чтобы сдать экзамен на высокий балл, надо знать анатомию, зоологию, генетику, микробиологию и даже психологию. При этом недостаточно только хорошо разбираться в основных темах. Надо уметь избегать ловушек экзаменаторов, вчитываться в формулировки заданий и оформлять ответы в четком соответствии с критериями. Поэтому необходимо готовиться к ОГЭ и ЕГЭ по биологии системно.
Экзамен по биологии — не шутка. Если вы хотите сдать его на 90+, записывайтесь на мои курсы подготовки к ОГЭ или ЕГЭ. Мы разберемся со всеми темами, которые спрашивают в 9 или 11 классе, научимся решать задания быстро и правильно, а также разберем основные лайфхаки, которые помогут вам не стрессовать. Я также проведу с вами пробный экзамен в формате реального ОГЭ или ЕГЭ, чтобы вы были готовы к любым неожиданностям. После мы разберем все ошибки и поймем, как избежать их в будущем. Приходите на мои занятия, и я помогу вам сдать ОГЭ или ЕГЭ на самый высокий балл!
Фотосинтез
1. В световую
стадию фотосинтеза в клетке за счет энергии солнечного света происходит:
1. Образуется
молекулярный кислород в результате разложения воды
2. Происходит
синтез углеводов из углекислого газа и воды
3. Происходит
полимеризация молекул глюкозы с образованием крахмала
4. Осуществляется
синтез молекул АТФ
5. Энергия
молекул АТФ расходуется на синтез углеводов
6. Происходит
разложение воды на протоны и атомы водорода
2. В темновую
фазу фотосинтеза в отличие от световой происходит:
1. Фотолиз
воды
2. Восстановление
СО2 до глюкозы
3. Синтез
молекул АТФ за счет энергии солнечного света
4. Соединение
водорода с переносчиком НАДФ+
5. Использование
энергии молекул крахмала из глюкозы
3. Установите
правильную последовательность процессов, протекающих при фотосинтезе.
1) использование углекислого
газа
2)
образование кислорода
3)
синтез углеводов
4)
синтез молекул АТФ
5) возбуждение хлорофилла
4. Установите
правильную последовательность процессов фотосинтеза.
1) Преобразование солнечной энергии в
энергию АТФ.
2) Возбуждение светом электронов
хлорофилла.
3) Фиксация углекислого газа.
4) Образование крахмала.
5) Использование энергии АТФ для синтеза
глюкозы.
5. Укажите правильную
последовательность реакций фотосинтеза
1) образование глюкозы
2) образование запасного крахмала
3) поглощение молекулами хлорофилла
фотонов (квантов света)
4) соединение СО2 с
рибулозодифосфатом
5) образование АТФ и НАДФ · Н
6. Установите
правильную последовательность процессов, протекающих при фотосинтезе.
1) восстановление НАДФ+ до
НАДФ · 2Н
2) поглощение квантов света молекулами
хлорофилла
3) фиксация СО2
4) переход электронов в возбуждённое
состояние
5) синтез глюкозы
Ответы: 1)146 2)256 3)52413 4) 21354 5)
35412 6) 24135
Фотосинтез
Автор статьи — Л.В. Окольнова.
Определение довольно простое, уравнение тоже суммарное. оно не описывает сам процесс — сложный и многоступенчатый.
В этой статье мы не будем разбирать все стадии, мы разберем только две основные фазы фотосинтеза — световую и темновую, а также основные процессы, которые происходят в это время в организме растения.
Световая фаза фотосинтеза.
Днем растения работают как солнечные батарейки — аккумулируют энергию света солнца:
● на мембранах тилакойдов хлоропластов молекулы хлорофилла поглощают (аккумулируют) свет,
● происходит синтез АТФ,
● образуется НАДФ — кофермент.
Кофермент (коэнзим) — это биологический катализатор, но ферментом его назвать нельзя, т.к. у него не белковая природа, который ускоряет и направляет протекание окислительно-восстановительных процессов. Он понадобится на следующей — темновой фазе процесса .
●происходит расщепление (фотолиз) воды: 2H20 = 4H+ + 4e- + O2.
растение выделяет кислород .
Темновая фаза фотосинтеза.
Это уже фаза синтеза. Энергия, полученная в ходе световой фазы, идет на восстановление CO2 до молекулы глюкозы.
Этот процесс происходит уже в строме.
Общая схема фотосинтеза:
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Фотосинтез» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
08.03.2023
Фотосинтез, его значение, космическая роль
Фотосинтезом называют процесс преобразования энергии света в энергию химических связей органических соединений с участием хлорофилла.
В результате фотосинтеза образуется около 150 млрд тонн органического вещества и приблизительно 200 млрд тонн кислорода ежегодно. Этот процесс обеспечивает круговорот углерода в биосфере, не давая накапливаться углекислому газу и препятствуя тем самым возникновению парникового эффекта и перегреву Земли. Образующиеся в результате фотосинтеза органические вещества не расходуются другими организмами полностью, значительная их часть в течение миллионов лет образовала залежи полезных ископаемых (каменного и бурого угля, нефти). В последнее время в качестве топлива начали использовать также рапсовое масло («биодизель») и спирт, полученный из растительных остатков. Из кислорода под действием электрических разрядов образуется озон, который формирует озоновый экран, защищающий все живое на Земле от губительного действия ультрафиолетовых лучей.
Наш соотечественник, выдающийся физиолог растений К. А. Тимирязев (1843–1920) назвал роль фотосинтеза «космической», поскольку он связывает Землю с Солнцем (космосом), обеспечивая приток энергии на планету.
Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь
В 1905 году английский физиолог растений Ф. Блэкмен обнаружил, что скорость фотосинтеза не может увеличиваться беспредельно, какой-то фактор ограничивает ее. На основании этого он выдвинул предположение о наличии двух фаз фотосинтеза: световой и темновой. При низкой интенсивности освещения скорость световых реакций возрастает пропорционально нарастанию силы света, и, кроме того, данные реакции не зависят от температуры, поскольку для их протекания не нужны ферменты. Световые реакции протекают на мембранах тилакоид.
Скорость темновых реакций, напротив, возрастает с повышением температуры, однако по достижении температурного порога в $30°С$ этот рост прекращается, что свидетельствует о ферментативном характере указанных превращений, происходящих в строме. Следует отметить, что свет также оказывает на темновые реакции определенное влияние, несмотря на то, что они называются темновыми.
Световая фаза фотосинтеза протекает на мембранах тилакоидов, несущих несколько типов белковых комплексов, основными из которых являются фотосистемы I и II, а также АТФсинтаза. В состав фотосистем входят пигментные комплексы, в которых, кроме хлорофилла, присутствуют и каротиноиды. Каротиноиды улавливают свет в тех областях спектра, в которых этого не делает хлорофилл, а также защищают хлорофилл от разрушения светом высокой интенсивности.
Кроме пигментных комплексов, фотосистемы включают и ряд белков-акцепторов электронов, которые последовательно передают друг другу электроны от молекул хлорофилла. Последовательность этих белков называется электронтранспортной цепью хлоропластов.
С фотосистемой II также ассоциирован специальный комплекс белков, который обеспечивает выделение кислорода в процессе фотосинтеза. Этот кислородвыделяющий комплекс содержит ионы марганца и хлора.
В световой фазе кванты света, или фотоны, попадающие на молекулы хлорофилла, расположенные на мембранах тилакоидов, переводят их в возбужденное состояние, характеризующееся более высокой энергией электронов. При этом возбужденные электроны от хлорофилла фотосистемы I передаются через цепь посредников на переносчик водорода НАДФ, присоединяющий при этом протоны водорода, всегда имеющиеся в водном растворе:
$НАДФ + 2e^{-} + 2H^{+} → НАДФН + Н^{+}$.
Восстановленный $НАДФН + Н^{+}$ будет впоследствии использован в темновой стадии. Электроны от хлорофилла фотосистемы II также передаются по электронтранспортной цепи, однако они заполняют «электронные дырки» хлорофилла фотосистемы I. Недостаток электронов в хлорофилле фотосистемы II заполняется за счет отнимания у молекул воды, которое происходит с участием уже упоминавшегося выше кислородвыделяющего комплекса. В результате разложения молекул воды, которое называется фотолизом, образуются протоны водорода и выделяется молекулярный кислород, являющийся побочным продуктом фотосинтеза:
$H_2O → 2H^{+} + 2e^{-} + {1}/{2}O_2↑$.
Автотрофы и гетеротрофы
По способу питания все организмы делятся на автотрофов и гетеротрофов. Автотрофы способны самостоятельно синтезировать органические вещества из неорганических, а гетеротрофы используют исключительно готовые органические вещества.
Часть автотрофов может использовать для синтеза органических соединений энергию света — такие организмы называются фотоавтотрофами, они способны осуществлять фотосинтез. Фотоавтотрофами являются растения и часть бактерий. К ним тесно примыкают хемоавтотрофы, которые извлекают энергию путем окисления неорганических соединений в процессе хемосинтеза — это некоторые бактерии.
К гетеротрофам относятся как животные, так и грибы, бактерии и даже лишенные хлорофилла растения. Среди гетеротрофов имеются паразиты, сапротрофы, симбионты, хищники и т. д.
Паразиты — это организмы, использующие другие организмы (хозяев) в качестве среды обитания и источника питания. Характерными представителями этой группы гетеротрофов являются черви-паразиты кишечника человека — бычий цепень, острица и др.
Сапротрофами называют гетеротрофные организмы, осуществляющие питание органическими остатками. Они играют важную роль в круговороте веществ в природе, поскольку обеспечивают завершение существования органических веществ в природе, разлагая их до неорганических. Тем самым сапротрофы участвуют в процессах почвообразования, очистки вод и т. п. К сапротрофам относятся многие грибы и бактерии, а также некоторые растения и животные.
Симбионтами называют разноименные организмы, сосуществующие и взаимодействующие на различной основе. В широком смысле симбиозом называют не только взаимовыгодное сосуществование (мутуализм), как у человека с его бактериальной микрофлорой кишечника, но и негативное действие со стороны одного из партнеров — паразитизм.
Аэробы и анаэробы
По особенностям энергетического обмена организмы могут быть поделены на аэробов и анаэробов.
Аэробы способны жить и развиваться только при наличии в среде молекулярного кислорода, который они используют в качестве конечного акцептора электронов в процессе кислородного дыхания. К аэробам относится подавляющее большинство животных и грибов, все растения, а также значительная часть прокариот.
Анаэробы не используют кислород для осуществления процессов диссимиляции. Анаэробами являются некоторые животные (в основном внутренние паразиты), а также ряд бактерий. У животных-анаэробов функционирует главным образом гликолиз, а у бактерий — брожение, анаэробное (например, серное) дыхание и бескислородный фотосинтез. Наличие кислорода в среде не мешает развитию многих анаэробов.
Анаэробные организмы возникли раньше аэробных, так как в первичной атмосфере планеты не было кислорода. Его накопление связано с возникновением фотосинтеза, в связи с чем ряд организмов перешел к кислородному дыханию.
Задания по теме Метаболизм
|
1. Установите последовательность этапов жирового обмена у человека.
1) эмульгация жиров под действием желчи
2) поглощение глицерина и жирных кислот клетками эпителия кишечной ворсинки
3) поступление человеческого жира в лимфатический капилляр, а затем в жировое депо
4) поступление жиров с пищей
5) синтез человеческого жира в клетках эпителия
6) расщепление жиров до глицерина и жирных кислот
2. Установите последовательность стадий энергетического обмена.
1) рассеивание всей энергии в виде тепла
2) окисление пировиноградной кислоты до СО2 и Н2О
3) расщепление сложных органических веществ под действием ферментов
4) разложение молекулы глюкозы на 2 молекулы пировиноградной кислоты
5) образование 2 молекул АТФ
6) образование 36 молекул АТФ
3. Установите последовательность процессов, происходящих в световой фазе фотосинтеза.
1) переход электронов на высшие уровни
2) поглощение квантов света
3) образование АТФ за счет энергии возбужденных электронов
4) образование побочного продукта – свободного кислорода
5) возбуждение электронов в молекуле хлорофилла
6) фотолиз воды
4. Установите последовательность процессов, происходящих при катаболизме
1) гликолиз
2) расщепление сложных органических соединений
3) образование 36 молекул АТФ
4) образование только тепловой энергии
5) клеточное дыхание
6) образование 2 молекул АТФ
5. Установите последовательность процессов, происходящих при биосинтезе белка
1) сплайсинг иРНК в ядрышке
2) нанизывание рибосомы на иРНК
3) синтез и РНК в ядре
4) поступление иРНК в цитоплазму
5) сравнение кодона иРНК и антикодона тРНК в ФЦР (функциональном центре рибосомы)
6) образование пептидной связи между аминокислотами
6. Установите последовательность процессов, происходящих при дупликации ДНК.
1) отделение одной цепи ДНК от другой
2) присоединение комплементарных нуклеотидов к каждой цепи ДНК
3) образование 2 молекул ДНК
4) раскручивание молекулы ДНК
5) воздействие фермента ДНК-полимеразы на молекулу ДНК
7. Установите последовательность процессов, происходящих при анаболизме.
1) выход иРНК, рРНК и тРНК в цитоплазму
2) соединение иРНК с рибосомами и образование ФЦР
3) синтез различных молекул РНК (иРНК, рРНК, тРНК) в ядре
4) образование пептидной связи между молекулами аминокислот
5) присоединение к тРНК соответствующих аминокислот
6) встраивание рРНК в субъединицы рибосом
8. Установите правильную последовательность процессов фотосинтеза у растений. Запишите в таблицу соответствующую последовательность цифр.
1) соединение неорганического углерода с С5-углеродом
2) перенос электронов переносчиками и образование АТФ и НАДФ·Н
3) образование глюкозы
4) возбуждение молекулы хлорофилла светом
5) переход возбуждённых электронов на более высокий энергетический уровень
9. Укажите правильную последовательность реакций фотосинтеза
1) образование глюкозы
2) образование запасного крахмала
3) поглощение молекулами хлорофилла фотонов (квантов света)
4) соединение СО2 с рибулозодифосфатом
5) образование АТФ и НАДФ*Н
10. Какова последовательность процессов энергетического обмена в клетке?
1) расщепление крахмала до мономеров
2) поступление в лизосомы питательных веществ
3) расщепление глюкозы до пировиноградной кислоты
4) поступление пировиноградной кислоты (ПВК) в митохондрии
5) образование углекислого газа и воды
Просмотров: 43569