Десятичные приставки
Наименование | Обозначение | Множитель |
гига | Г | 109 |
мега | М | 106 |
кило | к | 103 |
деци | д | 10–1 |
санти | с | 10–2 |
милли | м | 10–3 |
микро | мк | 10–6 |
нано | н | 10–9 |
пико | п | 10–12 |
Физические постоянные (константы)
число π | π = 3,14 |
ускорение свободного падения | g = 10 м/с2 |
гравитационная постоянная | G = 6,7·10–11 Н·м2/кг2 |
газовая постоянная | R = 8,31 Дж/(моль·К) |
постоянная Больцмана | k = 1,38·10–23 Дж/К |
постоянная Авогадро | NA = 6,02·1023 1/моль |
скорость света в вакууме | с = 3·108 м/с |
коэффициент пропорциональности в законе Кулона | k = 1/(4πε0) = 9·109 Н·м2/Кл2 |
модуль заряд электрона | e = 1,6·10-19 Кл |
масса электрона | me = 9,1·10–31 кг |
масса протона | mp = 1,67·10–27 кг |
постоянная Планка | h = 6,62·10-34 Дж·с |
радиус Солнца | 6,96·108 м |
температура поверхности Солнца | T = 6000 K |
радиус Земли | 6370 км |
Соотношение между различными единицами измерения
температура | 0 К = –273 0С |
атомная единица массы | 1 а.е.м. = 1,66·10–27 кг |
1 атомная единица массы эквивалентна | 931,5 МэВ |
1 электронвольт | 1 эВ = 1,6·10-19 Дж |
1 астрономическая единица | 1 а.е. ≈ 150 000 000 км |
1 световой год | 1 св. год ≈ 9,46·1015 м |
1 парсек | 1 пк ≈ 3,26 св. года |
Масса частиц
электрона | 9,1·10–31кг ≈ 5,5·10–4 а.е.м. |
протона | 1,673·10–27 кг ≈ 1,007 а.е.м. |
нейтрона | 1,675·10–27 кг ≈ 1,008 а.е.м. |
Плотность
воды | 1000 кг/м3 |
древесины (сосна) | 400 кг/м3 |
керосина | 800 кг/м3 |
подсолнечного масла | 900 кг/м3 |
алюминия | 2700 кг/м3 |
железа | 7800 кг/м3 |
ртути | 13 600 кг/м3 |
Удельная теплоёмкость
воды | 4,2·10 3 Дж/(кг·К) |
льда | 2,1·10 3 Дж/(кг·К) |
железа | 460 Дж/(кг·К) |
свинца | 130 Дж/(кг·К) |
алюминия | 900 Дж/(кг·К) |
меди | 380 Дж/(кг·К) |
чугуна | 500 Дж/(кг·К) |
Удельная теплота
парообразования воды | 2,3·10 6 Дж/кг |
плавления свинца | 2,5·10 4 Дж/кг |
плавления льда | 3,3·10 5 Дж/кг |
Нормальные условия:
давление | 105 Па |
температура | 00 C |
Молярная маcса молекул
азота | 28·10–3 кг/моль |
аргона | 40·10–3 кг/моль |
водорода | 2·10–3 кг/моль |
воздуха | 29·10–3 кг/моль |
воды | 18·10–3 кг/моль |
гелия | 4·10–3 кг/моль |
кислорода | 32·10–3 кг/моль |
лития | 6·10–3 кг/моль |
неона | 20·10–3 кг/моль |
углекислого газа | 44·10–3 кг/моль |
Перейти к контенту
Десятичные приставки
Наименование | Обозначение | Множитель |
гига | Г | 109 |
мега | М | 106 |
кило | к | 103 |
деци | д | 10–1 |
санти | с | 10–2 |
милли | м | 10–3 |
микро | мк | 10–6 |
нано | н | 10–9 |
пико | п | 10–12 |
Физические постоянные (константы)
число π | π = 3,14 |
ускорение свободного падения | g = 10 м/с2 |
гравитационная постоянная | G = 6,7·10–11 Н·м2/кг2 |
газовая постоянная | R = 8,31 Дж/(моль·К) |
постоянная Больцмана | k = 1,38·10–23 Дж/К |
постоянная Авогадро | NA = 6,02·1023 1/моль |
скорость света в вакууме | с = 3·108 м/с |
коэффициент пропорциональности в законе Кулона | k = 1/(4πε0) = 9·109 Н·м2/Кл2 |
модуль заряд электрона | e = 1,6·10-19 Кл |
масса электрона | me = 9,1·10–31 кг |
масса протона | mp = 1,67·10–27 кг |
постоянная Планка | h = 6,62·10-34 Дж·с |
радиус Солнца | 6,96·108 м |
температура поверхности Солнца | T = 6000 K |
радиус Земли | 6370 км |
Соотношение между различными единицами измерения
температура | 0 К = –273 0С |
атомная единица массы | 1 а.е.м. = 1,66·10–27 кг |
1 атомная единица массы эквивалентна | 931,5 МэВ |
1 электронвольт | 1 эВ = 1,6·10-19 Дж |
1 астрономическая единица | 1 а.е. ≈ 150 000 000 км |
1 световой год | 1 св. год ≈ 9,46·1015 м |
1 парсек | 1 пк ≈ 3,26 св. года |
Масса частиц
электрона | 9,1·10–31кг ≈ 5,5·10–4 а.е.м. |
протона | 1,673·10–27 кг ≈ 1,007 а.е.м. |
нейтрона | 1,675·10–27 кг ≈ 1,008 а.е.м. |
Плотность
воды | 1000 кг/м3 |
древесины (сосна) | 400 кг/м3 |
керосина | 800 кг/м3 |
подсолнечного масла | 900 кг/м3 |
алюминия | 2700 кг/м3 |
железа | 7800 кг/м3 |
ртути | 13 600 кг/м3 |
Удельная теплоёмкость
воды | 4,2·10 3 Дж/(кг·К) |
льда | 2,1·10 3 Дж/(кг·К) |
железа | 460 Дж/(кг·К) |
свинца | 130 Дж/(кг·К) |
алюминия | 900 Дж/(кг·К) |
меди | 380 Дж/(кг·К) |
чугуна | 500 Дж/(кг·К) |
Удельная теплота
парообразования воды | 2,3·10 6 Дж/кг |
плавления свинца | 2,5·10 4 Дж/кг |
плавления льда | 3,3·10 5 Дж/кг |
Нормальные условия:
давление | 105 Па |
температура | 00 C |
Молярная маcса молекул
азота | 28·10–3 кг/моль |
аргона | 40·10–3 кг/моль |
водорода | 2·10–3 кг/моль |
воздуха | 29·10–3 кг/моль |
воды | 18·10–3 кг/моль |
гелия | 4·10–3 кг/моль |
кислорода | 32·10–3 кг/моль |
лития | 6·10–3 кг/моль |
неона | 20·10–3 кг/моль |
углекислого газа | 44·10–3 кг/моль |
Справочные данные из демоверсии, которые могут понадобиться вам при выполнении работы.
Десятичные приставки
Константы
Соотношения между различными единицами
Масса частиц
Астрономические величины
Плотность
Удельная теплоёмкость
Удельная теплота
Нормальные условия
Молярная маcса
→ sp-fizika.pdf
→ Другой справочник с формулами.
→ Основные формулы по физике.
→ 180 формул по физике на одном листе.
- Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
- 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- Английский: Инглекс, Puzzle, Novakid.
Справочные материалы ЕГЭ по физике 2022-2023
Десятичные приставки
Наименование — Обозначение — Множитель
- гига — Г — 109
- мега — М — 106
- кило — к — 103
- гекто — г — 102
- деци — д — 10–1
- санти — с — 10–2
- милли — м — 10–3
- микро — мк — 10–6
- нано — н — 10–9
- пико — п — 10–12
Физические постоянные (константы)
- число π: π = 3,14
- ускорение свободного падения: g = 10 м/с2
- гравитационная постоянная: G = 6,7·10–11 Н·м2/кг2
- универсальная газовая постоянная: R = 8,31 Дж/(моль·К)
- постоянная Больцмана: k = 1,38·10–23 Дж/К
- постоянная Авогадро: NA = 6·1023 1/моль
- скорость света в вакууме: с = 3·108 м/с
- коэффициент пропорциональности в законе Кулона: k = 1/(4πε0) = 9·109 Н·м2/Кл2
- модуль заряд электрона (элементарный электрический заряд): e = 1,6·10−19 Кл
- постоянная Планка: h = 6,6·10-34 Дж·с
Соотношение между различными единицами измерения
- температура: 0 К = –273 0С
- атомная единица массы: 1 а.е.м. = 1,66·10–27 кг
- 1 атомная единица массы эквивалентна: 931,5 МэВ
- 1 электронвольт: 1 эВ = 1,6·10−19 Дж
Масса частиц
- электрона — 9,1·10–31 кг ≈ 5,5·10–4 а.е.м.
- протона — 1,673·10–27 кг ≈ 1,007 а.е.м.
- нейтрона — 1,675·10–27 кг ≈ 1,008 а.е.м.
Плотность
- воды — 1000 кг/м3
- древесины (сосна) — 400 кг/м3
- керосина — 800 кг/м3
- подсолнечного масла — 900 кг/м3
- алюминия — 2700 кг/м3
- железа — 7800 кг/м3
- ртути — 13 600 кг/м3
Удельная теплоёмкость
- воды — 4,2·103 Дж/(кг·К)
- льда — 2,1·103 Дж/(кг·К)
- железа — 460 Дж/(кг·К)
- свинца — 130 Дж/(кг·К)
- алюминия — 900 Дж/(кг·К)
- меди — 380 Дж/(кг·К)
- чугуна — 500 Дж/(кг·К)
Удельная теплота
- парообразования воды — 2,3·106 Дж/кг
- плавления свинца — 2,5·104 Дж/кг
- плавления льда — 3,3·105 Дж/кг
Нормальные условия
- давление: 105 Па
- температура: 0 °С
Молярная масса молекул
- азота: 28·10–3 кг/моль
- аргона: 40·10–3 кг/моль
- водорода: 2·10–3 кг/моль
- воздуха: 29·10–3 кг/моль
- воды: 18·10–3 кг/моль
- гелия: 4·10–3 кг/моль
- кислорода: 32·10–3 кг/моль
- лития: 6·10–3 кг/моль
- неона: 20·10–3 кг/моль
- углекислого газа: 44·10–3 кг/моль
- Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
- 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- Английский: Инглекс, Puzzle, Novakid.
Сила тяготения.
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: силы в механике, закон всемирного тяготения, сила тяжести, ускорение свободного падения, вес тела, невесомость, искусственные спутники Земли.
Любые два тела притягиваются друг к другу — по той лишь одной причине, что они имеют массу. Эта сила притяжения называется силой тяготения или гравитационной силой.
Закон всемирного тяготения.
Гравитационное взаимодействие любых двух тел во Вселенной подчиняется достаточно простому закону.
Закон всемирного тяготения. Две материальные точки массами и притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними:
(1)
Коэффициент пропорциональности называется гравитационной постоянной. Это фундаментальная константа, и её численное значение было определено на основе эксперимента Генри Кавендиша:
Порядок величины гравитационной постоянной объясняет, почему мы не замечаем взаимного притяжения окружающих нас предметов: гравитационные силы оказываются слишком малыми при небольших массах тел. Мы наблюдаем лишь притяжение предметов к Земле, масса которой примерно кг.
Формула (1), будучи справедливой для материальных точек, перестаёт быть верной, если размерами тел пренебречь нельзя. Имеются, однако, два важных для практики исключения.
1. Формула (1) справедлива, если тела являются однородными шарами. Тогда — расстояние между их центрами. Сила притяжения направлена вдоль прямой, соединяющей центры шаров.
2. Формула (1) справедлива, если одно из тел — однородный шар, а другое — материальная точка, находящаяся вне шара. Тогда сстояние от точки до центра шара. Сила притяжения направлена вдоль прямой, соединяющей точку с центром шара.
Второй случай особенно важен, так как позволяет применять формулу (1) для силы притяжения тела (например, искусственного спутника) к планете.
Сила тяжести.
Предположим, что тело находится вблизи некоторой планеты. Сила тяжести — это сила гравитационного притяжения, действующая на тело со стороны планеты. В подавляющем большинстве случаев сила тяжести — это сила притяжения к Земле.
Пусть тело массы лежит на поверхности Земли. На тело действует сила тяжести , где — ускорение свободного падения вблизи поверхности Земли. С другой стороны, считая Землю однородным шаром, можно выразить силу тяжести по закону всемирного тяготения:
,
где — масса Земли, км — радиус Земли. Отсюда получаем формулу для ускорения свободного падения на поверхности Земли:
. (2)
Эта же формула, разумеется, позволяет найти ускорение свободного падения на поверхности любой планеты массы и радиуса .
Если тело находится на высоте над поверхностью планеты, то для силы тяжести получаем:
.
Здесь — ускорение свободного падения на высоте :
.
В последнем равенстве мы воспользовались соотношением
которое следует из формулы (2).
Вес тела. Невесомость.
Рассмотрим тело, находящееся в поле силы тяжести. Предположим, что есть опора или подвес, препятствующие свободному падению тела. Вес тела — это сила, с которой тело действует на опору или подвес. Подчеркнём, что вес приложен не к телу, а к опоре (подвесу).
Рис. 1. Сила тяжести, реакция опоры и вес тела |
На рис. 1 изображено тело на опоре. Со стороны Земли на тело действует сила тяжести (в случае однородного тела простой формы сила тяжести приложена в центре симметрии тела). Со стороны опоры на тело действует сила упругости (так называемая реакция опоры). На опору со стороны тела действует сила — вес тела. По третьему закону Ньютона силы и равны по модулю и противоположны по направлению.
Предположим, что тело покоится. Тогда равнодействующая сил, приложенных к телу, равна нулю. Имеем:
С учётом равенства получаем . Стало быть, если тело покоится, то его вес равен по модулю силе тяжести.
Задача. Тело массы вместе с опорой движется с ускорением , направленным вертикально вверх. Найти вес тела.
Решение. Направим ось вертикально вверх (рис. 2).
Рис. 2. Вес тела больше силы тяжести. |
Запишем второй закон Ньютона:
Перейдём к проекциям на ось :
.
Отсюда . Следовательно, вес тела
.
Как видим, вес тела больше силы тяжести. Такое состояние называется перегрузкой.
Задача. Тело массы вместе с опорой движется с ускорением , направленным вертикально вниз. Найти вес тела.
Решение. Направим ось вертикально вниз (рис. 3).
Рис. 3. Вес тела меньше силы тяжести. |
Схема решения та же. Начинаем со второго закона Ньютона:
Переходим к проекциям на ось :
.
Отсюда c. Следовательно, вес тела
.
В данном случае вес тела меньше силы тяжести. При (свободное падение тела с опорой) вес тела обращается в нуль. Это — состояние
невесомости, при котором тело вообще не давит на опору.
Искусственные спутники.
Для того, чтобы искусственный спутник мог совершать орбитальное движение вокруг планеты, ему нужно сообщить определённую скорость. Найдём скорость кругового движения спутника на высоте над поверхностью планеты. Масса планеты , её радиус (рис. 4)
Рис. 4. Спутник на круговой орбите. |
Спутник будет двигаться под действием единственной силы — силы всемирного тяготения, направленной к центру планеты. Туда же направлено и ускорение спутника — центростремительное ускорение
.
Обозначив через массу спутника, запишем второй закон Ньютона в проекции на ось, направленной к центру планеты: , или
.
Отсюда получаем выражение для скорости:
.
Первая космическая скорость — это максимальная скорость кругового движения спутника, отвечающая высоте . Для первой космической скорости имеем
,
или, с учётом формулы ( 2),
.
Для Земли приближённо имеем:
км/с.
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Сила тяготения.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
08.03.2023
- Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
- 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- Английский: Инглекс, Puzzle, Novakid.
Справочные материалы ЕГЭ по физике 2022-2023
Десятичные приставки
Наименование — Обозначение — Множитель
- гига — Г — 109
- мега — М — 106
- кило — к — 103
- гекто — г — 102
- деци — д — 10–1
- санти — с — 10–2
- милли — м — 10–3
- микро — мк — 10–6
- нано — н — 10–9
- пико — п — 10–12
Физические постоянные (константы)
- число π: π = 3,14
- ускорение свободного падения: g = 10 м/с2
- гравитационная постоянная: G = 6,7·10–11 Н·м2/кг2
- универсальная газовая постоянная: R = 8,31 Дж/(моль·К)
- постоянная Больцмана: k = 1,38·10–23 Дж/К
- постоянная Авогадро: NA = 6·1023 1/моль
- скорость света в вакууме: с = 3·108 м/с
- коэффициент пропорциональности в законе Кулона: k = 1/(4πε0) = 9·109 Н·м2/Кл2
- модуль заряд электрона (элементарный электрический заряд): e = 1,6·10−19 Кл
- постоянная Планка: h = 6,6·10-34 Дж·с
Соотношение между различными единицами измерения
- температура: 0 К = –273 0С
- атомная единица массы: 1 а.е.м. = 1,66·10–27 кг
- 1 атомная единица массы эквивалентна: 931,5 МэВ
- 1 электронвольт: 1 эВ = 1,6·10−19 Дж
Масса частиц
- электрона — 9,1·10–31 кг ≈ 5,5·10–4 а.е.м.
- протона — 1,673·10–27 кг ≈ 1,007 а.е.м.
- нейтрона — 1,675·10–27 кг ≈ 1,008 а.е.м.
Плотность
- воды — 1000 кг/м3
- древесины (сосна) — 400 кг/м3
- керосина — 800 кг/м3
- подсолнечного масла — 900 кг/м3
- алюминия — 2700 кг/м3
- железа — 7800 кг/м3
- ртути — 13 600 кг/м3
Удельная теплоёмкость
- воды — 4,2·103 Дж/(кг·К)
- льда — 2,1·103 Дж/(кг·К)
- железа — 460 Дж/(кг·К)
- свинца — 130 Дж/(кг·К)
- алюминия — 900 Дж/(кг·К)
- меди — 380 Дж/(кг·К)
- чугуна — 500 Дж/(кг·К)
Удельная теплота
- парообразования воды — 2,3·106 Дж/кг
- плавления свинца — 2,5·104 Дж/кг
- плавления льда — 3,3·105 Дж/кг
Нормальные условия
- давление: 105 Па
- температура: 0 °С
Молярная масса молекул
- азота: 28·10–3 кг/моль
- аргона: 40·10–3 кг/моль
- водорода: 2·10–3 кг/моль
- воздуха: 29·10–3 кг/моль
- воды: 18·10–3 кг/моль
- гелия: 4·10–3 кг/моль
- кислорода: 32·10–3 кг/моль
- лития: 6·10–3 кг/моль
- неона: 20·10–3 кг/моль
- углекислого газа: 44·10–3 кг/моль
- Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
- 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- Английский: Инглекс, Puzzle, Novakid.
Десятичные приставки
Наименование |
Обозначение |
Множитель |
Наименование |
Обозначение |
Множитель |
мега- |
М |
106 |
санти- |
с |
10-2 |
кило- |
к |
103 |
милли- |
м |
10—3 |
гекто- |
г |
102 |
микро- |
мк |
10-6 |
Основные физические константы
Число π |
π = 3,14 |
Ускорение свободного падения на Земле |
g = 10 м/с2 |
Гравитационная постоянная |
G = 6,7 ∙ 10-11 Н ∙ м2/кг2 |
Универсальная газовая постоянная |
R = 8,31 Дж/(моль ∙ К) |
Постоянная Больцмана |
k = 1,38 ∙ 10—23 Дж/К |
Постоянная Авогадро |
NА = 6 ∙ 1023 1/моль |
Скорость света в вакууме |
с = 3 ∙ 108 м/с |
Коэффициент пропорциональности в законе Кулона |
k = 9 ∙ 109 Н ∙ м2/Кл2 |
Модуль заряда электрона (элементарный электрический заряд) |
е = 1,6 ∙ 10—19 Кл |
Постоянная Планка |
h = 6,6 ∙ 10-34 Дж ∙ с |
Соотношение между различными единицами
Температура |
0 К = -273,15° С |
Атомная единица массы |
1 а.е.м. = 1,66 ∙ 10—27 кг |
1 атомная единица массы эквивалентна |
931,5 МэВ |
1 электронвольт |
1 эВ = 1,6 ∙ 10—19 Дж |
Масса частиц
Электрона |
9,1 ∙ 10—31 кг ≈ 5,5 ∙ 10—4 а.е.м. |
Протона |
1,637 ∙ 10—27 кг ≈ 1,007 а.е.м. |
Нейтрона |
1,675 ∙ 10—27 кг ≈ 1,008 а.е.м. |
Нормальные условия
Давление |
105 Па |
Температура |
0° С |
Плотность тел
Бензин |
710 кг/м3 |
Древесина |
600 кг/м3 |
Спирт |
800 кг/ м3 |
Алюминий |
2700 кг/м3 |
Масло машинное |
900 кг/м3 |
Сталь |
7800 кг/м3 |
Вода морская |
1030 кг/м3 |
Медь |
8900 кг/м3 |
Вода |
1000 кг/м3 |
Мрамор |
2700 кг/м3 |
Ртуть |
13600 кг/м3 |
Лёд |
900 кг/м3 |
Удельное электрическое сопротивление (Ом ∙ мм2/м)
Алюминий 0,028 |
Ртуть 0,96 |
Железо 0,10 |
Медь 0,017 |
Удельная теплоёмкость |
|
Воды 4200 Дж/(кг ∙ град) Льда 2100 Дж/(кг ∙ град) Железа 444 Дж/(кг ∙ град) Меди 380 Дж/(кг ∙ град) |
Олова 230 Дж/(кг ∙ град) Свинца 130 Дж/(кг ∙ град) Стали 460 Дж/(кг ∙ град) |
Удельная теплота плавления |
|
Свинца 2,5 ∙ 104 Дж/кг Льда 3,3 ∙ 105 Дж/кг |
Стали 82 ∙ 103 Дж/ кг |
Удельная теплота парообразования |
|
Воды 2,3 ∙ 106 Дж/кг |
Как сдать ЕГЭ по физике? Безусловно, усердно готовиться! Вполне возможно самостоятельное углублённое повторение материала, начиная с 7 класса, усваивая теорию, и запоминая формулы по темам и сверяя их с кодификатором на сайте ФИПИ.
Для упешной сдачи ЕГЭ по физике необходимо научиться решать задачи по основным разделам физики, входящим в программу полной средней школы. На нашем сайте вы можете самостоятельно пройти тестирование по тематическим тестам ЕГЭ по физике. В них включены задания базового и повышенного уровня сложности. Пройдя их, вы определите необходимость более подробного повторения того или иного раздела физики и совершенствования навыков решения задач для успешной сдачи ЕГЭ по физике.
Важным этапом подготовки к ЕГЭ по физике 2023 года является ознакомление с демонстрационным вариантом ЕГЭ по физике 2023 года. Демоверсия 2023 года опубликована на сайте Федерального института педагогических измерений (ФИПИ). Демонстрационный вариант составляется с учетом всех поправок и особенностей предстоящего экзамена по предмету в будущем 2023 году.
Что же представляет собой демонстрационный вариант ЕГЭ по физике? Демоверсия содержит типовые задания, которые по своей структуре, качеству, тематике, уровню сложности и объёму полностью соответствуют заданиям будущих реальных вариантов КИМ по физике 2023 года. Ознакомиться с демонстрационным вариантом ЕГЭ по физике 2023 можно на сайте ФИПИ: www.fipi.ru
В содержании теоретического материала ЕГЭ 2023 по физике произошли незначительные изменения: в кодификаторе появилось определение центра масс и закон Кулона для двух точечных тел в диэлектрике.
В первой части интегрированные задания, включающие в себя элементы содержания не менее чем из трёх разделов курса физики, которые располагались под номерами 1 и 2 в КИМ ЕГЭ 2022 г. перенесены на номера 20 и 21 соответственно, а 1 и 2 задания вернулись к тем, какими и были всегда: кинематика и динамика базового уровня.
Во второй части задание 24 электростатика ( была механика ), 25 — термодинамика, 26 — оптика, 28 — комбинированная на электродинамику и механику, 29 — фотоэффект.
Расширена тематика 30 заданий — расчетных задач высокого уровня по механике. Кроме задач на применение законов Ньютона и законов сохранения в механике добавлены задачи по статике.
Целесообразно при участии в основном потоке сдачи ЕГЭ ознакомиться с экзаменационными материалами досрочного периода ЕГЭ по физике, публикуемыми на сайте ФИПИ после проведения досрочного экзамена. При подготовке следовать «Методическим рекомендациям для выпускников по самостоятельной подготовке к ЕГЭ по физике», ежегодно публикуемым на сайте ФИПИ.
Для выпускников, достойно подготовленных к экзамену, будет хорошим решение принять участие в досрочном ЕГЭ 2023: немногочисленность участников, спокойная обстановка и шанс на участие в основном этапе ЕГЭ
Фундаментальные теоретические знания по физике крайне необходимы для успешной сдачи ЕГЭ по физике. Важно, чтобы эти знания были систематизированы. Достаточным и необходимым условием освоения теории является овладение материалом, изложенным в школьных учебниках по физике. Для этого требуются систематические занятия, направленные на изучение всех разделов курса физики. Особое внимание следует уделить подготовке к расчётным и качественным задачам, входящих в ЕГЭ по физике в части задач повышенной и высокой сложности с развёрнутым ответом, решение которых необходимо для получения высокого балла за экзамен 75+
Только глубокое, вдумчивое изучение материала с осознанным его усвоением: знание физических законов, процессов и явлений в совокупности с навыком решения задач обеспечат успешную сдачу ЕГЭ по физике и возможность поступления в выбранный Вами университет
Если Вам нужна подготовка к ЕГЭ или ОГЭ по физике, вам будет рада помочь репетитор по физике — Виктория Витальевна.
Формулы ЕГЭ по физике 2023
- Кинематика
- Динамика
- Молекулярная физика и термодинамика
- Электродинамика
- Оптика
- Квантовая физика
- Ядерная физика
Механика — один из самых значимых и наиболее широко представленных в заданиях ЕГЭ раздел физики. Подготовка по этому разделу занимает значительную часть времени подготовки к ЕГЭ по физике
Кинематика
Равномерное движение:
v = const Sx = vx t
x = x0 + Sx x = x0 + vx t
Равноускоренное движение:
ax = (vx — v0x)/t
vx = v0x + axt
Sx = v0xt + axt2/2 Sx =( vx2 — v0x2)/2ax
x = x0 + Sx x = x0 + v0xt + axt2/2
Свободное падение:
y = y0 + v0yt + gyt2/2 vy = v0y + gyt Sy = v0yt + gyt2/2
Путь, пройденный телом, численно равен площади фигуры под графиком скорости.
Средняя скорость:
vср = S/t S = S1 + S2 +…..+ Sn t = t1 + t2 + …. + tn
Закон сложения скоростей:
Вектор скорости тела относительно неподвижной системы отсчёта равен геометрической сумме скорости тела относительно подвижной системы отсчёта и скорости самой подвижной системы отсчёта относительно неподвижной.
Движение тела, брошенного под углом к горизонту
Уравнения скорости:
vx = v0x = v0cosa
vy = v0y + gyt = v0sina — gt
Уравнения координат:
x = x0 + v0xt = x0 + v0cosa t
y = y0 + v0yt + gyt2/2 = y0 + v0sina t + gyt2/2
Ускорение свободного падения: gx = 0 gy = — g
Движение по окружности
aц = v2/R =ω 2R v =ω R T = 2πR/v
Статика
Момент силы М = Fl , где l — плечо силы F — кратчайшее расстояние от точки опоры до линии действия силы
Условия равновесия рычага:
Сумма моментов сил, вращающих рычаг по часовой стрелке, равна сумме моментов сил, вращающих против часовой стрелки
М1 + М2 +… + Мn = Мn+1 + Мn+2+ …..
Равнодействующая всех сил, приложенных к рычагу равна нулю
Закон Паскаля: Давление, производимое на жидкость или газ передаётсяв любую точку одинаково во всех напрвлениях
Давление жидкости на глубине h : p = ρgh , учитывая давление атмосферы: p = p0 + ρgh
Закон Архимеда : FАрх = P вытесн — Сила Архимеда равна весу жидкости в объёме погружённого тела
Сила Архимеда FАрх = ρg Vпогруж — выталкивающая сила
Подъёмная сила F под = FАрх — mg
Условия плавания тел:
FАрх > mg — тело всплывает
FАрх = mg — тело плавает
FАрх < mg — тело тонет
Динамика
Первый закон Ньютона:
Существуют инерциальные системы отсчёта, относительно которых свободные тела сохраняют свою скорость.
Второй закон Ньютона: F = ma
Второй закон Ньютона в импульсной форме: FΔt = Δp Импульс силы равен изменению импульса тела
Третий закон Ньютона: Сила действия равна силе противодействи. Силы равны по модулю и противоположны по направлению F1 = F2
Сила тяжести Fтяж = mg
Вес тела P = N ( N — сила реакции опоры)
Сила упругости Закон Гука Fупр = kΙΔxΙ
Сила трения Fтр = µ N
Давление p = Fд/S [ 1 Па ]
Плотность тела ρ = m/V [ 1 кг/м3 ]
Закон Всемирного тяготения F = G m1 m2/R2
Fтяж = GMзm/Rз2 = mg g = GMз/Rз2
По Второму закону Ньютона: maц = GmMз/(Rз + h)2
mv2/(Rз + h) = GmMз/(Rз + h)2
— первая космическая скорость
— вторая космическая скорость
Работа силы A = FScosα
Мощность N = A/t = Fvcosα
Кинетическая энергия Eк = m ʋ2/2 = P2/2m
Теорема о кинетической энергии: A = ΔЕк
Потенциальная энергия Eп = mgh — энергия тела над Землёй на высоте h
Еп = kx2/2 — энергия упруго деформированного тела
А = — Δ Eп — работа потенцильных сил
Закон сохранения механической энергии
ΔЕ = 0 ( Ек1 + Еп1 = Ек2 + Еп2 )
Закон сохранения энергии
ΔЕ = Асопр ( Асопр — работа всех непотенциальных сил )
Колебания и волны
Механические колебания
Т — период колебаний — время одного полного колебания [ 1с ]
ν — частота колебаний — число колебаний за единицу времени [ 1Гц ]
T = 1/ ν
ω — циклическая частота [1 рад/с ]
ω = 2πν = 2π/T T = 2π/ω
Период колебаний математического маятника: T = 2π(l/g)1/2
Период колебаний пружинного маятника: T = 2π(m/k)1/2
Уравнение гармонических колебаний: x = xm sin(ωt +φ0)
Уранение скорости: ʋ = x, = xmωcos(ωt + φ0 ) = ʋmcos(ωt + φ0) ʋm = xmω
Уравнение ускорения: a = ʋ, = — xmω2sin(ωt + φ0 ) am = xmω2
Энергия гармонических колебаний m ʋm2/2 = kxm2/2 = m ʋ2/2 + kx2/2 = const
Волна — распространение колебаний в пространстве
скорость волны ʋ = λ /T
Уранение бегущей волны
x = xmsinωt — уравнение колебаний
x — смещение в любой момент времени, xm — амплитуда колебаний
ʋ — скорость распространения колебаний
Ϯ — время, через которое придут колебания в точку x: Ϯ = x/ʋ
Уранение бегущей волны: x = xm sin(ω( t — Ϯ )) = xm sin(ω( t — x/ʋ ))
x — смещение в любой момент времени
Ϯ — время запаздывания колебаний в данной точке
Молекулярная физика и термодинамика
Количество вещества v = N/NA
Молярная масса M = m0NA
Число молей v = m/M
Число молекул N = vNA = NAm/M
Основное уравнение МКТ p = m0nvср2/3
Температура — мера средней кинетической энергии молекул Eср = 3kT/2
Зависимость давления газа от концентрации и температуры p = nkT
Связь давления со средней кинетической энергией молекул p = 2nEср/3
Связь температур T = t + 273
Уравнение состояния идеального газа pV = mRT/M = vRT = NkT — уравнение Менделеева
p = ρRT/M
p1V1//T1 = p2V2/T2 = const для постоянной массы газа — уравнение Клапейрона
Закон Дальтона: Давление смеси газов равно сумме давлений газов, находящихся в сосуде
p = p1 + p2 + …
Газовые законы
Закон Бойля-Мариотта: pV = const если T = const m = const
Закон Гей-Люссака: V/T = const если p = const m = const
Закон Шарля: p/T = const если V = const m = const
Относительная влажность воздуха
φ = ρ/ρ0· 100%
Внутренняя энергия U = 3mRT/2M
Изменение внутренней энергии ΔU = 3mRΔT/2M
Об изменении внутренней энергии судим по изменению абсолютной температуры!!!
Работа газа в термодинамике A‘ = pΔV
Работа внешних сил над газом A = — A’
Расчёт количества теплоты
Количество теплоты, необходимое для нагревания вещества (выделяющееся при его охлаждении) Q = cm(t2 — t1)
с — удельная теплоёмкость вещества
Количество теплоты, необходимое для плавления кристаллического вещества при температуре плавления Q = λm
λ — удельная теплота плавления
Количество теплоты необходимое для превращения жидкости в пар Q = Lm
L — удельная теплота парообразования
Количество теплоты, выделяющееся при сгорании топлива Q = qm
q — удельная теплота сгорания топлива
Перый закон термодинамики ΔU = Q + A
Q = ΔU + A’
Q — количество теплоты, полученное газом
Перый закон термодинамики для изопроцессов:
Изотермический процесс: T = const
Q = A’
Изохорный процесс: V = const
ΔU =Q
Изобарный процесс: p = const
ΔU = Q + A
Адиабатный процесс: Q = 0 (в теплоизолированной системе)
ΔU = A
КПД тепловых двигателей
η = (Q1 — Q2) /Q1 = A’/Q1= 1 — Q2/Q1
Q1 — количество теплоты, полученное от нагревателя
Q2 — количество теплоты, отданное холодильнику
Максимальное значение КПД теплового двигателя (цикл Карно:) η =(T1 — T2)/T1
T1 — температура нагревателя
T2 — температура холодильника
Уравнение теплового балланса: Q1 + Q2 + Q3 + … = 0 ( Qполуч = Qотд )
Электродинамика
Наряду с механикой электординамика занимает значительную часть заданий ЕГЭ и требует интенсивной подготовки для успешной сдачи экзамена по физике.
Электростатика
Закон сохранения электрического заряда:
В замкнутой системе алгебраическая сумма электрических зарядов всех частиц сохраняется
Закон Кулона F = kq1q2/R2 = q1q2/4πε0R2 — сила взаимодействия двух точечных зарядов в вакууме
Одноимённые заряды отталкиваются, а разноимённые притягиваются
Напряжённость — силовая характеристика электрического поля точечного заряда
E = F/q
E = kq0/R2 — модуль напряжённости поля точечного заряда q0 в вакууме
Направление вектора Е совпадает с направлением силы, действующей на положительный заряд в данной точке поля
Принцип суперпозиций полей: Напряжённость в данной точке поля равна векторной сумме напряжённостей полей, действующих в этой точке:
φ = φ1 + φ2 + …
Работа электрического поля при перемещении заряда A = qE( d1 — d2) = — qE(d2 — d1) =q(φ1 — φ2) = qU
A = — ( Wp2 — Wp1)
Wp = qEd = qφ — потенциальная энергия заряда в данной точке поля
Потенциал φ = Wp/q =Ed
Разность потенциалов — напряжение: U = A/q
Связь напряжённости и разности потенциалов E = U/d
Электроёмкость
C = q/U
C =εε0S/d — электроёмкость плоского конденсатора
Энергия плоского конденсатора: Wp = qU/2 = q2/2C = CU2/2
Параллельное соединение конденсаторов: q = q1 +q2 + … , U1 = U2 = …, С = С1 + С2 + …
Последовательное соединение соединение конденсаторов: q1 = q2 = …, U = U1 + U2 + …, 1/С =1/С1 +1/С2 + …
Законы постоянного тока
Определение силы тока: I = Δq/Δt
Закон Ома для участка цепи: I = U/R
Расчёт сопротивления проводника: R = ρl/S
Законы полследовательного соединения проводников:
I = I1 = I2 U = U1 + U2 R = R1 + R2
U1/U2 = R1/R2
Законы параллельного соединения проводников:
I = I1 + I2 U = U1 = U2 1/R = 1/R1 +1/R2 + … R = R1R2/(R1 + R2) — для 2-х проводников
I1/I2 = R2/R1
Работа электрического поля A = IUΔt
Мощность электрического тока P = A/Δt = IU I2R = U2/R
Закон Джоуля-Ленца Q = I2RΔt — количество теплоты, выделяемое проводником с током
ЭДС источника тока ε = Aстор/q
Закон Ома для полной цепи
IR = Uвнеш — напряжение на внешней цепи
Ir = Uвнутр — напряжение внутри источника тока
Электромагнетизм
Магнитное поле — особая форма материя, вознкающая вокруг движущихся зарядов и действующая на движущиеся заряды
Магнитная индукция — силовая характеристика магнитного поля
B = Fm/IΔl
Fm = BIΔl
Сила Ампера — сила, действуюшая на проводник с током в магнитном поле
F= BIΔlsinα
Направление силы Ампера определяется по правилу левой руки:
Если 4 пальца левой руки направить по направлению тока в проводнике так, чтобы линии магнитной индукции входили в ладонь, тогда большой палец, отогнутый на 90 градусов укажет направление действия силы Ампера
Сила Лоренца- сила, действующая на электрический заряд, движущийся в магнитном поле
Fл = qBʋsinα
Направление силы Лоренца определяется по правилу левой руки:
Если 4 пальца левой руки направить по направлению движения положительного заряда ( против движения отрицательного), так, чтобы магнитные линии входили в ладонь, тогда отгнутый на 90 градусов большой палец укажет направление силы Лоренца
Магнитный поток Ф = BScosα [ Ф ] = 1 Вб
Правило Ленца:
Возникающий в замкнутом контуре индукционный ток своим магнитным полем препятствует тому изменению магнитного потока, котрым он вызван
Закон электромагнитной индукции:
ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через повернхность, ограниченную контуром
ЭДС индукции в движушихся проводниках:
Индуктивность L = Ф/I [ L ] = 1 Гн
Ф = LI
ЭДС самоиндукции:
Энергия магнитного поля тока : Wm = LI2/2
Энергия электрического поля: Wэл = qU/2 = CU2/2 = q2/2C
Электромагнитные колебания — гармонические колебания заряда и тока в колебательном контуре
q = qm sinω0t — колебания заряда на конденсаторе
u = Umsinω0t — колебания напряжения на конденсаторе
Um = qm/C
i = q’ = qmω0cosω0t — колебания силы тока в катушке
Imax = qmω0 — амплитуда силы тока
Формула Томсона
Закон сохранения энергии в колебательном контуре
CU2/2 + LI2/2 = CU2max/2 = LI2max/2 = Const
Переменный электрический ток:
Ф = BScosωt
e = — Ф’ = BSωsinωt = Emsinωt
u = Umsinωt
i = Imsin(ωt +π/2)
Свойства электромагнитных волн
Оптика
Закон отражения: Угол отражения равен углу падения
Закон преломления: sinα/sinβ = ʋ1/ ʋ2 = n
n — относительный показатель преломления второй среды к первой
n = n2/n1
n1 — абсолютный показатель преломления первой среды n1 = c/ʋ1
n2 — абсолютный показатель преломления второй среды n2 = c/ʋ2
При переходе света из одной среды в другую меняется его длина волны, частота остаётся неизменной v1 = v2 n1 λ1 = n1 λ2
Полное отражение
Явление полного внутреннего отражения наблюдается при переходе света из более плотонй среды в менее плотную, когда угол преломления достигает 90°
Предельный угол полного отражения: sinα0 = 1/n = n2/n1
Формула тонкой линзы 1/F = 1/d + 1/f
d — расстояние от предмета до линзы
f — расстояние от линзы до изображения
F — фокусное расстояние
Оптическая сила линзы D = 1/F
Увеличение линзы Г = H/h = f/d
h — высота предмета
H — высота изображения
Дисперсия — разложение белого цвета в спектр — зависимость показателя преломления света от его цвета
Интерференция — сложение волн в пространстве
Условия максимумов: Δd = k λ — целое число длин волн
Условия минимумов: Δd = ( 2k + 1) λ/2 — нечётное число длин полуволн
Δd — разность хода двух волн
Дифракция — огибание волной препятствия
Дифракционная решётка
dsinα = k λ — формула дифракционной решётки
d — постоянная решётки
dx/L = k λ
x — расстояние от центрального максимума до изображения
L — расстояние от решётки до экрана
Квантовая физика
Энергия фотона E = hv
Уравнение Эйнштейна для фотоэффекта hv = Aвых + mʋ2/2
mʋ2/2 = eUз Uз — запирающее напряжение
Красная граница фотоэффекта: hv = Aвых vmin = Aвых/h λmax = c/vmin
Энергия фотоэлектронов определяется частотой света и не зависит от интенсивности света. Интенсивность пропорциональна числу квантов в пучке света и определяет число фотоэлектронов
Импульс фотонов
E = hv = mc2
m = hv/c2 p = mc = hv/c = h/ λ — импульс фотонов
Квантовые постулаты Бора:
Атом может находиться только в определённых квантовых состояниях, в которых не излучает
Энергия излучённого фотона при переходе атома из стационарного состояния с энергией Еk в стационарное состояние с энергией Еn :
hv = Ek — En
Энергетические уровни атома водорода En = — 13,55/n2 эВ, n =1, 2, 3,…
Ядерная физика
Закон радиоактивного распада. Период полураспада T — время, за которое распадается половина из большого числа имеющихся радиоактивных ядер
N = N0 · 2 -t/T
Энергия связи атомных ядер Есв = ΔMc2 = ( ZmP +Nmn — Mя )с2
Радиоактивность
Альфа-распад:
Бетта-распад: электронный
Бетта-распад: позитронный
Астрофизика
Физическая природа тел солнечной системы
Физическая природа звёзд
Связь между физическими характеристиками звёзд
Диаграмма Герцшпрунга-Рессела
Ускорние свободного падения вблизи поверхности планеты:
g = GM/R2
G — гравитационная постоянная
M — масса планеты
R — радиус планеты
Первая космическая скорость:
Вторая космическая скорость:
Ускорение свободного падения g = v22/2R = v12/R
Второй закон Ньютона :
maц = mv12/R = mg = GMm/R2
Тесты для подготовки к ЕГЭ по механике представлены по разделам:
- кинематика
- динамика
- законы сохранения
- статика и гидростатика
Тесты для подготовки к ЕГЭ по молекулярной физике и термодинамике:
- молекулярная физика и термодинамика
Тесты для подготовки к ЕГЭ по электродинамике:
- электродинамика
Тесты для подготовки к ЕГЭ по оптике:
- оптика
Тесты для подготовки к ЕГЭ по квантовой физике:
- квантовая физика
Сила: что это за величина
В повседневной жизни мы часто встречаем, как любое тело деформируется (меняет форму или размер), ускоряется или тормозит, падает. В общем, чего только с разными телами в реальной жизни не происходит. Причиной любого действия или взаимодействия является сила.
Сила — это физическая векторная величина, которую воздействует на данное тело со стороны других тел.
Она измеряется в Ньютонах — это единица измерения названа в честь Исаака Ньютона.
У силы, в отличие от некоторых других физических величин (например массы или объема), есть направление. От того, куда направлена сила, зависит результат.
Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В данном случае результат выражается в направлении движения.
Получай лайфхаки, статьи, видео и чек-листы по обучению на почту
Пятерка по физике у тебя в кармане!
Решай домашку по физике на изи. Подробные решения помогут разобраться в сложной теме и получить пятерку!
Сила тяготения
В 1682 году Исаак Ньютон открыл Закон Всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.
Формула силы тяготения согласно этому закону выглядит так:
Закон всемирного тяготения
g — ускорение свободного падения [м/с2]
M — масса планеты [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
G = 6,67 · 10−11м3 · кг−1 · с−2
Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз.
Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.
Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.
Сила тяжести
Сила тяжести — сила, с которой Земля притягивает все тела.
Сила тяжести
F = mg
F — сила тяжести [Н]
m — масса тела [кг]
g — ускорение свободного падения [м/с2]
На планете Земля g = 9,8 м/с2
На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Но разница все-таки есть, давайте разбираться.
Эта формула и правда аналогична силе тяжести. Вес тела в состоянии покоя численно равен массе тела, разница состоит лишь в точке приложения силы.
Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору или подвес. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.
Также, важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. Вес зависит также от ускорения, с которым движутся тело или опора.
Например, в лифте вес тела зависит от того, куда и с каким ускорением движется тело. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.
На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит можем сказать, что это одно и то же. Практически.
Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к ней притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:
Приравниваем правые части:
Делим на массу тела левую и правую части:
Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.
Закон всемирного тяготения
g — ускорение свободного падения [м/с2]
M — масса планеты [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
G = 6,67 · 10−11м3 · кг−1 · с−2
А теперь задачка
Определить силу тяжести, действующую на тело массой 80 кг.
Решение:
Не смотря на кажущуюся простоту, тут есть над чем подумать. Вроде бы просто нужно взять формулу F = mg, подставить числа и дело в шляпе.
Да, но есть один нюанс: в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают то же значение, что мы указывали выше: g = 9,8 м/с2.
В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с2.
И кому же верить?
Все просто: для кого решается задача, тот и главный. В экзаменах берем g = 10 , в школе при решении задач (если в условии задачи не написано что-то другое) берем g = 9,8 м/с2.
Итак, F = mg.
F = 80 · 10 = 800 Н
Ответ: 800 Н.
Учимся летать
В серии книг Дугласа Адамса «Автостопом по Галактике» говорится, что летать — это просто промахиваться мимо Земли. Если ты промахнулся мимо Земли и достиг первой космической скорости 7,9 км/с, то ты стал искусственным спутником Земли.
Искусственный спутник Земли — космический летательный аппарат, который вращается вокруг Земли по геоцентрической орбите. Чтобы у него так получалось, аппарат должен иметь начальную скорость, равную или большую первой космической скорости.
Кстати, есть еще вторая и третья космические скорости. Вторая космическая скорость — это минимальная скорость, с которой должно двигаться тело, чтобы оно могло без затрат дополнительной работы преодолеть влияние поля тяготения Земли, т. е. удалиться на бесконечно большое расстояние от Земли. А на третьей космической скорости тело вылетит за пределы Солнечной системы.
Подробнее о возможностях полетов и невесомости читайте в нашей статье про вес тела.
Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!