Построение графиков с модулем егэ

Знак модуля, пожалуй, одно из самых интересных явлений в математике. В связи с этим у многих школьников возникает вопрос, как строить графики функций, содержащих модуль. Давайте подробно разберем этот вопрос.

1. Построение графиков функций, содержащих модуль

Пример 1.

Построить график функции y = x2 – 8|x| + 12.

Решение.

Определим четность функции. Значение для y(-x) совпадает со значением для y(x), поэтому данная функция четная. Тогда ее график симметричен относительно оси Oy. Строим график функции y = x2 – 8x + 12 для x ≥ 0 и симметрично отображаем график относительно Oy для отрицательных x (рис. 1).

Пример 2.

Следующий график вида y = |x2 – 8x + 12|.

– Какова область значений предложенной функции? (y ≥ 0).

– Как расположен график? (Над осью абсцисс или касаясь ее).

Это значит, что график функции получают следующим образом: строят график функции y = x2 – 8x + 12, оставляют часть графика, которая лежит над осью Ox, без изменений, а часть графика, которая лежит под осью абсцисс, симметрично отображают относительно оси Ox (рис. 2).Графики функций с модулем

Пример 3.

Для построения графика функции y = |x2 – 8|x| + 12| проводят комбинацию преобразований:

y = x2 – 8x + 12 → y = x2 – 8|x| + 12 → y = |x2 – 8|x| + 12|. 

Ответ: рисунок 3.

Рассмотренные преобразования справедливы для всех видов функций. Составим таблицу:

Функция

Преобразование

f(|x|)

 1) Для x ≥ 0, y = f(x)

 2) Для x < 0 – преобразование симметрии относительно Oy  графика y = f(x), для x ≥ 0 симметричные части графика из правой полуплоскости в левую

|f(x)|

 1) Для f(x) ≥ 0, |f(x)| = f(x)

 2) Для f(x) < 0, |f(x)| = -f(x)

 Симметричное  отображение части графика из нижней  полуплоскости в верхнюю относительно Ox

|f(|x|)|

 f(x) → f(|x|) → |f(|x|)|. 

2. Построение графиков функций, содержащих в формуле «вложенные модули»

Мы уже познакомились с примерами квадратичной функции, содержащей модуль, а так же с общими правилами построения графиков функций вида y = f(|x|), y = |f(x)| и y = |f(|x|)|. Эти преобразования помогут нам при рассмотрении следующего примера.

СЛОЖНА-А-А 🙀 Ты же знаешь, что если не разобраться в теме сейчас, то потом придется исправлять оценки. Беги на бесплатное онлайн-занятие с репетитором (подробности тут + 🎁).

Пример 4.

Рассмотрим функцию вида y = |2 – |1 – |x|||. Выражение, задающее функцию, содержит «вложенные модули».

Решение.

Воспользуемся методом геометрических преобразований.

Запишем цепочку последовательных преобразований и сделаем соответствующий чертеж (рис. 4):

y = x → y = |x| → y = -|x| → y = -|x| + 1 → y = |-|x| + 1|→ y = -|-|x| + 1|→ y = -|-|x| + 1| + 2 → y = |2 –|1 – |x|||.

Рассмотрим случаи, когда преобразования симметрии и параллельного переноса не являются основным приемом при построении графиков.

Пример 5.

Построить график функции вида y = (x2 – 4)/√(x + 2)2.

Решение.

Прежде чем строить график, преобразуем формулу, которой задана функция, и получим другое аналитическое задание функции (рис. 5).Графики функций с модулем

y = (x2 – 4)/√(x + 2)2 = (x– 2)(x + 2)/|x + 2|.

Раскроем в знаменателе модуль:

При x > -2, y = x – 2, а при x < -2, y = -(x – 2).

Область определения D(y) = (-∞; -2)ᴗ(-2; +∞).

Область значений E(y) = (-4; +∞).

Точки, в которых график пересекает с оси координат:  (0; -2) и (2; 0).

Функция убывает при всех x из интервала (-∞; -2), возрастает при x от -2 до +∞.

Здесь нам пришлось раскрывать знак модуля и строить график функции для каждого случая.

Пример 6.

Рассмотрим функцию y = |x + 1| – |x – 2|.

Решение.

Раскрывая знак модуля, необходимо рассмотреть всевозможную комбинацию знаков подмодульных выражений.

Возможны четыре случая:

{x + 1 – x + 2 = 3, при x ≥ -1 и x ≥ 2;

{-x – 1 + x – 2 = -3, при x < -1 и x < 2;

{x + 1 + x – 2 = 2x — 1, при x ≥ -1 и x < 2;

{-x – 1 – x + 2 = -2x + 1, при x < -1 и x ≥ 2 – пустое множество.

Тогда исходная функция будет иметь вид:

{3, при x ≥ 2;

y = {-3, при x < -1;

{2x – 1, при -1 ≤ x < 2.

Получили кусочно-заданную функцию, график которой изображен на рисунке 6.

3. Алгоритм построения графиков функций вида

y = a1|x – x1| + a2|x – x2| + … + an|x – xn| + ax + b.

В предыдущем примере было достаточно легко раскрыть знаки модуля. Если же сумм модулей больше, то рассмотреть всевозможные комбинации знаков подмодульных выражений проблематично. Как же в этом случае построить график функции?

Заметим, что графиком является ломаная, с вершинами в точках, имеющих абсциссы -1 и 2. При x = -1 и x = 2 подмодульные выражения равны нулю. Практическим путем мы приблизились к правилу построения таких графиков:

Графиком функции вида y = a1|x – x1| + a2|x – x2| + … + an|x – xn| + ax + b является ломаная с бесконечными крайними звеньями. Чтобы построить такую ломаную, достаточно знать все ее вершины (абсциссы вершин есть нули подмодульных выражений) и по одной контрольной точке на левом и правом бесконечных звеньях.Графики функций с модулем

Задача.

Построить график функции y = |x| + |x – 1| + |x + 1| и найти ее наименьшее значение.

Решение:

Нули подмодульных выражений: 0; -1; 1. Вершины ломаной (0; 2); (-1; 3); (1; 3). Контрольная точка справа (2; 6), слева (-2; 6). Строим график (рис. 7). min f(x) = 2.

Молодец! Раз ты дочитал это до конца, вероятно, ты все отлично усвоил.  Но если вдруг что-то еще непонятно — попробуй онлайн-занятие с репетитором (подробности тут + 🎁).

 Остались вопросы? Не знаете, как построить график функции с модулем?
Чтобы получить помощь репетитора – зарегистрируйтесь.

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Пошаговое построение графиков.

«Навешивание» модулей на прямые, параболы, гиперболы.


Графики — самая наглядная тема по алгебре. Рисуя графики, можно творить, а если еще и сможешь задать уравнения своего творчества, то и учитель достойно это оценит.

Для понимания друг друга введу немного «обзываний» системы координат:

Для начала построим график прямой y = 2x − 1.

Не сомневаюсь, что ты помнишь. Я напомню себе, что через 2 точки можно провести одну прямую. 

Возьмем значение X = 0 и Х = 1 и подставим в выражение y = 2x − 1, тогда соответственно Y = − 1 и Y = 1

Через данные две точки А = (0; −1) и B = (1; 1) проводим единственную прямую:

А если теперь добавить модуль y = |2x − 1|.

Модуль — это всегда положительное значение, получается, что «y» должен быть всегда положительным.

Значит, если модуль «надет» на весь график, то, что было в нижней части «−y», отразится в верхнюю (как будто сворачиваете лист по оси х и то, что было снизу, отпечатываете сверху).

Получается такая зеленая «галочка».

Красота! А как же будет выглядеть график, если надеть модуль только на «х»: y = 2|x| − 1?

Одна строчка рассуждений и рисуем:

Модуль на «x», тогда в этом случае x = −x, то есть все, что было в правой части, отражаем в левую. А то, что было в плоскости «−x», убираем.

Здесь отражаем относительно оси «y».  Такая же галочка, только теперь через другую ось.

Смертельный номер: y = |2|x| − 1|.

Черную прямую y = 2x − 1 отражаем относительно оси Х, получим y = |2x − 1|. Но мы выяснили, что модуль на х влияет только на левую часть. 

В правой части: y = |2x − 1| и y = |2|x| − 1| идентичны! 


А после этого отражаем относительно оси «y» то, что мы получили справа налево:

Если ты человек амбициозный, то прямых тебе будет мало! Но то, что описано выше, работает на всех остальных графиках, значит делаем по аналогии.

Разберем по винтикам параболу y =  + x  2. Точки пересечения с осью «x» получим с помощью дискриминанта: x = 1 и x = -2.

Можно найти вершину у параболы и взять пару точек для точного построения.

А как будет выглядеть график: y = |x²| + x  2? Слышу: «Такого мы еще не проходили», а если подумаем? Модуль на x², он же и так всегда положителен, от модуля тут толку, как от стоп-сигнала зайцу − никакого.

При y = x² + |x| − 2 все так же стираем всю левую часть, и отражаем справа налево:

А дальше что мелочиться: рассмотри сразу остальные графики с модулем!

Следующий смертельный номер: |y| =  + x  2, подумай хорошенько, а еще лучше попробуй нарисовать сам.

При положительных значениях «y» от модуля нет смысла − уравнения y = x² + x − 2, а при «−y» ничего не меняется, будет так же y = x² + x − 2! 

Рисуем параболу в верхней части системы координат (где у > 0), а затем отражаем вниз.

А теперь сразу комбо:

Cиний: похож на y = x² + |x| − 2, только поднят вверх. Строим график в правой части, а затем отражаем через ось Y влево.

Оранжевый: строим в правой части и отражаем относительно оси Х. Доходим до оси Y и отражаем все что было справа налево. Двойка в знаменателе показывает, что график будет «шире», расходится в бока он быстрее остальных.

Зеленый: Так же начинаем с правой части и отражаем относительно оси оси Y. Получается график y = |x² + x − 2|, но еще есть −2, поэтому опустим график на 2 вниз. Теперь параболы как бы отражается относительно Y = − 2.

Легкий и средний уровень позади, и настала пора выжать концентрацию на максимум, потому что дальше тебя ждут гиперболы, которые частенько встречаются во второй части ЕГЭ и ОГЭ.

y = 1/x — простая гипербола, которую проще всего построить по точкам, 6-8 точек должно быть достаточно:

А что будет, если мы добавим в знаменателе «+1»? График сдвинется влево на единицу:

А что будет, если мы добавим в знаменателе «1»? График сдвинется вправо на единицу.

А если добавить отдельно «+1» y = (1/x) + 1? Конечно, график поднимется вверх на единицу!

Глупый вопрос: а если добавить отдельно «−1» y = (1/x) − 1? Вниз на единицу!

Теперь начнем «накручивать» модули: y = |1/x + 1| — отражаем все из нижней части в верхнюю.

Возьмем другой модуль, мой амбициозный друг, раз ты дошел до этогог места: y = |1/(x + 1)|. Как и выше, когда модуль надет на всю функцию, мы отражаем снизу вверх.

Можно придумывать массу вариантов, но общий принцип остается для любого графика. Принципы повторим в выводах в конце статьи.

Фиолетовый: Вычитаем из дроби −1 и сдвигаем график вниз на единицу. Ставим модуль − отражаем все, что снизу вверх.

Оранжевый: Ставим +1 в знаменателе и график смещается влево на единицу. Вычитаем из дроби −1 и сдвигаем график вниз на единицу. А после этого ставим модуль − отражаем все, что снизу вверх.

Зеленый: Сначала получим фиолетовый график. После этого ставим «−» и отражаем график по горизонтали. Сгибаем лист по оси Х и переводим его вниз. Остается добавить +1, это значит, что его нужно поднять вверх на единицу.

Модули не так уж страшны, если еще вспомнить, что их можно раскрыть по определению:

И построить график, разбив его на кусочно-заданные функции.

Например для прямой:


Для параболы с одним модулем будет два кусочно-заданных графика: 

C двумя модулями кусочно-заданных графиков будет четыре:

Таким способом, медленно и кропотливо можно построить любой график!


Выводы:

  1. Модуль — это не просто две палочки, а жизнерадостное, всегда положительное значение!
  2. Модулю без разницы находится он в прямой, параболе или еще где-то. Отражения происходят одни и те же.
  3. Любой нестандартный модуль можно разбить на кусочно-заданные функции, условия только вводятся на каждый модуль.
  4. Существует большое количество модулей, но парочку вариантов стоит запомнить, чтобы не строить по точкам:
  • Если модуль «надет» на все выражение (например, y = |x² + x − 2|), то нижняя часть отражается наверх.
  • Если модуль «надет» только на х (например, y = x² + |x| − 2), то правая часть графика отражается на левую часть. А «старая» левая часть стирается.
  • Если модуль «надет» и на х, и на все выражение (например, y = |x² + |x| − 2|), то сначала отражаем график снизу вверх, после этого стираем полностью левую часть и отражаем справа налево.
  • Если модуль «надет» на y (например, |y| = x² + x − 2), то мы оставляем верхнюю часть графика, нижнюю стираем. А после отражаем сверху вниз.

Будь в курсе новых статеек, видео и легкого математического юмора.

Определение модуля

Алгебрагическое определение: | x |
=

Геометрическое определение: модулем
числа называется расстояние от точки,
изображающей это число, до начала отсчета.

Понятие модуля впервые вводится в 6 классе, в 7
классе рассматривается линейная функция и ее
график и уже можно показывать построение
несложных графиков функций, содержащих модуль.
Далее, по мере изучения различных функций, их
свойств, каждую такую тему можно заканчивать
рассмотрением более сложных графиков, в том
числе с модулем. В этой статье рассматриваются
основные приемы построения графиков таких
функций.

I. На алгебрагическом определении основан метод
«раскрытия модуля на промежутках».

Например: | x + 2 | = | x + 2 | =

Этот
метод можно применять при построении графиков
функций, содержащих один или более модулей.
Например, построим график функции у = | x + 2 | –
2x + 1 , предварительно упростив ее.

у = у
=

Если модулей несколько, то каждый из них
раскрываем на промежутках относительно точек,
обращающих каждый из них в нуль. Например,
построим график функции у = | 3 – x | – x
+ | x + 2 | + 1.

1. Если х < – 2, то у = 3 – хх
– (х + 2) + 1, у = – 3х + 2.

2. Если –2
< х < 3, то у = 3 – х – х + х
+ 2 + 1, у = – х + 6.

3. Если х > 3, то у = – (3 – х) – х
+ х + 2 + 1, у = х.

Функцию
записываем как кусочно-заданную:

у =

Подобно тому, как числовая прямая точками – 2 и 3
разбивается на промежутки, координатная
плоскость прямыми х = – 2 и х = 3
разбивается на части («полосы»), в каждой из
которых строим свой график. Заметим, что данная
функция непрерывна, поэтому на «границах» части
графика должны соединяться.

II. Этот
метод можно применять к функциям разных видов.

Например, построим график функции у = | log2
x – 1 | – log0,5 x.

Заметим, что х > 0.

1. Пусть log2x – 1 > 0, log2x >
1, x > 2, тогда у = log2 x – 1 +
  log2 x; y = 2 log2 x – 1.

2. Пусть log2 x – 1 < 0, 0 < x < 2,
тогда у = – log2 x + 1 + log2 x; y
= 1.

Запишем функцию как кусочно-заданную:

у =

III. Рассмотрим некоторые частные случаи
функций, содержащих модуль.

1) у = | f(x) |.
По определению модуля имеем: | f(x) | =

Таким образом , для того, чтобы построить график
такой функции, необходимо взять часть графика,
лежащую не ниже оси абсцисс, а часть графика,
лежащую ниже этой оси отобразить относительно
нее в верхнюю полуплоскость. (Заметим, что «–»,
стоящий перед функцией означает симметричное
отображение графика относительно оси абсцисс).
Например, построим график функции у = | x2
– 2х – 3 |.

Построим сначала график функции у = х2
– 2х – 3. Графиком этой функции является
парабола, ветви которой направлены вверх.
Координаты ее вершины: х = 1, у = – 4. Точки
пересечения параболы с осями координат: (0; – 3); (–
1; 0); (3; 0). Далее выполняем отображение части
графика, лежащей в нижней полуплоскости,
относительно оси абсцисс.

2) у = f(| x |). Используем определение модуля: f(|
x |) =

Чтобы построить график такой функции строим
график функции у = f(x) и берем ту его
часть, где х > 0 (в правой полуплоскости).
Затем эту часть симметрично отображаем в левую
полуплоскость, где х < 0. (Заметим, что
построение графика функции f(– x) и
состоит в отображении части графика, лежащей в
правой полуплоскости в левую относительно оси
ординат).

Например, построим график функции у = х2
– 2| х | – 3. Сначала строим график функции у
= х2 – 2х – 3, далее выполняем
указанные преобразования.

3) Построим график функции y = | f(| x
|)|, например, y = | x2 – 2| х | – 3 |,
выполним последовательно преобразования,
рассмотренные в пунктах 2 и 1.

4. Рассмотрим зависимость | y | = f(x).
Ее нельзя назвать функцией, так как не
выполняется условие: каждому значению х должно
соответствовать единственное значение у.

Рассмотрим построение графика такой
зависимости (можно говорить «графика
уравнения»). Используем определение модуля: у
= f(x), если у > 0, – у = f(x),
y = – f(x), если у < 0

Получаем, чтобы построить такой график, сначала
строим график функции у = f(x) и
берем ту его часть, которая лежит в верхней
полуплоскости, где у > 0; чтобы
построить график в нижней полуплоскости (где у
< 0), нужно построенную часть отобразить
симметрично относительно оси абсцисс (знак «–»
перед функцией и означает такое отображение)
Например, построим график уравнения | y | = x2
– 2х – 3

Заметим, что графики, не относящиеся к
рассмотренным частным случаям, следует строить «
раскрывая модули на промежутках».

x

1

0

– 1

y

0

IV. Приведем некоторые примеры

1. Построим график уравнения | y | = arccos| x
|.

2. Графическим способом можно решать и
неравенства с двумя переменными. Например,
решением неравенства | y | < arccos| x |
являются координаты точек закрашенной части
плоскости, включая границы.

Решим еще одно задание, предлагавшееся на ЕГЭ:
найти все целочисленные решения неравенства | y
| < | | x – 2 | – 3 | (х0; у0),
для которых х0 = у0. Построим
сначала график уравнения | y | = | | x – 2 | –
3 |. Решением данного неравенства будут являться
координаты точек закрашенной части плоскости,
включая границы.

Пары чисел (х0; у0),
являющиеся решениями неравенства, для которых y0
= x0, являются координатами точек,
лежащих на прямой у = х. Выберем точки с
целыми координатами: (0; – 1); (1; 0); (2; 1); (3; 2), они и
будут являться решениями данной задачи.

3. Определить, сколько корней имеет уравнение | 3
x | + log3| x | = 2 – x.

Запишем уравнение в виде | 3 – x | + x = log3|
x | + 2. В одной системе координат построим
графики функций y = | 3 – x | = x (1) и y
= log3| x | = 2 (2). Функцию (1) запишем как
кусочно-заданную, раскрывая модуль на
промежутках:

y =

График функции (2) построим, выполняя
отображение графика y =  log3x + 2
относительно оси ординат ( один из рассмотренных
частных случаев ).

Графики имеют две общие точки, следовательно,
данное уравнение имеет два корня.

V. Для повторения материала, его закрепления
предлагаем выполнить следующие задания.

1. Постройте графики функций и уравнений: y =
| y | = ; y = | | 2 – x
| – 4 |; y = | x2 – 4 | x | + 3 |; y = + 1.

2. Решите графически уравнения c одной и двумя
переменными: | 3 – x | – 3 = 2| x | – x2;
| y | = 2| x | – x2; = | x – 2,5 | –1,5.

3. Решите графически неравенства с двумя
переменными: | y | > x24x + 3;
| x | + | y | < 3.

4. Решите графически систему уравнений:

5. Найдите все значения а, при каждом из которых
уравнение | x + a | + | | x – 3 | – 4 | = 1
имеет ровно два корня.

Построение графиков с модулем
путём преобразований

Модуль аргумента и модуль функции

Если Вы попали на эту страницу из поисковика, миновав предыдущие разделы темы «Графики функций и их преобразования», то рекомендую сначала повторить графики основных элементарных функций и общие правила преобразования графиков функций.

В контексте построения графиков это означает использование преобразования симметрии относительно осей координат.

Пример 1.

В этом примере оба графика получены из графика функции y = x − 3.
Первый — преобразованием Гf(x) → Гf(|x|) , второй — преобразованием Гf(x) → Г|f(x)| .

Пример 2.

В этом примере оба графика получены из графика функции y = x 2 − 2x − 3.
Первый — преобразованием Гf(x) → Гf(|x|) , второй — преобразованием Гf(x) → Г|f(x)| .

Один из способов быстро и точно построить исходную параболу по характерным точкам показан в видео на канале Mathematichka.

III При построении из графика функции y = f(x) более сложных графиков, например, вида y = k·f (a|x| + b) + c или y = k·|f (ax + b)| + c тщательно соблюдайте последовательность преобразований.

Ниже показаны примеры графиков различных функций, содержащих модуль, которые получены из графика функции (y=sqrt.) y = √|x| __ .

1. (y=sqrt) √x _ —> 2. (y=sqrt<|x|>) √|x| __ —> 3. (y=sqrt<|x-1|>) y = √|x − 1| _____ 4. (y=sqrt<|x|-1>) y = √|x| − 1 _____ 5. (y=|sqrt-1|.) y = | √x − 1 _ |

IV Равенство вида |y| = f (x) по определению не является функцией, так как допускает неоднозначность при вычислении значения y. Однако линию на координатной плоскости оно задает, и эту линию тоже можно построить, исходя из графика функции y = f(x) .
Для этого нужно:

  1. Построить график функции y = f(x) .
  2. Исключить его часть, расположенную ниже оси абсцисс, поскольку указанное равенство возможно только для положительных значений f(x).
  3. Построить нижнюю часть линии (при отрицательных y) симметричным отображением относительно оси Ox.

Эти кривые также получены из графика функции (y=sqrt). y = √x _ .

6. (|y|=sqrt) 7. (|y|=|sqrt-1|) 8. (|y|=sqrt<|x|>.)

Пример 3.

Задан график функции y = x 2 .
Построить кривые, удовлетворяющие уравнению, |y| = x 2 − 2|x| − 5 .

Заметим, что x 2 = |x| 2 (значение четной степени, как и значение модуля, всегда неотрицательно). Поэтому, выделяя полный квадрат, преобразуем функцию к виду |y| = (|x| − 1) 2 − 6 и строим её график последовательными преобразованиями.

Строим график функции f(x) = (x − 1) 2 − 6 переносом на 1 вправо вдоль оси Ox, а затем переносом вниз на 6 единиц вдоль оси Oy.
Строим график функции f(|x|) = (|x| − 1) 2 − 6 с использованием преобразования симметрии относительно оси Oy.
Строим линии, удовлетворяющие уравнению |y| = (|x| − 1) 2 − 6 с использованием преобразования симметрии относительно оси Ox.

1.y = x 2 2.y = (x − 1) 2 3.y = (x − 1) 2 − 6 4.y = (|x| − 1) 2 − 6
5.y = (|x| − 1) 2 − 6, y ≥ 0 6.|y| = (|x| − 1) 2 − 6

Следующий график постройте самостоятельно, чтобы убедиться, что вы правильно поняли материал.

Пример 4.

Задан график функции y = x 2 .
Построить график функции y = |x 2 − 2x − 5| .

Сумма модулей

Если формула функции включает сумму или разность несколько модулей, то следует разбить координатную плоскость на участки и построить каждую ветвь графика отдельно. Границы участков определяются приравниванием каждого модуля к нулю и решением соответствующего уравнения. Подробный пример такого подхода можно увидеть в задаче 1 на странице, посвященной решению уравнений с параметрами.

Однако, если подмодульные выражения простые и содержат элементарные функции, графики которых вам хорошо известны, то можно получить результат прямым сложением ординат этих графиков в характерных точках.

Пример 5.

Построить график функции y = |x + 2| + |x − 1| .

Эти два модуля содержат только линейные функции, графиками которых являются прямые линии. В результате сложения должна получиться ломаная линия, состоящая из трёх звеньев. (2 модуля, следовательно 2 уравнения, каждое из которых имеет одно решение, следовательно 2 границы, которыми плоскость разбита на 3 участка.) Трёхзвенную ломаную можно построить по 4-ём точкам.

На одних осях независимо друг от друга строим графики функций y = |x + 2| и y = |x − 1| , используя сдвиг и отражение. Складываем ординаты в точках излома x = −2 и x = 1 и в двух удобных точках на крайних участках, например, при x = −3 и x = 3 . На приведенном рисунке красным цветом представлен результирующий график, полученный по этим 4-ём точкам: (−3;5 ), (−2;3 ), (1; 3), (3;7).

Теперь проверьте себя.

Пример 6.

Построить график функции y = |x + 2| + |x − 1| − |x| .

Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.

Есть вопросы? пожелания? замечания?
Обращайтесь — mathematichka@yandex.ru

Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено. Ставьте ссылки.

Графики прямой, параболы, гиперболы, с модулем

Пошаговое построение графиков.

«Навешивание» модулей на прямые, параболы, гиперболы.

Графики — самая наглядная тема по алгебре. Рисуя графики, можно творить, а если еще и сможешь задать уравнения своего творчества, то и учитель достойно это оценит.

Для понимания друг друга введу немного «обзываний» системы координат:

Для начала построим график прямой y = 2x − 1.

Не сомневаюсь, что ты помнишь. Я напомню себе, что через 2 точки можно провести одну прямую.

Возьмем значение X = 0 и Х = 1 и подставим в выражение y = 2x − 1, тогда соответственно Y = − 1 и Y = 1

Через данные две точки А = (0; −1) и B = (1; 1) проводим единственную прямую:

А если теперь добавить модуль y = |2x − 1|.

Модуль — это всегда положительное значение , получается, что «y» должен быть всегда положительным.

Значит, если модуль «надет» на весь график, то, что было в нижней части «−y», отразится в верхнюю (как будто сворачиваете лист по оси х и то, что было снизу, отпечатываете сверху).

Получается такая зеленая «галочка».

Красота! А как же будет выглядеть график, если надеть модуль только на «х»: y = 2|x| − 1?

Одна строчка рассуждений и рисуем:

Модуль на «x», тогда в этом случае x = −x, то есть все, что было в правой части, отражаем в левую. А то, что было в плоскости «−x», убираем.

Здесь отражаем относительно оси «y» . Такая же галочка, только теперь через другую ось.

Смертельный номер: y = |2|x| − 1|.

Черную прямую y = 2x − 1 отражаем относительно оси Х, получим y = |2x − 1|. Но мы выяснили, что модуль на х влияет только на левую часть.

В правой части: y = |2x − 1| и y = |2|x| − 1| идентичны!


А после этого отражаем относительно оси «y» то, что мы получили справа налево:

Если ты человек амбициозный, то прямых тебе будет мало! Но то, что описано выше, работает на всех остальных графиках, значит делаем по аналогии.

Разберем по винтикам параболу y = x² + x − 2. Точки пересечения с осью «x» получим с помощью дискриминанта: x ₁ = 1 и x ₂ = -2.

Можно найти вершину у параболы и взять пару точек для точного построения.

А как будет выглядеть график: y = |x²| + x − 2? Слышу: «Такого мы еще не проходили», а если подумаем? Модуль на x², он же и так всегда положителен, от модуля тут толку, как от стоп-сигнала зайцу − никакого.

При y = x² + |x| − 2 все так же стираем всю левую часть, и отражаем справа налево:

А дальше что мелочиться: рассмотри сразу остальные графики с модулем!

Следующий смертельный номер: |y| = x² + x − 2, подумай хорошенько, а еще лучше попробуй нарисовать сам.

При положительных значениях «y» от модуля нет смысла − уравнения y = x² + x − 2, а при «−y» ничего не меняется, будет так же y = x² + x − 2!

Рисуем параболу в верхней части системы координат (где у > 0), а затем отражаем вниз.

А теперь сразу комбо:

Cиний: похож на y = x² + |x| − 2, только поднят вверх. Строим график в правой части, а затем отражаем через ось Y влево.

Оранжевый: строим в правой части и отражаем относительно оси Х. Доходим до оси Y и отражаем все что было справа налево. Двойка в знаменателе показывает, что график будет «шире», расходится в бока он быстрее остальных.

Зеленый: Так же начинаем с правой части и отражаем относительно оси оси Y. Получается график y = |x² + x − 2|, но еще есть −2, поэтому опустим график на 2 вниз. Теперь параболы как бы отражается относительно Y = − 2.

Легкий и средний уровень позади, и настала пора выжать концентрацию на максимум , потому что дальше тебя ждут гиперболы, которые частенько встречаются во второй части ЕГЭ и ОГЭ.

y = 1/x — простая гипербола, которую проще всего построить по точкам, 6-8 точек должно быть достаточно:

А что будет, если мы добавим в знаменателе «+1»? График сдвинется влево на единицу:

А что будет, если мы добавим в знаменателе « − 1»? График сдвинется вправо на единицу.

А если добавить отдельно «+1» y = (1/x) + 1? Конечно, график поднимется вверх на единицу!

Глупый вопрос: а если добавить отдельно «−1» y = (1/x) − 1? Вниз на единицу!

Теперь начнем «накручивать» модули: y = |1/x + 1| — отражаем все из нижней части в верхнюю.

Возьмем другой модуль, мой амбициозный друг, раз ты дошел до этогог места: y = |1/(x + 1)|. Как и выше, когда модуль надет на всю функцию, мы отражаем снизу вверх.

Можно придумывать массу вариантов, но общий принцип остается для любого графика. Принципы повторим в выводах в конце статьи.

Фиолетовый: Вычитаем из дроби −1 и сдвигаем график вниз на единицу. Ставим модуль − отражаем все, что снизу вверх.

Оранжевый: Ставим +1 в знаменателе и график смещается влево на единицу. Вычитаем из дроби −1 и сдвигаем график вниз на единицу. А после этого ставим модуль − отражаем все, что снизу вверх.

Зеленый: Сначала получим фиолетовый график. После этого ставим «−» и отражаем график по горизонтали. Сгибаем лист по оси Х и переводим его вниз. Остается добавить +1, это значит, что его нужно поднять вверх на единицу.

Модули не так уж страшны, если еще вспомнить, что их можно раскрыть по определению:

И построить график, разбив его на кусочно-заданные функции.

Например для прямой:


Для параболы с одним модулем будет два кусочно-заданных графика:

C двумя модулями кусочно-заданных графиков будет четыре:

Таким способом, медленно и кропотливо можно построить любой график!

  1. Модуль — это не просто две палочки, а жизнерадостное, всегда положительное значение!
  2. Модулю без разницы находится он в прямой, параболе или еще где-то. Отражения происходят одни и те же.
  3. Любой нестандартный модуль можно разбить на кусочно-заданные функции, условия только вводятся на каждый модуль .
  4. Существует большое количество модулей, но парочку вариантов стоит запомнить, чтобы не строить по точкам:
  • Если модуль «надет» на все выражение (например, y = |x² + x − 2|), то нижняя часть отражается наверх.
  • Если модуль «надет» только на х (например, y = x² + |x| − 2), то правая часть графика отражается на левую часть. А «старая» левая часть стирается.
  • Если модуль «надет» и на х, и на все выражение (например, y = |x² + |x| − 2|), то сначала отражаем график снизу вверх, после этого стираем полностью левую часть и отражаем справа налево.
  • Если модуль «надет» на y (например, |y| = x² + x − 2), то мы оставляем верхнюю часть графика, нижнюю стираем. А после отражаем сверху вниз.

Уравнения графиков функций с модулями

Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!

Контакты

Администратор, решение задач
Роман

Tel. +380685083397
[email protected]
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

источники:

http://ik-study.ru/ege_math/grafiki_s_moduliem

http://yukhym.com/ru/matematika/uravneniya-s-modulyami-graficheskij-metod.html

Функции и их графики — одна из самых увлекательных тем в школьной математике. Жаль только, что проходит она… мимо уроков и мимо учеников. На нее вечно не хватает времени в старших классах. А те функции, которые проходят в 7-м классе, — линейная функция и парабола — слишком просты и незамысловаты, чтобы показать все разнообразие интересных задач.

Умение строить графики функций необходимо для решения задач с параметрами на ЕГЭ по математике. Это одна из первых тем курса математического анализа в вузе. Это настолько важная тема, что мы в ЕГЭ-Студии проводим по ней специальные интенсивы для старшеклассников и учителей, в Москве и онлайн. И часто участники говорят: «Жаль, что мы не знали этого раньше».

Но это не все. Именно с понятия функции и начинается настоящая, «взрослая» математика. Ведь сложение и вычитание, умножение и деление, дроби и пропорции — это все-таки арифметика. Преобразования выражений — это алгебра. А математика — наука не только о числах, но и о взаимосвязях величин. Язык функций и графиков понятен и физику, и биологу, и экономисту. И, как сказал Галилео Галилей, «Книга природы написана на языке математики».

Точнее, Галилео Галилей сказал так:«Математика есть алфавит, посредством которого Господь начертал Вселенную».

Темы для повторения:

Понятие функции

Типы элементарных функций

Преобразования графиков функций

Производная функции

Асимптоты. Поведение функции в бесконечности

1. Построим график функции y=frac{x^2-1}{x+1}

Знакомая задача! Такие встречались в вариантах ОГЭ по математике. Там они считались сложными. Но сложного ничего здесь нет.

Упростим формулу функции:

y=frac{x^2-1}{x+1}=frac{(x-1)(x+1)}{(x+1)}=x-1 при xne -1

График функции — прямая y=x-1 с выколотой точкой M (-1;-2).

2. Построим график функции y=frac{2x+4}{x-3}

Выделим в формуле функции целую часть:

y=frac{2x+4}{x-3}=frac{2x-6+6+4}{x-3}=frac{2(x-3)}{x-3}+frac{10}{x-3}=2+frac{10}{x-3}

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функцииy=frac{1}{x}.

Выделение целой части — полезный прием, применяемый в решении неравенств, построении графиков и оценке целых величин в задачах на числа и их свойства. Он встретится вам также на первом курсе, когда придется брать интегралы.

3. Построим график функции y=1-2left|xright|

Он получается из графика функции y=|x| растяжением в 2 раза, отражением по вертикали и сдвигом на 1 вверх по вертикали

4. Построим график функции y=3{sin left(2x+frac{ pi }{3}right)+}1

Главное — правильная последовательность действий. Запишем формулу функции в более удобном виде:

y=3{sin 2cdot left(x+frac{ pi }{6}right)+}1.

Действуем по порядку:

1) График функции y=sinx сдвинем на frac{ pi }{6} влево;

2) сожмем в 2 раза по горизонтали,

3) растянем в 3 раза по вертикали,

4) сдвинем на 1 вверх

Сейчас мы построим несколько графиков дробно-рациональных функций. Чтобы лучше понять, как мы это делаем, читайте статью «Поведение функции в бесконечности. Асимптоты».

5. Построим график функции y=frac{(x-1)(x-3)}{x}

Область определения функции: {rm x}ne {rm 0}

Нули функции: x = 1 и x = 3.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Прямая x = 0 (ось Y) — вертикальная асимптота функции. Асимптота — прямая, к которой бесконечно близко подходит график функции, но не пересекает ее и не сливается с ней (смотри тему «Поведение функции в бесконечности. Асимптоты»)

Есть ли другие асимптоты у нашей функции? Чтобы выяснить это, посмотрим, как ведет себя функция, когда x стремится к бесконечности.

Раскроем скобки в формуле функции:

y=frac{(x-1)(x-3)}{x}=frac{x^2-4x+3}{x}=x-4+frac{3}{x}

Если x стремится к бесконечности, то frac{3}{x} стремится к нулю. Прямая y = x-4 является наклонной асимптотой к графику функции.

6. Построим график функции

y=frac{(x+3)(x-2)(x-6)}{x^2(x-4)}

Это дробно-рациональная функция.

Область определения функции D (y): {rm x}ne {rm 4};{rm x}ne {rm 0}.

Нули функции: точки — 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты: x= 0, x = 4.

Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.

Вот эскиз графика:

Еще один интересный прием — сложение графиков.

7. Построим график функции y=x+frac{1}{x}.

Если x стремится к бесконечности, то frac{1}{x} стремится к нулю и график функции будет бесконечно близко подходить к наклонной асимптоте y =x.

Если x стремится к нулю, то функция ведет себя как frac{1}{x}. Это мы и видим на графике:

Вот мы и построили график суммы функций. Теперь график произведения!

8. Построим график функции y={{log}_2 x}{cos x} .

Область определения этой функции — положительные числа, поскольку только для положительных x определен {{log}_2 x}.

Значения функции равны нулю при x = 1 (когда логарифм равен нулю), а также в точках, где {cos x}=0, то есть при x{rm =}frac{pi }{{rm 2}}{rm +}pi {rm n}{rm ,} {rm n}in {rm Z}.

При x{rm =2}pi {rm n}{rm ,} {rm n}in {rm Z}, значение cos x равно единице. Значение функции в этих точках будет равно {{log}_2 x}, при nneq 0

9. Построим график функции y={frac{sinx}{x} }.

Функция определена при xne 0. Она четная, поскольку является произведением двух нечетных функций y=sin x и y=frac{1}{x}. График симметричен относительно оси ординат.

Нули функции — в точках, где {sin x}=0, то есть при x{rm =}pi {rm n}{rm ,}{rm n}in {rm Z}, при nneq 0.

Если x стремится к бесконечности, y=frac{sinx}{x} стремится к нулю. Но что же будет, если x стремится к нулю? Ведь и x, и sin x будут становиться меньше и меньше. Как же будет вести себя частное frac{sinx}{x} ?

Оказывается, что если x стремится к нулю, то {frac{sinx}{x} } стремится к единице. В математике это утверждение носит название «Первого замечательного предела».

А как же производная? Да, наконец-то мы до нее добрались. Производная помогает более точно строить графики функций. Находить точки максимума и минимума, а также значения функции в этих точках.

10. Построим график функции y=frac{4x}{4+x^2}.

Область определения функции — все действительные числа, поскольку 4+x^2 textgreater 0.

Функция нечетна. Ее график симметричен относительно начала координат.

При x=0 значение функции равно нулю. При x textgreater 0 значения функции положительны, при x textless 0 отрицательны.

Если x стремится к бесконечности, то y=frac{4x}{4+x^2}=frac{4}{frac{4}{x}+x} стремится к нулю.

Найдем производную функции y=frac{4x}{4+x^2}.
По формуле производной частного, left(frac{u}{v}right)^{

y^{

y^{ если x=2 или x=-2.

В точке x=-2 производная меняет знак с «минуса» на «плюс», x=-2 — точка минимума функции.

В точкеx=2 производная меняет знак с «плюса» на «минус», x=2 — точка максимума функции.

Найдем значения функции при x=2 и при x=-2.

yleft(2right)=1, yleft(-2right)=-yleft(2right)=-{rm 1.}

Графики функций удобно строить по определенному алгоритму, или схеме. Помните, вы изучали ее в школе?

Общая схема построения графика функции: 

1. Область определения функции

2. Область значений функции

3. Четность — нечетность (если есть)

4. Периодичность (если есть)

5. Нули функции (точки, в которых график пересекает оси координат)

6. Промежутки знакопостоянства функции (то есть промежутки, на которых она строго положительна или строго отрицательна).

7. Асимптоты (если есть).

8. Поведение функции в бесконечности

9. Производная функции

10. Промежутки возрастания и убывания. Точки максимума и минимума и значения в этих точках.

Графики функций с модулями

Покажем полезные примеры построения графиков модулей функций. Такие графики с модулями встречаются на ЕГЭ в задачах с параметрами.

11. Построим графики функций:

а) y=-x^2+6x-8

б) y=|-x^2+6x-8|

в) y=-x^2+6|x|-8

Решение:
а) Первый график построить легко. Выделим полный квадрат в формуле функции y=-x^2+6x-8.

y=-x^2+6x-8=-(x^2-6x+8)=-(x^2-6x+9-1)=-(x-3)^2+1.

График – квадратичная парабола, сдвинутая на 3 влево и на 1 вверх и перевернутая ветвями вниз.

б) Чтобы построить график функции y=|-x^2+6x-8|, зеркально отражаем относительно оси Х те части первого графика, которые лежали под ней. А та часть первого графика, которая лежала выше оси Х, остается на месте. Точки (2; 0) и (4; 0), в которых график пересекал ось Х, также остаются на месте.

в) Теперь график функции y=-x^2+6|x|-8.

Он тоже получается из графика первой функции, но преобразования другие. Часть первого графика, лежащая справа от оси Y, остается на месте. Действительно, модуль неотрицательного числа равен самому этому числу. Получили график функции для неотрицательных . И отражаем его зеркально относительно оси Y в левую полуплоскость.

12. Построим график функции y=left||x|-2right|.

Функция определена при всех действительных х.

Нули функции: x=-2;  x=2

Функция получается из элементарной функции y=|x| в результате следующих преобразований:

1) Сдвиг на 2 единицы вниз,
2) Отражение части графика, лежащей ниже оси ОХ, в верхнюю полуплоскость. Стандартный прием при построении графика модуля функции.

13. Построим график функции left|frac{6}{x}-5right|.

Ее график получается из графика функции y=frac{6}{x} сдвигом на 5 единиц вниз вдоль оси ОУ и симметричным отображением части графика, лежащей ниже оси ОХ, в верхнюю полуплоскость.

x=0 – вертикальная асимптота графика, y=5 — горизонтальная асимптота.

Читайте также: Асимптоты. Поведение функции в бесконечности

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Построение графиков функций» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.03.2023

23. Исследование функций и их графиков


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Функции с модулем x, y

Постройте график функции [y=|x^2-x-2|, .]

Какое наибольшее число общих точек может иметь график данной функции с прямой, параллельной оси абсцисс?

Данная функция имеет вид (|f(x)|). Для того, чтобы построить график такой функции, нужно построить график функции (f(x)) и затем ту часть графика, что находится ниже оси (Ox), симметрично оси абсцисс отобразить наверх.
Построим график (y=x^2-x-2). Это парабола, ветви которой направлены вверх, вершина находится в точке (x_0=frac12), (y_0=-2,frac14). Точки пересечения с осью (Ox) ищутся из уравнения (x^2-x-2=0). Следовательно, парабола проходит через точки ((-1;0)) и ((2;0)).
(Чтобы найти координаты вершины параболы (y=ax^2+bx+c), нужно воспользоваться формулами (x_0=-frac b{2a}), (y_0=y(x_0)).)

Из рисунка видно, что график (y=|x^2-x-2|) может иметь с прямой (y=k) две, три или четыре общие точки, или же не иметь общих точек. Следовательно, ответ 4.

Ответ: 4

Постройте график функции [y=-|x^2+5x+4|, .]

Определите, при каких значениях (k) график данной функции имеет ровно 3 общие точки с прямой (y=k).

Данная функция имеет вид (-|f(x)|). Для того, чтобы построить график такой функции, нужно построить график функции (f(x)), затем ту часть графика, что находится ниже оси (Ox), симметрично отобразить наверх (тогда мы получим график (|f(x)|)) и затем весь график симметрично оси абсцисс отобразить относительно (Ox) (тогда мы получим (-|f(x)|)).
Построим график (y=x^2+5x+4). Это парабола, ветви которой направлены вверх, вершина находится в точке (x_0=-frac52), (y_0=-2,frac14). Точки пересечения с осью (Ox) ищутся из уравнения (x^2+5x+4=0). Следовательно, парабола проходит через точки ((-1;0)) и ((-4;0)).
(Чтобы найти координаты вершины параболы (y=ax^2+bx+c), нужно воспользоваться формулами (x_0=-frac b{2a}), (y_0=y(x_0)).)

Из рисунка видно, что график (y=-|x^2+5x+4|) может иметь с прямой (y=k) две, три или четыре общие точки, или же не иметь общих точек, причем три точки будет тогда, когда (y=k) проходит через вершину параболы, то есть через точку (left(-frac52; -2frac14right)). Следовательно, (k=-2frac14=-2,25).

Ответ: -2,25

Постройте график функции [y=|x^2-9|, .]

Определите, при каких значениях (k) график данной функции имеет ровно 2 общие точки с прямой (y=k).

Данная функция имеет вид (|f(x)|). Для того, чтобы построить график такой функции, нужно построить график функции (f(x)), затем ту часть графика, что находится ниже оси (Ox), симметрично оси абсцисс отобразить наверх (тогда мы получим график (|f(x)|)).
Построим график (y=x^2-9). Это парабола, ветви которой направлены вверх. Чтобы построить график данной параболы, можно построить график (y=x^2) и опустить его на 9 единиц вниз по оси (Oy).

Из рисунка видно, что график (y=|x^2-9|) будет иметь две общие точки с прямой (y=k), если она будет находиться либо выше прямой (y=9) (прямой, проходящей через вершину параболы), либо совпадать с осью абсцисс. Следовательно, либо (k>9), либо (k=0).

Ответ: k = 0, k > 9

Постройте график функции [y=dfrac{3|x|-1}{|x|-3x^2}, .]

Определите, при каких значениях (k) прямая (y=kx) не имеет с графиком общих точек.

Заметим, что (x^2=|x|^2). Следовательно, функцию можно переписать как [y=dfrac{3|x|-1}{|x|-3|x|^2}] Таким образом, данная функция имеет вид (y=y(|x|)). Чтобы изобразить график такой функции, нужно изобразить график функции (y(x)), затем стереть ту часть графика, что находится левее оси (Oy), а часть графика, находящуюся правее (Oy), симметрично оси абсцисс отобразить влево.
Значит, рассмотрим [y=dfrac{3x-1}{x-3x^2}=-dfrac{3x-1}{(3x-1)x}] График данной функции – это график функции (y=-frac1x) с выколотой точкой (x=frac13) (так как (3x-1ne0)).
Графиком (y=-frac1x) является стандартная гипербола, находящаяся во 2 и 4 четвертях.

Прямая (y=kx), проходящая через начало координат, не имеет с искомым графиком (который изображен на правом рисунке) общих точек, если
1) проходит через одну из точек (left(frac13; -3right)) или (left(-frac13; -3right));
2) совпадает с осью абсцисс.
Если (y=kx) проходит через (left(frac13; -3right)), то (-3=kcdot
frac13)
, откуда (k=-9).
Аналогично находим остальные (k=9) и (k=0).

Ответ: -9;0;9

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Понравилась статья? Поделить с друзьями:
  • Постоянные издержки в краткосрочном периоде егэ обществознание
  • Постоянные для физики егэ
  • Постоянные величины физика егэ
  • Постоянные величины в физике для егэ
  • Постоянное горение электрической дуги в лампочке обеспечивают егэ