Правильная пирамида задачи егэ



СДАМ ГИА:

РЕШУ ЕГЭ

Образовательный портал для подготовки к экзаменам

Математика профильного уровня

Математика профильного уровня

≡ Математика

Базовый уровень

Профильный уровень

Информатика

Русский язык

Английский язык

Немецкий язык

Французский язык

Испанский язык

Физика

Химия

Биология

География

Обществознание

Литература

История

Сайты, меню, вход, новости

СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ

Об экзамене

Каталог заданий

Варианты

Ученику

Учителю

Школа

Эксперту

Справочник

Карточки

Теория

Сказать спасибо

Вопрос — ответ

Чужой компьютер

Зарегистрироваться

Восстановить пароль

Войти через ВКонтакте

Играть в ЕГЭ-игрушку

Новости

10 марта

Как подготовиться к ЕГЭ и ОГЭ за 45 дней

6 марта

Изменения ВПР 2023

3 марта

Разместили утвержденное расписание ЕГЭ

27 января

Вариант экзамена блокадного Ленинграда

23 января

ДДОС-атака на Решу ЕГЭ. Шантаж.

6 января

Открываем новый сервис: «папки в избранном»

22 декабря

От­кры­ли но­вый пор­тал Ре­шу Олимп. Для под­го­тов­ки к пе­реч­не­вым олим­пи­а­дам!

4 ноября

Материалы для подготовки к итоговому сочинению 2022–2023

31 октября

Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР

21 марта

Новый сервис: рисование

31 января

Внедрили тёмную тему!

НАШИ БОТЫ

Все новости

ЧУЖОЕ НЕ БРАТЬ!

Экзамер из Таганрога

10 апреля

Предприниматель Щеголихин скопировал сайт Решу ЕГЭ

Наша группа

Каталог заданий.
Пирамида


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Тип 2 № 901

В правильной треугольной пирамиде SABC с вершиной S биссектрисы треугольника ABC пересекаются в точке O. Площадь треугольника ABC равна 2; объем пирамиды равен 6. Найдите длину отрезка OS.

Источник: Пробный экзамен Санкт-Петербург 2015. Вариант 1., Пробный экзамен по математике Санкт-Петербург 2015. Вариант 1.

Кодификатор ФИПИ/Решу ЕГЭ: 5.5.7 Объём куба, прямоугольного параллелепипеда, пирамиды, призмы

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


2

Тип 2 № 902

В правильной треугольной пирамиде SABC медианы основания ABC пересекаются в точке O. Площадь треугольника ABC равна 9; объем пирамиды равен 6. Найдите длину отрезка OS.

Кодификатор ФИПИ/Решу ЕГЭ: 5.5.7 Объём куба, прямоугольного параллелепипеда, пирамиды, призмы

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


3

Тип 2 № 903

В правильной треугольной пирамиде SABC медианы основания ABC пересекаются в точке O. Площадь треугольника ABC равна 2; объем пирамиды равен 5. Найдите длину отрезка OS.

Кодификатор ФИПИ/Решу ЕГЭ: 5.5.7 Объём куба, прямоугольного параллелепипеда, пирамиды, призмы

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


4

Тип 2 № 904

В правильной треугольной пирамиде SABC медианы основания ABC пересекаются в точке O. Площадь треугольника ABC равна 2, объем пирамиды равен 4. Найдите длину отрезка OS.

Кодификатор ФИПИ/Решу ЕГЭ: 5.5.7 Объём куба, прямоугольного параллелепипеда, пирамиды, призмы

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


5

Тип 2 № 905

В правильной треугольной пирамиде SABC медианы основания ABC пересекаются в точке O. Площадь треугольника ABC равна 4; объем пирамиды равен 6. Найдите длину отрезка OS.

Кодификатор ФИПИ/Решу ЕГЭ: 5.5.7 Объём куба, прямоугольного параллелепипеда, пирамиды, призмы

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь

Пройти тестирование по этим заданиям

О проекте · Редакция · Правовая информация · О рекламе

© Гущин Д. Д., 2011—2023

Видео по теме


Задача 1. В правильной четырехугольной пирамиде SABCD  точка  O – центр основания, S  – вершина,  SB=13,;BD=24. Найдите длину отрезка SO.

fgk

Решение: + показать


Задача 2.  В правильной четырехугольной пирамиде SABCD  точка O – центр основания, S – вершина, SO=8, BD=30.  Найдите боковое ребро SC.

Решение: + показать


Задача 3. Стороны основания правильной четырехугольной пирамиды равны 60, боковые ребра равны 78. Найдите площадь поверхности этой пирамиды.

Решение: + показать


Задача 4.  В правильной четырёхугольной пирамиде SABCD  точка O  —  центр основания, S — вершина, SO=48, SD=60.  Найдите длину отрезка AC.

Решение: + показать


Задача 5. Основанием пирамиды является прямоугольник со сторонами 5 и 6. Ее объем равен 40. Найдите высоту этой пирамиды.

Решение: + показать


Задача 6. В правильной четырёхугольной пирамиде SABCD  с основанием ABCD боковое ребро SA равно 39, сторона основания равна 15sqrt2. Найдите объём пирамиды.

Решение: + показать


Задача 7. В правильной четырёхугольной пирамиде все рёбра равны 7. Найдите площадь сечения пирамиды плоскостью, проходящей через середины боковых рёбер.

Решение: + показать


Задача 8.  Даны две правильные четырёхугольные пирамиды. Объём первой пирамиды равен 9. У второй пирамиды высота в 1,5 раза больше, а сторона основания в 2 раза больше, чем у первой. Найдите объём второй пирамиды.

Решение: + показать


Задача 9.  В правильной четырёхугольной пирамиде боковое ребро равно 22, а тангенс угла между боковой гранью и плоскостью основания равен sqrt{14}. Найти сторону основания пирамиды.

Решение: + показать


Задача 10. Основанием пирамиды является прямоугольник со сторонами 4 и 6. Ее объем равен 48. Найдите высоту этой пирамиды.

18f3561bdbae5ca26a77784787b7d0bc

Решение: + показать


Задача 11. Стороны основания правильной четырехугольной пирамиды равны 42, боковые ребра равны 75. Найдите площадь поверхности этой пирамиды.

8913063b078b7196c5a3071ca02c523b

Решение: + показать


Задача 12. В правильной треугольной пирамиде SABC  медианы основания ABC пересекаются в точке O. Площадь треугольника ABC  равна 9, объем пирамиды равен 6. Найдите длину отрезка OS.

u

Решение: + показать


Задача 13.  В правильной треугольной пирамиде SABC точка L — середина ребра AC, S — вершина. Известно, что BC = 6, а SL = 5. Найдите площадь боковой поверхности пирамиды.

ts

Решение: + показать


Задача 14. Найдите объем правильной треугольной пирамиды, стороны основания которой равны 11, а высота равна 4sqrt3. 

u

Решение: + показать


Задача 15.  Найдите высоту правильной треугольной пирамиды, стороны основания которой равны 5, а объем равен 6sqrt3.

u

Решение: + показать


Задача 16. Стороны основания правильной шестиугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь боковой поверхности этой пирамиды.

н

Решение: + показать


Задача 17. Объем правильной шестиугольной пирамиды 324. Сторона основания равна 6. Найдите боковое ребро.

н

Решение: + показать


Задача 18. Во сколько раз увеличится объем пирамиды, если ее высоту увеличить в два раза?

1694cdf5de68632ee14aa0c5c5fefad1

Решение: + показать


Задача 19. Во сколько раз увеличится площадь поверхности правильного тетраэдра, если все его ребра увеличить в 5 раз?

d5e28b2cf1aaba18d4a7a6a87f80215a

Решение: + показать


Задача 20.  Во сколько раз увеличится объем правильного тетраэдра, если все его ребра увеличить в пять раз?

п

Решение: + показать


Задача 21. Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна плоскости основания, а три другие боковые грани наклонены к плоскости основания под углом 60°. Высота пирамиды равна 12. Найдите объем пирамиды.

8fb4942644d6aea0ba85825e7c81c610

Решение: + показать


Задача 22. Боковые ребра треугольной пирамиды взаимно перпендикулярны, каждое из них равно 12. Найдите объем пирамиды.

a8a2781d4cd5ed8f62d05cbf4f061676

Решение: + показать


Задача 23. От треугольной призмы, объем которой равен 129, отсечена треугольная пирамида плоскостью, проходящей через сторону одного основания и противоположную вершину другого основания. Найдите объем оставшейся части.

g

Решение: + показать


Задача 24. Объем треугольной пирамиды SABC, являющейся частью правильной шестиугольной пирамиды SABCDEF, равен 8. Найдите объем шестиугольной пирамиды. Видео по теме 1 2 

efc4238b7e0c4ff80662906a06e27364

Решение: + показать


Задача 25.  Сторона основания правильной шестиугольной пирамиды равна 8, боковое ребро равно 16. Найдите объём пирамиды.

1694cdf5de68632ee14aa0c5c5fefad1

Решение: + показать


Задача 26. Сторона основания правильной шестиугольной пирамиды равна 11, а угол между боковой гранью и основанием равен 45^{circ}. Найдите объем пирамиды.

Решение: + показать


Задача 27. Найдите объём правильной шестиугольной пирамиды SABCDEF, если объём треугольной пирамиды SABD равен 34.

Решение: + показать


Задача 28.  Объем параллелепипеда ABCDA_1B_1C_1D_1 равен 9. Найдите объем треугольной пирамиды ABCA_1. 

Решение: + показать


Задача 29. Объем куба равен 123. Найдите объем четырехугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.

Решение: + показать


Задача 30. Найдите объем пирамиды, изображенной на рисунке. Ее основанием является многоугольник, соседние стороны которого перпендикулярны, а одно из боковых ребер перпендикулярно плоскости основания и равно 3.

Решение: + показать


Задача 31. Объем правильной четырехугольной пирамиды SABCD равен 120. Точка E — середина ребра SB. Найдите объем треугольной пирамиды EABC.

рб

Решение: + показать


Задача 32. От треугольной пирамиды, объем которой равен 34, отсечена треугольная пирамида плоскостью, проходящей через вершину пирамиды и среднюю линию основания. Найдите объем отсеченной треугольной пирамиды.

ор

Решение: + показать


Задача 33.  Ребра тетраэдра равны 16. Найдите площадь сечения, проходящего через середины четырех его ребер.

ь

Решение: + показать


  Вы можете пройти тест

8. Геометрия в пространстве (стереометрия)


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Задачи по теме «Пирамида»

Пирамида (PA_1A_2…A_n):

(blacktriangleright) Многоугольник (A_1…A_n) – основание;

треугольники (PA_1A_2, PA_2A_3) и т.д. – боковые грани;

точка (P) – вершина;

отрезки (PA_1, PA_2, …, A_1A_2) и т.д. – ребра.

(blacktriangleright) Если в основании пирамиды лежит треугольник, то она называется тетраэдром.

(blacktriangleright) Высота пирамиды – перпендикуляр, опущенный из вершины (P) к основанию.

(blacktriangleright) Объем пирамиды ({Large{V=dfrac{1}{3}S_{text{осн}}h}}) , где (S_{text{осн}}) – площадь основания, (h) – высота.

(blacktriangleright) Площадь боковой поверхности – сумма площадей всех боковых граней.
Площадь полной поверхности – сумма площади боковой поверхности и площади основания.

Заметим, что принято записывать название пирамиды, начиная с вершины.


Задание
1

#2878

Уровень задания: Равен ЕГЭ

Дана пирамида (SABCD), вершиной которой является точка (S), в основании лежит ромб, а высота (SO) пирамиды падает в точку пересечения диагоналей ромба. Найдите объем пирамиды, если известно, что угол (ASO) равен углу (SBO), а диагонали основания равны (6) и (24).

Так как диагонали ромба точкой пересечения делятся пополам, то (AO=12), (BO=3).
Заметим, что так как (SO) – высота пирамиды, то (triangle ASO) и (triangle BSO) – прямоугольные. Так как у них есть равные острые углы, то они подобны. Пусть (SO=h), тогда из подобия имеем: [dfrac{BO}{h}=dfrac{h}{AO} quadRightarrowquad h=6.] Так как площадь ромба равна полупроизведению диагоналей, то объем пирамиды равен [V=dfrac13cdot hcdot dfrac12cdot 24cdot 6=144.]

Ответ: 144


Задание
2

#2879

Уровень задания: Равен ЕГЭ

В пирамиде (SABC) высота (SO) падает в точку пересечения медиан основания. Треугольник (ABC) равнобедренный, боковые стороны равны (10), а основание (AC=18). Найдите объем пирамиды, если известно, что угол между боковым ребром (SB) и плоскостью основания равен (45^circ).

Пусть (BK) – высота в (triangle ABC), а значит и медиана. Тогда из прямоугольного (triangle BKC): [BK=sqrt{BC^2-KC^2}=sqrt{10^2-9^2}=sqrt{19}.] Тогда площадь основания равна [S_{ABC}=dfrac12cdot ACcdot
BK=9sqrt{19}.]
Так как (O) – точка пересечения медиан, то (O) лежит на (BK). Так как медианы точкой пересечения делятся в отношении (2:1), считая от вершины, то [BO=dfrac23BK=dfrac23sqrt{19}.] Заметим, что угол между прямой и плоскостью – это угол между прямой и ее проекцией на плоскость, следовательно, (angle SBO=45^circ) и есть угол между (SB) и основанием (так как (BO) – проекция (SB) на плоскость (ABC)). Так как к тому же (triangle SBO) прямоугольный, то он равнобедренный, следовательно, [SO=BO=dfrac23sqrt{19}.] Тогда объем пирамиды равен [V=dfrac13cdot SOcdot S_{ABC}=38.]

Ответ: 38


Задание
3

#2880

Уровень задания: Равен ЕГЭ

Высота (SH) треугольной пирамиды (SABC) падает на середину стороны (AB), (ABC) – правильный треугольник со стороной (6). Найдите объем пирамиды, если (SC=sqrt{30}).

Так как (H) – середина (AB) и треугольник правильный, то (CH) – высота. Следовательно, [CH=dfrac{sqrt3}2AB=3sqrt3.] Так как (SH) – высота пирамиды, то (triangle SHC) – прямоугольный, следовательно, [SH=sqrt{SC^2-CH^2}=sqrt{30-27}=sqrt3.] Следовательно, объем равен [V=dfrac13cdot SHcdot S_{ABC}=
dfrac13cdot SHcdot dfrac12cdot CHcdot AB=9.]

Ответ: 9


Задание
4

#2881

Уровень задания: Сложнее ЕГЭ

В основании пирамиды (SABCD) лежит равнобедренная трапеция (ABCD), (AD) – большее основание. Высота пирамиды падает на отрезок (BC). Апофема грани (ASD) равна (10) и образует угол (45^circ) с плоскостью трапеции. Найдите объем пирамиды, если средняя линия трапеции равна (9).

Пусть (SH) – высота пирамиды. Проведем (HKperp AD). Следовательно, по теореме о трех перпендикулярах (SK) (наклонная) также перпендикулярна (AD) (так как (HK) – ее проекция на плоскость (ABC)). Следовательно, (SK) и есть апофема грани (ASD). Также отсюда следует, что (angle SKH=45^circ) (так как угол между прямой и плоскостью – это угол между прямой и ее проекцией на плоскость). Следовательно, (triangle SHK) прямоугольный и равнобедренный, значит, [SH=HK=SKdiv sqrt2=dfrac{10}{sqrt2}] По определению получается, что (HK) также высота трапеции. Так как площадь трапеции равна полусумме оснований, умноженной на высоту, а полусумма оснований в свою очередь равна средней линии, то [S_{ABCD}=9cdot dfrac{10}{sqrt2}] А значит объем пирамиды равен [V=dfrac13cdotdfrac{10}{sqrt2}cdot9cdot dfrac{10}{sqrt2}=150.]

Ответ: 150


Задание
5

#1857

Уровень задания: Сложнее ЕГЭ

В основании пирамиды (SABCD) лежит равнобедренная трапеция с основаниями (AD) и (BC). (H) – точка пересечения диагоналей трапеции, а (SH) – высота пирамиды. Диагонали трапеции перпендикулярны, (mathrm{tg}, angle SAC = 3), (BH = 3), (AH = 2). Найдите объем пирамиды.

(triangle AHD) и (triangle BHC) – равнобедренные треугольники, т.к. трапеция (ABCD) равнобедренная (Rightarrow) (AH = HD), (BH = HC) (Rightarrow) (AC = BD = 2 + 3 = 5) (Rightarrow)

[S_{ABCD} = S_{ABC} + S_{ADC} = frac{1}{2}cdot ACcdot BH + frac{1}{2}cdot ACcdot HD = frac{1}{2}cdot ACcdot(BH + HD) = frac{1}{2}cdot ACcdot BD.]

В (triangle SAH): (SH = AHcdot mathrm{tg}, angle SAC = 6), т.к. (triangle SAH) – прямоугольный. Тогда объем пирамиды можно найти следующим образом: [V_{text{пир.}} = frac{1}{3}cdot S_{ABCD}cdot SH = frac{1}{3}cdotfrac{1}{2}cdot5cdot5cdot6 = 25].

Ответ: 25


Задание
6

#1858

Уровень задания: Сложнее ЕГЭ

В основании пирамиды (SABC) лежит прямоугольный треугольник с прямым углом (angle A). Точка (H) – центр описанной вокруг треугольника (triangle ABC) окружности, (SH) – высота пирамиды. Найдите объем пирамиды, если известно, что (AB = 6), (AC = 8) , (SA = 5sqrt5).

Центр описанной вокруг прямоугольного треугольника окружности лежит на гипотенузе и делит ее пополам (Rightarrow) (BH = AH = CH) – радиусы описанной окружности. В прямоугольном треугольнике (triangle BAC) по теореме Пифагора: (BC^2 = AB^2 + AC^2 = 6^2 + 8^2 = 100) (Rightarrow) (BC = 10) (Rightarrow) (AH = frac{BC}{2} = frac{10}{2} = 5). Треугольник (triangle AHS) – прямоугольный, т.к. (SH perp ABC) ((SH) – высота), тогда по теореме Пифагора можно найти (SH): (SH^2 = AS^2 — AH^2 = (5sqrt5)^2 — 5^2 = 100) (Rightarrow) (SH = 10). Теперь найдем объем пирамиды: [V_{text{пир.}} = frac{1}{3}cdot SHcdot S_{triangle BAC} = frac{1}{3}cdot SHcdotfrac{1}{2}cdot ABcdot AC = frac{1}{3}cdot10cdotfrac{1}{2}cdot6cdot8 = 80.]

Ответ: 80


Задание
7

#2769

Уровень задания: Сложнее ЕГЭ

Точки (A), (B) и (C) лежат в плоскости (pi). Прямая (l) образует с плоскостью (pi) угол в (45^circ) и проходит через точку (B) так, что (angle(l; AB) = angle(l; BC)). Через (l’) обозначим проекцию (l) на (pi). Найдите (angle(l’; AB)), если (angle ABC = 80^circ). Ответ дайте в градусах.

Докажем, что (l’) содержит биссектрису угла (ABC). Выберем на (AB) точку (A’), а на (BC) точку (C’) так, чтобы (A’B = BC’). Построим прямую, проходящую через точку (B) и точку (H) – середину (A’C’).

Отметим на (l) точку (M). Треугольник (A’BC’) – равнобедренный, тогда (BH) – высота.

Рассмотрим треугольники (A’BM) и (C’BM): они равны по двум сторонам и углу между ними, тогда (MA’ = MC’) и треугольник (A’MC’) – равнобедренный, тогда (MH) – его высота.

В итоге (A’C’perp BH) и (A’C’perp MH), следовательно, (A’C’perp (MBH)). Если предположить, что (M’) – проекция точки (M) на ((A’BC’)), не попадает на прямую, содержащую (BH), то получим, что (A’C’perp M’M) и (A’C’perp MH), откуда следует, что (A’C’perp (MM’H)). Но тогда плоскости ((MM’H)) и ((MBH)) перпендикулярны к одной прямой, пересекаются, но не совпадают, чего быть не может.

Таким образом, (M’) лежит на прямой, содержащей (BH), но тогда (l’) совпадает с прямой, содержащей (BH). В итоге, (angle(l’; AB) = 0,5angle ABC = 40^circ).

Ответ: 40

При подготовке к ЕГЭ по математике старшеклассникам следует особое внимание уделить теме «Пирамида», так как задачи, связанные с расчетом объема и площади данного многогранника, непременно встретятся на финальной аттестации. Весь необходимый для повторного изучения материал вы найдете в данном разделе. Специалисты образовательного проекта «Школково» предлагают пойти от простого к сложному: сначала мы даем теорию и элементарные упражнения, а затем постепенно переходим к заданиям экспертного уровня.

Базовая информация

Пирамида — многогранник, образованный благодаря соединению всех точек плоского многоугольника с точкой, выходящей за пределы плоскости данного многоугольника.

Пирамиду называют n-угольной по количеству углов в основании. Если последним является правильный многоугольник, а основание высоты совпадает с его центром, фигуру называют правильной.

Все боковые грани пирамиды — треугольники.

Подробная теоретическая часть приведена в начале страницы. Вы также можете сразу приступить к практике. Задачи, представленные в данном разделе, помогут вам найти объем пирамиды, длину ее определенных отрезков и т. д. Каждое упражнение содержит подробный алгоритм решения и правильный ответ. Таким образом, разобраться в теме вы сможете самостоятельно, без помощи репетитора.

Как часто следует тренироваться?

Чтобы на ЕГЭ ребенок смог легко решить задачи по стереометрии (а определение площади и других параметров пирамиды относятся к данному разделу геометрии), мы рекомендуем выполнять по 2—3 упражнения каждый день. Таким образом, знания будут лучше усваиваться и вам будет проще переходить от простого к сложному.

Проверьте, легко ли вы рассчитаете площадь пирамиды, прямо сейчас. Разберите любое задание онлайн. Если решение дастся вам легко, значит, шансы на высокие экзаменационные баллы по математике достаточно велики. А при возникновении затруднений планируйте свой день таким образом, чтобы в ежедневное расписание был включен дистанционный образовательный проект «Школково». Мы поможем вам восполнить пробелы в знаниях!

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Пирамида 

1. https://ege.sdamgia.ru/get_file?id=565В правильной треугольной пирамиде SABC с вершиной S биссектрисы треугольника ABC пересекаются в точке O. Площадь треугольника ABC равна 2; объем пирамиды равен 6. Найдите длину отрезка OS.

6. https://ege.sdamgia.ru/get_file?id=575В правильной четырехугольной пирамиде https://ege.sdamgia.ru/formula/47/47a5be4b665b453f634b35cb50a9c6efp.png точка https://ege.sdamgia.ru/formula/f1/f186217753c37b9b9f958d906208506ep.png – центр основания, https://ege.sdamgia.ru/formula/5d/5dbc98dcc983a70728bd082d1a47546ep.png – вершина, https://ege.sdamgia.ru/formula/90/90128f39f47dfc2bf16308129a05bef5p.pnghttps://ege.sdamgia.ru/formula/49/49308f375ab6a171d68406fc7ceb2201p.png. Найдите боковое ребро https://ege.sdamgia.ru/formula/3d/3dd6b9265ff18f31dc30df59304b0ca7p.png.

7. https://ege.sdamgia.ru/get_file?id=576В правильной четырехугольной пирамиде https://ege.sdamgia.ru/formula/47/47a5be4b665b453f634b35cb50a9c6efp.png точка https://ege.sdamgia.ru/formula/f1/f186217753c37b9b9f958d906208506ep.png – центр основания, https://ege.sdamgia.ru/formula/5d/5dbc98dcc983a70728bd082d1a47546ep.png – вершина, https://ege.sdamgia.ru/formula/dd/dd7448dc9f811d258c7011ec12288413p.png https://ege.sdamgia.ru/formula/59/593e1a4a55a78de5e784135612f9388bp.png Найдите длину отрезка https://ege.sdamgia.ru/formula/98/98d0360b392de5f1d53acdd6489b6e88p.png.

8. https://ege.sdamgia.ru/get_file?id=577В правильной четырехугольной пирамиде https://ege.sdamgia.ru/formula/47/47a5be4b665b453f634b35cb50a9c6efp.png точка https://ege.sdamgia.ru/formula/f1/f186217753c37b9b9f958d906208506ep.png – центр основания, https://ege.sdamgia.ru/formula/5d/5dbc98dcc983a70728bd082d1a47546ep.png – вершина, https://ege.sdamgia.ru/formula/d5/d51f5c564cf91af84f0446ec72e6b95bp.pnghttps://ege.sdamgia.ru/formula/71/7100dc2bcc5e6a4a34f700b7ef50b40ep.png. Найдите боковое ребро https://ege.sdamgia.ru/formula/6a/6a65edb0cc17d66c677814115b1477f5p.png.

9. https://ege.sdamgia.ru/get_file?id=578В правильной четырехугольной пирамиде https://ege.sdamgia.ru/formula/47/47a5be4b665b453f634b35cb50a9c6efp.png точка https://ege.sdamgia.ru/formula/f1/f186217753c37b9b9f958d906208506ep.png — центр основания, https://ege.sdamgia.ru/formula/5d/5dbc98dcc983a70728bd082d1a47546ep.png — вершина, https://ege.sdamgia.ru/formula/9e/9ef2c98de78317ba52fa7f5e1f1bdb59p.pnghttps://ege.sdamgia.ru/formula/8e/8e5557741426fb0d898e4ee04ae91648p.png. Найдите длину отрезка https://ege.sdamgia.ru/formula/41/4144e097d2fa7a491cec2a7a4322f2bcp.png.

11. https://ege.sdamgia.ru/get_file?id=627В правильной треугольной пирамиде SABC точка M – середина ребра ABS – вершина. Известно, что BC = 3, а площадь боковой поверхности пирамиды равна 45. Найдите длину отрезка SM.

12. https://ege.sdamgia.ru/get_file?id=628В правильной треугольной пирамиде SABC точка L — середина ребра ACS — вершина. Известно, что BC = 6, а SL = 5. Найдите площадь боковой поверхности пирамиды.

13. https://ege.sdamgia.ru/get_file?id=629В правильной треугольной пирамиде SABC точка K – середина ребра BCS – вершина. Известно, что SK = 4, а площадь боковой поверхности пирамиды равна 54. Найдите длину ребра AC.

16. https://ege.sdamgia.ru/get_file?id=774Стороны основания правильной четырехугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь поверхности этой пирамиды.

17. https://ege.sdamgia.ru/get_file?id=775Стороны основания правильной шестиугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь боковой поверхности этой пирамиды.

18. Объем параллелепипеда https://ege.sdamgia.ru/formula/1f/1f98fd4abe2a7ebc84481105039f3a71p.png равен 9. Найдите объем треугольной пирамиды https://ege.sdamgia.ru/formula/1b/1b07189cd22709dd0772d42e7af9452fp.png.

19. https://ege.sdamgia.ru/get_file?id=791Во сколько раз увеличится объем правильного тетраэдра, если все его ребра увеличить в два раза?

20. https://ege.sdamgia.ru/get_file?id=792Основанием пирамиды является прямоугольник со сторонами 3 и 4. Ее объем равен 16. Найдите высоту этой пирамиды.

21. https://ege.sdamgia.ru/get_file?id=793Найдите объем правильной треугольной пирамиды, стороны основания которой равны 1, а высота равна https://ege.sdamgia.ru/formula/91/91a24814efa2661939c57367281c819cp.png.

22. https://ege.sdamgia.ru/get_file?id=794Найдите высоту правильной треугольной пирамиды, стороны основания которой равны 2, а объем равен https://ege.sdamgia.ru/formula/91/91a24814efa2661939c57367281c819cp.png.

23.  Во сколько раз увеличится объем пирамиды, если ее высоту увеличить в четыре раза?

24. https://ege.sdamgia.ru/get_file?id=828В правильной четырехугольной пирамиде высота равна 6, боковое ребро равно 10. Найдите ее объем.

25. https://ege.sdamgia.ru/get_file?id=829Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна плоскости основания, а три другие боковые грани наклонены к плоскости основания под углом 60https://ege.sdamgia.ru/formula/08/080e9604620a20dbce9c4f12a20b75a1p.png. Высота пирамиды равна 6. Найдите объем пирамиды.

26. https://ege.sdamgia.ru/get_file?id=830Боковые ребра треугольной пирамиды взаимно перпендикулярны, каждое из них равно 3. Найдите объем пирамиды.

27. https://ege.sdamgia.ru/get_file?id=831Объем треугольной пирамиды https://ege.sdamgia.ru/formula/a5/a50b32b001d7b7c5bba7d080e4ad8fc7p.png, являющейся частью правильной шестиугольной пирамиды https://ege.sdamgia.ru/formula/4e/4e4bfc676db9a62f3d0cc79703a4cd78p.png, равен 1. Найдите объем шестиугольной пирамиды.

29. https://ege.sdamgia.ru/get_file?id=6967От треугольной пирамиды, объем которой равен 12, отсечена треугольная пирамида плоскостью, проходящей через вершину пирамиды и среднюю линию основания. Найдите объем отсеченной треугольной пирамиды.

30. Объем треугольной пирамиды равен 15. Плоскость проходит через сторону основания этой пирамиды и пересекает противоположное боковое ребро в точке, делящей его в отношении 1 : 2, считая от вершины пирамиды. Найдите больший из объемов пирамид, на которые плоскость разбивает исходную пирамиду.

31.  Во сколько раз увеличится площадь поверхности правильного тетраэдра, если все его ребра увеличить в два раза?

32.  Найдите площадь поверхности правильной четырехугольной пирамиды, стороны основания которой равны 6 и высота равна 4.

33. https://ege.sdamgia.ru/get_file?id=861Во сколько раз увеличится площадь поверхности октаэдра, если все его ребра увеличить в 3 раза?

34. https://ege.sdamgia.ru/get_file?id=875Найдите площадь боковой поверхности правильной четырехугольной пирамиды, сторона основания которой равна 6 и высота равна 4.

35. Во сколько раз увеличится площадь поверхности пирамиды, если все ее ребра увеличить в 2 раза?

36. https://ege.sdamgia.ru/get_file?id=879Ребра тетраэдра равны 1. Найдите площадь сечения, проходящего через середины четырех его ребер.

37. https://ege.sdamgia.ru/get_file?id=880Найдите объем пирамиды, высота которой равна 6, а основание – прямоугольник со сторонами 3 и 4.

38. https://ege.sdamgia.ru/get_file?id=881В правильной четырехугольной пирамиде высота равна 12, объем равен 200. Найдите боковое ребро этой пирамиды.

39. https://ege.sdamgia.ru/get_file?id=882Сторона основания правильной шестиугольной пирамиды равна 2, боковое ребро равно 4. Найдите объем пирамиды.

40. https://ege.sdamgia.ru/get_file?id=883Объем правильной шестиугольной пирамиды 6. Сторона основания равна 1. Найдите боковое ребро.

41. https://ege.sdamgia.ru/get_file?id=884Сторона основания правильной шестиугольной пирамиды равна 4, а угол между боковой гранью и основанием равен 45https://ege.sdamgia.ru/formula/08/080e9604620a20dbce9c4f12a20b75a1p.png. Найдите объем пирамиды.

42. https://ege.sdamgia.ru/get_file?id=885Объем параллелепипеда https://ege.sdamgia.ru/formula/3d/3dcbf64aebe65200503211a8fc5a3518p.png равен 12. Найдите объем треугольной пирамиды https://ege.sdamgia.ru/formula/39/394f57ae405c9b35d2f2bfc39236818dp.png.

43. https://ege.sdamgia.ru/get_file?id=886Объем куба равен 12. Найдите объем четырехугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.

44. https://ege.sdamgia.ru/get_file?id=919Найдите объем параллелепипеда https://ege.sdamgia.ru/formula/1f/1f98fd4abe2a7ebc84481105039f3a71p.png, если объем треугольной пирамиды https://ege.sdamgia.ru/formula/48/487b86fcb531a49e225857d731603a65p.png равен 3.

45.https://ege.sdamgia.ru/get_file?id=11745

Найдите объем пирамиды, изображенной на рисунке. Ее основанием является многоугольник, соседние стороны которого перпендикулярны, а одно из боковых ребер перпендикулярно плоскости основания и равно 3.

46. В правильной четырехугольной пирамиде SABCD точка O — центр основания, S вершина, SO = 4, AC = 6. Найдите боковое ребро SC.

47. В правильной четырехугольной пирамиде https://ege.sdamgia.ru/formula/47/47a5be4b665b453f634b35cb50a9c6efp.png точка https://ege.sdamgia.ru/formula/f1/f186217753c37b9b9f958d906208506ep.png — центр основания, https://ege.sdamgia.ru/formula/5d/5dbc98dcc983a70728bd082d1a47546ep.png вершина, https://ege.sdamgia.ru/formula/1b/1becc20066251528544bf0d8bf9c8417p.pnghttps://ege.sdamgia.ru/formula/3f/3fc0e21dcde1a3117df5557bf0741e11p.png. Найдите длину отрезка https://ege.sdamgia.ru/formula/98/98d0360b392de5f1d53acdd6489b6e88p.png.

48. В правильной четырехугольной пирамиде https://ege.sdamgia.ru/formula/47/47a5be4b665b453f634b35cb50a9c6efp.png точка https://ege.sdamgia.ru/formula/f1/f186217753c37b9b9f958d906208506ep.png — центр основания, https://ege.sdamgia.ru/formula/5d/5dbc98dcc983a70728bd082d1a47546ep.png вершина, https://ege.sdamgia.ru/formula/cd/cd6079f85064a2e96e9ee3cfb6511050p.pnghttps://ege.sdamgia.ru/formula/1b/1becc20066251528544bf0d8bf9c8417p.png. Найдите длину отрезка https://ege.sdamgia.ru/formula/41/4144e097d2fa7a491cec2a7a4322f2bcp.png.

49. В правильной треугольной пирамиде SABC точка R — середина ребра BCS — вершина. Известно, что AB = 1, а SR = 2. Найдите площадь боковой поверхности.

50. В правильной треугольной пирамиде SABC точка N — середина ребра BCS — вершина. Известно, что AB = 1, а площадь боковой поверхности равна 3. Найдите длину отрезка SN.

51. В правильной треугольной пирамиде SABC точка L — середина ребра BCS — вершина. Известно, что SL = 2, а площадь боковой поверхности равна 3. Найдите длину отрезка AB.

52. В правильной треугольной пирамиде SABC медианы основания пересекаются в точке M. Площадь треугольника ABC равна 3, объем пирамиды равен 1. Найдите длину отрезка MS.

53. В правильной треугольной пирамиде SABC медианы основания пересекаются в точке M. Площадь треугольника ABC равна 3, MS = 1. Найдите объем пирамиды.

54. В правильной треугольной пирамиде https://ege.sdamgia.ru/formula/a5/a50b32b001d7b7c5bba7d080e4ad8fc7p.png медианы основания пересекаются в точке https://ege.sdamgia.ru/formula/44/44c29edb103a2872f519ad0c9a0fdaaap.png. Объем пирамиды равен https://ege.sdamgia.ru/formula/c4/c4ca4238a0b923820dcc509a6f75849bp.pnghttps://ege.sdamgia.ru/formula/44/44a0fd55e9c56ead2ff45a6dc0aa0212p.png. Найдите площадь треугольника https://ege.sdamgia.ru/formula/90/902fbdd2b1df0c4f70b4a5d23525e932p.png.

55. В правильной четырёхугольной пирамиде https://ege.sdamgia.ru/formula/47/47a5be4b665b453f634b35cb50a9c6efp.png с основанием https://ege.sdamgia.ru/formula/cb/cb08ca4a7bb5f9683c19133a84872ca7p.png боковое ребро https://ege.sdamgia.ru/formula/3d/3dd6b9265ff18f31dc30df59304b0ca7p.png равно 5, сторона основания равна https://ege.sdamgia.ru/formula/18/183d5db1d5d3b279d87445c55125859ap.png. Найдите объём пирамиды.

56. https://ege.sdamgia.ru/get_file?id=24715В правильной четырёхугольной пирамиде все рёбра равны 1. Найдите площадь сечения пирамиды плоскостью, проходящей через середины боковых рёбер.

57. https://ege.sdamgia.ru/get_file?id=5041Диагональ https://ege.sdamgia.ru/formula/41/4144e097d2fa7a491cec2a7a4322f2bcp.png основания правильной четырёхугольной пирамиды https://ege.sdamgia.ru/formula/47/47a5be4b665b453f634b35cb50a9c6efp.png равна https://ege.sdamgia.ru/formula/16/1679091c5a880faf6fb5e6087eb1b2dcp.png. Высота пирамиды https://ege.sdamgia.ru/formula/98/98d0360b392de5f1d53acdd6489b6e88p.png равна https://ege.sdamgia.ru/formula/a8/a87ff679a2f3e71d9181a67b7542122cp.png. Найдите длину бокового ребра https://ege.sdamgia.ru/formula/a0/a06b33d1ea28e90733617ec889d4e76ep.png.

58.https://ege.sdamgia.ru/get_file?id=6707

В правильной четырехугольной пирамиде https://ege.sdamgia.ru/formula/47/47a5be4b665b453f634b35cb50a9c6efp.png точка https://ege.sdamgia.ru/formula/f1/f186217753c37b9b9f958d906208506ep.png − центр основания, https://ege.sdamgia.ru/formula/5d/5dbc98dcc983a70728bd082d1a47546ep.png − вершина, https://ege.sdamgia.ru/formula/24/24d5c66eeef11abc69ab673884b5f8ecp.pnghttps://ege.sdamgia.ru/formula/38/38252c6a3e46d9b820b82dc83e33f185p.png Найдите длину отрезкаhttps://ege.sdamgia.ru/formula/7b/7bfb99a268fb1d78079ad3eec3ce2ef7p.png

59.https://ege.sdamgia.ru/get_file?id=6777

В правильной четырёхугольной пирамиде SABCD высота SO равна 13, диагональ основания BD равна 8. Точки К и М— середины рёбер CD и ВС соответственно. Найдите тангенс угла между плоскостью SMK и плоскостью основания ABC.

60. https://ege.sdamgia.ru/get_file?id=7330В правильной четырёхугольной пирамиде SABCD высота SO равна 13, диагональ основания BD равна 8. Точки К и М — середины ребер CD и ВС соответственно. Найдите тангенс угла между плоскостью SMK и плоскостью основания AВС.

62. https://ege.sdamgia.ru/get_file?id=18982Даны две правильные четырёхугольные пирамиды. Объём первой пирамиды равен 16. У второй пирамиды высота в 2 раза больше, а сторона основания в 1,5 раза больше, чем у первой. Найдите объём второй пирамиды.

63. В правильной четырёхугольной пирамиде боковое ребро равно 22, а тангенс угла между боковой гранью и плоскостью основания равен https://ege.sdamgia.ru/formula/ec/ec8d96d80847685230a45d6c4e3d1d53p.png Найти сторону основания пирамиды.

64. В правильной треугольной пирамиде боковое ребро равно 5, а тангенс угла между боковой гранью и плоскостью основания равен https://ege.sdamgia.ru/formula/59/595e645bcf8fffa77f57b8c3f6c6be0bp.png Найти ст

Ключ

№ п/п

№ задания

Ответ

1

901

9

2

902

2

3

903

7,5

4

904

6

5

905

4,5

6

911

17

7

912

5

8

913

17

9

914

16

10

915

15

11

920

10

12

921

45

13

922

9

14

923

45

15

924

4

16

27069

340

17

27070

360

18

27074

1,5

19

27085

8

20

27086

4

21

27087

0,25

22

27088

3

23

27089

4

24

27109

256

25

27110

48

26

27111

4,5

27

27113

6

28

27114

3

29

27115

3

30

27116

10

31

27131

4

32

27155

96

33

27157

9

34

27171

60

35

27172

4

36

27175

0,25

37

27176

24

38

27178

13

39

27179

12

40

27180

7

41

27181

48

42

27182

2

43

27184

2

44

77154

18

45

245353

27

46

284348

5

47

284349

4

48

284350

6

49

284351

3

50

284352

2

51

284353

1

52

284354

1

53

284355

1

54

284356

3

55

318146

24

56

324450

0,25

57

500249

5

58

59

6,5

60

61

12

62

72

63

11

64

8

Skip to content

ЕГЭ Профиль №2. Пирамида

ЕГЭ Профиль №2. Пирамидаadmin2022-08-28T09:32:32+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №2. Пирамида

Задача 1. Стороны основания правильной четырехугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь поверхности этой пирамиды.

Ответ

ОТВЕТ: 340.

Задача 2. Стороны основания правильной шестиугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь боковой поверхности этой пирамиды.

Ответ

ОТВЕТ: 360.

Задача 3. Объем параллелепипеда ABCDA1B1C1D1 равен 9. Найдите объем треугольной пирамиды ABCA1.

Ответ

ОТВЕТ: 1,5.

Задача 4. Во сколько раз увеличится объем правильного тетраэдра, если все его ребра увеличить в два раза?

Ответ

ОТВЕТ: 8.

Задача 5. Основанием пирамиды является прямоугольник со сторонами 3 и 4. Ее объем равен 16. Найдите высоту этой пирамиды.

Ответ

ОТВЕТ: 4.

Задача 6. Найдите объем правильной треугольной пирамиды, стороны основания которой равны 1, а высота равна (sqrt 3 ).

Ответ

ОТВЕТ: 0,25.

Задача 7. Найдите высоту правильной треугольной пирамиды, стороны основания которой равны 2, а объем равен (sqrt 3 ).

Ответ

ОТВЕТ: 3.

Задача 8. Во сколько раз увеличится объем пирамиды, если ее высоту увеличить в четыре раза?

Ответ

ОТВЕТ: 4.

Задача 9. В правильной четырехугольной пирамиде высота равна 6, боковое ребро равно 10. Найдите ее объем.

Ответ

ОТВЕТ: 256.

Задача 10. Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна плоскости основания, а три другие боковые грани наклонены к плоскости основания под углом 60o. Высота пирамиды равна 6. Найдите объем пирамиды.

Ответ

ОТВЕТ: 48.

Задача 11. Боковые ребра треугольной пирамиды взаимно перпендикулярны, каждое из них равно 3. Найдите объем пирамиды.

Ответ

ОТВЕТ: 4,5.

Задача 12. Объем треугольной пирамиды SABC, являющейся частью правильной шестиугольной пирамиды SABCDEF, равен 1. Найдите объем шестиугольной пирамиды.

Ответ

ОТВЕТ: 6.

Задача 13. Объем правильной четырехугольной пирамиды SABCD равен 12. Точка E — середина ребра SB. Найдите объем треугольной пирамиды EABC.

Ответ

ОТВЕТ: 3.

Задача 14. От треугольной пирамиды, объем которой равен 12, отсечена треугольная пирамида плоскостью, проходящей через вершину пирамиды и среднюю линию основания. Найдите объем отсеченной треугольной пирамиды.

Ответ

ОТВЕТ: 3.

Задача 15. Объем треугольной пирамиды равен 15. Плоскость проходит через сторону основания этой пирамиды и пересекает противоположное боковое ребро в точке, делящей его в отношении 1:2, считая от вершины пирамиды. Найдите больший из объемов пирамид, на которые плоскость разбивает исходную пирамиду.

Ответ

ОТВЕТ: 10.

Задача 16. Во сколько раз увеличится площадь поверхности правильного тетраэдра, если все его ребра увеличить в два раза?

Ответ

ОТВЕТ: 4.

Задача 17. Найдите площадь поверхности правильной четырехугольной пирамиды, стороны основания которой равны 6 и высота равна 4.

Ответ

ОТВЕТ: 96.

Задача 18. Во сколько раз увеличится площадь поверхности октаэдра, если все его ребра увеличить в 3 раза?

Ответ

ОТВЕТ: 9.

Задача 19. Найдите площадь боковой поверхности правильной четырехугольной пирамиды, сторона основания которой равна 6 и высота равна 4.

Ответ

ОТВЕТ: 60.

Задача 20. Во сколько раз увеличится площадь поверхности пирамиды, если все ее ребра увеличить в 2 раза?

Ответ

ОТВЕТ: 4.


Задача 21.
Ребра правильного тетраэдра равны 1. Найдите площадь сечения, проходящего через середины четырех его ребер.

Ответ
ОТВЕТ: 0,25.

Задача 22. Найдите объем пирамиды, высота которой равна 6, а основание — прямоугольник со сторонами 3 и 4.

Ответ

ОТВЕТ: 24.

Задача 23. В правильной четырехугольной пирамиде высота равна 12, объем равен 200. Найдите боковое ребро этой пирамиды.

Ответ

ОТВЕТ: 13.

Задача 24. Сторона основания правильной шестиугольной пирамиды равна 2, боковое ребро равно 4. Найдите объем пирамиды.

Ответ

ОТВЕТ: 12.

Задача 25. Объем правильной шестиугольной пирамиды 6. Сторона основания равна 1. Найдите боковое ребро.

Ответ

ОТВЕТ: 7.

Задача 26. Сторона основания правильной шестиугольной пирамиды равна 4, а угол между боковой гранью и основанием равен 45o. Найдите объем пирамиды.

Ответ

ОТВЕТ: 48.

Задача 27. Объем параллелепипеда ABCDA1B1C1D1 равен 12. Найдите объем треугольной пирамиды B1ABC.

Ответ

ОТВЕТ: 2.

Задача 28. Объем куба равен 12. Найдите объем четырехугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.

Ответ

ОТВЕТ: 2.

Задача 29. Найдите объем параллелепипеда    ABCDA1B1C1D1, если объем треугольной пирамиды ABDA1 равен 3.

Ответ

ОТВЕТ: 18.

Задача 30. Найдите объем многогранника, вершинами которого являются точки A, B, C, B1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1, площадь основания которой равна 6, а боковое ребро равно 3.

Ответ

ОТВЕТ: 1.

Задача 31. Найдите объем пирамиды, изображенной на рисунке. Ее основанием является многоугольник, соседние стороны которого перпендикулярны, а одно из боковых ребер перпендикулярно плоскости основания и равно 3.

Ответ

ОТВЕТ: 27.

Задача 32. В правильной четырехугольной пирамиде SABCD точка O — центр основания, S вершина, SO = 54, AC = 144. Найдите боковое ребро SA.

Ответ

ОТВЕТ: 90.

Задача 33. В правильной четырехугольной пирамиде SABCD точка O — центр основания, S вершина, SB = 10, BD = 12. Найдите длину отрезка SO.

Ответ

ОТВЕТ: 8.

Задача 34. В правильной четырехугольной пирамиде SABCD точка O — центр основания, S вершина, SO = 16, SB = 34. Найдите длину отрезка BD.

Ответ

ОТВЕТ: 60.

Задача 35. В правильной треугольной пирамиде SABC R — середина ребра BC, S — вершина. Известно, что AB = 1, а SR = 2. Найдите площадь боковой поверхности.

Ответ

ОТВЕТ: 3.

Задача 36. В правильной треугольной пирамиде SABC N — середина ребра BC, S — вершина. Известно, что AB = 1, а площадь боковой поверхности равна 3. Найдите длину отрезка SN.

Ответ

ОТВЕТ: 2.

Задача 37. В правильной треугольной пирамиде SABC L — середина ребра BC, S — вершина. Известно, что SL = 2, а площадь боковой поверхности равна 3. Найдите длину отрезка AB.

Ответ

ОТВЕТ: 1.

Задача 38. В правильной треугольной пирамиде SABC медианы основания пересекаются в точке M. Площадь треугольника ABC равна 3, объем пирамиды равен 1. Найдите длину отрезка MS.

Ответ

ОТВЕТ: 1.

Задача 39. В правильной треугольной пирамиде SABC медианы основания пересекаются в точке R. Площадь треугольника ABC равна 30, RS = 21. Найдите объем пирамиды.

Ответ

ОТВЕТ: 210.

Задача 40. В правильной треугольной пирамиде SABC медианы основания пересекаются в точке P. Объем пирамиды равен 1, PS = 1. Найдите площадь треугольника ABC.

Ответ

ОТВЕТ: 3.

Задача 41. В правильной четырехугольной пирамиде SABCD с основанием ABCD боковое ребро SA равно 5, сторона основания равна (3sqrt 2 ). Найдите объем пирамиды.

Ответ

ОТВЕТ: 24.

Задача 42. В правильной четырехугольной пирамиде все ребра равны 1. Найдите площадь сечения пирамиды плоскостью, проходящей через середины боковых ребер.

Ответ

ОТВЕТ: 0,25.

Задача 43. В правильной треугольной пирамиде боковое ребро равно5, а сторона основания  равна (3sqrt 3 ). Найдите высоту пирамиды.

Ответ

ОТВЕТ: 4.

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Пирамида»

Открытый банк заданий по теме пирамида. Задания B8 из ЕГЭ по математике (профильный уровень)

Производная и первообразная функции

Задание №1081

Тип задания: 8
Тема:
Пирамида

Условие

Объём правильной четырёхугольной пирамиды SABCD равен 16. Точка E — середина ребра SB. Найдите объём пирамиды EABC.

Правильная четырёхугольная пирамида SABCD и точка E на середине ребра SB

Показать решение

Решение

На рисунке SO является высотой пирамиды ABCD, EK является перпендикуляром к плоскости ABCD (значит, EK является высотой пирамиды EABC), поэтому

EKparallel SO и SO и EK лежат в одной плоскости SOB.

Так как E является серединой SB, то EK является средней линией треугольника SOB, значит, EK = frac12SO. Пусть SO = H, тогда EK = frac12 H. Заметим также, что S_{ABC} = frac12 S_{ABCD}. Тогда V_{EABC}= frac13 S_{ABC}cdotfrac{H}{2}= frac13cdotfrac12 S_{ABCD}cdotfrac{H}{2}= frac14cdotfrac13 S_{ABCD}cdot H= frac14 V_{SABCD}. Следовательно, V_{EABC}=frac14cdot16=4.

Ответ

4

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1080

Тип задания: 8
Тема:
Пирамида

Условие

Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна плоскости основания, а три другие боковые грани наклонены к плоскости основания под углом 60^{circ}. Высота пирамиды равна 9. Найдите объём пирамиды.

Пирамида с основанием прямоугольник и перпендикулярной гранью

Показать решение

Решение

Объём пирамиды вычисляется по формуле V = frac13cdot Sосн.· h, где Sосн. — площадь основания, а h — высота пирамиды, равная 9. На рисунке, приведённом в условии задачи, SH — высота пирамиды и HGperp BC. Покажем, что угол SAH является линейным углом двугранного угла между плоскостью ABS и плоскостью основания ABC, которые пересекаются по прямой AB. AHperp AB, так как основание призмы является прямоугольником. AH является проекцией наклонной AS. Тогда по теореме о трех перпендикулярах ASperp AB. Отсюда frac{SH}{AH}=tg60^{circ}=sqrt3. frac{9}{AH}=sqrt3, AH=frac{9}{sqrt3}=3sqrt3, AD=2AH=6sqrt3. Аналогично убеждаемся, что угол SGH равен 60^{circ} и HG=3sqrt3=BC. Следовательно стороны прямоугольника, лежащего в основании, равны 3sqrt3 и 6sqrt3. Значит V=frac13cdot Sосн. · h = frac13cdot3sqrt3cdot6sqrt3cdot9= 162.

Ответ

162

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1079

Тип задания: 8
Тема:
Пирамида

Условие

Основанием пирамиды является прямоугольник со сторонами 6 и 8. Её объём равен 64. Найдите высоту этой пирамиды.

Пирамида с основанием прямоугольник

Показать решение

Решение

Объём пирамиды вычисляется по формуле V=frac13cdot S_{osn.} cdot h, где S_{osn} — площадь основания, а h — высота пирамиды. Отсюда h = frac{3V}{S_{osn.}}. Площадь основания является площадью прямоугольника со сторонами 6 и 8, поэтому S_{osn.} = 6 cdot 8 = 48. Отсюда h = frac{3cdot64}{48}=4.

Ответ

4

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №111

Тип задания: 8
Тема:
Пирамида

Условие

Боковое ребро правильной четырехугольной пирамиды равно 4, высота равна 2. Найдите объем пирамиды.

Правильная четырехугольная пирамида

Показать решение

Решение

Правильная четырехугольная пирамидаОбъем пирамиды вычисляется по формуле

V=frac13Sh

где S – площадь основания; h – высота пирамиды

Для нахождения площади, найдем диагональ квадрата основания пирамиды. Рассмотрим прямоугольный треугольник, гипотенузой которого является сторона пирамиды, а одним из катетов высота пирамиды. По теореме Пифагора диагональ будет равна:

d=2cdotsqrt{4^2-2^2}=2cdotsqrt{12}=4sqrt{3}

Зная угол CAB = 45^{circ} прямоугольного треугольника ABC мы можем найти сторону AB:

AB=dcdotcos 45^{circ}=4sqrt{3}cdot frac{1}{sqrt{2}}=4sqrt{3}cdot frac{sqrt{2}}{2}=2sqrt{6}

Площадь основания равна:

S = left ( 2sqrt{6} right )^2=4cdot 6=24

Объем пирамиды равен:

V = frac13cdot 24cdot 2=16

Ответ

16

Задание №110

Тип задания: 8
Тема:
Пирамида

Условие

Боковое ребро правильной четырехугольной пирамиды равно 7,5, а сторона основания равна 10. Найдите высоту пирамиды.

Правильная четырехугольная пирамида

Показать решение

Решение

Основанием правильной четырехугольной пирамиды является квадрат. По теореме Пифагора найдем диагональ квадрата, центр которой пересекает вершина пирамиды.

d^2=10^2+10^2=200

d=10sqrt{2}

Рассмотрим прямоугольный треугольник, в котором один катет является половиной диагонали квадрата основания пирамиды, а гипотенуза равна ее боковому ребру. По теореме Пифагора найдем второй катет, являющийся высотой пирамиды:

h^2=(7,5)^2-left ( frac{10sqrt{2}}{2} right )^2=56,25-50=6,25

h = sqrt{6,25} = 2,5

Ответ

2,5

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928

Задачи
ЕГЭ по теме «Пирамида»

B 13 № 901.  В пра­виль­ной
тре­уголь­ной пи­ра­ми­де http://reshuege.ru/formula/a5/a50b32b001d7b7c5bba7d080e4ad8fc7.png ме­ди­а­ны
ос­но­ва­ния http://reshuege.ru/formula/90/902fbdd2b1df0c4f70b4a5d23525e932.png пе­ре­се­ка­ют­ся
в точке http://reshuege.ru/formula/f1/f186217753c37b9b9f958d906208506e.png. Пло­щадь
тре­уголь­ни­ка http://reshuege.ru/formula/90/902fbdd2b1df0c4f70b4a5d23525e932.png равна
2; объем пи­ра­ми­ды равен 6. Най­ди­те длину от­рез­ка http://reshuege.ru/formula/17/17bc10091293fdc562a6db69940ee924.png.

http://mathb.reshuege.ru/get_file?id=565

По­яс­не­ние.

От­ре­зок http://reshuege.ru/formula/17/17bc10091293fdc562a6db69940ee924.png вы­со­та
тре­уголь­ной пи­ра­ми­ды http://reshuege.ru/formula/a5/a50b32b001d7b7c5bba7d080e4ad8fc7.png, ее
объем вы­ра­жа­ет­ся фор­му­лой

http://reshuege.ru/formula/e2/e275345ea9b2808f0d25e0814b7d6512.png

Таким об­ра­зом,

http://reshuege.ru/formula/e6/e6a671e303e6460f798fe2aa2d71d0c6.png

Ответ: 9.

B 13 № 911.  В пра­виль­ной
че­ты­рех­уголь­ной пи­ра­ми­де http://reshuege.ru/formula/47/47a5be4b665b453f634b35cb50a9c6ef.png точка http://reshuege.ru/formula/f1/f186217753c37b9b9f958d906208506e.png –
центр ос­но­ва­ния, http://reshuege.ru/formula/5d/5dbc98dcc983a70728bd082d1a47546e.png –
вер­ши­на, http://reshuege.ru/formula/90/90128f39f47dfc2bf16308129a05bef5.pnghttp://reshuege.ru/formula/49/49308f375ab6a171d68406fc7ceb2201.png. Най­ди­те
бо­ко­вое ребро http://reshuege.ru/formula/3d/3dd6b9265ff18f31dc30df59304b0ca7.png

http://mathb.reshuege.ru/get_file?id=575

По­яс­не­ние.

В пра­виль­ной пи­ра­ми­де
вер­ши­на про­еци­ру­ет­ся в центр ос­но­ва­ния, сле­до­ва­тель­но http://reshuege.ru/formula/98/98d0360b392de5f1d53acdd6489b6e88.png яв­ля­ет­ся
вы­со­той пи­ра­ми­ды. тогда по тео­ре­ме Пи­фа­го­ра

http://reshuege.ru/formula/c2/c2ba2352e96a51ab233a60b83fa04708.png

Ответ: 17.

B 13 № 920.  В пра­виль­ной
тре­уголь­ной пи­ра­ми­де http://reshuege.ru/formula/a5/a50b32b001d7b7c5bba7d080e4ad8fc7.png точка http://reshuege.ru/formula/69/69691c7bdcc3ce6d5d8a1361f22d04ac.png –
се­ре­ди­на ребра http://reshuege.ru/formula/b8/b86fc6b051f63d73de262d4c34e3a0a9.pnghttp://reshuege.ru/formula/5d/5dbc98dcc983a70728bd082d1a47546e.png –
вер­ши­на. Из­вест­но, что http://reshuege.ru/formula/f8/f85b7b377112c272bc87f3e73f10508d.png=3, а
пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды равна 45. Най­ди­те длину от­рез­ка http://reshuege.ru/formula/4e/4e0d4f6ce30646f5a3f3e2a7422c1c5a.png.

http://mathb.reshuege.ru/get_file?id=627

По­яс­не­ние.

Най­дем пло­щадь
грани http://reshuege.ru/formula/7f/7f02460d2ad12b96acd1384f0a821562.png:

http://reshuege.ru/formula/d1/d1971d2397034ad70a2614a411aba751.png

От­ре­зок http://reshuege.ru/formula/4e/4e0d4f6ce30646f5a3f3e2a7422c1c5a.png яв­ля­ет­ся
ме­ди­а­ной пра­виль­но­го тре­уголь­ни­ка http://reshuege.ru/formula/7f/7f02460d2ad12b96acd1384f0a821562.png, а
зна­чит, его вы­со­той. Тогда

http://reshuege.ru/formula/da/da47293c95e5e9cd8050067eed2e5435.png

Ответ: 10.

B 13 № 27074.  Объем па­рал­ле­ле­пи­пе­да http://reshuege.ru/formula/1f/1f98fd4abe2a7ebc84481105039f3a71.png равен
9. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды http://reshuege.ru/formula/1b/1b07189cd22709dd0772d42e7af9452f.png.

http://mathb.reshuege.ru/get_file?id=2844

По­яс­не­ние.

Объем па­рал­ле­ле­пи­пе­да
равен http://reshuege.ru/formula/b8/b87c138964cee630fa6b15a51bee8ef3.png ,
где http://reshuege.ru/formula/5d/5dbc98dcc983a70728bd082d1a47546e.png –
пло­щадь ос­но­ва­ния, http://reshuege.ru/formula/25/2510c39011c5be704182423e3a695e91.png –
вы­со­та. Объем пи­ра­ми­ды равен

http://reshuege.ru/formula/04/04c7149a0b83a83dc3a4322eecabbc48.png,

где http://reshuege.ru/formula/13/1346bf53b2b94169403472f504b48e15.png –
пло­щадь ос­но­ва­ния пи­ра­ми­ды, по по­стро­е­нию рав­ная по­ло­ви­не пло­ща­ди
ос­но­ва­ния па­рал­ле­ле­пи­пе­да. Тогда объем пи­ра­ми­ды в 6 раз мень­ше объ­е­ма
па­рал­ле­ле­пи­пе­да.

Ответ: 1,5.

B 13 № 27085.  Во сколь­ко раз
уве­ли­чит­ся объем пра­виль­но­го тет­ра­эд­ра, если все его ребра уве­ли­чить
в два раза?

http://mathb.reshuege.ru/get_file?id=791

По­яс­не­ние.

Объёмы по­доб­ных тел
от­но­сят­ся как куб ко­эф­фи­ци­ен­та по­до­бия. По­это­му если все ребра уве­ли­чить
в 2 раза, объём уве­ли­чит­ся в 8 раз.

Это же сле­ду­ет из фор­му­лы
для объёма пра­виль­но­го тет­ра­эд­ра http://reshuege.ru/formula/ff/ff7a002b073dae04af21024b38160cae.png,
где http://reshuege.ru/formula/0c/0cc175b9c0f1b6a831c399e269772661.png —
длина его ребра.

Ответ: 8.

B 13 № 27089.  Во сколь­ко раз
уве­ли­чит­ся объем пи­ра­ми­ды, если ее вы­со­ту уве­ли­чить в че­ты­ре раза?

По­яс­не­ние.

Объем пи­ра­ми­ды равен

http://reshuege.ru/formula/ed/ed99feac685faf1877477f6ab12f1cd1.png,

где  http://reshuege.ru/formula/5d/5dbc98dcc983a70728bd082d1a47546e.png –
пло­щадь ос­но­ва­ния, а  http://reshuege.ru/formula/25/2510c39011c5be704182423e3a695e91.png –
вы­со­та пи­ра­ми­ды. При уве­ли­че­нии вы­со­ты в 4 раза объем пи­ра­ми­ды
также уве­ли­чит­ся в 4 раза.

Ответ: 4.

B 13 № 27113.  Объем тре­уголь­ной
пи­ра­ми­ды http://reshuege.ru/formula/a5/a50b32b001d7b7c5bba7d080e4ad8fc7.png, яв­ля­ю­щей­ся
ча­стью пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды http://reshuege.ru/formula/4e/4e4bfc676db9a62f3d0cc79703a4cd78.png,
равен 1. Най­ди­те объем ше­сти­уголь­ной пи­ра­ми­ды.

http://mathb.reshuege.ru/get_file?id=831

По­яс­не­ние.

Дан­ные пи­ра­ми­ды
имеют общую вы­со­ту, по­это­му их объ­е­мы со­от­но­сят­ся как пло­ща­ди их ос­но­ва­ний.
Пло­щадь пра­виль­но­го ше­сти­уголь­ни­ка со сто­ро­ной http://reshuege.ru/formula/0c/0cc175b9c0f1b6a831c399e269772661.png равна http://reshuege.ru/formula/0f/0f831d62301c9a79cfa177a87c7d47d3.png Пло­щадь
же рав­но­бед­рен­но­го тре­уголь­ни­ка http://reshuege.ru/formula/79/79661ff25e39af70fc48d7785f587e85.png с
бо­ко­вой сто­ро­ной http://reshuege.ru/formula/0c/0cc175b9c0f1b6a831c399e269772661.png и
углах при ос­но­ва­нии http://reshuege.ru/formula/92/920bb6f12a119bc7b83de6e1454ab1d7.png равна http://reshuege.ru/formula/78/7815b554afed3d765d81c445dc206c89.png По­лу­ча­ем,
что пло­щадь ше­сти­уголь­ни­ка боль­ше пло­ща­ди тре­уголь­ни­ка  http://reshuege.ru/formula/79/79661ff25e39af70fc48d7785f587e85.png  в
 http://reshuege.ru/formula/07/07c1f64635fe5223e9ae99adcb26b552.png раз
и равна 6.

Ответ: 6.

B 13 № 27114.  Объем пра­виль­ной
че­ты­рех­уголь­ной пи­ра­ми­ды http://reshuege.ru/formula/47/47a5be4b665b453f634b35cb50a9c6ef.png равен
12. Точка http://reshuege.ru/formula/3a/3a3ea00cfc35332cedf6e5e9a32e94da.png –
се­ре­ди­на ребра http://reshuege.ru/formula/a0/a06b33d1ea28e90733617ec889d4e76e.png. Най­ди­те
объем тре­уголь­ной пи­ра­ми­ды http://reshuege.ru/formula/2b/2b720aca10013734090cdecb9ae6a40b.png.

http://mathb.reshuege.ru/get_file?id=832

По­яс­не­ние.

Пло­щадь ос­но­ва­ния
пи­ра­ми­ды http://reshuege.ru/formula/2b/2b720aca10013734090cdecb9ae6a40b.png по
усло­вию в 2 раза мень­ше пло­ща­ди ос­но­ва­ния пи­ра­ми­ды http://reshuege.ru/formula/47/47a5be4b665b453f634b35cb50a9c6ef.png.
Также вы­со­та дан­ной тре­уголь­ной пи­ра­ми­ды в 2 раза мень­ше вы­со­ты пи­ра­ми­ды http://reshuege.ru/formula/47/47a5be4b665b453f634b35cb50a9c6ef.png (т.к.
точка http://reshuege.ru/formula/3a/3a3ea00cfc35332cedf6e5e9a32e94da.png –
се­ре­ди­на ребра http://reshuege.ru/formula/a0/a06b33d1ea28e90733617ec889d4e76e.png). По­сколь­ку
объем пи­ра­ми­ды равен http://reshuege.ru/formula/ed/ed99feac685faf1877477f6ab12f1cd1.png, то
объем дан­ной тре­уголь­ной пи­ра­ми­ды в 4 раза мень­ше объ­е­ма пи­ра­ми­ды http://reshuege.ru/formula/47/47a5be4b665b453f634b35cb50a9c6ef.png и
равен 3.

Ответ: 3.

B 13 № 27115.  От тре­уголь­ной
пи­ра­ми­ды, объем ко­то­рой равен 12, от­се­че­на тре­уголь­ная пи­ра­ми­да
плос­ко­стью, про­хо­дя­щей через вер­ши­ну пи­ра­ми­ды и сред­нюю линию ос­но­ва­ния.
Най­ди­те объем от­се­чен­ной тре­уголь­ной пи­ра­ми­ды.

http://mathb.reshuege.ru/get_file?id=6967

По­яс­не­ние.

Объем пи­ра­ми­ды http://reshuege.ru/formula/ed/ed99feac685faf1877477f6ab12f1cd1.png. Пло­щадь
ос­но­ва­ния от­се­чен­ной части мень­ше в 4 раза (так как вы­со­та и сто­ро­на
тре­уголь­ни­ка в ос­но­ва­нии мень­ше ис­ход­ных в 2 раза), по­это­му и объем
остав­шей­ся части мень­ше в 4 раза. Тем самым, он равен 3.

Ответ: 3.

B 13 № 27131.  Во сколь­ко раз
уве­ли­чит­ся пло­щадь по­верх­но­сти пра­виль­но­го тет­ра­эд­ра, если все его
ребра уве­ли­чить в два раза?

http://mathb.reshuege.ru/get_file?id=846

По­яс­не­ние.

Пло­щадь по­верх­но­сти
тет­ра­эд­ра равна сумме пло­ща­дей его гра­ней, ко­то­рые равны http://reshuege.ru/formula/0f/0f345f7a9de28c8bc270e087a8e6de64.png. По­это­му
при уве­ли­че­нии ребер вдвое, пло­щадь по­верх­но­сти уве­ли­чит­ся в 4 раза.

Ответ: 4.

B 13 № 27157.  Во сколь­ко раз
уве­ли­чит­ся пло­щадь по­верх­но­сти ок­та­эд­ра, если все его ребра уве­ли­чить
в 3 раза?

http://mathb.reshuege.ru/get_file?id=861

По­яс­не­ние.

При уве­ли­че­нии ребер
в 3 раза пло­ща­ди тре­уголь­ни­ков, об­ра­зу­ю­щих грани ок­та­эд­ра, уве­ли­чат­ся
в 9 раз, по­это­му сум­мар­ная пло­щадь по­верх­но­сти также уве­ли­чит­ся в 9
раз.

Ответ: 9.

B 13 № 27172.  Во сколь­ко раз уве­ли­чит­ся пло­щадь
по­верх­но­сти пи­ра­ми­ды, если все ее ребра уве­ли­чить в 2 раза?

По­яс­не­ние.

Пло­ща­ди
по­доб­ных тел от­но­сят­ся как квад­рат ко­эф­фи­ци­ен­та по­до­бия. По­это­му,
если все ребра уве­ли­че­ны в 2 раза, пло­щадь по­верх­но­сти уве­ли­чит­ся в 4
раза.

B 13 № 27175.  Ребра тет­ра­эд­ра
равны 1. Най­ди­те пло­щадь се­че­ния, про­хо­дя­ще­го через се­ре­ди­ны че­ты­рех
его ребер.

http://mathb.reshuege.ru/get_file?id=879

По­яс­не­ние.

В пра­виль­ном тет­ра­эд­ре
скре­щи­ва­ю­щи­е­ся ребра пер­пен­ди­ку­ляр­ны. Каж­дая сто­ро­на се­че­ния яв­ля­ет­ся
сред­ней ли­ни­ей со­от­вет­ству­ю­щей грани, ко­то­рая, как из­вест­но, в 2
раза мень­ше па­рал­лель­ной ей сто­ро­ны и равна по­это­му 0,5. Зна­чит се­че­ни­ем
яв­ля­ет­ся квад­рат со сто­ро­ной 0,5. Тогда пло­щадь се­че­ния http://reshuege.ru/formula/ae/ae461468695934612bb2838d79624b25.png.

Ответ: 0,25.

B 13 № 27182.  Объем па­рал­ле­ле­пи­пе­да http://reshuege.ru/formula/3d/3dcbf64aebe65200503211a8fc5a3518.pngравен
12. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды http://reshuege.ru/formula/39/394f57ae405c9b35d2f2bfc39236818d.png.

http://mathb.reshuege.ru/get_file?id=885

По­яс­не­ние.

Объем па­рал­ле­ле­пи­пе­да
равен http://reshuege.ru/formula/23/239ce5c86673493f4796e40b87d2a8db.png а
объем пи­ра­ми­ды равен http://reshuege.ru/formula/27/2717d88933fe99bc213931dcee2fd89f.png. Вы­со­та
пи­ра­ми­ды равна вы­со­те па­рал­ле­ле­пи­пе­да, а ее ос­но­ва­ние вдвое мень­ше,
по­это­му

http://reshuege.ru/formula/2f/2f6831e429e44c74384c122f0422b66c.png

Ответ: 2.

B 13 № 27184.  Объем куба равен
12. Най­ди­те объем че­ты­рех­уголь­ной пи­ра­ми­ды, ос­но­ва­ни­ем ко­то­рой
яв­ля­ет­ся грань куба, а вер­ши­ной — центр куба.

http://mathb.reshuege.ru/get_file?id=886

По­яс­не­ние.

Объем пи­ра­ми­ды равен

http://reshuege.ru/formula/d2/d2b83205f72344f0d1ded9402fa3a393.png.Ответ: 2.

При­ме­ча­ние.

Куб со­сто­ит из 6
таких пи­ра­мид, объем каж­дой из них равен 2.

B 13 № 77154.  Най­ди­те объем
па­рал­ле­ле­пи­пе­да http://reshuege.ru/formula/1f/1f98fd4abe2a7ebc84481105039f3a71.png, если
объем тре­уголь­ной пи­ра­ми­ды http://reshuege.ru/formula/48/487b86fcb531a49e225857d731603a65.png равен
3.

http://mathb.reshuege.ru/get_file?id=919

По­яс­не­ние.

Объем па­рал­ле­ле­пи­пе­да
равен http://reshuege.ru/formula/b8/b87c138964cee630fa6b15a51bee8ef3.png,
где http://reshuege.ru/formula/5d/5dbc98dcc983a70728bd082d1a47546e.png –
пло­щадь ос­но­ва­ния, http://reshuege.ru/formula/25/2510c39011c5be704182423e3a695e91.png –
вы­со­та. Объем пи­ра­ми­ды равен http://reshuege.ru/formula/04/04c7149a0b83a83dc3a4322eecabbc48.png,
где http://reshuege.ru/formula/13/1346bf53b2b94169403472f504b48e15.png –
пло­щадь ос­но­ва­ния пи­ра­ми­ды, рав­ная по­ло­ви­не пло­ща­ди ос­но­ва­ния
па­рал­ле­ле­пи­пе­да. Тогда объем па­рал­ле­ле­пи­пе­да в 6 раз боль­ше объ­е­ма
пи­ра­ми­ды http://reshuege.ru/formula/13/133ce207f78ef376938a861c4e8fe50a.png.

Ответ: 18.

B 13 № 284351. В пра­виль­ной
тре­уголь­ной пи­ра­ми­де http://reshuege.ru/formula/a5/a50b32b001d7b7c5bba7d080e4ad8fc7.png http://reshuege.ru/formula/e1/e1e1d3d40573127e9ee0480caf1283d6.png —
се­ре­ди­на ребра http://reshuege.ru/formula/f8/f85b7b377112c272bc87f3e73f10508d.pnghttp://reshuege.ru/formula/5d/5dbc98dcc983a70728bd082d1a47546e.png —
вер­ши­на. Из­вест­но, чтоhttp://reshuege.ru/formula/59/5985309ccee9b7f6ce883983d55aad5e.png,
а http://reshuege.ru/formula/77/77836d74f6d6d449a78f489d8a015b23.png. Най­ди­те
пло­щадь бо­ко­вой по­верх­но­сти.

По­яс­не­ние.

http://mathb.reshuege.ru/get_file?id=705Пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной
тре­уголь­ной пи­ра­ми­ды равна по­ло­ви­не про­из­ве­де­ния пе­ри­мет­ра ос­но­ва­ния
на апо­фе­му:

http://reshuege.ru/formula/a9/a9bc4dc3c20a19da70e33b526275c628.png

Ответ:3.

B 13 № 284356. В пра­виль­ной
тре­уголь­ной пи­ра­ми­де http://reshuege.ru/formula/a5/a50b32b001d7b7c5bba7d080e4ad8fc7.png ме­ди­а­ны
ос­но­ва­ния пе­ре­се­ка­ют­ся в точке http://reshuege.ru/formula/44/44c29edb103a2872f519ad0c9a0fdaaa.png.
Объем пи­ра­ми­ды равен http://reshuege.ru/formula/c4/c4ca4238a0b923820dcc509a6f75849b.pnghttp://reshuege.ru/formula/44/44a0fd55e9c56ead2ff45a6dc0aa0212.png. Най­ди­те
пло­щадь тре­уголь­ни­ка http://reshuege.ru/formula/90/902fbdd2b1df0c4f70b4a5d23525e932.png.

По­яс­не­ние.

http://mathb.reshuege.ru/get_file?id=11217Ос­но­ва­ние пи­ра­ми­ды — рав­но­сто­рон­ний
тре­уголь­ник, по­это­му, http://reshuege.ru/formula/44/44c29edb103a2872f519ad0c9a0fdaaa.png яв­ля­ет­ся
цен­тром ос­но­ва­ния, а http://reshuege.ru/formula/67/674769e3326f8cf937af4282f2815c02.png —
вы­со­той пи­ра­ми­ды http://reshuege.ru/formula/a5/a50b32b001d7b7c5bba7d080e4ad8fc7.png. Ее
объем вы­чис­ля­ет­ся по фор­му­ле http://reshuege.ru/formula/ca/cab38f4d96b3405058cf2bcf1ca2c683.png.
Тогда

http://reshuege.ru/formula/dc/dccd11c466e013bf1455a59a92aa324c.png.

Ответ: 3.

Понравилась статья? Поделить с друзьями:
  • Правильная парковка в гараж на экзамене
  • Правило чередующиеся гласные в корне слова егэ
  • Правило чаргаффа задания егэ
  • Правило чаргаффа биология егэ
  • Правило фано информатика егэ