Логарифмом положительного числа $b$ по основанию а, где $a>0$, $a≠1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.
Пример:
$log_{2}8=3$, т.к. $2^{3}=8;$
$log_{3}{1}/{27}=-3$, т.к $3^{-3}={1}/{27}$
Особенно можно выделить три формулы:
$log_{a}a=1;$
$log_{a}1=0;$
$log_{a}a^b=b.$
Основное логарифмическое тождество:
$a^{log_{a}b}=b$
Это равенство справедливо при $b>0, a>0, a≠1$
Пример:
$4^{log_{4}5}=5;$
$3^{-2log_{3}5}={3^{log_{3}5^{-2}}}=5^{-2}={1}/{25}$
Десятичным логарифмом числа называют логарифм этого числа по основанию $10$ и пишут $lgb$ вместо $log_{10}b$.
Пример:
$lg100000=lg10^5=5$
Ответ: $5$
Натуральным логарифмом числа называют логарифм этого числа по основанию $е$, где $е$ – иррациональное число, приближенно равное $2.7$. При этом пишут $lnb$, вместо $log_{e}b$
Свойства логарифмов.
Все свойства логарифмов мы будем рассматривать для $a>0, a≠1, b>0, c>0, m$ – любое действительное число.
1. Для любых действительных чисел $m$ и $n$ справедливы равенства:
$log{_а}b^m=mlog_{a}b;$
$log_{a^m}b={1}/{m}log_{a}b.$
$log_{a^n}b^m={m}/{n}log_{a}b$
Пример:
$log_{3}3^{10}=10log_{3}3=10;$
$log_{5^3}7={1}/{3}log_{5}7;$
$log_{3^7}4^5={5}/{7}log_{3}4;$
2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.
$log_{a}(bc)=log_{a}b+log_{a}c$
Пример:
Вычислить $log_{12}2+log_{12}72$
Применим второе свойство наоборот: сумма логарифмов по одинаковому основанию равна логарифму произведения подлогарифмических выражений
$log_{12}2+log_{12}72=log_{12}2·72=log_{12}144=2$
Ответ: $2$
3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию
$log_{a}{b}/{c}=log_{a}b-log_{a}c$
Пример:
Вычислить $log_{5}75-log_{5}3$
Решение:
Разность логарифмов с одинаковыми основаниями равна логарифму частного подлогарифмических выражений
$log_{5}75-log_{5}3=log_{5}{75}/{3}=log_{5}25=2$
Ответ: $2$
4. При умножении двух логарифмов можно поменять местами их основания
$log_{a}b·log_{c}d=log_{c}b·log_{a}d$, если $a$, $b$, $c$, $d>0$, $a≠1$, $b≠1.$
5. $c^{log_{a}b}=b^{log_{a}c}$, где $а, b, c>0, a≠1$
6. Формула перехода к новому основанию
$log_{a}b={log_{c}b}/{log_{c}a}$
7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение
$log_{a}b={1}/{log_{b}a}$
Пример:
Найдите значение выражения: ${log_{2}∜{13}}/{log_{2}13}$
Решение:
В выражении видим, что был произведен переход к новому основанию $2$. Нам необходимо вернуться к старому основанию $13$.
${log_{2}∜{13}}/{log_{2}13}=log_{13}∜{13}$
Далее вычислим получившийся логарифм, для этого подлогарифмическое выражение необходимо представить в виде степени. Любой корень можно выразить в виде степени с дробным показателем, в знаменателе показателя будет находиться показатель корня
$∜{13}=13^{{1}/{4}}$
$log_{13}∜{13}=log_{13}13^{{1}/{4}}={1}/{4}=0.25$
Ответ: $0.25$
ЕГЭ Профиль №9. Вычисление значений логарифмических выражений
ЗАДАНИЕ В11. ЛОГАРИФМИЧЕСКИЕ ВЫРАЖЕНИЯ.
1.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
2.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения:
13. Найдите значение выражения:
14. Найдите значение выражения:
15. Найдите значение выражения:
3.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
4.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
5.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
6.1.Найдите значение выражения .
2. Найдите значение выражения
3. Найдите значение выражения
4. Найдите значение выражения
5. Найдите значение выражения
6. Найдите значение выражения
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
7.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
8.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
9.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
10.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
11.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
13.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения
15. Найдите значение выражения .
14.1. Найдите значение выражения .
2. Найдите значение выражения
3. Найдите значение выражения
4. Найдите значение выражения
5. Найдите значение выражения
6. Найдите значение выражения
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
15.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
16.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
17.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
18.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
19.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
20.1.Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
21.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
22.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
23.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
24.1.Найдите значение выражения .
2. Найдите значение выражения
3. Найдите значение выражения
4. Найдите значение выражения
5. Найдите значение выражения
6. Найдите значение выражения
7. Найдите значение выражения
8. Найдите значение выражения
9. Найдите значение выражения
10. Найдите значение выражения
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
25.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
26.1. Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
27.1.Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
28.1.Найдите значение выражения .
2. Найдите значение выражения .
3. Найдите значение выражения .
4. Найдите значение выражения .
5. Найдите значение выражения .
6. Найдите значение выражения .
7. Найдите значение выражения .
8. Найдите значение выражения .
9. Найдите значение выражения .
10. Найдите значение выражения .
11. Найдите значение выражения .
12. Найдите значение выражения .
13. Найдите значение выражения .
14. Найдите значение выражения .
15. Найдите значение выражения .
29.1. Найдите значение выражения , если .
2. Найдите значение выражения , если .
3. Найдите значение выражения , если .
4. Найдите значение выражения , если .
5. Найдите значение выражения , если .
6. Найдите значение выражения , если .
7. Найдите значение выражения , если .
8. Найдите значение выражения , если .
9. Найдите значение выражения , если .
10. Найдите значение выражения , если .
11. Найдите значение выражения , если .
12. Найдите значение выражения , если .
13. Найдите значение выражения , если .
14. Найдите значение выражения , если .
15. Найдите значение выражения , если .
30.1. Найдите , если .
2. Найдите , если .
3. Найдите , если .
4. Найдите , если .
5. Найдите , если .
6. Найдите , если .
7. Найдите , если .
8. Найдите , если .
9. Найдите , если .
10. Найдите , если .
11. Найдите , если .
12. Найдите , если .
13. Найдите , если .
14. Найдите , если .
15. Найдите , если .
31.1. Найдите , если .
2. Найдите , если .
3. Найдите , если .
4. Найдите , если .
5. Найдите , если .
6. Найдите , если .
7. Найдите , если .
8. Найдите , если .
9. Найдите , если .
10. Найдите , если .
11. Найдите , если .
12. Найдите , если .
13. Найдите , если .
14. Найдите , если .
15. Найдите , если .
32.1. Вычислите значение выражения: .
2. Вычислите значение выражения: .
3. Вычислите значение выражения: .
4 Вычислите значение выражения: .
5. Вычислите значение выражения: .
6. Вычислите значение выражения: .
7. Вычислите значение выражения: .
8. Вычислите значение выражения: .
9. Вычислите значение выражения: .
10. Вычислите значение выражения: .
11. Вычислите значение выражения: .
12. Вычислите значение выражения: .
13. Вычислите значение выражения: .
14. Вычислите значение выражения: .
15. Вычислите значение выражения: .
В11. ЛОГАРИФМИЧЕСКИЕ ВЫРАЖЕНИЯ. ОТВЕТЫ.
Задание 903
Найдите значение выражения $$log^{3}_{sqrt{3}}{{frac{1}{3}}^3}$$
Ответ: -216
Скрыть
Рассмотрим сам логарифм: $$ log_{sqrt{3}}{{frac{1}{3}}^3}=log_{3^{1/2}}{3^{-3}}=frac{1}{frac{1}{2}}*left(-3right)log_33=-6 $$ Так как он был в третьей степени, то возведем -6 в нее и получим -216
Задание 939
Известно, что $$log_a b *log_b c = -5$$ . Найдите значение выражения $$log_c a$$
Ответ: -0.2
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$log_a b *log_b c = frac{1}{log_b a}*log_b c=frac{log_b c}{log_b a}=log_a c=-5$$ $$log_c a=frac{1}{log_a c}=frac{1}{-5}=-0.2$$
Задание 2494
Найдите значение выражения: $$6^{2+log_{6}8}$$
Ответ: 288
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$6^{2+log_{6}8}=$$ $$=36cdot 6^{log_{6}8}=36cdot 8=288$$
Задание 2825
Найдите значение выражения: $$frac{log_{9}10}{log_{9}11}+log_{11}0,1$$
Ответ: 0
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$frac{log_{9}10}{log_{9}11}+log_{11}0,1=$$ $$=log_{11}10+log_{11}0,1=log_{11}(10cdot 0,1)=log_{11}1=0$$
Задание 3030
Найдите значение выражения $$64^{log_{8}sqrt{3}}$$
Ответ: 3
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$64^{log_{8}sqrt{3}}=8^{2log_{8}sqrt{3}}=8^{log_{8}3}=3$$
Задание 3114
Найдите значение выражения $$lg(lgsqrt[10]{10})$$
Ответ: -1
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$lg(lgsqrt[10]{10})=lgfrac{1}{10}cdotlg 10=lgfrac{1}{10}=-1$$
Задание 3285
Найдите значение выражения $$log_5 312,5 — log_5 2,5$$
Ответ: 3
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$log_5 312,5 — log_5 2,5 = log_5 frac{312,5}{2,5}= log_5 125 = 3$$
Задание 3372
Найдите значение выражения: $$(log_{0,5}sqrt{8sqrt[3]{2}})^{-1}$$
Ответ: -0,6
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$(log_{0,5}sqrt{8sqrt[3]{2}})^{-1}=$$ $$=(log_{0,5}(2^{3}cdot2^{frac{1}{3}})^{frac{1}{2}})^{-1}=$$ $$=(-1cdotlog_{2}2^{frac{5}{3}})^{-1}=(-frac{5}{3})^{-1}=-frac{3}{5}=-0,6$$
Задание 4236
Найдите значение выражения $$(log_{2}16)cdot(log_{6}36)$$
Ответ: 8
Задание 4237
Найдите значение выражения $$7cdot5^{log_{5}4}$$
Ответ: 28
Задание 4238
Найдите значение выражения $$36^{log_{6}5}$$
Ответ: 25
Задание 4239
Найдите значение выражения $$log_{0,25}2$$
Ответ: -0,5
Задание 4240
Найдите значение выражения $$log_{4}8$$
Ответ: 1,5
Задание 4241
Найдите значение выражения $$log_{5}60-log_{5}12$$
Ответ: 1
Задание 4242
Найдите значение выражения $$log_{5}0,2+log_{0,5}4$$
Ответ: -3
9. Преобразование числовых и буквенных выражений
1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Числовые логарифмические выражения
Логарифм по основанию (a) от (b) – это число (t), которое показывает, в какую степень нужно возвести (a), чтобы получить (b).
Ограничения: числа (a) и (b) такие, что (a>0, ane 1, b>0).
Таким образом, верно основное логарифмическое тождество [Large{{color{royalblue}{a^t=b quadLeftrightarrowquad
log_a{b}=t}}}]
Т.к. мы имеем право возводить в любую степень, то (tin
mathbb{R}).
(blacktriangleright) Если (a,b,c) – числа, удовлетворяющие ограничениям: (a,b,c>0, ane 1), то справедливы следующие формулы:
[begin{array}{|ccc|}
hline textbf{(1)} log_a1=0&&textbf{(2)} log_aa=1\
&&\
textbf{(3)} log_{a^n}{b^m}=frac mnlog_ab&&textbf{(4)}
a^{log_bc}=c^{log_ba}\
&&\
textbf{(5)} log_a{bc}=log_ab+log_ac&&textbf{(6)}
log_a{dfrac bc}=log_ab-log_ac\
&&\
textbf{(7)} log_abcdot log_bc=log_ac & text{или}
&textbf{(7′}) log_bc=dfrac{log_ac}{log_ab}\
&&\
hline
end{array}]
Заметим, что при выполнении ограничений данные формулы верны в обе стороны!
Некоторые частные случаи, которыми удобно пользоваться:
(blacktriangleright) Частные случаи формул (3) и (4): [m=log_a{a^m} text{и} b=a^{log_ab}]
С помощью первой формулы нагляднее видно, как заменить число на логарифм по нужному основанию:
(4=log_2{2^4}=log_2{16});
а с помощью второй – как заменить число на степень с нужным основанием:
(4=3^{log_34}).
(blacktriangleright) Частные случаи формул (7) и (7’): [log_abcdot log_ba=1 text{и}
log_ab=dfrac1{log_ba}]
Пример:
(log_3{25}+dfrac2{log_{frac15}3}={small{text{(применили}}}
{small{text{ формулу}}}
(2))=log_3{25}+2log_3{dfrac15}=log_3{25}+log_3{dfrac1{25}}=log_3{left(25cdotdfrac1{25}right)}=0)
Задание
1
#553
Уровень задания: Равен ЕГЭ
Найдите значение выражения ((log_{17}289) cdot left(log_{500}dfrac{1}{500}right)).
По определению логарифма (log_{17}289) – это степень, в которую надо возвести 17, чтобы получить 289. Таким образом, (log_{17}289 = 2). Аналогично можно сделать вывод, что [log_{500}dfrac{1}{500} = -1.] Итого: ((log_{17}289) cdot left(log_{500}dfrac{1}{500}right) = -2).
Ответ: -2
Задание
2
#554
Уровень задания: Равен ЕГЭ
Найдите значение выражения (16^{log_{2}5}).
Так как (a^{log_{b}c} = c^{log_{b}a}), то (16^{log_{2}5} = 2^{4 cdot log_{2}5} = 2^{log_{2}5^4} = 2^{log_{2}625} = 625^{log_{2}2} = 625^1 = 625).
Ответ: 625
Задание
3
#555
Уровень задания: Равен ЕГЭ
Найдите значение выражения (log_{81}243).
По свойствам логарифма (log_{81}243 = log_{3^4}3^5 = dfrac{5}{4}log_{3}3 = dfrac{5}{4} = 1,25).
Ответ: 1,25
Задание
4
#556
Уровень задания: Равен ЕГЭ
Найдите значение выражения (log_{11}242 — log_{121}4).
По свойствам логарифма [log_{121}4 = log_{11^2}4 = 0,5log_{11}4 = log_{11}(4^{0,5}) = log_{11}2.] Тогда (log_{11}242 — log_{121}4 = log_{11}242 — log_{11}2 = log_{11}dfrac{242}{2} = log_{11}121 = log_{11}11^2 = 2log_{11}11 = 2).
Ответ: 2
Задание
5
#557
Уровень задания: Равен ЕГЭ
Найдите значение выражения (log_{0,7}20 — log_{0,7}14).
По свойствам логарифма [log_{0,7}20 — log_{0,7}14 = log_{0,7}dfrac{20}{14} = log_{frac{7}{10}}dfrac{10}{7} = -1,] ведь по определению логарифма (log_{frac{7}{10}}dfrac{10}{7}) – это степень, в которую надо возвести (dfrac{7}{10}), чтобы получить (dfrac{10}{7}).
Ответ: -1
Задание
6
#558
Уровень задания: Равен ЕГЭ
Найдите значение выражения (dfrac{log_{15}1000}{log_{225}{10^4}}).
По свойствам логарифма [dfrac{log_{15}1000}{log_{225}{10^4}} = dfrac{log_{15}1000}{0,5log_{15}{10^4}} = dfrac{log_{15}1000}{log_{15}{(10^4})^{0,5}} = dfrac{log_{15}1000}{log_{15}{10^2}} = log_{100}1000 = log_{10^2}10^3 = dfrac{3}{2}log_{10}10 = dfrac{3}{2} = 1,5.]
Ответ: 1,5
Задание
7
#559
Уровень задания: Равен ЕГЭ
Найдите значение выражения (log_{7}144 cdot log_{12}343).
По свойствам логарифма [log_{7}144 cdot log_{12}343 = log_{7}(12^2) cdot log_{12}(7^3) = 2cdot 3 cdot log_{7}12 cdot log_{12}7 = 6 cdot log_{7}12 cdot log_{12}7 = 6cdotlog_{7}7 = 6,] потому что (log_{a}bcdotlog_{b}c = log_{a}c).
Ответ: 6
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
14 января 2018
В закладки
Обсудить
Жалоба
Логарифмы в заданиях ЕГЭ
Большая часть заданий, включенных в ЕГЭ, представляет собой задания на вычисление значений числовых логарифмических выражений.
При подготовке следует обратить внимание на формулу перехода к новому основанию логарифма и следствия из нее. Задачи на использование этих формул в школьных учебниках практически не встречаются.
Материал для проведения самостоятельных работ. 15 вариантов по 28 заданий. Ответы прилагаются.
log-sm.docx
Логарифмом положительного числа $b$ по основанию а, где $a>0$, $a≠1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.
Пример:
$log_{2}8=3$, т.к. $2^{3}=8;$
$log_{3}{1}/{27}=-3$, т.к $3^{-3}={1}/{27}$
Особенно можно выделить три формулы:
$log_{a}a=1;$
$log_{a}1=0;$
$log_{a}a^b=b.$
Основное логарифмическое тождество:
$a^{log_{a}b}=b$
Это равенство справедливо при $b>0, a>0, a≠1$
Пример:
$4^{log_{4}5}=5;$
$3^{-2log_{3}5}={3^{log_{3}5^{-2}}}=5^{-2}={1}/{25}$
Десятичным логарифмом числа называют логарифм этого числа по основанию $10$ и пишут $lgb$ вместо $log_{10}b$.
Пример:
$lg100000=lg10^5=5$
Ответ: $5$
Натуральным логарифмом числа называют логарифм этого числа по основанию $е$, где $е$ – иррациональное число, приближенно равное $2.7$. При этом пишут $lnb$, вместо $log_{e}b$
Свойства логарифмов.
Все свойства логарифмов мы будем рассматривать для $a>0, a≠1, b>0, c>0, m$ – любое действительное число.
1. Для любых действительных чисел $m$ и $n$ справедливы равенства:
$log{_а}b^m=mlog_{a}b;$
$log_{a^m}b={1}/{m}log_{a}b.$
$log_{a^n}b^m={m}/{n}log_{a}b$
Пример:
$log_{3}3^{10}=10log_{3}3=10;$
$log_{5^3}7={1}/{3}log_{5}7;$
$log_{3^7}4^5={5}/{7}log_{3}4;$
2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.
$log_{a}(bc)=log_{a}b+log_{a}c$
Пример:
Вычислить $log_{12}2+log_{12}72$
Применим второе свойство наоборот: сумма логарифмов по одинаковому основанию равна логарифму произведения подлогарифмических выражений
$log_{12}2+log_{12}72=log_{12}2·72=log_{12}144=2$
Ответ: $2$
3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию
$log_{a}{b}/{c}=log_{a}b-log_{a}c$
Пример:
Вычислить $log_{5}75-log_{5}3$
Решение:
Разность логарифмов с одинаковыми основаниями равна логарифму частного подлогарифмических выражений
$log_{5}75-log_{5}3=log_{5}{75}/{3}=log_{5}25=2$
Ответ: $2$
4. При умножении двух логарифмов можно поменять местами их основания
$log_{a}b·log_{c}d=log_{c}b·log_{a}d$, если $a$, $b$, $c$, $d>0$, $a≠1$, $b≠1.$
5. $c^{log_{a}b}=b^{log_{a}c}$, где $а, b, c>0, a≠1$
6. Формула перехода к новому основанию
$log_{a}b={log_{c}b}/{log_{c}a}$
7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение
$log_{a}b={1}/{log_{b}a}$
Пример:
Найдите значение выражения: ${log_{2}∜{13}}/{log_{2}13}$
Решение:
В выражении видим, что был произведен переход к новому основанию $2$. Нам необходимо вернуться к старому основанию $13$.
${log_{2}∜{13}}/{log_{2}13}=log_{13}∜{13}$
Далее вычислим получившийся логарифм, для этого подлогарифмическое выражение необходимо представить в виде степени. Любой корень можно выразить в виде степени с дробным показателем, в знаменателе показателя будет находиться показатель корня
$∜{13}=13^{{1}/{4}}$
$log_{13}∜{13}=log_{13}13^{{1}/{4}}={1}/{4}=0.25$
Ответ: $0.25$
Задания, решение которых заключается в преобразовании логарифмических выражений, довольно часто встречаются на ЕГЭ.
Чтобы успешно справиться с ними при минимальной затрате времени кроме основных логарифмических тождеств, необходимо знать и правильно использовать ещё некоторые формулы.
Это: alogаb = b, где а, b > 0, а ≠ 1 (Она вытекает непосредственно из определения логарифма).
loga b = logс b / logс а или logа b = 1/logb а
где а, b, с > 0; а, с ≠ 1.
logаm bn = (m/n) log|а| |b|
где а, b > 0, а ≠ 1, m, n Є R, n ≠ 0.
аlogсb = blogса
где а, b, с > 0 и а, b, с ≠ 1
Чтобы показать справедливость четвертого равенства прологарифмируем левую и правую часть по основанию а. Получим logа (аlogсb) = logа (blogса) или logс b = logс а · logа b; logс b = logс а · (logс b / logс а); logс b = logс b.
Мы доказали равенство логарифмов, значит, равны и выражения, стоящие под логарифмами. Формула 4 доказана.
Пример 1.
Вычислите 81log275 log54 .
Решение.
81 = 34, 27 = 33.
log27 5 = 1/3 log3 5, log5 4 = log3 4 / log3 5. Следовательно,
log27 5 · log5 4 = 1/3 log3 5 · (log3 4 / log3 5) = 1/3 log3 4.
Тогда 81log275 log54 = (34)1/3 log34 = (3log34)4/3 = (4)4/3 = 43√4.
Самостоятельно можно выполнить следующее задание.
Вычислить (8log23 + 31/ log23) — log0,25.
В качестве подсказки 0,2 = 1/5 = 5-1; log0,2 5 = -1.
Ответ: 5.
Пример 2.
Вычислите (√11)log√39-log12181.
Решение.
Выполним замену выражений: 9 = 32, √3 = 31/2, log√3 9 = 4,
121 = 112, 81 = 34, log121 81 = 2 log11 3 (использовалась формула 3).
Тогда (√11)log√39-log12181 = (111/2)4-2log113 = (11)2-log113 = 112 / (11)log113 = 112 / (11log113) = 121/3.
Пример 3.
Вычислите log2 24/ log96 2- log2 192 / log 12 2.
Решение.
Логарифмы, содержащиеся в примере, заменим логарифмами с основанием 2.
log96 2 = 1/log2 96 = 1/log2 (25 · 3) = 1/(log2 25 + log2 3) = 1/(5 + log2 3);
log2 192 = log2 (26 · 3) = (log2 26 + log2 3) = (6 + log2 3);
log2 24 = log2 (23 · 3) = (log2 23 + log2 3) = (3 + log2 3);
log12 2 = 1/log2 12 = 1/log2 (22 · 3) = 1/(log2 22 + log2 3) = 1/(2 + log2 3).
Тогда log2 24 / log96 2 – log2 192 / log12 2 = (3 + log2 3) / (1/(5 + log2 3)) – ((6 + log2 3) / (1/(2 + log2 3)) =
= (3 + log2 3) · (5 + log2 3) – (6 + log2 3)(2 + log2 3).
После раскрытия скобок и приведения подобных слагаемых получим число 3. (При упрощении выражения можно log2 3 обозначить через n и упрощать выражение
(3 + n) · (5 + n) – (6 + n)(2 + n)).
Ответ: 3.
Самостоятельно можно выполнить следующее задание:
Вычислить (log3 4 + log4 3 + 2) · log3 16 · log2144 3.
Здесь необходимо сделать переход к логарифмам по основанию 3 и разложение на простые множители больших чисел.
Ответ:1/2
Пример 4.
Даны три числа А = 1/(log3 0,5), В = 1/(log0,5 3), С = log0,5 12 – log0,5 3. Расположите их в порядке возрастания.
Решение.
Преобразуем числа А = 1/(log3 0,5) = log0,5 3; С = log0,5 12 – log0,5 3 = log0,5 12/3 = log0,5 4 = -2.
Сравним их
log0,5 3 > log0,5 4 = -2 и log0,5 3 < -1 = log0,5 2, так как функция у = log0,5 х – убывающая.
Или -2 < log0,5 3 < -1. Тогда -1 < 1/(log0,5 3) < -1/2.
Ответ. Следовательно, порядок размещения чисел: С; А; В.
Пример 5.
Сколько целых чисел расположено на интервале (log3 1/16; log26 48).
Решение.
Определим между какими степенями числа 3 находится число 1/16. Получим 1/27 < 1/16 < 1/9.
Так как функция у = log3 х – возрастающая, то log3 (1/27) < log3 (1/16) < log3 (1/9); -3 < log3 (1/16) < -2.
log 6 48 = log6 (36 · 4/3) = log6 36 + log6 (4/3) = 2 + log6 (4/3). Сравним log6 (4/3) и 1/5. А для этого сравним числа 4/3 и 61/5. Возведём оба числа в 5 степень. Получим (4/3)5 = 1024/243 = 452/243 < 6. Следовательно,
log6 (4/3) < 1/5. 2 < log6 48 < 21/5. Числа, входящие в двойное неравенство, положительные. Их можно возводить в квадрат. Знаки неравенства при этом не изменятся. Тогда 4 < log62 48 < 421/25.
Следовательно, интервал (log3 1/16; log6 48) включает в себя промежуток [-2; 4] и на нём размещаются целые числа -2; -1; 0; 1; 2; 3; 4.
Ответ: 7 целых чисел.
Пример 6.
Вычислите 3lglg2/lg3 — lg20.
Решение.
3lglg2/lg 3 = (31/lg3)lglg2 = (3lоg 310)lglg2 = 10lglg2 = lg2.
Тогда 3lglg2/lg3 — lg 20 = lg 2 – lg 20 = lg 0,1 = -1.
Ответ: -1.
Пример 7.
Известно, что log2 (√3 + 1) + log2 (√6 – 2) = А. Найдите log2 (√3 –1) + log2 (√6 + 2).
Решение.
Числа (√3 + 1) и (√3 – 1); (√6 – 2) и (√6 + 2) – сопряжённые.
Проведем следующее преобразование выражений
√3 – 1 = (√3 – 1) · (√3 + 1)) / (√3 + 1) = 2/(√3 + 1);
√6 + 2 = (√6 + 2) · (√6 – 2)) / (√6 – 2) = 2/(√6 – 2).
Тогда log2 (√3 – 1) + log2 (√6 + 2) = log2 (2/(√3 + 1)) + log2 (2/(√6 – 2)) =
= log2 2 – log2 (√3 + 1) + log2 2 – log2 (√6 – 2) = 1 – log2 (√3 + 1) + 1 – log2 (√6 – 2) =
= 2 – log2 (√3 + 1) – log2 (√6 – 2) = 2 – А.
Ответ: 2 – А.
Пример 8.
Упростите и найдите приближенное значение выражения (log3 2 · log4 3 · log5 4 · log6 5 · … · log10 9.
Решение.
Все логарифмы приведём к общему основанию 10.
(log3 2 · log4 3 · log5 4 · log6 5 · … · log10 9 = (lg 2 / lg 3) · (lg 3 / lg 4)· (lg 4 / lg 5) · (lg 5 / lg 6) · … · (lg 8 / lg 9) · lg 9 = lg 2 ≈ 0,3010. (Приближенное значение lg 2 можно найти с использованием таблицы, логарифмической линейки либо калькулятора).
Ответ: 0,3010.
Пример 9.
Вычислить logа2 b3√(a11 b-3 ), если log √а b3 = 1. (В этом примере, а2 b3 – основание логарифма).
Решение.
Если log√а b3 = 1, то 3/(0,5 logа b = 1. И logа b = 1/6.
Тогда logа2 b3√(a11b-3 ) = 1/2 logа2 b3 (a11b-3 ) = logа (a11b-3 ) / (2logа (a2b3 )) = (logа a11+ logа b-3 ) / (2(logа a2 + logа b3)) = (11 – 3logа b) / (2(2 + 3logа b)) Учитывая то, что logа b = 1/6 получим (11 – 3 · 1/6) / (2(2 + 3 · 1/6)) = 10,5/5 = 2,1.
Ответ: 2,1.
Самостоятельно можно выполнить следующее задание:
Вычислить log√36 √2,1, если log0,7 27 = а.
Ответ: (3 + а) / (3а).
Пример 10.
Вычислить 6,54/log3169 · 31/log 413 + log125.
Решение.
6,54/log 3169 · 31/log 413 + log 125 = (13/2) 4/2log 313 · 32/log 213 + 2log5 5 3 = (13/2) 2log 13 3 · 32 log 132 + 6 = (13log 13 3 / 2log 13 3 )2 · (3 log 132 )2 + 6 = (3/2log 13 3 )2 · (3log 132 )2 + 6 = (32/(2log 13 3 )2 ) · (2log 133)2 + 6.
(2log 13 3 = 3log 132 (формула 4))
Получим 9 + 6 = 15.
Ответ: 15.
Остались вопросы? Не знаете, как найти значение логарифмического выражения?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!
© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.