Биология (от греч. биос — жизнь, логос — слово, наука) — это комплекс наук о живой природе.
Предметом биологии являются все проявления жизни: строение и функции живых существ, их разнообразие, происхождение и развитие, а также взаимодействие с окружающей средой. Основная задача биологии как науки состоит в истолковании всех явлений живой природы на научной основе, учитывая при этом, что целостному организму присущи свойства, в корне отличающиеся от его составляющих.
Термин «биология» встречается в трудах немецких анатомов Т. Роозе (1779) и К. Ф. Бурдаха (1800), однако только в 1802 году он был впервые употреблен независимо друг от друга Ж. Б. Ламар ком и Г. Р. Тревиранусом для обозначения науки, изучающей живые организмы.
Биологические науки
В настоящее время в состав биологии включают целый ряд наук, которые можно систематизировать по таким критериям: по предмету и преобладающим методам исследования и по изучаемому уровню организации живой природы. По предмету исследования биологические науки делят на бактериологию, ботанику, вирусологию, зоологию, микологию.
Ботаника — это биологическая наука, комплексно изучающая растения и растительный покров Земли. Зоология — раздел биологии, наука о многообразии, строении, жизнедеятельности, распространении и взаимосвязи животных со средой обитания, их происхождении и развитии. Бактериология — биологическая наука, изучающая строение и жизнедеятельность бактерий, а также их роль в природе. Вирусология — биологическая наука, изучающая вирусы. Основным объектом микологии являются грибы, их строение и особенности жизнедеятельности. Лихенология — биологическая наука, изучающая лишайники. Бактериология, вирусология и некоторые аспекты микологии часто рассматриваются в составе микробиологии — раздела биологии, науке о микроорганизмах (бактериях, вирусах и микроскопических грибах). Систематика, или таксономия, — биологическая наука, которая описывает и классифицирует по группам все живые и вымершие существа.
В свою очередь, каждая из перечисленных биологических наук подразделяется на биохимию, морфологию, анатомию, физиологию, эмбриологию, генетику и систематику (растений, животных или микроорганизмов). Биохимия — это наука о химическом составе живой материи, химических процессах, происходящих в живых организмах и лежащих в основе их жизнедеятельности. Морфология — биологическая наука, изучающая форму и строение организмов, а также закономерности их развития. В широком смысле она включает в себя цитологию, анатомию, гистологию и эмбриологию. Различают морфологию животных и растений. Анатомия — это раздел биологии (точнее — морфологии), наука, изучающая внутреннее строение и форму отдельных органов, систем и организма в целом. Анатомия растений рассматривается в составе ботаники, анатомия животных — в составе зоологии, а анатомия человека является отдельной наукой. Физиология — биологическая наука, изучающая процессы жизнедеятельности растительных и животных организмов, их отдельных систем, органов, тканей и клеток. Существуют физиология растений, животных и человека. Эмбриология (биология развития) — раздел биологии, наука об индивидуальном развитии организма, в том числе развитии зародыша.
Объектом генетики являются закономерности наследственности и изменчивости. В настоящее время это одна из наиболее динамично развивающихся биологических наук.
По изучаемому уровню организации живой природы выделяют молекулярную биологию, цитологию, гистологию, органологию, биологию организмов и надорганизменных систем. Молекулярная биология является одним из наиболее молодых разделов биологии, наука, изучающая, в частности, организацию наследственной информации и биосинтез белка. Цитология, или клеточная биология, — биологическая наука, объектом изучения которой являются клетки как одноклеточных, так и многоклеточных организмов. Гистология — биологическая наука, раздел морфологии, объектом которой является строение тканей растений и животных. К сфере органологии относят морфологию, анатомию и физиологию различных органов и их систем.
Биология организмов включает все науки, предметом которых являются живые организмы, например, этологию — науку о поведении организмов.
Биология надорганизменных систем подразделяется на биогеографию и экологию. Распространение живых организмов изучает биогеография, тогда как экология — организацию и функционирование надорганизменных систем различных уровней: популяций, биоценозов (сообществ), биогеоценозов (экосистем) и биосферы.
По преобладающим методам исследования можно выделить описательную (например, морфологию), экспериментальную (например, физиологию) и теоретическую биологию.
Выявление и объяснение закономерностей строения, функционирования и развития живой природы на различных уровнях ее организации является задачей общей биологии. К ней относят биохимию, молекулярную биологию, цитологию, эмбриологию, генетику, экологию, эволюционное учение и антропологию. Эволюционное учение изучает причины, движущие силы, механизмы и общие закономерности эволюции живых организмов. Одним из его разделов является палеонтология — наука, предметом которой являются ископаемые останки живых организмов. Антропология — раздел общей биологии, наука о происхождении и развитии человека как биологического вида, а также разнообразии популяций современного человека и закономерностях их взаимодействия.
Прикладные аспекты биологии отнесены к сфере биотехнологии, селекции и других быстроразвивающихся наук. Биотехнологией называют биологическую науку, изучающую использование живых организмов и биологических процессов в производстве. Она широко применяется в пищевой (хлебопечение, сыроделие, пивоварение и др.) и фармацевтической промышленностях (получение антибиотиков, витаминов), для очистки вод и т. п. Селекция — наука о методах создания пород домашних животных, сортов культурных растений и штаммов микроорганизмов с нужными человеку свойствами. Под селекцией понимают и сам процесс изменения живых организмов, осуществляемый человеком для своих потребностей.
Прогресс биологии тесно связан с успехами других естественных и точных наук, таких как физика, химия, математика, информатика и др. Например, микроскопирование, ультразвуковые исследования (УЗИ), томография и другие методы биологии основываются на физических закономерностях, а изучение структуры биологических молекул и процессов, происходящих в живых системах, было бы невозможным без применения химических и физических методов. Применение математических методов позволяет, с одной стороны, выявить наличие закономерной связи между объектами или явлениями, подтвердить достоверность полученных результатов, а с другой — смоделировать явление или процесс. В последнее время все большее значение в биологии приобретают компьютерные методы, например моделирование. На стыке биологии и других наук возник целый ряд новых наук, таких как биофизика, биохимия, бионика и др.
Достижения биологии
Наиболее важными событиями в области биологии, повлиявшими на весь ход ее дальнейшего развития, являются: установление молекулярной структуры ДНК и ее роли в передаче информации в живой материи (Ф. Крик, Дж. Уотсон, М. Уилкинс); расшифровка генетического кода (Р. Холли, Х. Г. Корана, М. Ниренберг); открытие структуры гена и генетической регуляции синтеза белков (А. М. Львов, Ф. Жакоб, Ж. Л. Моно и др.); формулировка клеточной теории (М. Шлейден, Т. Шванн, Р. Вирхов, К. Бэр); исследование закономерностей наследственности и изменчивости (Г. Мендель, Х. де Фриз, Т. Морган и др.); формулировка принципов современной систематики (К. Линней), эволюционной теории (Ч. Дарвин) и учения о биосфере (В. И. Вернадский).
Значимость открытий последних десятилетий еще предстоит оценить, однако наиболее крупными достижениями биологии были признаны: расшифровка генома человека и других организмов, определение механизмов контроля потока генетической информации в клетке и формирующемся организме, механизмов регуляции деления и гибели клеток, клонирование млекопитающих, а также открытие возбудителей «коровьего бешенства» (прионов).
Работы по программе «Геном человека», которые проводились одновременно в нескольких странах и были завершены в начале нынешнего века, привели нас к пониманию того, что у человека имеется около 25–30 тыс. генов, но информация с большей части нашей ДНК не считывается никогда, так как в ней содержится огромное количество участков и генов, кодирующих признаки, утратившие значение для человека (хвост, оволосение тела и др.). Кроме того, был расшифрован ряд генов, отвечающих за развитие наследственных заболеваний, а также генов-мишеней лекарственных препаратов. Однако практическое применение результатов, полученных в ходе реализации данной программы, откладывается до тех пор, пока не будут расшифрованы геномы значительного количества людей, и тогда станет понятно, в чем же все-таки их различие. Эти цели поставлены перед целым рядом ведущих лабораторий всего мира, работающих над реализацией программы «ENCODE».
Биологические исследования являются фундаментом медицины, фармации, широко используются в сельском и лесном хозяйстве, пищевой промышленности и других отраслях человеческой деятельности.
Хорошо известно, что только «зеленая революция» 1950-х годов позволила хотя бы частично решить проблему обеспечения быстро растущего населения Земли продуктами питания, а животноводство — кормами за счет внедрения новых сортов растений и прогрессивных технологий их выращивания. В связи с тем, что генетически запрограммированные свойства сельскохозяйственных культур уже почти исчерпаны, дальнейшее решение продовольственной проблемы связывают с широким введением в производство генетически модифицированных организмов.
Производство многих продуктов питания, таких как сыры, йогурты, колбасы, хлебобулочные изделия и др., также невозможно без использования бактерий и грибов, что является предметом биотехнологии.
Познание природы возбудителей, процессов течения многих заболеваний, механизмов иммунитета, закономерностей наследственности и изменчивости позволили существенно снизить смертность и даже полностью искоренить ряд болезней, таких, например, как черная оспа. С помощью новейших достижений биологической науки решается и проблема репродукции человека.
Значительная часть современных лекарственных препаратов производится на основе природного сырья, а также благодаря успехам генной инженерии, как, например, инсулин, столь необходимый больным сахарным диабетом, в основном синтезируется бактериями, которым перенесен соответствующий ген.
Не менее значимы биологические исследования для сохранения окружающей среды и разнообразия живых организмов, угроза исчезновения которых ставит под сомнение существование человечества.
Наибольшее значение среди достижений биологии имеет тот факт, что они лежат даже в основе построения нейронных сетей и генетического кода в компьютерных технологиях, а также широко используются в архитектуре и других отраслях. Вне всякого сомнения, наступивший XXI век является веком биологии.
Методы познания живой природы
Как и любая другая наука, биология имеет свой арсенал методов. Помимо научного метода познания, применяемого в других отраслях, в биологии широко используются такие методы, как исторический, сравнительно-описательный и др.
Научный метод познания включает в себя наблюдение, формулировку гипотез, эксперимент, моделирование, анализ результатов и выведение общих закономерностей.
Наблюдение — это целенаправленное восприятие объектов и явлений с помощью органов чувств или приборов, обусловленное задачей деятельности. Основным условием научного наблюдения является его объективность, т. е. возможность проверки полученных данных путем повторного наблюдения или применения иных методов исследования, например эксперимента. Полученные в результате наблюдения факты называются данными. Они могут быть как качественными (описывающими запах, вкус, цвет, форму и т. д.), так и количественными, причем количественные данные являются более точными, чем качественные.
На основе данных наблюдений формулируется гипотеза — предположительное суждение о закономерной связи явлений. Гипотеза подвергается проверке в серии экспериментов. Экспериментом называется научно поставленный опыт, наблюдение исследуемого явления в контролируемых условиях, позволяющих выявить характеристики данного объекта или явления. Высшей формой эксперимента является моделирование — исследование каких-либо явлений, процессов или систем объектов путем построения и изучения их моделей. По существу это одна из основных категорий теории познания: на идее моделирования базируется любой метод научного исследования — как теоретический, так и экспериментальный.
Результаты эксперимента и моделирования подвергаются тщательному анализу. Анализом называют метод научного исследования путем разложения предмета на составные части или мысленного расчленения объекта путем логической абстракции. Анализ неразрывно связан с синтезом. Синтез — это метод изучения предмета в его целостности, в единстве и взаимной связи его частей. В результате анализа и синтеза наиболее удачная гипотеза исследования становится рабочей гипотезой, и если она способна устоять при попытках ее опровержения и по-прежнему удачно предсказывает ранее необъясненные факты и взаимосвязи, то она может стать теорией.
Под теорией понимают такую форму научного знания, которая дает целостное представление о закономерностях и существенных связях действительности. Общее направление научного исследования состоит в достижении более высоких уровней предсказуемости. Если теорию не способны изменить никакие факты, а встречающиеся отклонения от нее регулярны и предсказуемы, то ее можно возвести в ранг закона — необходимого, существенного, устойчивого, повторяющегося отношения между явлениями в природе.
По мере увеличения совокупности знаний и совершенствования методов исследования гипотезы и прочно укоренившиеся теории могут оспариваться, видоизменяться и даже отвергаться, поскольку сами научные знания по своей природе динамичны и постоянно подвергаются критическому переосмыслению.
Исторический метод выявляет закономерности появления и развития организмов, становления их структуры и функции. В ряде случаев с помощью этого метода новую жизнь обретают гипотезы и теории, ранее считавшиеся ложными. Так, например, произошло с предположениями Ч. Дарвина о природе передачи сигналов по растению в ответ на воздействия окружающей среды.
Сравнительно-описательный метод предусматривает проведение анатомо-морфологического анализа объектов исследования. Он лежит в основе классификации организмов, выявления закономерностей возникновения и развития различных форм жизни.
Мониторинг — это система мероприятий по наблюдению, оценке и прогнозу изменения состояния исследуемого объекта, в частности биосферы.
Проведение наблюдений и экспериментов требует зачастую применения специального оборудования, такого как микроскопы, центрифуги, спектрофотометры и др.
Микроскопия широко применяется в зоологии, ботанике, анатомии человека, гистологии, цитологии, генетике, эмбриологии, палеонтологии, экологии и других разделах биологии. Она позволяет изучить тонкое строение объектов с использованием световых, электронных, рентгеновских и других типов микроскопов.
Устройство светового микроскопа. Световой микроскоп состоит из оптических и механических частей. К первым относятся окуляр, объективы и зеркало, а ко вторым — тубус, штатив, основание, предметный столик и винт.
Общее увеличение микроскопа определяется по формуле:
увеличение объектива $×$ увеличение окуляра $-$ увеличение микроскопа.
Например, если объектив увеличивает объект в $8$ раз, а окуляр — в $7$, то общее увеличение микроскопа равно $56$.
Дифференциальное центрифугирование, или фракционирование, позволяет разделить частицы по их размерам и плотности под действием центробежной силы, что активно используется при изучении строения биологических молекул и клеток.
Арсенал методов биологии постоянно обновляется, и в настоящее время охватить его полностью практически невозможно. Поэтому некоторые методы, используемые в отдельных биологических науках, будут рассмотрены далее.
Роль биологии в формировании современной естественнонаучной картины мира
На этапе становления биология еще не существовала отдельно от других естественных наук и ограничивалась лишь наблюдением, изучением, описанием и классификацией представителей животного и растительного мира, т. е. была описательной наукой. Однако это не помешало античным естествоиспытателям Гиппократу (ок. 460–377 гг. до н. э.), Аристотелю (384–322 гг. до н. э.) и Теофрасту (настоящее имя Тиртам, 372–287 гг. до н. э.) внести значительный вклад в развитие представлений о строении тела человека и животных, а также о биологическом разнообразии животных и растений, заложив тем самым основы анатомии и физиологии человека, зоологии и ботаники.
Углубление познаний о живой природе и систематизация ранее накопленных фактов, происходившие в XVI–XVIII веках, увенчались введением бинарной номенклатуры и созданием стройной систематики растений (К. Линней) и животных (Ж. Б. Ламарк).
Описание значительного числа видов со сходными морфологическими признаками, а также палеонтологические находки стали предпосылками к развитию представлений о происхождении видов и путях исторического развития органического мира. Так, опыты Ф. Реди, Л. Спалланцани и Л. Пастера в XVII–ХIХ веках опровергли гипотезу спонтанного самозарождения, выдвинутую еще Аристотелем и бытовавшую в Средние века, а теория биохимической эволюции А. И. Опарина и Дж. Холдейна, блестяще подтвержденная С. Миллером и Г. Юри, позволила дать ответ на вопрос о происхождении всего живого.
Если процесс возникновения живого из неживых компонентов и его эволюция сами по себе уже не вызывают сомнений, то механизмы, пути и направления исторического развития органического мира все еще до конца не выяснены, поскольку ни одна из двух основных соперничающих между собой теорий эволюции (синтетическая теория эволюции, созданная на основе теории Ч. Дарвина, и теория Ж. Б. Ламарка) все еще не могут предъявить исчерпывающих доказательств.
Применение микроскопии и других методов смежных наук, обусловленное прогрессом в области других естественных наук, а также внедрение практики эксперимента позволило немецким ученым Т. Шванну и М. Шлейдену еще в XIX веке сформулировать клеточную теорию, позднее дополненную Р. Вирховым и К. Бэром. Она стала важнейшим обобщением в биологии, которое краеугольным камнем легло в основу современных представлений о единстве органического мира.
Открытие закономерностей передачи наследственной информации чешским монахом Г. Менделем послужило толчком к дальнейшему бурному развитию биологии в ХХ–ХХI веках и привело не только к открытию универсального носителя наследственности — ДНК, но и генетического кода, а также фундаментальных механизмов контроля, считывания и изменчивости наследственной информации.
Развитие представлений об окружающей среде привело к возникновению такой науки, как экология, и формулировке учения о биосфере как о сложной многокомпонентной планетарной системе связанных между собой огромных биологических комплексов, а также химических и геологических процессов, происходящих на Земле (В. И. Вернадский), что в конечном итоге позволяет хотя бы в небольшой степени уменьшить негативные последствия хозяйственной деятельности человека.
Таким образом, биология сыграла немаловажную роль в становлении современной естественнонаучной картины мира.
Методы генетики
1. Гибридологический метод, или метод скрещиваний, заключается в подборе родительских особей и анализе потомства. При этом о генотипе организма судят по фенотипическим проявлениям генов у потомков, полученных при определенной схеме скрещивания. Это старейший информативный метод генетики, который наиболее полно впервые применил Г. Мендель в сочетании со статистическим методом. Данный метод неприменим в генетике человека по этическим соображениям.
2. Цитогенетический метод основан на исследовании кариотипа: числа, формы и величины хромосом организма. Изучение этих особенностей позволяет выявить различные патологии развития.
3. Биохимический метод позволяет определять содержание различных веществ в организме, в особенности их избыток или недостаток, а также активность целого ряда ферментов.
4. Молекулярно-генетические методы направлены на выявление вариаций в структуре и расшифровку первичной последовательности нуклеотидов исследуемых участков ДНК. Они позволяют выявить гены наследственных болезней даже у эмбрионов, установить отцовство и т. д.
5. Популяционно-статистический метод позволяет определить генетический состав популяции, частоту определенных генов и генотипов, генетический груз, а также наметить перспективы развития популяции.
6. Метод гибридизации соматических клеток в культуре позволяет определить локализацию определенных генов в хромосомах при слиянии клеток различных организмов, например, мыши и хомяка, мыши и человека и т. д.
Клетка как биологическая система
Современная клеточная теория, ее основные положения, роль в формировании современной естественнонаучной картины мира. Развитие знаний о клетке. Клеточное строение организмов — основа единства органического мира, доказательство родства живой природы
Современная клеточная теория, ее основные положения, роль в формировании современной естественнонаучной картины мира
Одним из основополагающих понятий в современной биологии является представление о том, что всем живым организмам присуще клеточное строение. Изучением строения клетки, ее жизнедеятельности и взаимодействия с окружающей средой занимается наука цитология, в настоящее время чаще именуемая клеточной биологией. Своему появлению цитология обязана формулировке клеточной теории (1838–1839 гг., М. Шлейден, Т. Шванн, дополнена в 1855 г. Р. Вирховым).
Клеточная теория является обобщенным представлением о строении и функциях клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов.
Основные положения клеточной теории:
- Клетка — единица строения, жизнедеятельности, роста и развития живых организмов — вне клетки жизни нет.
- Клетка — единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование.
- Клетки всех организмов сходны по своему химическому составу, строению и функциям.
- Новые клетки образуются только в результате деления материнских клеток («клетка от клетки »).
- Клетки многоклеточных организмов образуют ткани, из тканей состоят органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток.
- Клетки многоклеточных организмов имеют полный набор генов, но отличаются друг от друга тем, что у них работают различные группы генов, следствием чего является морфологическое и функциональное разнообразие клеток — дифференцировка.
Благодаря созданию клеточной теории стало понятно, что клетка является мельчайшей единицей жизни, элементарной живой системой, которой присущи все признаки и свойства живого. Формулировка клеточной теории стала важнейшей предпосылкой развития воззрений на наследственность и изменчивость, так как выявление их природы и присущих им закономерностей неизбежно наводило на мысль об универсальности строения живых организмов. Выявление единства химического состава и плана строения клеток послужило толчком и для развития представлений о происхождении живых организмов и их эволюции. Кроме того, происхождение многоклеточных организмов из единственной клетки в процессе эмбрионального развития стало догмой современной эмбриологии.
Развитие знаний о клетке
До XVII века человек вообще ничего не знал о микроструктуре окружающих его предметов и воспринимал мир невооруженным глазом. Прибор для изучения микромира — микроскоп — был изобретен приблизительно в 1590 году голландскими механиками Г. и З. Янсенами, однако его несовершенство не давало возможности рассмотреть достаточно мелкие объекты. Лишь создание на его основе так называемого сложного микроскопа К. Дреббелем (1572–1634) способствовало прогрессу в данной области.
В 1665 году английский ученый-физик Р. Гук (1635–1703) усовершенствовал конструкцию микроскопа и технологию шлифовки линз и, желая убедиться в улучшении качества изображения, рассматривал под ним срезы пробки, древесного угля и живых растений. На срезах он обнаружил мельчайшие поры, напоминающие пчелиные соты, и назвал их клетками (от лат. целлюла — ячейка, клетка). Интересно отметить, что Р. Гук считал главным компонентом клетки клеточную оболочку.
Во второй половине XVII века появились работы виднейших микроскопистов М. Мальпиги (1628–1694) и Н. Грю (1641–1712), также обнаруживших ячеистое строение многих растений.
Чтобы удостовериться, что увиденное Р. Гуком и другими учеными является правдой, не имевший специального образования голландский торговец А. ван Левенгук самостоятельно разработал конструкцию микроскопа, принципиально отличавшуюся от уже существующей, и усовершенствовал технологию изготовления линз. Это позволило ему достичь увеличения в 275–300 раз и рассмотреть такие детали строения, которые были технически недоступны остальным ученым. А. ван Левенгук был непревзойденным наблюдателем: он тщательно зарисовывал и описывал увиденное под микроскопом, но не стремился объяснить этого. Он открыл одноклеточные организмы, в том числе и бактерии, в клетках растений обнаружил ядра, хлоропласты, утолщения клеточных стенок, но оценить его открытия смогли намного позже.
Открытия компонентов внутреннего строения организмов в первой половине XIX века следовали одно за другим. Г. Моль различил в клетках растений живое вещество и водянистую жидкость — клеточный сок, обнаружил поры. Английский ботаник Р. Броун (1773–1858) в 1831 году открыл ядро в клетках орхидей, затем оно было обнаружено во всех растительных клетках. Чешский ученый Я. Пуркинье (1787–1869) для обозначения полужидкого студенистого содержимого клетки без ядра ввел термин «протоплазма» (1840). Дальше всех современников продвинулся бельгийский ботаник М. Шлейден (1804–1881), который, изучая развитие и дифференциацию разнообразных клеточных структур высших растений, доказал, что все растительные организмы ведут свое происхождение от одной клетки. Он же рассмотрел в ядрах клеток чешуи лука округлые тельца-ядрышки (1842).
В 1827 году русский ученый-эмбриолог К. Бэр обнаружил яйцеклетки человека и других млекопитающих, опровергнув тем самым представления о развитии организма исключительно из мужских гамет. Кроме того, он доказал формирование многоклеточного животного организма из единственной клетки — оплодотворенной яйцеклетки, а также сходство стадий зародышевого развития многоклеточных животных, которое наводило на мысль о единстве их происхождения. Сведения, накопленные к середине XIX века, требовали обобщения, которым и стала клеточная теория. Ее формулировке биология обязана немецкому зоологу Т. Шванну (1810–1882), который на основе собственных данных и выводов М. Шлейдена о развитии растений выдвинул предположение о том, что если в каком-либо видимом под микроскопом образовании присутствует ядро, то это образование является клеткой. Основываясь на данном критерии, Т. Шванн сформулировал основные положения клеточной теории.
Немецкий врач и патолог Р. Вирхов (1821–1902) внес в эту теорию еще одно важное положение: клетки возникают только путем деления исходной клетки, т. е. клетки образуются только из клеток («клетка от клетки»).
Со времени создания клеточной теории учение о клетке как о единице структуры, функции и развития организма непрерывно развивалось. К концу XIX века благодаря успехам микроскопической техники было уточнено строение клетки, описаны органоиды — части клетки, выполняющие различные функции, исследованы способы образования новых клеток (митоз, мейоз) и стало понятным первостепенное значение клеточных структур в передаче наследственных свойств. Применение новейших физико-химических методов исследования позволило углубиться в процессы хранения и передачи наследственной информации, а также исследовать тонкое строение каждой из структур клетки. Все это способствовало выделению науки о клетке в самостоятельную отрасль знания — цитологию.
Клеточное строение организмов, сходство строения клеток всех организмов — основа единства органического мира, доказательства родства живой природы
Все известные на сегодняшний день живые организмы (растения, животные, грибы и бактерии) имеют клеточное строение. Даже вирусы, которые не имеют клеточного строения, могут размножаться только в клетках. Клетка — элементарная структурно-функциональная единица живого, которой присущи все его проявления, в частности, обмен веществ и превращения энергии, гомеостаз, рост и развитие, воспроизведение и раздражимость. При этом именно в клетках хранится, перерабатывается и реализуется наследственная информация.
Несмотря на все разнообразие клеток, план строения для них един: все они содержат наследственный аппарат, погруженный в цитоплазму, и окружающую клетку плазматическую мембрану.
Клетка возникла в результате длительной эволюции органического мира. Объединение клеток в многоклеточный организм не является простым суммированием, так как каждая клетка, сохраняя все присущие живому организму признаки, в то же время приобретает новые свойства вследствие выполнения ею определенной функции. С одной стороны, многоклеточный организм можно разделить на составляющие его части — клетки, но с другой стороны, сложив их вновь воедино, невозможно восстановить функции целостного организма, так как лишь во взаимодействии частей системы появляются новые свойства. В этом проявляется одна из основных закономерностей, характеризующих живое, — единство дискретного и целостного. Небольшие размеры и значительное количество клеток создают у многоклеточных организмов большую поверхность, необходимую для обеспечения быстрого обмена веществ. Кроме того, в случае гибели одной части организма его целостность может быть восстановлена за счет воспроизведения клеток. Вне клетки невозможны хранение и передача наследственной информации, хранение и перенос энергии с последующим превращением ее в работу. Наконец, разделение функций между клетками в многоклеточном организме обеспечило широкие возможности приспособления организмов к среде обитания и явилось предпосылкой усложнения их организации.
Таким образом, установление единства плана строения клеток всех живых организмов послужило доказательством единства происхождения всего живого на Земле.
Методы изучения генетики человека
Методы, применяемые в генетике человека, принципиально не отличаются от общепринятых для других объектов — это генеалогический, близнецовый, цитогенетический, дерматоглифический, молекулярно-биологический и популяционно-статистический методы, метод гибридизации соматических клеток и метод моделирования. Их использование в генетике человека учитывает специфику человека как генетического объекта.
Близнецовый метод помогает определить вклад наследственности и влияние условий окружающей среды на проявление признака на основе анализа совпадения этих признаков у однояйцевых и разнояйцевых близнецов. Так, у большинства однояйцевых близнецов совпадают группы крови, цвет глаз и волос, а также целый ряд других признаков, тогда как корью болеют одновременно оба типа близнецов.
Дерматоглифический метод основан на исследовании индивидуальных особенностей кожных рисунков пальцев рук (дактилоскопия), ладоней и ступней ног. На основе этих особенностей он зачастую позволяет своевременно выявить наследственные заболевания, в частности хромосомные аномалии, такие как синдром Дауна, Шерешевского – Тернера и др.
Генеалогический метод — это метод составления родословных, с помощью которых определяют характер наследования изучаемых признаков, в том числе наследственных болезней, и прогнозируют рождение потомков с соответствующими признаками. Он позволил выявить наследственную природу таких заболеваний, как гемофилия, дальтонизм, хорея Гентингтона и др. еще до открытия основных закономерностей наследственности. При составлении родословных ведут записи о каждом из членов семьи и учитывают степень родства между ними. Далее на основании полученных данных с помощью специальной символики строится родословное древо.
Генеалогический метод можно использовать на одной семье, если есть сведения о достаточном количестве прямых родственников человека, родословная которого составляется — пробанда, — по отцовской и материнской линиям, в противном случае собирают сведения о нескольких семьях, в которых проявляется данный признак. Генеалогический метод позволяет установить не только наследуемость признака, но и характер наследования: доминантный или рецессивный, аутосомный или сцепленный с полом и т. д. Так, по портретам австрийских монархов Габсбургов было установлено наследование прогнатии (сильно выпяченной нижней губы) и «королевской гемофилии » у потомков британской королевы Виктории.
Значение генетики для медицины. Наследственные болезни человека, их причины,
профилактика. Вредное влияние мутагенов, алкоголя, наркотиков, никотина на генетический
аппарат клетки. Защита среды от загрязнения мутагенами. Выявление источников
мутагенов в окружающей среде (косвенно) и оценка возможных последствий их влияния
на собственный организм
Значение генетики для медицины
Изучение закономерностей наследственности и изменчивости на растительных и животных объектах со временем привело к пониманию того, что наряду с инфекционными заболеваниями человека существует и значительное число (более 4000) наследственных болезней, развитие многих из которых обусловлено взаимодействием генетических программ и условий окружающей среды. Наследственные болезни затрагивают многие стороны обмена веществ, приводят к нарушениям структуры тканей и органов, а также психическим отклонениям.
Если ранее едва ли не единственными средствами профилактики наследственных заболеваний были запрет рожать детей женщинам, уже имеющим детей с отклонениями в развитии, а также принудительная стерилизация, то в настоящее время арсенал медицинских генетиков значительно расширился. Так, определение носительства родителями генов наследственных болезней и ранняя диагностика этих заболеваний еще до рождения ребенка позволяет избежать тяжелых последствий путем планирования семьи. Значительную помощь в этом отношении оказывает медико- генетическое консультирование.
Кроме того, профилактика многих заболеваний, в основе которой лежит исключение тех или иных веществ и продуктов из рациона питания, также позволяет предотвратить аномальное развитие и даже гибель больного.
Открытия в области молекулярной генетики позволили в последнее время совершить прорыв и в направлении исправления и замены патологических генов. Эта отрасль медицинской генетики называется генотерапией. Так, уже родился первый ребенок, у которого прямо в зиготе удалили ген наследственной формы рака.
Методы селекции и их генетические основы
Основные методы селекции — гибридизация и искусственный отбор.
Гибридизация — это процесс образования или получения гибридов, в основе которого лежит объединение генетического материала разных клеток в одной клетке.
Для достижения результата в процессе гибридизации особое внимание уделяется подбору родительских пар. В селекции растений подбор ведется по определенным признакам с учетом генетической и географической удаленности; в селекции животных — только по хозяйственно ценным признакам, которые определяют по экстерьеру, родословной и потомству.
Выделяют родственную и неродственную гибридизации. Родственное скрещивание, или инбридинг, приводит к появлению чистых линий, но при этом снижается жизнеспособность потомства вследствие перехода различных летальных и полулетальных генов в гомозиготное состояние.
Неродственное скрещивание, или аутбридинг, бывает внутривидовым и межвидовым (в т. ч. отдаленная гибридизация). Аутбридинг в первом поколении дает эффект гетерозиса.
Гетерозис (от греч. гетерозис — изменение, перевоплощение) — явление повышения жизнеспособности и продуктивности у гибридов первого поколения по сравнению с исходными родительскими формами.
Данное явление объясняется благоприятным сочетанием родительских генов, а также переходом сублетальных и летальных аллелей в гетерозиготное состояние. Во втором и последующих поколениях эффект гетерозиса ослабевает вследствие расщепления генов и гомоготизации. У растений его эффект можно закрепить вегетативным или партеногенетическим размножением, удвоением числа хромосом и т. д. Эффект гетерозиса широко применяется в сельском хозяйстве, так как он позволяет существенно повысить урожайность растений (кукурузы, огурцов, томатов) и продуктивность животных (яйценоскость гибридов леггорнов и австралорнов, скорость роста и улучшение качества мяса бройлеров).
Несмотря на то, что с помощью отдаленной гибридизации уже созданы и успешно внедрены в сельскохозяйственное производство высокопродуктивные гибриды растений (пшенично-пырейный, пшеницы и ржи — тритикале, малины и ежевики), у животных (лошади и осла — мул, белуги и стерляди — бестер), основной проблемой данного метода является преодоление бесплодия гибридов. Бесплодие возникает в результате различий размеров, форм и количества хромосом в кариотипе родительских форм, вследствие чего хромосомы утрачивают способность конъюгировать в процессе мейоза. Преодолеть его можно за счет удвоения числа хромосом в кариотипе, и тогда хромосомы каждого из родителей будут конъюгировать с гомологичными им. Первым данный метод апробировал российский селекционер Г. Д. Карпеченко в процессе создания редечнокапустного гибрида с 36 хромосомами, тогда как у каждой из родительских форм их было по 18.
У животных решить проблему данным путем не представляется возможным вследствие увеличения дозы летальных аллелей, поэтому у них только в некоторых случаях один или оба пола плодовиты, как, например, самки гибридов яка с крупным рогатым скотом.
Искусственный отбор — процесс создания новых пород животных и сортов культурных растений путем систематического сохранения и размножения особей с определенными, ценными для человека признаками и свойствами в ряду поколений.
Выделяют две формы искусственного отбора: бессознательный, ведущийся без определенного плана, и методический, производимый с определенной целью. Примером искусственного отбора являются породы домашних голубей, выведенные от дикого скалистого голубя. Также он применяется в форме массового и индивидуального отбора. Массовый отбор является эффективным при высокой наследуемости признака. В основном он используется в селекции растений и микроорганизмов. При индивидуальном отборе учитываются не только показатели продуктивности или иные качества организма, но и наследование данного признака в ряду поколений. В комбинации с инбридингом он позволяет получить чистые линии. Индивидуальный отбор характерен для селекции животных и самоопыляющихся растений.
Теорию искусственного отбора создал великий английский ученый Ч. Дарвин. Основные положения своей теории он изложил в труде «Происхождение видов путем естественного отбора, или сохранение благоприятствуемых пород в борьбе за жизнь» и развил в дальнейшем в книге «Изменения домашних животных и культурных растений под влиянием одомашнивания».
Методы выведения новых сортов растений, пород животных, штаммов микроорганизмов
В связи с тем, что генетически запрограммированные резервы продуктивности культурных растений и животных уже практически исчерпаны, создание новых сортов и пород этих организмов требует кардинального изменения подхода к процессу селекции. В первую очередь перед началом селекционного процесса создается модель сорта или породы, которая учитывает современные требования к нему, после чего производится подбор методов, при помощи которых может быть достигнут искомый результат. Помимо описанных выше гибридизации и искусственного отбора, на современном этапе развития селекции широко используются также искусственный мутагенез, методы биотехнологии, клеточной и генной инженерии, клонирование.
Искусственным, или экспериментальным мутагенезом называют получение мутаций с помощью физических или химических агентов, например рентгеновского и ультрафиолетового излучения. Он позволяет получить как новые полезные генные мутации, так и геномные, в том числе добиться полиплоидизации. Однако далеко не все мутации происходят в ядерном геноме и способны передаваться в ряду поколений, поскольку в клетках животных имеются еще геномы митохондрий, а в клетках растений — митохондрий и пластид. Кроме того, мутации могут затронуть только соматические клетки, но не произойти в половых. В связи с этим многие мутантные формы растений размножаются только вегетативно.
В селекции растений широко применяются различные формы гибридизации и искусственного отбора. Однако гибриды довольно часто являются бесплодными, и поэтому их либо каждый раз выводят заново, либо размножают вегетативно. Для преодоления бесплодия гибридов у растений используется искусственный мутагенез, который позволяет получать полиплоидные сорта, отличающиеся более высокой урожайностью. С его помощью был получен ряд сортов сахарной свеклы, гречихи, редечно-капустный гибрид Г. Д. Карпеченко, а также новые высокоурожайные сорта ячменя и пшеницы, сорта растений с декоративными листьями.
В плодоводстве и декоративном цветоводстве невозможно в настоящее время обойтись без методов, разработанных и усовершенствованных одним из самых выдающихся российских селекционеров — И. В. Мичуриным, в особенности методов ментора, вегетативного сближения, посредника, смеси пыльцы и др. Например, метод ментора благодаря сочетанию свойств привоя и подвоя позволил ему вывести сорт груши бере зимняя.
Селекция животных использует те же методы, что и селекция растений, однако она учитывает биологические особенности этих организмов. Так, здесь на определенных стадиях селекционного процесса прибегают к инбридингу, однако весьма в ограниченных масштабах, поскольку это может привести к снижению жизнеспособности особей вследствие перевода летальных аллелей в гомозиготное состояние. Более широко распространенный в животноводстве аутбридинг может давать эффект гетерозиса, как в случае бройлеров — гибридов пород кур корниш и белого плимутрока, но при межвидовой гибридизации гибриды в основном бесплодны и их вегетативное размножение невозможно.
Еще одной трудностью селекционной работы в данной области является то, что у особей одного из полов могут не проявляться хозяйственно ценные признаки, например у петухов — яйценоскость, а у быков — молочность и жирность. В связи с этим от производителей получают «пробных » потомков, и только в том случае, если для последних характерны более высокие показатели исследуемого признака, производителей целесообразно использовать в дальнейшей работе. Для получения от них максимально возможного числа потомков применяют технологии искусственного осеменения, которые предусматривают получение и хранение половых клеток в течение длительного времени, а также искусственного оплодотворения «в пробирке» и пересадки в матку менее ценной в хозяйственном отношении самки — суррогатной матери.
Микроорганизмы в последнее время широко применяются в различных отраслях хозяйственной деятельности. Так, дрожжи используют в хлебопечении, виноделии, пивоварении и т. д. Другие грибы синтезируют в промышленных условиях антибиотики, лимонную кислоту и кормовые белки из отходов растениеводства и даже нефти. С помощью бактерий человек получает витамины, аминокислоты, инсулин, а также извлекает металлы из руд и промышленных отходов. Широко используются микроорганизмы в сельском и лесном хозяйстве для борьбы с вредителями.
Особенности организации и жизнедеятельности микроорганизмов не позволяют применять у них метод гибридизации, тогда как искусственный мутагенез с последующим отбором наиболее продуктивных штаммов дает прекрасные результаты. В некоторых случаях проводят искусственное скрещивание штаммов с помощью бактериофагов, способных переносить наследственную информацию из одной клетки бактерий в другую. Это позволило получить, например, высокопродуктивные штаммы грибов — продуцентов антибиотиков и витаминов.
Значение генетики для селекции
Хотя селекция и возникла как наука для удовлетворения практических потребностей человека, издавна применявшего гибридизацию особей с лучшими сочетаниями признаков для получения новых сортов растений и пород животных (именно на основе сравнения гибридов с родительскими формами начали формироваться основные представления о закономерностях наследования признаков), в настоящее время генетика является теоретической основой селекции. Опираясь на частную генетику различных объектов, селекционеры подбирают исходный материал для создания новых сортов растений, пород животных и штаммов микроорганизмов. При этом не только используются уже имеющиеся наследственные признаки, но и создаются новые благодаря применению метода искусственного мутагенеза, а также вносятся новые гены с помощью методов биотехнологии, не утрачивает своего значения и явление гетерозиса.
Окраска и структура меха пушных животных наследуются как качественные признаки, в связи с чем селекционеры используют их для выведения новых пород норки, лисицы, кролика и др. Продуктивность растений и крупного рогатого скота, напротив, являются количественными признаками, что также не может не учитываться в процессе выведения новых сортов и пород.
Значительную роль методы искусственного мутагенеза, клеточной и генной инженерии сыграли в выведении новых штаммов микроорганизмов, продуцирующих антибиотики, гормон роста человека, инсулин и др., а также в создании новых сортов растений и животных с измененными свойствами — генетически модифицированных организмов.
Клеточная и генная инженерия, клонирование
Клеточная инженерия — метод конструирования клеток нового типа на основе их культивирования на питательной среде, гибридизации и реконструкции. При этом в клетки вводят новые хромосомы, ядра и другие клеточные структуры.
Достижения клеточной инженерии растений, которая позволяет сформировать целое растение, в том числе с измененными свойствами, из отдельной клетки, нашли широкое применение в растениеводстве и селекции. Так, стали возможными соматическая гибридизация, клеточная селекция, гаплоидизация, преодоление нескрещиваемости в культуре и другие приемы.
Технологии искусственного оплодотворения, за разработку которых присуждена Нобелевская премия в области физиологии и медицины в 2010 году, также базируются на методах клеточной инженерии.
Генная инженерия — это отрасль молекулярной биологии и генетики, задачей которой является конструирование генетических структур по заранее намеченному плану, создание организмов с новой генетической программой. Во многих случаях это сводится к переносу необходимых генов от одного вида живых организмов к другому, зачастую очень далекому по происхождению.
Переносу генов предшествует кропотливая работа по выявлению нужного гена в геноме организма- донора (вируса, бактерии, растения, животного, гриба) и его выделению. Это наиболее трудная часть работы, поскольку вместе со структурным геном необходимо перенести и регуляторные. Затем необходимо встроить данный участок молекулы ДНК в генетический вектор (переносчик ДНК). В качестве векторов чаще всего используют вирусы, плазмиды бактерий, хромосомы митохондрий и пластид, а также искусственно сконструированные молекулы ДНК. Процесс введения вектора новой ДНК в клетку-хозяина называется трансформацией. Последний этап работы заключается в размножении организмов-хозяев и отборе тех из них, в которых «прижился» введенный ген. В настоящее время применяют и прямое введение ДНК в клетки эукариот с помощью электрических разрядов, генной пушки и другими способами. Полученные в результате переноса генов организмы называются генетически модифицированными, или трансгенными.
Клонирование — это получение многочисленных копий гена, белка, клетки или организма. Клонирование генов чаще всего осуществляется с помощью бактерий и вирусов, поскольку, например, одна вирусная частица бактериофага, в которой содержится нужный ген, за один день может образовать более 1012 идентичных копий себя и этой молекулы.
Клонирование растений также не представляет значительной трудности, поскольку клетки растений тотипотентны, т. е. из одной клетки можно восстановить целый организм, особенно если культивировать эти клетки на питательной среде со всеми необходимыми веществами.
Массовое размножение генетически идентичных животных долгое время сталкивалось с таким существенным препятствием, как отсутствие способности к бесполому размножению у высших животных. Однако в 1997 году эта проблема была разрешена с получением первого клонированного организма — овцы Долли. Для клонирования были взяты клетки молочной железы ее генетической матери, а также яйцеклетки суррогатной матери. Ядра яйцеклеток удалялись, а на их место вводились ядра клеток молочной железы. После стимуляции развития зиготы электрическим током делящийся зародыш короткий промежуток времени культивировали на питательной среде, а затем вводили в матку суррогатной матери. К сожалению, из пяти пересаженных эмбрионов выжил лишь один.
В настоящее время клонирован уже целый ряд видов животных — мыши, собаки, коровы и др., однако клонирование человека запрещено законодательством многих государств и международными договорами.
Заманчивые перспективы перед человечеством раскрываются в области терапевтического клонирования — воспроизведения отдельных органов. Так, в настоящее время широко используются клонированная кожа, клетки соединительной ткани и другие части организма.
в условии
в решении
в тексте к заданию
в атрибутах
Категория:
Атрибут:
Всего: 236 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Примеры каких научных методов иллюстрирует сюжет картины голландского художника Я. Стена «Пульс»?
1) абстрагирование
2) моделирование
3) эксперимент
4) измерение
5) наблюдение
Источник: Банк заданий ФИПИ
Рассмотрите таблицу «Биология как наука» и заполните пустую ячейку, вписав соответствующий термин.
Раздел биологии | Объект изучения |
---|---|
Ископаемые переходные формы организмов | |
Анатомия | Строение внутренних органов |
Рассмотрите таблицу «Биология как наука». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Биология как наука
Раздел биологии | Объект изучения |
---|---|
? | наследование генов, отвечающих за окраску шерсти
собак |
цитология | строение клеток эпителия собаки |
Рассмотрите таблицу «Биология как наука» и заполните пустую ячейку, вписав соответствующий термин.
Раздел биологии | Пример |
---|---|
Экология | Пищевые цепи |
Проведение нервного импульса |
Рассмотрите таблицу «Биология как наука» и заполните пустую ячейку, вписав соответствующий термин.
Раздел биологии | Пример |
---|---|
Цитология | Строение эндоплазматической сети |
Строение поджелудочной железы |
Рассмотрите таблицу «Биология как наука» и заполните пустую ячейку, вписав соответствующий термин.
Раздел биологии | Пример |
---|---|
Генетика | Закономерности наследственности и изменчивости |
Выработка условного рефлекса — выделение слюны на вид лимона |
Рассмотрите таблицу «Биология как наука». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Биология как наука
Раздел биологии | Объект изучения |
---|---|
Экология | Взаимодействие организмов в биогеоценозе |
? | Строение и функционирование клеток |
Раздел: Основы цитологии
Рассмотрите таблицу «Вклад ученого в развитие данной науки» и заполните пустую ячейку, вписав соответствующий термин.
Раздел биологии | Вклад ученого в развитие данной науки |
---|---|
Физиология | Мечников И. И. − Фагоцитарная теория иммунитета |
К. Линней — Бинарная номенклатура |
Рассмотрите таблицу «Вклад ученого в развитие данной науки» и заполните пустую ячейку, вписав соответствующий термин.
Раздел биологии | Вклад ученого в развитие данной науки |
---|---|
Мечников И. И. − Фагоцитарная теория иммунитета | |
Микробиология | Кох Р. − Открытие туберкулезной палочки |
Раздел: Общая биология. Метаболизм
Источник: РЕШУ ЕГЭ
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Метод | Применение метода |
---|---|
Сезонные изменения в живой природе | |
Близнецовый | влияние условий среды на развитие признаков |
Какая наука изучает биологическую систему — клетку?
Источник: ЕГЭ по биологии 05.05.2014. Досрочная волна. Вариант 2.
Рассмотрите таблицу «Биология как наука». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Биология как наука
Раздел биологии | Объект изучения |
---|---|
? | Строение тканей собаки |
Анатомия | Внутреннее строение собаки |
Раздел: Человек
Рассмотрите таблицу «Биология как наука». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Биология как наука
Раздел биологии | Объект изучения |
---|---|
? | влияние факторов окружающей среды
на численность популяции животных лошади |
палеонтология | ископаемые останки животных |
Рассмотрите таблицу «Биология как наука». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
Биология как наука
Раздел биологии | Объект изучения |
---|---|
генетика | наследование генов, отвечающих за окраску лошади |
? | строение тела лошади |
Наука, изучающая роль митохондрий в метаболизме, —
4) молекулярная биология.
Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Дальний Восток. Вариант 2.
Науку, объектом которой являются процессы исторического развития органического мира, называют
1) экология
2) цитология
3) эволюционное учение
4) молекулярная биология
Рассмотрите таблицу «Методы биологических исследований» и заполните пустую ячейку, вписав соответствующий термин.
Метод | Применение метода |
---|---|
Центрифугирование | Разделение органоидов клетки |
Определение числа хромосом в кариотипе |
Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Палеонтологи изучают
1) закономерности развития организмов
2) распространение живых существ на Земле
3) среду обитания организмов
4) ископаемые останки организмов животных
5) окаменелые остатки пыльцы и спор древних растений
Источник: РЕШУ ЕГЭ
Рассмотрите предложенную схему классификации методов изучения эволюции. Запишите в ответе пропущенный термин, обозначенный на схеме знаком вопроса.
Раздел: Основы эволюционного учения
Источник: СтатГрад биология. 30.11.2018. Вариант БИ10202
Что такое метод исследования? Приведите примеры биологических методов исследования и ситуации, в которых они применяются.
Всего: 236 1–20 | 21–40 | 41–60 | 61–80 …
Биология как наука.
Биология – наука, изучающая свойства живых систем.
Наука – это сфера человеческой деятельности по получению, систематизации объективных знаний о действительности.
Объект – науки – биологии является жизнь во всех ее проявлениях и формах, а также на разных уровнях. Носитель жизни – живые тела. Все, что связано с их существованием, изучает биология.
Метод – это путь исследования, который проходит ученый, решая какую – либо научную задачу, проблему.
Основные методы науки:
1.Моделирование |
метод, при котором создается некий образ объекта, модель с помощью которой ученые получают необходимые сведения об объекте. |
Создание из пластмассовых элементов модели ДНК |
2.Наблюдение |
метод, с помощью которого исследователь собирает информацию об объекте |
Наблюдать можно визуально, например за поведением животных. Можно наблюдать с помощью приборов за изменениями происходящими в живых объектах, например при снятии кардиограммы в течении суток. Наблюдать можно за сезонными изменениями в природе, например за линькой животных. |
3.Эксперимент (опыт) |
метод, с помощью которого проверяют результаты наблюдений, выдвинутые предположения – гипотезы. Это всегда получение новых знаний с помощью поставленного опыта. |
Скрещивание животных или растений с целью получения нового сорта или породы, проверка нового лекарства. |
4.Проблема |
вопрос, задача, требующие решения. Решение проблемы ведер к получению нового знания. Научная проблема всегда скрывает какое-то противоречие между известным и неизвестным. Решение проблемы требует от ученого сбора фактов, их анализа, систематизации. |
Пример проблемы: «Как возникает приспособленность организмов к окружающей среде?» или «Каким образом можно подготовиться к серьезным экзаменам» |
5.Гипотеза |
предположение, предварительное решение поставленной проблемы. Выдвигая гипотезы, исследователь ищет взаимосвязи между фактами, явлениями, процессами. Именно поэтому гипотеза чаще всего имеет форму предположения: «если…тогда». |
«Если растения на свету выделяют кислород, то мы сможем его обнаружить с помощью тлеющей лучины, т.к. кислород должен поддерживать горение» |
6.Теория |
это обобщение основных идей в какой – либо научной области знания |
Теория эволюции обобщает все достоверные научные данные, полученные исследователями на протяжении многих десятилетий. Со временем теория дополняется новыми данными, развивается. Некоторые теории могут опровергаться новыми фактами. Верные научные теории подтверждаются практикой. |
Частные методы в биологии:
Генеалогический метод |
Применяется при составлении родословных людей, выявление характера наследования некоторых признаков |
Исторический метод |
Установление взаимосвязей между фактами, процессами, явлениями, происходящими на протяжении исторически длительного времени (несколько миллиардов лет). |
Палеонтологический метод |
Позволяет выяснить родство между древними организмами, останки которых находятся в земной коре, в разных геологических слоях. |
Центрифугирование |
Разделение смесей на составные части под действием центробежной силы. Применяется при разделении органоидов клетки, легких и тяжелых фракций органических веществ. |
Цитологический или цитогенетический метод |
Исследование строения клетки, ее структур с помощью различных микроскопов. |
Биохимический метод |
Исследование химических процессов, происходящих в организме. |
Близнецовый метод |
Используется для выяснения степени наследственной обусловленности исследуемых признаков. Метод дает ценные результаты при изучении морфологических и физиологических признаков. |
Гибридологический метод |
Скрещивание организмов и анализ потомства |
Науки
Палеонтология |
наука об ископаемых останках растений и животных |
Молекулярная биология |
комплекс биологических наук, изучающих механизмы хранения, передачи и реализации генетической информации, строение и функции нерегулярных биополимеров (белков и нуклеиновых кислот). |
Сравнительная физиология |
раздел физиологии животных, изучающий методом сравнения особенности физиологических функций у различных представителей животного мира. |
Экология |
наука о взаимодействиях живых организмов и их сообществ между собой и с окружающей средой. |
Эмбриология |
это наука, изучающая развитие зародыша. |
Селекция |
наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. |
Физиология |
наука о сущности живого и жизни в норме и при патологиях, то есть о закономерностях функционирования и регуляции биологических систем разного уровня организации, о пределах нормы жизненных процессов и болезненных отклонений от неё |
Ботаника |
Наука о растениях |
Цитология |
раздел биологии, изучающий живые клетки, их органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти. |
Генетика |
наука о закономерностях наследственности и изменчивости. |
Систематика |
раздел биологии, призванный создать единую стройную систему живого на основе выделения системы биологических таксонов и соответствующих названий, выстроенных по определенным правилам (номенклатура) |
Морфология |
изучает как внешнее строение (форму, структуру, цвет, образцы) организма, таксона или его составных частей, так и внутреннее строение живого организма |
Ботаника |
Наука о растениях |
Анатомия |
раздел биологии, изучающий морфологию человеческого организма, его систем и органов. |
Психология |
наука о поведении и психических процессах |
Гигиена |
наука, изучающая влияние факторов внешней среды на организм человека с целью оптимизации благоприятного и профилактики неблагоприятного воздействия. |
Орнитология |
раздел зоологии позвоночных, изучающий птиц, их эмбриологию, морфологию, физиологию, экологию, систематику и географическое распространение. |
Микология |
Наука о грибах |
Ихтиология |
Наука о рыбах |
Фенология |
Наука о развитии живой природы |
Зоология |
Наука о животных |
Микробиология |
Наука о бактериях |
Вирусология |
Наука о вирусах |
Антропология |
совокупность научных дисциплин, занимающихся изучением человека, его происхождения, развития, существования в природной (естественной) и культурной (искусственной) средах. |
Медицина |
область научной и практической деятельности по исследованию нормальных и патологических процессов в организме человека, различных заболеваний и патологических состояний, их лечению, сохранению и укреплению здоровья людей |
Гистология |
Наука о тканях |
Биофизика |
это наука о физических процессах, протекающих в биологических системах разного уровня организации и о влиянии на биологические объекты различных физических факт |
Биохимия |
наука о химическом составе живых клеток и организмов и о химических процессах, лежащих в основе их жизнедеятельности |
Бионика |
прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формы живого в природе и их промышленные аналоги. |
Сравнительная анатомия |
биологическая дисциплина, изучающая общие закономерности строения и развития органов и систем органов при помощи их сравнения у животных разных таксонов на разных этапах эмбриогенеза. |
Теория эволюции |
Наука о причинах, движущих силах, механизмах и общих закономерностях эволюции живой природы |
Синэкология |
раздел экологии, изучающий взаимоотношения организмов различных видов внутри сообщества организмов. |
Биогеография |
наука на стыке биологии и географии; изучает закономерности географического распространения и распределения животных, растений и микроорганизмов |
Аутоэкология |
раздел экологии, изучающий взаимоотношения организма с окружающей средой. |
Протистология |
наука, изучающая одноклеточные эукариотические организмы, относящиеся к типу простейших |
Бриология |
Наука о мхах |
Альгология |
наука о морфологии, физиологии, генетике, экологии и эволюции макро и микроскопических одно и многоклеточных водорослей |
Признаки и свойства живого
Единство элементного химического состава |
В состав живого входят те же элементы, что и в состав неживой природы, но в других количественных соотношениях; при этом примерно 98% приходится на углевод, водород, кислород, азот. |
Единство биохимического состава |
Все живые организмы состоят в основном из белков, липидов, углеводов и нуклеиновых кислот. |
Единство структурной организации |
Единицей строения, жизнедеятельности, размножения, индивидуального развития является клетка; вне клетки жизни нет. |
Дискретность и целостность |
Любая биологическая система состоит из отдельных взаимодействующих частей (молекулы, органоиды, клетки, ткани, организмы, виды и т.д.), которые вместе образуют структурно – функциональное единство. |
Обмен веществ и энергии (метаболизм) |
Обмен веществ состоит из двух взаимосвязанных процессов: ассимиляции (пластического обмена) – синтеза органических веществ в организме (за счет внешних источников энергии – света, пищи) и диссимиляции (энергетического обмена) – процесса распада сложных органических веществ с выделением энергии, которая затем расходуется организмом. |
Саморегуляция |
Любые живые организмы обитают в постоянно изменяющихся условиях окружающей среды. Благодаря способности к саморегуляции в процессе метаболизма сохраняются относительное постоянство химического состава и интенсивность течения физиологических процессов, т.е. поддерживается гомеостаз. |
Открытость |
Все живые системы являются открытыми, потому что в процессе их жизнедеятельности между ними и окружающей средой происходит постоянный обмен веществом и энергией. |
Размножение |
Это способность организмов воспроизводить себе подобных. В основе воспроизведения лежат реакции матричного синтеза, т.е. образование новых молекул и структур на основе информации, заложенной в последовательности нуклеотидов ДНК. Это свойство обеспечивает непрерывность жизни и преемственность поколений. |
Наследственность и изменчивость |
Наследственность – способность организмов передавать свои признаки, свойства и особенности развития из поколения в поколение. Основой наследственности является относительное постоянство строения молекул ДНК. Изменчивость – свойство, противоположное наследственности; способность живых организмов существовать в различных формах, т.е. приобретать новые признаки, отличные от качеств других особей того же вида. Изменчивость, обусловленная изменениями наследственных задатков – генов, создает разнообразный материал для естественного отбора, т.е. отбора особей, наиболее приспособленных к конкретным условиям существования в природе. Это приводит к появлению новых форм жизни, новых видов организмов. |
Рост и развитие |
Индивидуальное развитие, или онтогенез, — развитие живого организма от зарождения до момента смерти. В процессе онтогенеза постепенно и последовательно проявляются индивидуальные свойства организма. В основе этого лежит поэтапная реализация наследственных программ. Индивидуальное развитие обычно сопровождается ростом. Историческое развитие, или филогенез, — необратимое направленное развитие живой природы, сопровождающееся образованием новых видов и прогрессивным усложнением жизни. |
Раздражимость |
Способность организма избирательно реагировать на внешние и внутренние воздействия, т.е. воспринимать раздражение и отвечать определенным образом. Ответная реакция организма на раздражение, осуществляемая при участии нервной системы, называется рефлексом. Организмы, у которых отсутствует нервная система, отвечают на воздействие изменением характера движения и роста, например листья растений, поворачиваются к свету. |
Ритмичность |
Суточные и сезонные ритмы направлены на приспособление организмов к меняющимся условиям существования. Наиболее известным ритмическим процессом в природе является чередование периодов сна и бодрствования. |
Уровни организации живой природы
Уровень организации |
Биологическая система |
Элементы, образующие систему |
Значение уровня в органическом мире |
1.Молекулярно — генетический |
Ген (макромолекула) |
Макромолекулы нуклеиновых кислот, белков, АТФ |
Кодирование и передача наследственной информации, обмен веществ, превращение энергии |
2.Клеточный |
Клетка |
Структурные части клетки |
Существование клетки лежит в основе размножения, роста и развития живых организмов, биосинтеза белка. |
3.Тканевый |
Ткань |
Совокупность клеток и межклеточного вещества |
Разные виды тканей у животных и растений отличаются строением и выполняют различные функции. Изучение этого уровня позволяет проследить эволюцию и индивидуальное развитие тканей. |
4.Органный |
Орган |
Клетки, ткани |
Позволяет изучать строение, функции, механизм действия, происхождение, эволюцию и индивидуальное развитие органов растений и животных. |
5.Организменный |
Организм (особь) |
Клетки, ткани, органы и системы органов с их уникальными жизненными функциями |
Обеспечивает функционирование органов в жизнедеятельности организма, приспособительные изменения и поведение организмов в различных экологических условиях. |
6.Популяционно — видовой |
Популяция |
Совокупность особей одного вида |
Осуществляется процесс видообразования. |
7.Биогеоценотический (экосистемный) |
Биогеоценоз |
Исторически сложившаяся совокупность организмов разного ранга в сочетании с факторами окружающей среды |
Круговорот веществ и энергии |
8.Биосферный |
Биосфера |
Все биогеоценозы |
Здесь происходят все круговороты веществ и энергии, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле. |
Ученые – биологи
Гиппократ |
Создал научную медицинскую школу. Считал, что у каждой болезни есть естественные причины, и их можно узнать, изучая строение и жизнедеятельность человеческого организма. |
Аристотель |
Один из основателей биологии как науки, впервые обобщил биологические знания, накопленные до него человечеством. |
Клавдий Гален |
Заложил основы анатомии человека. |
Авиценна |
В современной анатомической номенклатуре сохранил арабские термины. |
Леонардо да Винчи |
Описал многие растения, изучал строение человеческого тела, деятельность сердца и зрительную функцию. |
Андреас Визалия |
Работа «О строении человеческого тела» |
Уильям Гарвей |
Открыл кровообращение |
Карл Линней |
Предложил систему классификации живой природы, ввел бинарную номенклатуру для наименования видов. |
Карл Бэр |
Изучал внутриутробное развитие, установил, что зародыши всех животных на ранних этапах развития схожи, сформулировал закон зародышевого сходства, основатель эмбриологии. |
Жан Батист Ламарк |
Первым попытался создать стройную и целостную теорию эволюции живого мира. |
Жорж Кювье |
Создал науку палеонтологию. |
Теодор Шванн и Шлейден |
Создали клеточную теорию |
Ч Дарвин |
Эволюционное учение. |
Грегор Мендель |
Основоположник генетики |
Роберт Кох |
Основатель микробиологии |
Луи Пастер и Мечников |
Основатели иммунологии. |
И.М. Сеченов |
Заложил основы изучения высшей нервной деятельности |
И.П. Павлов |
Создал учение об условных рефлексах |
Гуго де Фриза |
Мутационная теория |
Томас Морган |
Хромосомная теория наследственности |
И.И. Шмальгаузен |
Учение о факторах эволюции |
В.И. Вернадский |
Учение о биосфере |
А. Флеминг |
Открыл антибиотики |
Д. Уотсон |
Установил структурц ДНК |
Д.И. Ивановский |
Открыл вирусы |
Н.И. Вавилов |
Учение о многообразии и происхождении культурных растений |
И.В. Мичурин |
Селекционер |
А.А. Ухтомский |
Учение о доминанте |
Э.Геккель и И.Мюллер |
Создали биогенетический закон |
С.С. Четвериков |
Исследовал мутационные процессы |
И.Янсен |
Создал первый микроскоп |
Роберт Гук |
Первым обнаружил клетку |
Антониа Левенгук |
Увидел в микроскоп микроскопических организмов |
Р.Броун |
Описал ядро растительной клетки |
Р.Вирхов |
Теория целлюлярной патологии. |
Д.И.Ивановский |
Открыл возбудителя табачной мозаики (вирус) |
М.Кальвин |
Химическая эволюция |
Г.Д.Карпеченко |
Селекционер |
А.О.Ковалевский |
Основоположник сравнительной эмбриологии и физиологии |
В.О.Ковалевский |
Основоположник эволюционной палеонтологии |
Н.И.Вавилов |
Учение о биологических основах селекции и учение о центрах происхождения культурных растений. |
Х.Кребс |
Изучал метаболизм |
С.Г.Навашин |
Открыл двойное оплодотворение у покрытосеменных |
А.И.Опарин |
Теория самозарождения жизни |
Д.Холдейн |
Создал учение о дыхании человека |
Ф.Реди |
Изучал паразитов человека и животных |
А.С.Северцов |
Основатель эволюционной морфологии животных |
В.Н.Сукачев |
Основоположник биогеоценологии |
А.Уоллес |
Сформулировал теорию естественного отбора, которая совпала с Дарвиным |
Ф.Крик |
Изучал животные организмы на молекулярном уровне |
К.А.Темирязев |
Раскрыл закономерности фотосинтеза |
Биология – как наука.
Часть А.
1.Биология как наука изучает 1) общие признаки строения растений и животных; 2) взаимосвязь живой и неживой природы; 3) процессы, происходящие в живых системах; 4) происхождение жизни на Земле.
2.И.П. Павлов в своих работах по пищеварению применял метод исследования: 1) исторический; 2) описательный; 3) экспериментальный; 4) биохимический.
3.Предположение Ч.Дарвина о том, что у каждого современного вида или группы видов были общие предки – это 1) теория; 2) гипотеза; 3) факт; 4) доказательство.
4.Эмбриология изучает 1) развитие организма от зиготы до рождения; 2) строение и функции яйцеклетки; 3) послеродовое развитие человека; 4) развитие организма от рождения до смерти.
5.Количество и форма хромосом в клетке устанавливается методом исследования 1) биохимическим; 2) цитологическим; 3) центрифугированием; 4) сравнительным.
6.Селекция как наука решает задачи 1) создание новых сортов растений и пород животных; 2) сохранение биосферы; 3) создание агроценозов; 4) создание новых удобрений.
7.Закономерности наследования признаков у человека устанавливаются методом 1) экспериментальным; 2) гибридологическим; 3) генеалогическим; 4) наблюдения.
8.Специальность ученого, изучающего тонкие структуры хромосом, называется: 1) селекционер; 2) цитогенетик; 3) морфолог; 4) эмбриолог.
9.Систематика – это наука, занимающаяся 1) изучением внешнего строения организмов; 2) изучением функций организма 3) выявлением связей между организмами; 4) классификацией организмов.
10.Способность организма отвечать на воздействия окружающей среды называют: 1) воспроизведением; 2) эволюцией; 3) раздражимостью; 4) нормой реакции.
11.Обмен веществ и превращение энергии – это признак, по которому: 1) устанавливают сходство тел живой и неживой природы; 2) живое можно отличить от неживого; 3) одноклеточные организмы отличаются от многоклеточных; 4) животные отличаются от человека.
12.Для живых объектов природы, в отличие от неживых тел, характерно: 1) уменьшение веса; 2) перемещение в пространстве; 3) дыхание; 4) растворение веществ в воде.
13.Возникновение мутаций связано с таким свойством организма, как: 1) наследственность; 2) изменчивость; 3) раздражимость; 4) самовоспроизведение.
14.Фотосинтез, биосинтез белка – это приметы: 1) пластического обмена веществ; 2) энергетического обмена веществ; 3) питания и дыхания; 4) гомеостаза.
15.На каком уровне организации живого происходят генные мутации: 1) организменном; 2) клеточном; 3) видовом; 4) молекулярном.
16.Строение и функции молекул белка изучают на уровне организации живого:1) организменном; 2) тканевом; 3) молекулярном; 4) популяционном.
17.На каком уровне организации живого осуществляется в природе круговорот веществ?
1) клеточном; 2) организменном; 3) популяционно – видовом; 4) биосферном.
18.Живое от неживого отличается способностью: 1) изменять свойства объекта под воздействием среды; 2) участвовать в круговороте веществ; 3) воспроизводить себе подобных; 4) изменять размеры объекта под воздействием среды.
19.Клеточное строение – важный признак живого, характерный для:1) бактериофагов; 2)вирусов; 3) кристаллов; 4) бактерий.
20.Поддержание относительного постоянства химического состава организма называется:
1) метаболизм; 2) ассимиляция; 3) гомеостаз; 4) адаптация.
21.Одергивание руки от горячего предмета – это пример: 1) раздражимости;2) способности к адаптации; 3) наследования признаков от родителей; 4) саморегуляции.
22.Какой из терминов является синонимом понятия «обмен веществ»:1) анаболизм; 2) катаболизм; 3) ассимиляция; 4) метаболизм.
23.Роль рибосом в процессе биосинтеза белка изучают на уровне организации живого:
1) организменном; 2) клеточном; 3) тканевом; 4) популяционном.
24.На каком уровне организации происходит реализация наследственной информации:
1) биосферном; 2) экосистемном; 3) популяционном; 4) организменном.
25.Уровень, на котором изучают процессы биогенной миграции атомов называется:
1) биогеоценотический; 2) биосферный; 3) популяционно – видовой; 4) молекулярно – генетический.
26. На популяционно – видовом уровне изучают: 1) мутации генов; 2) взаимосвязи организмов одного вида; 3) системы органов; 4) процессы обмена веществ в организме.
27.Какая из перечисленных биологических систем образует наиболее высокий уровень жизни?
1) клетка амебы; 2) вирус оспы; 3) стадо оленей; 4) природный заповедник.
28.Какой метод генетики используют для определения роли факторов среды в формировании фенотипа человека? 1) генеалогический; 2) биохимический; 3) палеонтологический;
4) близнецовый.
29.Генеалогический метод используют для 1) получение генных и геномных мутаций; 2) изучение влияния воспитания на онтогенез человека; 3) исследования наследственности и изменчивости человека; 4) изучения этапов эволюции органического мира.
30. Какая наука изучает отпечатки и окаменелости вымерших организмов? 1) физиология; 2) экология; 3) палеонтология; 4) селекция.
31.Изучением многообразия организмов, их классификацией занимается наука 1) генетика;
2) систематика; 3) физиология; 4) экология.
32.Развитие организма животного от момента образования зиготы до рождения изучает наука
1) генетика; 2) физиология; 3) морфология; 4) эмбриология.
33.Какая наука изучает строение и функции клеток организмов разных царств живой природы?
1) экология; 2) генетика; 3) селекция; 4) цитология.
34.Сущность гибридологического метода заключается в 1) скрещивании организмов и анализе потомства; 2) искусственном получении мутаций; 3) исследовании генеалогического древа; 4) изучении этапов онтогенеза.
35.Какой метод позволяет избирательно выделять и изучать органоиды клетки? 1) скрещивание;
2) центрифугирование; 3) моделирование; 4) биохимический.
36.Какая наука изучает жизнедеятельность организмов? 1) биогеография; 2) эмбриология; 3) сравнительная анатомия; 4) физиология.
37.Какая биологическая наука исследует ископаемые остатки растений и животных?
1) систематика; 2) ботаника; 3) зоология; 4) палеонтология.
38.С какой биологической наукой связана такая отрасль пищевой промышленности, как сыроделие?
1) микологией; 2) генетикой; 3) биотехнологией; 4) микробиологией.
39.Гипотеза – это 1) общепринятое объяснение явления; 2) то же самое, что и теория; 3) попытка объяснить специфическое явление; 4) устойчивые отношения между явлениями в природе.
40.Выберите правильную последовательность этапов научного исследования
1) гипотеза-наблюдение-теория-эксперимент; 2) наблюдение-эксперимент-гипотеза-теория; 3) наблюдение-гипотеза-эксперимент-теория; 4) гипотеза-эксперимент-наблюдение-закон.
41.Какой метод биологических исследований самый древний? 1) экспериментальный; 2) сравнительно-описательный; 3) мониторинг; 4) моделирование.
42.Какая часть микроскопа относится к оптической системе? 1) основание; 2) тубусодержатель; 3) предметный столик; 4) объектив.
43.Выберите правильную последовательность прохождения световых лучей в световом микроскопе
1) объектив-препарат-тубус-окуляр; 2) зеркало-объектив-тубус-окуляр; 3) окуляр-тубус-объектив-зеркало; 4) тубус-зеркало-препарат-объектив.
44.Пример какого уровня организации живой материи представляет собой участок соснового леса?
1) организменный; 2) популяционно-видовой; 3) биогеоценотический; 4) биосферный.
45.Что из перечисленного не является свойством биологических систем? 1) способность отвечать на стимулы окружающей среды; 2) способность получать энергию и использовать ее; 3) способность к воспроизведению; 4) сложная организация.
46.Какая наука изучает в основном надорганизменные уровни организации живой материи?
1) экология; 2) ботаника; 3) эволюционное учение; 4) биогеография.
47.На каких уровнях организации находится хламидомонада? 1) только клеточном; 2) клеточном и тканевом; 3) клеточном и организменном; 4) клеточном и популяционно-видовом.
48.Биологические системы являются 1) изолированными; 2) закрытыми; 3) замкнутыми; 4) открытыми.
49.Какой метод следует использовать для изучения сезонных изменений в природе? 1) измерение; 2) наблюдение; 3) эксперимент; 4) классификацию.
50.Созданием новых сортов полиплоидных растений пшеницы занимается наука 1) селекция; 2) физиология; 3) ботаника; 4) биохимия.
Часть В. (выбрать три правильных ответа)
В1.Укажите три функции, которые выполняет современная клеточная теория 1) экспериментально подтверждает научные данные о строении организмов; 2) прогнозирует появление новых фактов, явлений; 3) описывает клеточное строение разных организмов; 4) систематизирует, анализирует и объясняет новые факты о клеточном строении организмов; 5) выдвигает гипотезы о клеточном строении всех организмов; 6) создает новые методы исследования клетки.
В2.Выберите процессы происходящие на молекулярно – генетическом уровне: 1) репликация ДНК; 2) наследование болезни Дауна; 3) ферментативные реакции; 4) строение митохондрий; 5) структура клеточной мембраны; 6) кровообращение.
Часть В. (уставить соответствие)
В3.Соотнесите характер адаптации организмов с условиями, к которым они вырабатывались:
Адаптации Уровни жизни
А) яркая окраска самцов павианов 1)защита от хищников
Б) пятнистая окраска молодых оленей 2)поиск полового партнера
В) борьба двух лосей
Г) сходство палочников с сучками
Д) ядовитость пауков
Е) сильный запах у кошек
Часть С.
1.Какие приспособления растений обеспечивают им размножение и расселение?
2.Что общего и в чем заключаются различия между разными уровнями организации жизни?
3.Распределите уровни организации живой материи по принципу иерархичности. В основе какой системы лежит тот же самый принцип иерархичности? Какие отрасли биологии изучают жизнь на каждом из уровней.?
4.Каковы, по вашему мнению, степень ответственности ученых за социальные и моральные последствия их открытий?
Биология – наука, изучающая свойства живых систем.
Однако определить, что такое живая система, достаточно сложно. Поэтому установлено несколько критериев, по которым организм можно отнести к живым. Наиболее важные из этих критериев – обмен веществ (метаболизм), самовоспроизведение, саморегуляция.
Биология – это наука.
Понятие наука есть «сфера человеческой деятельности по получению, систематизации объективных знаний о действительности».
У каждой науки есть объект и предмет исследования. В биологии объектом исследования является жизнь.
Предмет изучения науки всегда несколько уже, ограниченнее, чем объект: к примеру, если ученого интересует питание организмов, тогда объектом изучения будет жизнь, а предметом изучения – питание.
Каждая наука, в том числе и биология, пользуется определенными методами исследования. Метод – совокупность приемов получения научного результата.
Некоторые из них универсальны для всех наук, например такие, как наблюдение, выдвижение и проверка гипотез, построение теорий.
Другие научные методы могут быть использованы только определенной наукой, в биологии это: генеалогический метод, метод гибридизации, метод культуры тканей и т.д.
Биология тесно связана с другими науками – химией, физикой, географией, экологией и т.д.
Собственно биология делится на множество частных наук, изучающих различные биологические объекты: ботаника, зоология, анатомия, физиология, морфология, генетика, систематика, селекция, микология, гельминтология и множество других наук.
Метод – это путь исследования, который проходит ученый, решая какую-либо научную задачу. Методы науки можно разделить на:
1. Универсальные:
Моделирование – метод, при котором создается некий образ объекта, модель, с помощью которой ученые получают необходимые сведения об объекте (например, Джеймс Уотсон и Френсис Крик создали из отдельных элементов модель – двойную спираль ДНК, отвечающую данным рентгенологических и биохимических исследований).
Наблюдение – метод, с помощью которого исследователь собирает информацию об объекте (можно визуально наблюдать за поведением животных, с помощью приборов за изменениями в природе). Выводы, сделанные наблюдателем, проверяются либо повторными наблюдениями, либо экспериментально.
Эксперимент (опыт) – метод, с помощью которого проверяют результаты наблюдений, выдвинутые предположения – гипотезы (получение новых знаний с помощью поставленного опыта): скрещивание организмов с целью получения нового сорта или породы, испытание нового лекарства.
Проблема – задача, требующая решения; всегда скрывает какое-то противоречие между известным и неизвестным. Решение проблемы требует от ученого сбора фактов, их анализа, систематизации; ведет к получению нового знания. Сформулировать проблему бывает достаточно сложно, однако всегда, когда есть затруднение, противоречие, появляется проблема.
Гипотеза – предположение, предварительное решение поставленной проблемы; проверяется экспериментально. Выдвигая гипотезы, исследователь ищет взаимосвязи между фактами, явлениями, процессами. Именно поэтому гипотеза чаще всего имеет форму предположения: «если … тогда».
Теория – это обобщение основных идей в какой-либо области знания. Со временем теории дополняются новыми данными, развиваются; могут опровергаться новыми фактами или подтверждаться практикой.
2. Частные научные методы:
Генеалогический – применяется при составлении родословных, выявлении характера наследования признаков.
Исторический – установление взаимосвязей между фактами, процессами, явлениями, происходившими на протяжении исторически длительного времени.
Палеонтологический – метод, позволяющий выяснить родство между древними организмами, останки которых находятся в разных геологических слоях земной коры.
Центрифугирование – разделение смесей на составные части под действием центробежной силы; применяется при разделении органоидов клетки, фракций (составляющих) органических веществ и т.д.
Цитологический или цитогенетический – исследование строения клетки, ее структур с помощью различных микроскопов.
Биохимический – исследование химических процессов, происходящих в организме.
Каждая частная биологическая наука (ботаника, зоология, анатомия и физиология, цитология, эмбриология, генетика, селекция, экология и другие) пользуется своими частными методами исследования.
Название | Что изучает |
Антропология | Изучает историческое развитие человека как вида.( эволюцию человека) |
Анатомия | Изучает внутреннее строение организмов |
Биохимия | Изучает химический состав живых организмов и химические реакции обмена веществ |
Бактериология | Изучает бактерии |
Ботаника | Изучает строение и жизнедеятельность растений |
Биогеография | Наука на стыке биологии и географии; изучает закономерности географического распространения и распределения животных, растений и микроорганизмов |
Бионика | Прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формах живого в природе и их промышленных аналогах |
Вирусология | Изучает вирусы |
Генетика | Изучает закономерности наследственности и изменчивости |
Гистология | Изучает строение ткани |
Зоология | Изучает строение и жизнедеятельность животных |
Морфология | Изучает внешнее строение организмов |
Микробиология | Изучает микроорганизмы (бактерии и грибы) |
Микология | Изучает грибы |
Селекция | Занимается выведением новых сортов растений, пород животных и штаммов микроорганизмов |
Систематика | Изучает многообразие живых организмов и распределяет их по группам на основании эволюционного родства |
Палеонтология | Изучает ископаемые остатки организмов |
Паразитология | Комплексная биологическая наука, изучающая явление паразитизма, биологию и экологию паразитов, а также вызываемые ими заболевания и меры борьбы с паразитами |
Цитология | Изучает строение и работу клетки |
Физиология | Изучает работу внутренних органов |
Экология | Изучает взаимодействия живых организмов между собой и с окружающей их средой |
Эмбриология | Изучает развитие организма от момента образования зиготы до рождения |
Этология | Изучает поведение животных |
Эволюционная теория | Изучает закономерности возникновения приспособлений организмов к среде обитания |
Особенности системы биологических наук
Определение биологии и первые науки о биологии
Что изучает биология? Биология как наука изучает все формы и закономерности развития живых организмов. Биология является комплексной наукой о живой природе. Предмет изучения в биологии — разнообразие живых существ, как современных, так и вымерших, особенности их строения, индивидуального развития, происхождения, эволюции, распространения по планете, а также взаимоотношений друг с другом и окружающей средой.
Науки, связанные с биологией, исследуют разнообразные проявления жизни: обмен веществ и энергии, рост и развитие, саморегуляцию, размножение, наследственные изменения, разнообразие жизни и др.
Биология, как наука, изучающая живое, оформилась в самостоятельную естественную науку до нашей эры. Однако свое настоящее название она получила только в 1802 году. Название «биология» было предложено сразу двумя учеными — независимо друг от друга: французом Жан-Батистом Ламарком и немцем Готфридом Рейнхольдом Тревиранусом.
Первые науки в биологии — это:
- зоология. Какая это наука в биологии и что она изучает? Зоология является наукой о животных. Она изучает особенности их строения и развития, образ жизни, разнообразие и распространение;
- ботаника. Она стала той биологической наукой, что изучает растительные организмы: она концентрируется на их происхождении, развитии, жизнедеятельности, свойствах. В поле ее зрения — история развития растений, их классификация, структура, а также развитие и расположение на поверхности земли растительных сообществ, которые получили название фитоценозов;
- анатомия и физиология человека. Как и все науки биологии, она изучает охватывает все, что связано с человеком: форму и строение тела (с точки зрения его развития и взаимозависимости формы и функции), жизнедеятельность организма, значение его функций, взаимосвязь и зависимость от внешних и внутренних условий;
- гигиена. В системе биологических наук — это наука об основных вариантах сохранения и укрепления человеческого здоровья, оптимальных условиях жизни, профилактике заболеваний (тесно связана с физиологией в этом плане).
Основные направления всех биологических наук
В зависимости от объекта исследования наук, изучающих биологию, выделяют некоторые направления:
- систематика. Если кратко, что изучает в биологии эта наука — видовое разнообразие современных и вымерших живых организмов. Также она занимается описанием новых для науки видов, а на базе достижений других отраслей биологии — распределением или классификацией (создает систему организмов). В задачи систематики входит описание новых для науки видов, распределение их по группам или таксонам с точки зрения эволюционного родства;
- микробиология. Это наука в биологии, что изучает микроорганизмы;
- вирусология. Это наука по биологии о неклеточных формах жизни, то есть, вирусах;
- бактериология. Это биологическая наука о прокариотических организмах;
- гидробиология. В списке наук в биологии она отвечает за изучение организмов, населяющих водную среду;
- альгология. Что изучает эта наука в биологии? За ней скрывается наука о водорослях;
- микология. Предмет ее изучения — представители царства грибов;
- бриология. Изучает мхи;
- паразитология. Предметом ее изучения являются паразитические организмы;
- малакология. Она отвечает за изучение моллюсков;
- арахнология. Как видно из названия, которое более-менее на слуху, эта дисциплина изучает паукообразных;
- энтомология. Объект ее изучения — насекомые;
- ихтиология. Она ответственна за изучение строения, жизнедеятельности, развитие, разнообразие и распространение рыб;
- герпентология. Изучает пресмыкающихся;
- орнитология. Это наука о птицах;
- маммология. Занимается изучением млекопитающих.
Перечисленные выше науки и дисциплины изучают особенности происхождения, строения, развития, жизнедеятельности, разнообразия и распространения каждого вида.
Какие еще науки изучаются в биологии? По исследовании свойств организмов и проявлений живого в биологии выделяют:
- анатомию и морфологию. Предмет их изучения — строение и форма организмов, как внешняя, так и внутренняя;
- экологию. Ее задача — изучать взаимосвязи организмов друг с другом, а также с условиями окружающей среды, структуру и функционирование систем с многочисленными видами (вроде экосистем, биосистем). Экологические принципы — база для охраны природы;
- физиологию растений и животных. Она занимается изучением функций живых организмов;
- генетику. В ее основе — изучение основных закономерностей наследственности и изменчивости живых организмов, механизмы передачи наследственной информации от родителей к потомкам;
- биологию индивидуального развития. Ее интересуют закономерности развития организма от момента зарождения до смерти;
- эмбриологию. В фокусе науки — закономерности индивидуального развития организмов от состояния зиготы до рождения;
- филогения. Ей интересны конкретные этапы и пути исторического развития различных групп живых организмов;
- дарвинизм или эволюционное учение. Она концентрируется на закономерностях исторического развития органического мира.
Прикладные науки и науки по методу исследования
Также в биологии выделяются дисциплины, которые основываются на определенных методах исследования:
- биометрия. За основу она берет обмер живых тел и их частей, процессов и реакций, на базе чего осуществляет вычисления и математическую обработку биологических данных. Это используется для установки зависимостей, закономерностей, которые недоступны при обычном описании конкретных явлений и процессов;
- теоретическая и математическая биология. Они дают возможность использовать логические построения и математические методы, а также устанавливать общие биологические закономерности.
Также есть прикладные биологические науки. Это:
- селекция. Она направлена на выведение новых пород животных, сортов растений и штаммов микроорганизмов;
- клеточная инженерия. Она изучает пересадку клеточных ядер, а также получение гибридных клеток (клетки организмов разных видов объединяются). В рамках дисциплины выращиваются в лабораторных условиях ткани и органы, а также целые организмы из соматических клеток. Клеточная инженерия занимается клонированием, то есть, выращиванием нового организма из яйцеклетки с замененным ядром;
- генная инженерия. Ее интересует пересадка генов в организм другого вида таким образом, чтобы они приобрели новые качества;
- биотехнология. Эта прикладная наука разрабатывает и внедряет в производство промышленные методы с использованием живых организмов и биологических процессов.
Данные, получаемые из биологических наук о человеке, используются как теоретическая база для медицины.
Под медициной понимают науку о здоровье человека, а также его сохранении, заболеваниях и вариантах их диагностики и лечения.
Поскольку все живое изучается на самых разных уровнях, то в биологии возникли определенные дисциплины:
- молекулярная биология. Жизненные явления изучаются этой наукой на молекулярном уровне;
- цитология. Она занимается изучением строения и жизнедеятельности клеток;
- гистология. Объект ее изучения — ткани живых организмов;
- популяционно-видовая биология. В ее фокусе — популяции и составные части отдельного вида;
- биогеоценология. Она исследует высшие структурные уровни организации жизни на планете, включая биосферу;
- общая биология. Ее интересуют общие закономерности того, как устроены и функционируют организмы.
Какие науки входят в биологию? Проще всего представить биологические науки в таблице:
Связь биологии с другими науками
Отмечается тесная связь биологии с другими естественными и гуманитарными науками. Как результат взаимодействия с химией — появилась биохимия: она концентрируется на химическом составе живых организмов и основных жизненных химических процессах организма. Взаимодействие с физикой привело к появлению биофизики, которая изучает значение физических закономерностей в процессах жизнедеятельности организмов.
Биогеография представляет собой комплексную науку, изучающую распространение на планете живых организмов. Она появилась благодаря труду нескольких поколений ученых, изучающих флору, фауну, видовые сообщества в разных географических зонах.
Математические методы обработки собранного материала используются во всех отраслях биологии.
Как результат взаимодействия экологии и гуманитарных наук появилась социоэкология. Ее интересуют закономерности взаимодействия общества людей и окружающей природы.
На стыке биологии человека и гуманитарных наук появилась антропология, которая изучает происхождение и эволюции человека как исключительного биосоциального вида.
Философия биологии возникла в результате взаимодействия биологии и классической философии: она занимается изучением проблем восприятия мира с позиции достижения биологии.
Вторая половина 20-го века ознаменовалась достижениями в различных естественных науках: физике, математике, химии, кибернетике и др. Как результат — появились новые направления биологических исследований:
- космическая биология. Ее задача — изучение специфики функционирования живых систем в условиях космических аппаратов и Вселенной;
- бионика. Она занимается исследованиями особенностей строения и жизнедеятельности организмов с последующим созданием различных технических систем и приборов;
- радиобиология. Это наука, изучающая влияние разных видов ионизирующего излучения на живые системы;
- криобиология. Она изучает, как на живую материю влияют низкие температуры.
Довольно часто перед людьми возникают вопросы, возникающие на стыке с другими науками. К примеру, чтобы оценить последствия антропогенных влияний на живые системы (химические или радиационные), необходимы общие усилия не только биологов, но и медиков, физиков, химиков и др.
Специальные компьютерные программы помогают создавать биоинформационные технологии — такие используются, например, в процессе изучения структуры и функций наборов наследственной информации организмов. Многие науки сегодня (генетика, биохимия, медицина и др) решают вопрос изучения наследственных болезней человека.
Сегодня биология считается одной из ведущих наук.
Home
Expert solutions
Прикладные биологические науки/разделы биология/биология как наука
Изучение взаимодействия культурных и дикорастущих растений в агроценозе
Click the card to flip 👆
Created by
temachem01
Terms in this set (20)
Изучение взаимодействия культурных и дикорастущих растений в агроценозе
Агробиология
Сохранение растений с хозяйственно-ценными признаками в процессе выведения нового сорта
Селекция
Механизм сокращение бицепса
Физиология
Распространение сумчатых млекопитающий
Биогеография
Происхождение и развитие человека
Антропология
Строение клетки и её структур
Цитология
Систематика, морфология и экология грибов
Микология
Получение новых сортов растений , пород животных и штаммов микроорганизмов
Селекция
Взаимодействие организмов с окружающей средой
Экология
Строение внутренних органов человека
Анатомия
Students also viewed
Методы биологических исследований ЕГЭ номер 1
22 terms
anastasialoginova144
Методы исследования биологии
20 terms
msanastasiakarpova
Биология, 1 задание 2022
21 terms
Risha2741
Вторая часть (25)
15 terms
sofisignit
Recent flashcard sets
English Anfang unite 2
33 terms
Andrwhu
Justin
10 terms
shionemiya0921Teacher
Act 2 scene 7
9 terms
Holland_Jarvis8
unit 7
72 terms
Basia_Basia46
Sets found in the same folder
Методы биологических исследований
21 terms
temachem01
Методы исследования биологии
20 terms
msanastasiakarpova
ЗАДАНИЕ 23
16 terms
thevikulya_abbasova
прямое и непрямое развитие
12 terms
EverySweetNight
Other sets by this creator
Спинной мозг
67 terms
temachem01
Рендеринг
9 terms
temachem01
Латынь
90 terms
temachem01
… с «название препарата»
8 terms
temachem01
Other Quizlet sets
Bible — December Exam
68 terms
lnwright25
chapter 13 quiz and Hypotheticals
16 terms
MyFuedalFairytale
Brain Study Guide
70 terms
catherine01234
MSSU Psychology Chapter 2 — Dr. Boomer
24 terms
krutledge035
1
/
5