Применение органика егэ

№ п/п

Вещество

Применение

1

Сера

Для получения серной кислоты, вулканизации каучука (производство резины), изготовления горючих и светящихся составов, в сельском хозяйстве и в медицине.

2

Соляная кислота

Пищевая добавка Е507, которая применяется в процессе изготовления водочной продукции, а так же различных сиропов. В металлургии для очистки металла перед паянием или лужением. Входит в состав чистящих средств.

3

Серная кислота

Очистка нефтепродуктов от сернистых, непредельных органических соединений; Удаление окалины с проволоки, а также листов перед лужением и оцинкованием (разбавленная), для травления различных металлических поверхностей перед покрытием их хромом, медью, никелем. Средство при получении красителей и лекарственных веществ, для производства удобрений, этилового спирта, искусственного волокна, анилиновых красителей.

4

Сероводород и сульфиды

В производстве серной кислоты, в медицине, для проведения химического анализа катионов.

5

Сернистый газ (SO2) и сульфиты

В производстве серной кислоты, получение бумаги, для отбеливания шелковых и шерстяных тканей,  для уничтожения микроорганизмов и грибковых заболеваний (окуривание виноградников, подвалов, добавление в вино). Используется SO2 в пищевой промышленности как консервирующее и антибактериальное вещество. Добавляют его в сиропы, вымачивают в нем свежие плоды. Консервированные овощные пюре и соки тоже содержат диоксид серы в качестве консервирующего агента.

6

Оксид серы (VI)

Для получения серной кислоты.

7

Соли серной кислоты

  • Na2SO4 ∙ 10H2O (глауберова соль) – применяют в медицине в качестве слабительного средства, а безводный сульфат натрия – для производства соды и стекла.
  • (NH4)2SO4 – азотное удобрение, K2SO4 – калийное удобрение.
  • CaSO4 ∙ 2H2O (гипс) – в медицине и строительстве.
  • MgSO4 (горькая соль) – в медицине в качестве слабительного средства.
  • ВаSO4 (баритовая каша) – в медицине как рентгеноконтрастное вещество.
  • Купоросы: CuSO4 ∙ 5H2O – используют для протравливания семян, для борьбы с болезнями растений; FeSO4 ∙ 7H2O – для приготовления чернил, минеральных красок; ZnSO4 ∙ 7H2O – для производства минеральных красок и в медицине (как антисептик).

8

Азот

Жидкий азот применяется для глубокого охлаждения, газообразный – для синтеза аммиака, для создания инертной атмосферы (лампы накаливания, сварка).

9

Азотная кислота

Производство азотных и комбинированных удобрений (натриевой, аммиачной, кальциевой и калиевой селитры, нитрофоса, нитрофоски). Взрывчатые вещества (тринитротолуола и др.), органических красителей. В металлургии —  для растворения и травления металлов, а также для разделения золота и серебра.

10

Аммиак

Производство азотной кислоты, которая идет на производство удобрений (аммиачная селитра NH4NO3, мочевины (NH2)2CO, аммофос – смесь гидрофосфата (NH4)2HPO4 и дигидрофосфата аммония NH4H2PO4). В качестве дешевого хладагента в промышленных холодильных установках. Для получения синтетических волокон, например, найлона и капрона. При очистке и окрашивании хлопка, шерсти и шелка. Водный раствор аммиака (нашатырь) – в медицине.

11

Соли аммония

Производство взрывчатых веществ в смеси с порошками алюминия и угля при горных разработках, в качестве удобрений, при пайке металлов.

12

Оксиды азота

N2O – в медицине (наркоз), NO2 – производство азотной кислоты.

13

Водород

Экологически чистое топливо, для сварки и резки металлов, для получения металлов, аммиака, метанола, хлороводорода, гидрирования жидких жиров (в производстве маргарина).

14

Кислород

Реагент в органическом и неорганическом синтезе, для обеспечения дыхания в медицине.

15

Фосфор

Производство фосфорных удобрений (фосфоритной муки, простых и двойных суперфосфатов, комплексных азотно-фосфорных удобрений). Производство синтетических моющих средств, фосфатных стёкол, для обработки и крашения натуральных и синтетических волокон.

16

Оксид фосфора (V)

Получение ортофосфорной кислоты, в качестве осушителя (поглощает воду)

17

Ортофосфорная кислота

Производство фосфорных удобрений, в органическом синтезе.

18

Галогены

  • Фтор — для получения смазочных веществ, выдерживающих высокую температуру, тефлона, фреонов и т.д.
  • Хлор – в производстве соляной кислоты, хлорной извести, гипохлоритов и хлоратов, для отбеливания тканей и целлюлозы, идущей на изготовление бумаги, для стерилизации питьевой воды и обеззараживания сточных вод, полимеров.
  • Бром —  выработка различных лекарственных веществ, расителей, а также бромида серебра, использующегося в производстве фотоматериалов.
  • Йод — в медицине в виде 10%-го раствора в этаноле в качестве антисептического и кровоостанавливающего средства. Йод входит в состав ряда фармацевтических препаратов.

19

Хлориды

  • NaCl – для получения хлороводорода, натрия, хлора, едкого натра, водорода, в производстве соды, в пищевой промышленности медицине.
  • KCl – в качестве калийного удобрения.
  • ZnCl2 – для пропитки древесины от гниения и при пайке металлов, в медицине в качестве антисептика.
  • BaCl2 —  для борьбы с вредителями растений.
  • CaCl2  — в качестве осушителя и в медицине.
  • AlCl3 – катализатор в органическом синтезе.
  • HgCl2 – для протравливания семян, дубления кожи в органическом синтезе.

20

Углерод

Алмазы применяются для обработки твёрдых материалов (бурение горных пород, металлообрабатывающий инструмент) в ювелирной промышленности (производство бриллиантов). Графит используется в производстве карандашей и электродов. Уголь и кокс используют в качестве топлива и для получения металлов, активированный уголь является адсорбентом.

21

Угарный газ

В качестве топлива, при получении метанола, металлов, фосгена (COCl2), в органическом синтезе.

22

Углекислый газ

В производстве напитков, соды, сахара, в огнетушителях, для хранения скоропортящихся продуктов («сухой лёд»), для получения угарного газа и участвует в процессе фотосинтеза.

23

Соли угольной кислоты

  • Na2CO3 – кальцинированная сода и Na2CO3 ∙ 10Н2О – кристаллическая сода применяются в производстве бумаги, стекла, мыла, в быту.
  • NaHCO3 – гидрокарбонат натрия (питьевая сода, двууглекислая сода) применяется в медицине, в пищевой и кондитерской промышленности.
  • K2CO3 – поташ, применяется для производства мыла и специальных сортов стекла, в химической промышленности.
  • CaCO3 – применяется для получения негашеной извести CaO, в строительстве, в архитектуре, для изготовления скульптур.

24

Кремний

Для получения легированных сталей, производства полупроводниковых приборов и изготовления кислотоустойчивой аппаратуры.

25

Оксид кремния (IV)

При производстве стекла, цемента, в строительстве, в производстве керамических изделий, химической посуды.

26

Натрий и калий

Получение пероксидов и амидов, сплав этих металлов используется в качестве теплоносителей в ядерных реакторах.

27

Бериллий

Получение сплавов

28

Медь

Для изготовления электропроводов и сплавов – бронзы, латуни, дюралюминия.

29

Серебро

Компонентов сплавов ювелирных изделий, монет, медалей, столовой и лабораторной посуды, для серебрения зеркал, как катализатор в органическом синтезе.

30

Цинк

Получение сплавов, для цинкования стали и чугуна в антикоррозионных целях.

31

Хром

Компонент стали (хромированная сталь), изготовление инструментов.

32

Железо

В качестве катализатора (губчатое железо), производство чугуна и сталей.

33

Алюминий

Используется для изготовления различных сплавов, применяемых в авиационной, машиностроительной, пищевой и электротехнической промышленности; для получения металлов методом алюмотермии (Cr, Mn, V, Ti и др.)

34

Ртуть

Производство люминесцентных и ртутных ламп, контрольно-измерительных приборов (термометров, манометров, барометров и т.д.),  в медицине для изготовления мазей для лечения кожных заболеваний.

35

Гидроксид натрия

NaOH (едкий натр, каустическая сода, каустик) применяют для очистки нефтепродуктов, в производстве мыла, бумаги, в текстильной и химической промышленности.

36

Гидроксид кальция

В строительстве, производстве стекла, смягчитель воды.

37

Гидроксид магния

Очистка сахарных растворов, входит в состав зубной пасты.

38

Гидроксид алюминия

Для очистки воды, в медицине как обволакивающее и адсорбирующее вещество.

39

Алканы (метан, пропан)

В качестве топлива, как растворители и как сырьё для получения органических веществ.

40

Алкены (изопрен, этилен, пропилен)

Получение полимеров, фенола, ацетона, ацетальдегида, растворителей; для улучшения детонационных качеств топлива. Этилен – для ускорения созревания плодов растений.

41

Алкины

Ацетилен используется для резки и сварки металлов, в органическом синтезе: в производстве синтетических каучуков, поливинилхлорида, уксусной кислоты и растворителей.

42

Алкадиены

Производство полимеров (каучуков).

43

Бензол и его производные

Получение красителей, лекарственных веществ, взрывчатых веществ, ядохимикатов, пластмасс и синтетических волокон; используются в качестве растворителей; добавляются в бензины, повышая их октановое число.

44

Спирты

В качестве растворителей и в органическом синтезе. Этанол применяется для изготовления спиртных напитков, в медицине как дезинфицирующее средство, в качестве топлива. В промышленности – растворитель в производстве каучука, сложных эфиров, лаков, медикаментов. Метанол применяют для получения формальдегида, растворителей, в органическом синтезе.

45

Многоатомные спирты

Этиленгликоль применяется для приготовления охлаждающей жидкости (антифризов) для автомобилей, для получения растворителей и взрывчатых веществ. Глицерин – используется в медицине, парфюмерии, кожевенной промышленности, для получения взрывчатого вещества (тринитроглицерин), лакокрасочных материалов.

46

Фенолы

Применяют для получения фенолформальдегидной смолы, взрывчатых веществ, красителей, лекарственных препаратов, капрона, для дезинфекции (карболка).

47

Альдегиды и кетоны

Формальдегид – используется для получения фенолформальдегидной и карбамидной смол, в органическом синтезе; 40%-ный раствор (формалин) применяется в медицине, для консервирования биологических препаратов, в кожевенной промышленности и для протравливания семян.

Ацетальдегид – применяется для получения уксусной кислоты и для синтеза различных органических веществ.

Ацетон – в качестве растворителя лаков, красок.

48

Карбоновые кислоты

Муравьиная кислота – 1,25% -ный спиртовой раствор (муравьиный спирт) применяется в медицине, для производства сложных эфиров.

Уксусная кислота – в пищевой промышленности, для производства красителей, лекарств (аспирин), сложных эфиров, ацетатного волокна.

Стеариновая C17H35COOH и пальмитиновая C17H33COOH  кислоты – входят в состав жиров. Натриевая и калиевая соли входят в состав мыла.

Щавелевая кислота – используется в кожевенной и текстильной промышленности.

Акриловая и метакриловая кислоты – для получения полимеров (органического стекла), волокон.

Бензойная кислота – в качестве консерванта в пищевой промышленности.

49

Сложные эфиры

Применяются в качестве растворителей лакокрасочных материалов, в парфюмерии, при производстве напитков.

50

Жиры

Жиры применяются в качестве продукта питания, для получения мыла, в косметической и фармацевтической промышленности. Гидрированные жиры применяются для изготовления маргарина.

51

Целлюлоза

Нитраты целлюлозы используются для производства бездымного пороха и лаков, ацетаты – в производстве ацетатного волокна, лаков, плёнок. Целлюлоза используется в производстве бумаги, волокон (ацетатного и вискозного), одежды, бинтов, ваты

52

Крахмал

Применяется для получения клея (декстриновый клей), накрахмаливания белья, в кондитерском производстве (получение патоки), в производстве спирта и вина.

53

Амины

Анилин и другие ароматические амины используются для получения красителей, лекарственных и взрывчатых веществ. Алифатические амины используются для получения лекарственных препаратов, пестицидов и пластмасс.

Применение веществ в быту и промышленности. ЕГЭ по химии.

Ниже представлены вещества, применение которых на ЕГЭ по химии спрашивается наиболее часто

Нитрат натрия
Нитрат калия
Нитрат аммония
Азотсодержащие удобрения (селитры).
Фосфат кальция
Гидрофосфат кальция
Суперфосфат
Фосфорные удобрения
Оксид кремния (IV) Производство керамических изделий.
Пальмитат натрия/калия
Стеарат натрия/калия
Мыла
Натриевые соли высших карбоновых кислот – твердые мыла, а калиевые соли высших карбоновых кислот – жидкие мыла.
Сера Используется при производстве резины. Для этого серу нагревают (вулканизируют) с каучуком.
Гидрокарбонат натрия. Твердое вещество, использующееся в качестве разрыхлителя теста, а также в качестве чистящего средства.
Карбонат аммония Используется как разрыхлитель теста благодаря тому, что при нагревании образует газообразные продукты разложения в соответствии с уравнением:
(NH4)2CO3 => 2NH3 + CO2 + H2O
Этановая (уксусная) кислота Используется для консервирования овощей. Концентрированные растворы вызывают ожоги.
Активированный уголь Твердое вещество черного цвета используется в качестве поглотителя (адсорбента) в фильтрах, а также как лекарственное средство при различных видах отравлений.
Этанол (этиловый спирт).
C2H5OH
Основной компонент алкогольных напитков, может быть использован в качестве топлива. Жидкость со специфическим запахом.
Глицерин Используется в парфюмерии и пищевой промышленности.
Ацетон Распространенный растворитель.
Тетрахлорид углерода CCl4 Растворитель.
Аммиак Сырье для получения удобрений (нитратов калия, натрия, аммония).
Сырье для получения азотной кислоты.
Аммиак раствор Используется как компонент стеклоочистительных жидкостей, жидкость с резким запахом.
В аптечке – нашатырный спирт, применяется для приведения в чувство человека, потерявшего сознание.
Озон O3 Дезинфекция (очистка) воды.
Хлор Cl2 Дезинфекция (очистка) воды.
Ацетилен C2H2 Используется для сварки и резки металла благодаря тому, что при горении ацетилена развивается крайне высокая температура – около 3000 оС
Метан Основной компонент природного газа. Горючее для газовых плит.
Лимонная кислота Используется для удаления накипи с внутренней поверхности чайника.
Пероксид водорода Используется в качестве антисептика (дезинфицирующего средства) при обработке небольших ран и порезов.
Хлоропрен (2-хлорбутадиен-1,3)
Изопрен (2-метилбутадиен-1,3)
Бутадиен (дивинил)
Сырье для производства каучука.
Йод Спиртовой раствор данного вещества используется для дезинфекции мелких порезов и царапин.
Анилин Производство красителей

Применение
веществ

Органика

Алканы

Алканы
используются при изготовлении каучука,
синтетических тканей, пластмасс,
поверхностно-активных веществ.

Пропан,
бутан – исп-ся в качестве заправки
баллонов для тушения пожаров в сжиженном
виде

Пропан-бутановая
— смесь в зажигалках

Пропан
— баллоны для дачи

Алканы-газы
– в качестве пропеллентов для изготовления
аэрозолей

СН4
– горючее для газовых плит

С5-С19
– бензин, керосин, смеси для розжига,
топливо

С20
и далее – свечи

С₁₈Н₃₈
до С₃₅Н₇₂ (парафин) — Изготовление
вазелинового масла (смесь жидких
алканов), вазелина (смесь жидких и твёрдых
алканов), свечей, моющих средств, лаков,
эмалей, мыла. В качестве пропитки спичек.
Использование при производстве
органических кислот. В качестве пропитки
упаковочной бумаги. Производство
жевательных резинок

Хлорпроизводные
алканов — изготовление спиртов, альдегидов,
кислот, РАСТВОРИТЕЛИ

Алкены

Циклоалканы

Циклопропан
– анестетик

Циклопентан
— добавка к моторному топливу для
повышения качества.

Циклогексан
используется для синтеза полупродуктов
при производстве синтетических волокон
нейлона и капрона, для получения
циклогексанола, циклогексанона,
адипиновой кислоты, а также в качестве
растворителя.

Алкины

Ацетилен
– газовая сварка, получение технического
карбона; прим-ся в автономных светильниках
и при производстве ракетного топлива

Алкадиены

Синтез
каучуков => пол-е резины, эбонита (не
проводит эл. ток, исп-ся для изоляции),
пвх и т.д.

Бензол

Применяется
в синтезе современных отхаркивающих
средств, препаратов для лечения кожных
заболеваний и других лекарств. В малых
количествах практически не обладает
токсичностью. Применяется в качестве
исходного реагента для синтеза. Он
эффективно растворяет смолы, масла,
жиры, йод и серу.

Бензойная
кислота

Снижает
активность ферментов в структуре
микробов их

Проявляет
дезинфицирующие свойства.

Это
качество нашло активное применение
бензойной кислоты и с успехом используется
для изготовления лекарственных составов
от кашля, отхаркивающих и антисептических
средств

Получение
фунгицид, применяющихся в сельском
хозяйстве для защиты разнообразных
культурных растений.

Консервавнт

Толуол

Лакокрасочные
материалы

Лаки

Краски

РАСТВОРИТЕЛЬ
полимеров

Спирты


В
органическом синтезе.
— Биотопливо,
добавки в топливо, ингредиент тормозной
жидкости, гидравлических жидкостей.

Растворители.
— Сырье для производства
ПАВ, полимеров, пестицидов, антифризов,
взрывчатых и отравляющих веществ,
бытовой химии.
— Душистые вещества
для парфюмерии. Входят в состав
косметических и медицинских средств.

Основа алкогольных напитков, растворитель
для эссенций; сахарозаменитель (маннит
и т.п.); краситель (лютеин), ароматизатор
(ментол).

Этиленгликоль

Производство
теплоносителей и охлаждающих жидкостей,
задачами которых является теплопередача
и теплоотвод соответственно.  Производство
пластиковых бутылок. Производство
синтетических волокон. Производство
гидравлических жидкостей. Изготовление
лекарственных средств.

Глицерин

Фенол

АНТИСЕПТИКИ,
лекарства, заменители сахара, красители,
клеи, фенолформальдегидная смола

Альдегиды
и ацетон

Альдегиды
нашли широкое применение в качестве
сырья для синтеза различных продуктов.
Так, из формальдегида (крупнотоннажное
производство) получают различные смолы
(фенол-формальдегидные и т.д.), лекарственные
препараты (уротропин); ацетальдегид —
сырье для синтеза уксусной кислоты,
этанола, различных производных пиридина
и т.д. Многие альдегиды (масляный, коричный
и др.) используют в качестве ингредиентов
в парфюмерии

Карб
кислоты


Стеарат/пальмитат
натрия – мыло

Амины

Нитросоединения

Аминокислоты


Жиры

Неорганика

Нитраты
– азотсодержащие удобрения

Фосфат,
гидрофосфат кальция; суперфосфат –
фосфорные удобрения

SiO2
– керамика, стекло

S
– резина

NaHCO3
– разрыхлитель теста, чистящее средство

(NH4)2CO3
– разрыхлитель теста

С
акт. – поглотитель в фильтрах и при
отравлениях

ССl4
– растворитель

NH3
– пол-е удобрений, пол-е азотной к-ты

NH3*H2O
– стеклоочистительные ж-ти и при потере
сознания

O3
– Дезинфекция воды; обнаруживание KI
с крахмалом

Cl2
– Дезинфекция воды; обнаруживание KI
с крахмалом

Лимонная
кислота – удвление накипи с внутр.
пов-ти чайника

H2O2
– антисептик для ран

I2
— антисептик для ран; обнар-е крахмала

Всего: 45    1–20 | 21–40 | 41–45

Добавить в вариант

Установите соответствие между веществом и областью его применения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  в качестве отбеливателя

2)  в качестве удобрения

3)  в качестве топлива

4)  в качестве растворителя

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Источник: Демонстрационная версия ЕГЭ—2020 по химии


Установите соответствие между веществом и основной областью его применения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВЕЩЕСТВО

А)  фосфорная кислота

Б)  этилен

В)  кислород

Г)  бензол

ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  производство пластмасс

2)  энергетика

3)  производство удобрений

4)  металлургия

5)  авиакосмическая промышленность

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:


Установите соответствие между веществом и областью его применения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВЕЩЕСТВО

А)  гидроксид натрия

Б)  азотная кислота

В)  угарный газ

ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  омыление жиров

2)  синтез аммиака

3)  органический синтез

4)  производство удобрений

Запишите в таблицу выбранные цифры под соответствующими буквами.


Установите соответствие между веществом и областью его применения.

ВЕЩЕСТВО

A)  аммиак

Б)  озон

В)  кислород

ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  энергетика

2)  производство удобрений

3)  производство стали

4)  очистка воды

Запишите в таблицу выбранные цифры под соответствующими буквами.


Установите соответствие между веществом и основной областью его применения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВЕЩЕСТВО

А)  хлор

Б)  азотная кислота

В)  уксусная кислота

Г)  карбонат кальция

ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  производство пластмасс

2)  производство стекла

3)  производство удобрений

4)  переработка нефти

5)  пищевая промышленность

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:


Установите соответствие между веществом и основной областью его применения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВЕЩЕСТВО

А)  углекислый газ

Б)  метан

В)  аммиак

Г)  бензол

ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  энергетика

2)  пищевая промышленность

3)  производство пластмасс

4)  производство удобрений

5)  металлургия

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:


Установите соответствие между веществом и областью его применения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВЕЩЕСТВО

A)  метан

Б)  изопрен

В)  этилен

ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  получение капрона

2)  в качестве топлива

3)  получение каучука

4)  получение пластмасс

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Источник: Демонстрационная версия ЕГЭ—2022 по химии, Демонстрационная версия ЕГЭ—2018 по химии, Демонстрационная версия ЕГЭ−2019 по химии


Установите соответствие между веществом и областью его применения.

ВЕЩЕСТВО

А)  сода

Б)  углерод

В)  бензол

ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  производство пластмасс

2)  производство стекла

3)  производство бензина

4)  производство чугуна

Запишите в таблицу выбранные цифры под соответствующими буквами.


Установите соответствие между веществом и областью его применения.

ВЕЩЕСТВО

А)  водород

Б)  кислород

В)  бутадиен

ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  производство пластмасс

2)  производство бензола

3)  выплавка стали

4)  производство аммиака

Запишите в таблицу выбранные цифры под соответствующими буквами.


Установите соответствие между веществом и областью его применения.

ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  производство хлора

2)  очистка воды

3)  производство удобрений

4)  производство пластмасс

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:


Установите соответствие между веществом и областью его применения.

ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  производство этанола

2)  производство удобрений

3)  обеззараживание воды

4)  производство соды

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:


Установите соответствие между веществом и областью его применения.

ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  производство удобрений

2)  производство мыла

3)  производство стекла

4)  производство жиров

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:


Установите соответствие между веществом и основной областью его применения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  производство стекла

2)  в качестве удобрения

3)  в качестве растворителя

4)  производство кислорода

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:


Установите соответствие между веществом и областью его применения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ОБЛАСТЬ ПРИМЕНЕНИЯ

А)  производство удобрений

Б)  производство фосфора

В)  выплавка чугуна

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Источник: ЕГЭ по химии 2020. Основная волна. Вариант 2


Установите соответствие между веществом и его применением: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВЕЩЕСТВО

А)  серная кислота

Б)  сернистый газ

В)  этиленгликоль

ПРИМЕНЕНИЕ

1)  отбеливание бумаги

2)  производство удобрений

3)  производство пластмасс

4)  производство водорода

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:


Установите соответствие между названием вещества и основной областью его применения.

ВЕЩЕСТВО

А)  озон

Б)  оксид железа(II, III)

В)  бензол

ОСНОВНАЯ ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  чёрная металлургия

2)  очистка воды

3)  производство бензина

4)  производство каучука и синтетических волокон

Запишите в таблицу выбранные цифры под соответствующими буквами.


Установите соответствие между веществом и областью его применения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВЕЩЕСТВО

А)  карбонат кальция

Б)  азот

В)  оксид хрома(III)

ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  создание инертной атмосферы

2)  производство краски

3)  производство стекла

4)  производство соды

Запишите в таблицу выбранные цифры под соответствующими буквами.


Установите соответствие между веществом и областью его применения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВЕЩЕСТВО

А)  уксусная кислота

Б)  оксид кремния

В)  гидроксид натрия

ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  производство пластмасс

2)  металлургия

3)  производство бумаги

4)  производство цемента

Запишите в таблицу выбранные цифры под соответствующими буквами.


Установите соответствие между веществом и областью его применения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВЕЩЕСТВО

A)  аммиак

Б)  метан

В)  изопрен

Г)  этилен

ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  получение капрона

2)  в качестве топлива

3)  получение каучука

4)  производство удобрений

5)  получение пластмасс

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Источник: Демонстрационная версия ЕГЭ—2017 по химии


Установите соответствие между веществом и областью его применения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВЕЩЕСТВО

А)  аммиак

Б)  тетрахлорид углерода

В)  ацетон

Г)  этилен

ОБЛАСТЬ ПРИМЕНЕНИЯ

1)  получение высокомолекулярных соединений

2)  производство удобрений

3)  в качестве растворителя

4)  получение капрона

5)  в качестве топлива

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Источник: ЕГЭ по химии 2017. Досрочная волна

Всего: 45    1–20 | 21–40 | 41–45

Область применения:

Аммиак — производство удобрений

Метан (природный газ) — в качестве топлива , энергетика

Изопрен — получение каучука

Этилен — получение пластмасс

капролактам — получение капрона

пропан —  в качестве топлива

изопрен —  получение каучука

стирол  — получение полистирола

пропилен —  получение
полипропилена

гидроксид аммония —  в медицине

оксид кремния —  получение стекол

сера — процесс вулканизации резины

тетрахлорид углерода —  в качестве растворителя

ацетон —  в качестве растворителя

углерод – для  металлургия , для
производство чугуна

стирол  — для производство
пластмасс

азот —  для производство
удобрений

уксусная кислота  — для производство
волокон, для пищевая промышленность

фосфорная кислота  — для
производство удобрений

      кислород —  для металлургия

бензол  —  -для
производство пластмасс

хлор  — для производство
пластмасс , производство органических растворителей

азотная кислота-  для 
производство удобрений

карбонат кальция – для
производство стекла

 углекислый газ – для  пищевая
промышленность

аргон создание инертной
атмосферы

карбонат натрия – для 
производство стекла

озон  — для очистка воды

кислород – для  производство
стали

 Полиэтилен – для  игрушки,
пластиковые пакеты

политетрафторэтилен – для 
тефлоновая посуда

изопреновый каучук  — для  автомобильные
шины

поливинилхлорид  — для трубы,
оконные панели

     поликарбонат  — для пластиковые
бутыли, DVD-диски

полистирол – для  контейнеры
для пищи

нефть – для
производства топлива

 сода  — для производство
стекла

водород –для  производство
аммиака

кислород – для  выплавка стали

бутадиен – для  производство
пластмасс

Классификация:

Каучук  — происхождение
-природный органический

 Асбест- происхождение-
неорганический

Вискозное волокно- происхождение
-искусственный

Лен — происхождение -природный
органический

Поливинилхлорид —
происхождение -синтетический

     Карбидное волокно — происхождение
-неорганический

 Капрон — происхождение
-синтетический

Борное волокно- происхождение
— неорганический

Ацетатное волокно —
происхождение -искусственный

Винол — происхождение
-синтетический

Хлопок — происхождение
-природный органический

Кварцевое волокно —
происхождение -неорганический

Стекловолокно- происхождение —
неорганический

Нейлон- происхождение —
синтетический

Шелк — происхождение
-природный органический

 Базальт- происхождение —
неорганический

Пенька- происхождение
-природный органический

Акрил- происхождение
-синтетический

Карбидкремниевое волокно-
происхождение — неорганический

 Эластан- происхождение —
синтетический

 Оксидное волокно —
происхождение -неорганический

Лайкра- происхождение —
синтетический

 Триацетатное волокно —
происхождение -искусственный

Полиэстер- происхождение —
синтетический

Мономер-полимер:

винилхлорид —  поливинилхлорид

хлорэтилен  — поливинилхлорид

 этилен —  полиэтилен

пропен  — полипропилен

винилбензол —  полистирол

 бутадиен — каучук

пропен  — полипропилен

капролактам  — капрон

терефталевая кислота — 
полиэтилентерефталат

изопрен —  каучук

этилен  — полиэтилен

стирол —  полистирол

тетрафторэтилен — тефлон

винилацетат —  поливинилацетат

акриламид — полиакриламид

ацетилен — полиацетилен

этиленоксид —  полиэтиленгликоль

винилбромид — поливинилбромид

 Алюминий – из  электролиз
расплава

железо – из  восстановление
оксида углеродом

 Натрий —  электролиз расплава

кремний  — восстановление оксида
углеродом

Аммиак -из  воздуха

Стекло – из  сода

этилен  — из нефть

 чугун – из  магнитный железняк

Хлор —  водный раствор хлорида
натрия

 медь  — халькопирит

полипропилен  — получают из
пропилен

полиэтилен —  получают из этилен

железо —  получают из гематит,
пирит

Этанол —  получают из древесина

Кислород —  получают из воздух

углекислый газ —  получают из
дымовые газы

фтор — получают из расплав
фторида калия

Процессы:

электролиз воды  — получение
легких газов (водород, кислород)

крекинг нефтепродуктов — 
получение бензина

перегонка (фракционирование)
сжиженного воздуха —  получение легких газов (азот, кислород)

брожение древесины или соломы — 
получение этанола

горение —  получение тепловой
энергии

 этерификация —  получение
сложных эфиров

  полимеризация  — получение пластмасс и резины

вулканизация —
получение резины

перегонка (фракционирование)
сжиженного воздуха — получение легких газов (азот, кислород)

прокаливание фосфатов кальция с
углем и диоксидом кремния — получение фосфора

каталитическое окисление
диоксида серы в триоксид серы — получение серной кислоты

сшивание
молекул каучука в единую пространственную сеть — вулканизация

термическое или каталитическое
разложение тяжелых углеводородов —  крекинг

присоединение воды к
непредельным соединениям —  гидратация

реакция образования сложных
эфиров при взаимодействии кислот и спиртов  — этерификация

присоединение водорода к
непредельным соединением с получением предельных соединений —  гидрирование

замещение
водорода на галоген — радикальное галогенирование

присоединение воды к
непредельным соединениям  — гидратация

присоединение водорода к
непредельным соединением с получением предельных соединений —  гидрирование

 переработка каменного угля  —
коксование

Способ
разделения:

воды и октана —  разделение с
помощью делительной воронки

воды и карбоната кальция
–разделение  фильтрованием

железо и нитрат калия  -с
помощью магнита

железо и магний  — разделить с помощью
магнита

железа и меди  -разделение  с
помощью магнита

гексана и бензола —  разделение фракционной
перегонкой

жидкий азот и кислород – разделяют  фракционной
перегонкой

вода и пропанол  — 
фракционной перегонкой

вода и ацетон  — разделить фракционной
перегонкой

вода и этанол  -фракционной
перегонкой

поваренная соль и кварцевый песок
-разделить обработка водой, фильтрование, выпаривание раствора

воды и бензола —  декантацией

воды и сульфата бария — 
фильтрованием

хлорид лития и кварцевый
песок  -обработка водой

железа и хлорида стронция — с
помощью магнита

воды и фенол —  декантацией

 бутанола и этанола  —
фракционной перегонкой

 сульфат бария и хлорид калия
обработка водой

воды и тетрахлорметан — декантацией

алюминия и железа разделить с
помощью магнита

углерод и хлорид натрия  —
обработка водой

изопропанол и этанол — 
фракционной перегонкой

ацетон и изопропанол фракционной перегонкой

хлорид натрия и полиэтилен
обработка водой

Цвет
пламени:

соли борной кислоты- зеленое
пламя

соли стронция  —  карминово-красное
пламя

соли калия – фиолетовое пламя

соли меди   — зеленое пламя

соли кальция — кирпично-красное
пламя

соли натрия —  желтое пламя

соли калия  — фиолетовое пламя

соли меди —  зеленое пламя

соли бария —
желто-зеленое

соли лития — красное

  • Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
  • 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
  • До 7 класса: Алгоритмика, Кодланд, Реботика.
  • Английский: Инглекс, Puzzle, Novakid.

Применение изученных неорганических и органических веществ

Химические элементы, известные науке на данный момент, способны образовывать приблизительно миллион неорганических веществ и более двадцати миллионов органических. Только в лабораториях создают несколько сотен тысяч новых соединений, каждое из которых находит применение в той или иной сфере жизни и деятельности человека.

Применение неорганических веществ

Неорганическими называют соединения, в составе которых нет атомов углерода, а также некоторые вещества, содержащие углерод, которые являются исключением из правила и традиционно относятся к неорганическим веществам. Такими углеродосодержащими веществами являются, например, оксиды и карбиды. Часто неорганические соединения используют в быту, производстве и в медицинских целях.

Пищевая сода

Пищевая сода (NaHCO3) – это белый мелкий порошок, который хорошо растворяется в воде и не имеет запаха. Пищевую соду в основном применяют в быту, например, для выпечки. При нагревании гидрокарбонат натрия разлагается, а в ходе этой реакции выделяется углекислый газ.

2NaHCO3→Na2CO3+H2O+CO2.

Также соду иногда используют для приготовления омлетов. Она помогает сделать их более пышными и аппетитными. Гидрокарбонат натрия усиливает запах кофе и чая, добавляет сладкий вкус фруктам и смягчает мясо.

Кальцинированная сода

Кальцинированная сода (Na2CO3) также находит применение в быту. Её используют для чистки ванн, плитки, раковин, стирки одежды, мытья посуды, удобрения почв.

Соль

NaCl – это поваренная соль, которая есть на любой кухне. Это незаменимый элемент для приготовления первых и вторых блюд, консервации и выпечки. К соли необходимо относиться с осторожностью и помнить о том, что суточная норма для человеческого организма составляет всего один грамм. Превышение этой нормы чревато проблемами со здоровьем.

Серная кислота

Серная кислота – это сильная двухосновная кислота (H2SO4). Это тяжёлая маслянистая жидкость, которая не обладает запахом. Серную кислоту применяют во многих отраслях промышленности:

  • в сельском хозяйстве серная кислота необходима для выпуска минеральных удобрений;
  • в химической промышленности кислоту применяют для создания красителей, взрывчатки и химических волокон;
  • в пищевой промышленности её используют как пищевую добавку;
  • в промышленном органическом синтезе серная кислота необходима для проведения реакций гидратации, дегидратации, сульфирования и алкилирования.

Оксид цинка

Оксид цинка, цинковые белила (ZnO), представляет собой порошок белого цвета. Он необходим для производства эмалей и красок, бумаги, пластмассы, косметики, парфюмерии, резины, мазей и присыпок. Также оксид цинка находит своё применение в производстве самоочищающихся поверхностей, бактерицидных покрытий для помещений больниц и поликлиник.

Медный купорос

Медный купорос (сульфат меди II CuSO4) представляет собой кристаллическое соединение, которое не имеет цвета и хорошо растворяется в воде. Медный купорос используют в качестве индикатора влажности, а также как основу для других соединений. Сульфат меди является эффективным средством для борьбы с грибковыми заболеваниями и вредителями. Также из него изготавливают минеральные краски и пищевые добавки.

Применение органических веществ

К органическим соединениям относят вещества, которые содержат углерод. Их также применяют во многих отраслях промышленности.

Алканы

Алканы применяют в качестве топлива и растворителей. Также на их основе изготавливают вазелин – незаменимое в медицине, косметологии и парфюмерии средство. Алканы входят в состав смазочных масел, а метан является незаменимым компонентом для производства автомобильных шин. В химической промышленности алканы применяют для производства синтетических волокон и пластмасс.

Алкены

На основе алкенов производят ряд готовых продуктов: растворителей (например, спирта, эфира), полимеров (полиэтилена, полиизобутилена и так далее). Этилен (H2C=CH2) необходим для производства этилового спирта, галогенопроизводных соединений, уксусного альдегида и многих других соединений. Также алкены необходимы для ускорения процесса созревания плодов.

Алкины (ацетиленовые углеводороды)

Алкины необходимы для получения альдегидов, кетонов, растворителей, из них также создают вещества, которые используются для выпуска каучуков и поливинилхлорида. В результате реакции Кучерова из алкинов получают ацетон. Ацетилен применяют для производства уксусной кислоты, этилового спирта, ароматических углеводородов, его используют и как топливо с высокой теплотой горения в качестве продукта для реакции, в ходе которой получают технический карбон.

Спирты

Со спиртами человек сталкивается практически в любой сфере жизни. Например, этанол применяется для производства алкогольной продукции и антисептиков, этиленгликоль – для выпуска пластмасс, глицерин – для производства продукции текстильной, пищевой и фармацевтической промышленности.

Фенолы

В основном фенолы необходимы для выпуска продукции химической промышленности и фармацевтической. Они участвуют в производстве смол, антисептиков, красителей и взрывчатки.

Альдегиды

Альдегиды необходимы для получения карбамидных и фенолформальдегиндных смол, они участвуют в синтезе фармацевтических продуктов и являются дезинфицирующим средством.

Карбоновые кислоты

Карбоновые кислоты – это соединения, которые содержат карбоксильную группу СООН. Карбоновые кислоты находят применение в фармацевтической и пищевой промышленности. Из них создают искусственные волокна, некоторые карбоновые кислоты необходимы для синтеза красителей, также их применяют для консервирования пищевых продуктов.

Сложные эфиры

Сложные эфиры применяют как отдушки в пищевой и парфюмерной промышленности. Помимо этого, данные соединения придают пластмассам и резине эластичность и пластичность. Сложные эфиры необходимы в пищевой и медицинской промышленности.

На данный момент человечеству известны ещё не все соединения и их свойства, что даёт надежду на то, что однажды мы сможем заменять натуральные продукты искусственными, использовать соединения природного происхождения всё меньше и экономнее расходовать ресурсы нашей планеты.

  • Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
  • 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
  • До 7 класса: Алгоритмика, Кодланд, Реботика.
  • Английский: Инглекс, Puzzle, Novakid.

Учебное пособие может быть использовано учащимися для закрепления изученного материала и самоподготовки к экзамену. Данный материал содержит химические свойства и способы получения углеводородов, кислород- и азотсодержащих органических соединений.

Химические свойства алканов

Способы получение алканов

Химические свойства циклоалканов

Способы получения циклоалканов

Химические свойства алкенов

Способы получения алкенов

Химические свойства алкадиенов

Способы получения алкадиенов

Химические свойства алкинов

Способы получения алкинов

Химические свойства ароматических углеводородов

Способы получения бензола и его гомологов

Химические свойства одноатомных спиртов

Способы получения предельных одноатомных спиртов

Химические свойства многоатомных спиртов

Способы получения предельных многоатомных спиртов

Химические свойства фенолов

Способы получения фенолов

Химические свойства альдегидов и кетонов

Способы получения альдегидов и кетонов

Химические свойства карбоновых кислот

Способы получения карбоновых кислот

Химические свойства аминов

Химические свойства анилина

Способы получения аминов

Химические свойства аминокислот

Способы получения аминокислот

Химические свойства жиров

Химические свойства моносахаридов на примере глюкозы

Химические свойства дисахаридов и полисахаридов

По материалам учебного пособия Кавериной А.А., Молчановой Г.Н., Свириденковой Н.В., Стахановой С.В. «Как получить максимальный балл на ЕГЭ. Решение заданий повышенного и высокого уровня сложности».

12 сентября 2022

В закладки

Обсудить

Жалоба

Памятка по органической химии

Таблица.

pm-h.doc
pm-h.pdf

Класс | Химические свойства | Способы получения

Алканы
Алкены
Алкины
Алкадиены
Арены
Предельные одноатомные спирты
Многоатомные спирты
Альдегиды
Предельные одноосновные карбоновые кислоты
Моносахариды
Дисахариды
Полисахариды
Амины
Аминокислоты
Белки

Автор: Столярова В.А.

Способы получения органических веществ

Способы получения органических веществ

Получение органических соединений, относящихся к различным классам, является основной задачей органического синтеза, как основного, так и тонкого. В основе многих методов получения лежат именные реакции, условия проведения которых необходимо запомнить, поскольку в органической химии именно условия определяют образующийся продукт реакции. В целом все реакции, лежащие в основе получения органических веществ, можно условно разделить на следующие типы:

1. Реакции, направленные на удлинение цепи (конструктивные реакции), например, алкилирование, полимеризация, (поли)конденсация

2. Реакции, направленные на укорочение углеродной цепи (реакции расщепления)

3. Реакции введения, удаления или взаимопревращения функциональных групп

4. Реакции образования кратных связей

5. Реакции циклизации и ароматизации

Далее, в виде справочного материала представлены основные методы получения углеводородов и их основных производных — спиртов, альдегидов, кетонов, карбоновых кислот, аминов, нитро- и галогенпроизводных. Подробно методы получения будут рассматриваться по классам соединений в отдельных темах.

Методы получения алканов

1. Синтез симметричных насыщенных углеводородов (наращивание углеводородной цепи) действием металлического натрия на алкилгалогениды (Реакция Вюрца)

C2H5Br+CH3Br + 2Na →C3H8+2NaBr

2. Восстановление непредельных углеводородов (гидрирование двойной кратной связи) :

H3C−CH=CH2 +H2 → H3C−CH2−CH3

3. Получение метана сплавлением солей карбоновых кислот с твердой щелочью :

t0

CH3COONa + NaOH → Na2CO3+CH4

4. Получение метана — гидролиз карбида алюминия (взаимодействием карбида алюминия с водой):

Al4C3+12H2O → 4Al(OH)3+3CH4

5. Ректификация (прямая перегонка) нефти подробно разбирается в теме «Принципы переработки и применение горючих ископаемых»

Методы получения алкенов

1. Дегидрогалогенирование (действие спиртовых растворов щелочей на моногалогенпроизводные УВ)

спиртNaOH

H3C−CH2−CH2Br → H3C−CH=CH2+NaBr+H2O

2. Дегидратация спиртов (действие на спирты водоотнимающих средств):

3. Дегалогенирование (действие металлического Zn или Mg на дигалогенпроизводные с двумя атомами галогена у соседних атомов):

4. Гидрирование ацетиленовых углеводородов над катализаторами с пониженной активностью ( Fe)

3-метилбутин-1 3-метилбутен-1

5. Пиролиз (дегидрирование) алканов (этана) (см. п. 2 «Методы получения алкинов»)

Методы получения алкинов

Получение ацетилена:

1. Пиролиз метана — межмолекулярное дегидрирование (промышленный метод):

1500∘C

H−CH3 + H3C−H → H−C≡C−H + 2H2

2. Пиролиз (дегидрирование) этана или этилена (промышленный метод)

t0C t0C

H3C−CH3 → H2C=CH2 + H2 → H−C≡C−H + H2

3. Гидролиз карбида кальция (взаимодействие карбида кальция с водой):

CaC2 + 2H2O → HC≡CH + Ca(OH)2

Получение гомологов ацетилена

1. Дегидрогалогенирование (действие спиртового раствора щелочи на дигалогеналканы (щелочь и спирт берутся в избытке):

2. Удлинение цепи (алкилирование ацетиленидов) при действии на ацетилениды алкилгалогенидами:

Методы получения алкадиенов

Общие способы получения диенов аналогичны способам получения алкенов.

1. Каталитическое двухстадийное дегидрирование алканов (через стадию образования алкенов). Этим путем получают в промышленности дивинил из бутана, содержащегося в газах нефтепереработки и в попутных газах:

В промышленности каталитическим дегидрированием изопентана (2-метилбутана) получают изопрен:

2. Синтез бутадиена (дивинила) из этилового спирта (реакция Лебедева):

3. Дегидратация гликолей (двухатомных спиртов, или алкандиолов):

4. Дегидрогалогенирование вицинальных дигалогенпроизводных в присутствии спиртового раствора щелочи:

Методы получения Бензола и его гомологов (ароматических УВ)

Основные методы получения ароматических углеводородов основаны либо на процессах циклизации с последующим дегидрированием, при наличии в УВ-цепи более шести атомов углерода, образуются гомологи безола с боковой цепью. Процесс тримеризации ацетилена используется при синтезе бензола и, тем самым, подтверждает его структуру.

1. Дегидрирование циклогексана (получение бензола)

2. Тримеризация ацетилена (получение бензола) реакция Зелинского

3.Риформинг (ароматизация нефти)

4. Коксование каменного угля — нагрев без доступа воздуха до 1000°С. Образуется смесь летучих веществ, каменноугольной смолы и твердый остаток – кокс. Смола – жидкая смесь органических веществ, из которой выделяют многие органические соединения, в том числе и арены.

Методы получения спиртов:

предельных одноатомных, гликолей, фенолов

1. Щелочной гидролиз моногалогенпроизводных алканов (нуклеофильное замещение)

бромэтан этанол

2. Гидратация этилена и несимметричных алкенов (электрофильное присоединение) по правилу Марковникова

3. Восстановление (гидрирование) альдегидов (первичные спирты) и кетонов (вторичные спирты)

диметилкетон изопропиловый

(ацетон) спирт

4.Спиртовое брожение растительного сырья, содержащего углеводы:

C6H12O6 → 2C2H5OH+ 2CO2↑+ 23,5⋅104Дж

Получение гликолей (двухатомных предельных спиртов)

1. Окисление двойной кратной связи (только мягкое окисление!) реакция Вагнера:

Обратите внимание, что при действии жестких окислителей (подкисленного раствора пераманганата калия или озона) образуются карбонильные соединения (карбоновые кислоты и альдегиды), поскольку реакция протекает с разрывом и σ- π-связей.

Получение фенола (ароматического спирта)

1. Кумольный способ (основной промышленный способ)

2. Щелочной гидролиз хлорбензола

3. Выделение из каменноугольной смолы — продукта коксования каменного угля.

Методы получения альдегидов и кетонов

В классе кислородсодержащих углеводородов альдегиды занимают промежуточное положение в генетической цепочке: спирты — альдегиды — кислоты. Поэтому основные методы получения основаны на восстановлении кислот или на окислении спиртов.

1. Восстановление (дегидрирование) спиртов: первичных — до альдегидов, вторичных — до кетонов

пропанол-2 пропанон-2 (ацетон)

2. Окисление спиртов (условный окислитель — CuO,KMnO4, кислород воздуха в присутствии катализатора — Pt, Cu): первичных — до альдегидов, вторичных — до кетонов

этанол ацетальдегид

первичный спирт

изопропанол диметилкетон

вторичный спирт

3. Избирательное восстановление карбоновых кислот

4. Восстановление (гидрирование) хлорангидридов кислот по Розенмунду (катализатор — платиновая чернь, палладий)

5. Сухая перегонка кальциевых и бариевых солей одноосновных кислот: для всех кислот — кетоны; для муравьиной кислоты — альдегид.

В промышленности альдегиды получают следующими способами:

а) каталитическим окислением алканов (метана):

б) каталитическим окислением этилена кислородом воздуха (Вакер-процесс):

в) гидратацией ацетилена в присутствии солей ртути (реакция Кучерова):

Методы получения карбоновых кислот

Карбоновые кислоты являются последним звеном окислительной цепочки «спирты — альдегиды — кислоты», поэтому методы их получения основаны на реакциях окисления.

В промышленности карбоновые кислоты получают мягким каталитическим окислением кислородом воздуха алканов, спиртов и альдегидов. В качестве катализатора используют платину, палладий, соли олова и др., реакции проводят при нормальном давлении и 2000C. Окисление альдегидов происходит наиболее легко без дополнительного нагревания.

1. Окисление алканов:

Специфическими методами синтеза простейших карбоновых кислот (муравьиной и уксусной) являются:

1. Синтез уксусной кислоты каталитическим формилированием метанола (катализатор оксид вольфрама, температура 400∘C давление

2. Синтез муравьиной кислоты из окиси углерода и гидроксида натрия при нагревании с последующей обменной реакцией с серной кислотой:

3. Синтез муравьиной кислоты из окиси углерода и паров воды (катализатор соли меди, серная или фосфорная кислота):

p,t0C,kat

CO + H2O → HCOOH

4. Получение карбоновых кислот из цианидов (нитрилов) проводится в две стадии и позволяет наращивать углеродную цепь:

Методы получения аминов и анилина

1. Взаимодействие аммиака с алкилгалогенидами (RX):

2. Взаимодействие аммиака со спиртами (катализатор — Al2O3,SiO2; t=300−500C)

3. Восстановление азотсодержащих органических соединений (получение анилина):

Реакция Зинина:

В общем виде восстановление нитропроизводных до аминов происходит следующим образом:

где [H] — условный восстановитель: H2 в присутствии катализатора (Cu, Ni, Pt, Pd); металл (Fe, Zn, Sn) и кислота; соли металлов в низших степенях окисления (SnCl2,TiCl3)

4. Восстановление нитрилов:

где [H] — восстановитель: H2/Ni;LiAlH4

5. Восстановление амидов карбоновых кислот:

6. Перегруппировка Гоффмана:

RC(O)NH2 + Br2 + 2NaOH →RNH2 + 2NaBr + CO2+H2O

Методы получения нитропроизводных углеводородов: нитроалканов, ароматических нитросоединений

1. Синтез первичных нитроалканов из галогенпроизводных (реакция Мейера):

где Х= Br или I. Условия: абсолютный эфир, t = 0−200C

2. Реакция Коновалова — нитрование алифатических, алициклических и жирноароматических соединений разбавленной НNО3 при повышенном или нормальном давлении (свободнорадикальный механизм) и при температуре 140—150 °C.

2. Нитрование ароматических углеводородов нитрующей смесью — электрофильное замещение:

Реакция электрофильного нитрования лежит в основе синтеза взрывчатых веществ, в том числе тринитротолуола (тротила):

Методы получения галоидпроизводных углеводородов

1. Свободнорадикальное (гомолитическое) галогенирование предельных УВ: замещение атомов водорода, преимущественно у наименее гидрогенизированного атома углерода:

УФ,t0C

R−H + X2 → R−X + HX

и далее продолжение цепи до полного замещения. Реакционная способность галогенов по отношению к алканам уменьшается в ряду:

F2>Cl2>Br2>I2

2. Гидрогалогенирование непредельных УВ: присоединение по кратным связям. Для получения дигалогенпроизводных — галогенирование

H2C=CH−CH3 + HCl → H3C−CH(Cl)−CH3

материал взят в основном здесь:http://foxford.ru/wiki/himiya/sposoby-polucheniya-organicheskih-veschestv

Основные способы получения (в лаборатории) конкретных веществ, относящихся к изученным классам органических соединений.

Лабораторные способы получения веществ отличаются от промышленных:

Лабораторные способы получения веществ Промышленные способы получения веществ
Реагенты могут быть редкими и дорогими Реагенты распространенные в природе и дешевые
Условия реакции мягкие, без высоких давлений и сильного нагревания Условия реакции могут быть довольно жесткими, допустимы высокие давления и температуры
Как правило, реагенты —  жидкости или твердые вещества Реагенты — газы или жидкости, реже твердые вещества

Получение алканов в лаборатории

Декарбоксилирование солей карбоновых кислот

Метан CН4 в лаборатории получают при сплавлении ацетата натрия CH3COONa с гидроксидом натрия NaOH:

CH3COONa + NaOH →  CH4 + Na2CO3

Метан легче воздуха, поэтому его можно собирать методом вытеснения воздуха.

Синтез Вюрца

Взаимодействие галогеналканов с активным металлом (натрия) — это один из лабораторных способов получения алканов. При этом происходит удвоение углеродного скелета.

Например, хлорметан реагирует с натрием с образованием этана:

Хлорэтан взаимодействует с натрием с образованием бутана:

Реакция больше подходит для получения симметричных алканов.

При проведении синтеза со смесью разных галогеналканов образуется смесь разных алканов.

Например, при взаимодействии хлорметана и хлорэтана с натрием помимо пропана образуются этан и бутан.

Получение циклоалканов в лаборатории

В лаборатории циклоалканы получают действием активных металлов на дигалогеналканы, в которых между атомами галогенов находится три и более атомов углерода.

Например, 1,4-дибромбутан реагирует с цинком с образованием циклобутана

Таким образом можно синтезировать циклоалканы заданного строения, в том числе циклоалканы с малыми циклами (С3 и С4).

Получение алкенов в лаборатории

В лаборатории алкены получают нагреванием спиртов (выше 140оС) в присутствии водоотнимающих веществ (концентрированная серная кислота, фосфорная кислота). Дегидратация — это отщепление молекул воды.

Например, при дегидратации этанола при высокой температуре образуется этилен.

Получение ацетилена в лаборатории

Ацетилен C2Н2 в лаборатории получают взаимодействием карбида кальция CaC2 с водой (гидролиз карбида кальция):

CaC2 + 2H2O →  C2H2 + Ca(OH)2

Получение альдегидов в лаборатории

В лаборатории альдегиды получают окислением первичных спиртов. В качестве окислителей применяют оксид меди (II), пероксид водорода и другие окислители.

Например, при окислении этанола оксидом меди образуется уксусный альдегид

Получение карбоновых кислот в лаборатории

Получение кислот из солей

В лаборатории карбоновые кислоты можно получить из солей, действую на растворы их солей более сильными неорганическими кислотами.

Например, муравьиную кислоту можно получить, подействовав на формиат натрия раствором серной кислоты:

Окисление альдегидов

При окислении альдегидов также образуются карбоновые кислоты или их соли. Альдегиды реагируют с раствором перманганата или дихромата калия в кислой среде при нагревании, а также с гидроксидом меди при нагревании.

Например, при окислении уксусного альдегида перманганатом калия в серной кислоте образуется уксусная кислота.

Например, при окислении альдегидов гидроксидом меди (II) также образуются карбоновые кислоты

Получение сложных эфиров в лаборатории

Сложные эфиры в лаборатории получают при взаимодействии карбоновых кислот с одноатомными и многоатомными спиртами (реакция этерификации).

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

Реакции, характеризующие основные способы получения кислородсодержащих соединений

1. Гидролиз галогеналканов. Вы уже знаете, что образование галокеналканов при взаимодействии спиртов с галогеноводородами — обратимая реакция. Поэтому понятно, что спирты могут быть получены при гидролизе галогеналканов — реакции этих соединений с водой:

$R-Cl+NaOH{→}↖{H_2O}R-OH+NaCl+H_2O$

Многоатомные спирты можно получить при гидролизе галогеналканов, содержащих более одного атома галогена в молекуле. Например:

2. Гидратация алкенов — присоединение воды по $π$-связи молекулы алкена — уже знакома вам, например:

${CH_2=CH_2}↙{этен}+H_2O{→}↖{H^{+}}{C_2H_5OH}↙{этанол}$

Гидратация пропена приводит, в соответствии с правилом Марковникова, к образованию вторичного спирта — пропанола-2:

3. Гидрирование альдегидов и кетонов. Вы уже знаете, что окисление спиртов в мягких условиях приводит к образованию альдегидов или кетонов. Очевидно, что спирты могут быть получены при гидрировании (восстановлении водородом, присоединении водорода) альдегидов и кетонов:

4. Окисление алкенов. Гликоли, как уже отмечалось, могут быть получены при окислении алкенов водным раствором перманганата калия. Например, этиленгликоль (этандиол-1,2) образуется при окислении этилена (этена):

$CH_2=CH_2+[O]+H_2O{→}↖{KMnO_4}HO-CH_2-CH_2-OH$

5. Специфические способы получения спиртов. Некоторые спирты получают характерными только для них способами. Так, метанол в промышленности получают при взаимодействии водорода с оксидом углерода (II) (угарным газом) при повышенном давлении и высокой температуре на поверхности катализатора (оксида цинка):

$CO+2H_2{→}↖{t,p,ZnO}CH_3-OH$

Необходимую для этой реакции смесь угарного газа и водорода, называемую также синтез-газом ($СО + nН_2О$), получают при пропускании паров воды над раскаленным углем:

$C+H_2O{→}↖{t}CO+H_2-Q$

6. Брожение глюкозы. Этот способ получения этилового (винного) спирта известен человеку с древнейших времен:

${C_6H{12}O_6}↙{глюкоза}{→}↖{дрожжи}2C_2H_5OH+2CO_2$

Способы получения альдегидов и кетонов

Альдегиды и кетоны могут быть получены окислением или дегидрированием спиртов. Еще раз отметим, что при окислении или дегидрировании первичных спиртов могут быть получены альдегиды, а вторичных спиртов — кетоны:

Реакция Кучерова. Из ацетилена в результате реакции гидратации получается уксусный альдегид, из гомологов ацетилена — кетоны:

При нагревании кальциевых или бариевых солей карбоновых кислот образуются кетон и карбонат металла:

Способы получения карбоновых кислот

Карбоновые кислоты могут быть получены окислением первичных спиртов альдегидов:

Ароматические карбоновые кислоты образуются при окислении гомологов бензола:

Гидролиз различных производных карбоновых кислот также приводит к получению кислот. Так, при гидролизе сложного эфира образуются спирт и карбоновая кислота. Как уже говорилось выше, реакции этерификации и гидролиза, катализируемые кислотой, обратимы:

Гидролиз сложного эфира под действием водного раствора щелочи протекает необратимо, в этом случае из сложного эфира образуется не кислота, а ее соль:

 Подготовка к ЕГЭ начинается с
психологического настроя на успех, обязательную сдачу ЕГЭ.

Поэтому не
лишними будут помощь психолога, советы родителей и учителей.

Теория к ЕГЭ. Методика самостоятельной подготовки к ЕГЭ

Download

ТЕОРИЯ ДЛЯ СДАЮЩИХ ЕГЭ

Дopoнькин ЕГЭ. Химия. Большой справочник

Adobe Acrobat Document
7.6 MB

Download

РАСПЕЧАТАТЬ И ИСПОЛЬЗОВАТЬ

Методические рекомендации по подготовке

Adobe Acrobat Document
375.5 KB

Download

ПРОРАБОТАТЬ И ПРИНЯТЬ К СВЕДЕНИЮ

анализ типичных ошибок ЕГЭ-2019 г.pdf

Adobe Acrobat Document
771.7 KB

Download

ПРОГРАММА ПОДГОТОВКИ К ЕГЭ ПО ХИМИИ.doc

Microsoft Word Document
129.5 KB

Download

ВНИМАНИЕ

Тривиальные названия органических вещест

Adobe Acrobat Document
340.1 KB

Download

Теория и тест для самостоятельной проработки.

Основные способы получения металлов.pptx

Microsoft Power Point Presentation
920.7 KB

Download

Все свойства органических веществ.

Реакции к основным темам курса 10 класса

Microsoft Word Document
158.0 KB

Download

Общие формулы. УЧИТЬ!!!

Общие формулы классов органических вещес

Adobe Acrobat Document
188.4 KB

Download

Металлы. Соединения металлов. УЧИТЬ!!!

Свойства металлов и их соединений.docx

Microsoft Word Document
2.5 MB

Download

Цепочки превращений.

Задание С3. Цепочки превращений..docx

Microsoft Word Document
674.8 KB

Download

Теория по основным классам неорганических соединений.

Основные классы и их свойства.doc

Microsoft Word Document
880.0 KB

Download

Нужно разобраться и выучить.

Ряд активности металлов.pdf

Adobe Acrobat Document
315.0 KB

Документация и подготовка к ЕГЭ

Download

таблица ПСХЭ.doc

Microsoft Word Document
396.5 KB

Download

Таблица растворимости некоторых веществ

Microsoft Word Document
578.5 KB

Дополнительная информация, теория к ЕГЭ

Download

Адреса сайтов подготовки.

Материалы для подготовки к ОГЭ и ЕГЭ.doc

Microsoft Word Document
15.2 KB

Download

Таблица. Качественные признаки веществ.d

Microsoft Word Document
44.8 KB

Download

Ряд ЭО. Названия кислот и остатков. Степ

Microsoft Word Document
518.7 KB

Download

Таблица ПСХЭ . С обозначением классов со

Microsoft Word Document
498.4 KB

Download

цвета оксидов.doc

Microsoft Word Document
24.0 KB

Download

Номенклатура неорганических веществ.doc

Microsoft Word Document
135.5 KB

Download

Определение ионов. Качественные реакции.

Microsoft Word Document
51.0 KB

Часть представленных здесь материалов взята с
сайта учителя химии Сикорской О.Э.

Понравилась статья? Поделить с друзьями:
  • Пример дети войны сочинение
  • Применение производной к построению графиков функций егэ
  • Пример демократизации образования егэ
  • Применение производной к исследованию функции решу егэ
  • Применение металлов химия егэ