Каталог заданий.
Применение производной к исследованию функций
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
На рисунке изображен график производной функции определенной на интервале Найдите промежутки возрастания функции В ответе укажите сумму целых точек, входящих в эти промежутки.
2
На рисунке изображен график функции y = f(x), определенной на интервале (−6; 8). Определите количество целых точек, в которых производная функции положительна.
3
На рисунке изображен график функции y = f(x), определенной на интервале (−2; 12). Найдите сумму точек экстремума функции f(x).
Источник: ЕГЭ по математике 29.06.2021. Резервная волна. Центр. Вариант 402
4
Источник: ЕГЭ по математике 07.06.2021. Основная волна. Подмосковье
5
На рисунке изображен график производной функции f(x), определенной на интервале (−8; 4). В какой точке отрезка [−7; −3] f(x) принимает наименьшее значение?
Источник: ЕГЭ по математике 07.06.2021. Основная волна. Санкт-Петербург
Пройти тестирование по этим заданиям
Всего: 696 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
На рисунке изображён график функции y = f(x), определённой на интервале (−3; 8). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 1.
На рисунке изображён график функции y = f(x), определённой на интервале (−4; 8). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 18.
На рисунке изображен график функции Прямая, проходящая через начало координат, касается графика этой функции в точке с абсциссой 10. Найдите
На рисунке изображён график дифференцируемой функции y = f(x). На оси абсцисс отмечены девять точек: x1, x2, x3, …, x9. Среди этих точек найдите все точки, в которых производная функции f(x) отрицательна. В ответе укажите количество найденных точек.
Источник: Демонстрационная версия ЕГЭ—2013 по математике., Проект демонстрационной версии ЕГЭ—2014 по математике.
На рисунке изображен график производной функции f(x). Найдите абсциссу точки, в которой касательная к графику y = f(x) параллельна прямой y = 6x или совпадает с ней.
На рисунке изображён график — производной функции f(x). На оси абсцисс отмечены восемь точек: x1, x2, x3, …, x8. Сколько из этих точек лежит на промежутках убывания функции f(x)?
На рисунке изображён график — производной функции f(x). На оси абсцисс отмечены шесть точек: x1, x2, x3, …, x6. Сколько из этих точек лежит на промежутках убывания функции f(x)?
Источник: ЕГЭ по математике 02.06.2022. Основная волна. Восток
На рисунке изображен график функции y=f(x), определенной на интервале (−3; 9). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 12 или совпадает с ней.
Источник: Пробный экзамен по математике Кировского района Санкт-Петербурга, 2015. Вариант 1.
На рисунке изображен график производной функции f(x), определенной на интервале (−9; 2). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = −x − 12 или совпадает с ней.
На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
На рисунке изображен график функции y = f(x). Прямая, проходящая через начало координат, касается графика этой функции в точке с абсциссой 8. Найдите
На рисунке изображен график функции y = f(x), определенной на интервале (−6; 5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = −6.
Источник: Пробный экзамен по математике Кировского района Санкт-Петербурга, 2015. Вариант 2.
На рисунке изображен график функции y = f(x), определенной на интервале (−3; 9). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 12 или совпадает с ней.
Источник: Пробный экзамен по математике Кировского района Санкт-Петербурга, 2015. Вариант 1.
На рисунке изображен график функции y = f(x), определенной на интервале (−6; 5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = −6.
Источник: Пробный экзамен по математике Кировского района Санкт-Петербурга, 2015. Вариант 2.
Всего: 696 1–20 | 21–40 | 41–60 | 61–80 …
Версия для печати и копирования в MS Word
1
На рисунке изображен график производной функции определенной на интервале Найдите промежутки возрастания функции В ответе укажите сумму целых точек, входящих в эти промежутки.
Ответ:
2
На рисунке изображен график функции y = f(x), определенной на интервале (−6; 8). Определите количество целых точек, в которых производная функции положительна.
Ответ:
3
На рисунке изображен график функции y = f(x), определенной на интервале (−2; 12). Найдите сумму точек экстремума функции f(x).
Ответ:
4
5
На рисунке изображен график производной функции f(x), определенной на интервале (−8; 4). В какой точке отрезка [−7; −3] f(x) принимает наименьшее значение?
Ответ:
6
На рисунке изображен график производной функции f(x), определенной на интервале (−7; 14). Найдите количество точек максимума функции f(x) на отрезке [−6; 9].
Ответ:
7
На рисунке изображен график производной функции f(x), определенной на интервале (−18; 6). Найдите количество точек минимума функции f(x) на отрезке [−13;1].
Ответ:
8
На рисунке изображен график производной функции f(x), определенной на интервале (−11; 11). Найдите количество точек экстремума функции f(x) на отрезке [−10; 10].
Ответ:
9
На рисунке изображен график производной функции f(x), определенной на интервале (−5; 7). Найдите промежутки убывания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.
Ответ:
10
На рисунке изображен график производной функции f(x), определенной на интервале (−11; 3). Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.
Ответ:
11
На рисунке изображен график производной функции f(x), определенной на интервале (−2; 12). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них.
Ответ:
12
На рисунке изображен график производной функции f(x), определенной на интервале (−4; 8). Найдите точку экстремума функции f(x) на отрезке [−2; 6].
Ответ:
13
На рисунке изображен график функции y = f(x), определенной на интервале (−3; 9) . Найдите количество точек, в которых производная функции f(x) равна 0.
Ответ:
14
На рисунке изображён график — производной функции f(x). На оси абсцисс отмечены восемь точек: x1, x2, x3, …, x8. Сколько из этих точек лежит на промежутках возрастания функции f(x)?
Ответ:
15
16
На рисунке изображен график функции и отмечены точки −2, −1, 1, 4. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.
Ответ:
17
На рисунке изображён график дифференцируемой функции y = f(x). На оси абсцисс отмечены девять точек: x1, x2, x3, …, x9. Среди этих точек найдите все точки, в которых производная функции f(x) отрицательна. В ответе укажите количество найденных точек.
Ответ:
18
На рисунке изображён график функции — производной функции f(x) определённой на интервале (1; 10). Найдите точку минимума функции f(x).
Ответ:
19
На рисунке изображён график функции y = f(x) и отмечены семь точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7. В скольких из этих точек производная функции f(x) отрицательна?
Ответ:
20
Функция y = f (x) определена и непрерывна на отрезке [−5; 5]. На рисунке изображён график её производной. Найдите точку x0, в которой функция принимает наименьшее значение, если f (−5) ≥ f (5).
Ответ:
21
22
23
24
На рисунке изображен график функции и отмечены точки −2, −1, 1, 2. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.
Ответ:
25
26
27
28
29
30
31
32
33
34
На рисунке изображён график функции определённой на интервале (−9; 4). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них.
Ответ:
Завершить тестирование, свериться с ответами, увидеть решения.
09
Авг 2013
Категория: 07 Производная, ПО
07. Применение производной к исследованию функции
2013-08-09
2023-02-25
Cледующая таблица будет весьма полезна при работе с данной темой.
Пожалуйста, будьте предельно внимательны в следующем. Смотрите, график ЧЕГО вам дан! Функции или ее производной
Если дан график производной, то интересовать нас будут только знаки функции и нули. Никакие «холмики» и «впадины», как в случае не интересуют нас в принципе!
Задача 1. На рисунке изображен график функции , определенной на интервале . Определите количество целых точек, в которых производная функции отрицательна.
Решение: + показать
Задача 2. На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.
Решение:+ показать
Задача 3. На рисунке изображен график производной функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.
Решение: + показать
Задача 4. На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых производная функции равна 0.
Решение: + показать
Задача 5. На рисунке изображён график функции и одиннадцать точек на оси абсцисс:. В скольких из этих точек производная функции отрицательна?
Решение: + показать
Задача 6. На рисунке изображен график функции , определенной на интервале . Найдите сумму точек экстремума функции .
Решение: + показать
Задача 7. На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите сумму целых точек, входящих в эти промежутки.
Решение: + показать
Задача 8. На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите длину наибольшего из них.
Решение: + показать
Задача 9. На рисунке изображен график производной функции , определенной на интервале . В какой точке отрезка принимает наибольшее значение.
Решение: + показать
Задача 10. На рисунке изображен график — производной функции , определенной на интервале . Найдите количество точек максимума функции , принадлежащих отрезку .
Решение: + показать
Задача 11. На рисунке изображен график функции и отмечены точки -3, 1, 6, 8. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.
Решение: + показать
Задача 12. Функция определена на промежутке На рисунке изображен график её производной. Найдите точку в которой функция принимает наименьшее значение, если
Решение: + показать
Задача 13. Функция определена и непрерывна на полуинтервале На рисунке изображен график её производной. Найдите промежутки убывания функции В ответе укажите сумму целых точек, входящих в эти промежутки.
Решение: + показать
Вы можете пройти тест «Применение производной к исследованию функции»
Автор: egeMax |
комментариев 29
Печать страницы
Задание 8 (№ 317545)
На рисунке
изображён график функции и семь точек на оси абсцисс: , , , , . В скольких из этих точек производная
функции положительна?
Задание 8 (№
317547)
На рисунке изображён график функции и
десять точек на оси абсцисс: , , , , . В скольких из этих точек
производная функции положительна?
Задание 8 (№ 317549)
На рисунке
изображён график функции и шесть точек на оси абсцисс: , , , , . В
скольких из этих точек производная функции положительна?
Задание 8 (№
317545)
На рисунке изображён график функции и
семь точек на оси абсцисс: , , , , . В
скольких из этих точек производная функции положительна?
Задание 8 (№
317559)
На рисунке изображён график функции и восемь точек на
оси абсцисс: , , , , . В
скольких из этих точек производная функции положительна?
Задание 8 (№
317645)
На рисунке изображён график функции и семь точек на
оси абсцисс: , , , , . В скольких из этих
точек производная функции отрицательна?
Задание 8 (№ 317647)
На рисунке изображён график функции и девять точек на
оси абсцисс: , , , , . В скольких из этих точек производная
функции отрицательна?
Задание 8 (№ 317651)
На рисунке
изображён график функции и шесть точек на оси абсцисс: , , , , . В
скольких из этих точек производная функции отрицательна?
Задание 8 (№
317665)
На рисунке изображён график функции и
одиннадцать точек на оси абсцисс: , , , , .
В скольких из этих точек производная функции отрицательна?
Задание 8 (№ 317667)
На рисунке
изображён график функции и шесть точек на оси абсцисс: , , , , . В
скольких из этих точек производная функции отрицательна?
Задание 8 (№ 317745)
На рисунке
изображён график — производной функции . На
оси абсцисс отмечено шесть точек: , , , , . Сколько из этих точек
лежит на промежутках возрастания функции ?
Задание 8 (№ 317749)
На рисунке
изображён график — производной функции .
На оси абсцисс отмечено девять точек: , , , , .
Сколько из этих точек лежит на промежутках возрастания функции ?
Задание 8 (№
317751)
На рисунке изображён график —
производной функции . На оси абсцисс отмечено одиннадцать
точек: , , , , .
Сколько из этих точек лежит на промежутках возрастания функции ?
Задание 8 (№ 317753)
На рисунке
изображён график — производной функции .
На оси абсцисс отмечено девять точек: , , , , .
Сколько из этих точек лежит на промежутках возрастания функции ?
Задание 8 (№
317845)
На рисунке изображён график —
производной функции . На оси абсцисс отмечено восемь
точек: , , , , .
Сколько из этих точек лежит на промежутках убывания функции ?
Задание 8 (№
317847)
На рисунке изображён график —
производной функции . На оси абсцисс отмечено шесть точек:
,
,
,
,
.
Сколько из этих точек лежит на промежутках убывания функции ?
Задание 8 (№ 317855)
На рисунке изображён график —
производной функции . На оси абсцисс отмечено одиннадцать
точек: , , , , .
Сколько из этих точек лежит на промежутках убывания функции ?
Задание 8 (№ 317881)
На рисунке изображён график —
производной функции . На оси абсцисс отмечено одиннадцать
точек: , , , , .
Сколько из этих точек лежит на промежутках убывания функции ?
ЕГЭ Профиль №7. Применение производной к исследованию функций
Необходимая теория:
Производная функции
Таблица производных
Первообразная функции
Задание 7 Профильного ЕГЭ по математике — это задачи на геометрический и физический смысл производной. Это задачи о том, как производная связана с поведением функции. И еще (правда, очень редко) в этих задачах встречаются вопросы о первообразной.
Геометрический смысл производной
Вспомним, что производная — это скорость изменения функции.
Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке. Производная также равна тангенсу угла наклона касательной.
1. На рисунке изображён график функции и касательная к нему в точке с абсциссой Найдите значение производной функции в точке
Производная функции в точке равна тангенсу угла наклона касательной, проведенной в точке .
Достроив до прямоугольного треугольника АВС, получим:
Ответ: 0,25.
2. На рисунке изображён график функции и касательная к нему в точке с абсциссой
Найдите значение производной функции в точке
Начнём с определения знака производной. Мы видим, что в точке функция убывает, следовательно, её производная отрицательна. Касательная в точке образует тупой угол с положительным направлением оси . Поэтому из прямоугольного треугольника мы найдём тангенс угла , смежного с углом .
Мы помним, что тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему: Поскольку , имеем:
Ответ: −0, 25.
Касательная к графику функции
3. Прямая является касательной к графику функции
Найдите абсциссу точки касания.
Запишем условие касания функции и прямой в точке
При значения выражений и равны.
При этом производная функции равна угловому коэффициенту касательной, то есть .
Из второго уравнения находим или Первому уравнению удовлетворяет только .
Физический смысл производной
Мы помним, что производная — это скорость изменения функции.
Мгновенная скорость — это производная от координаты по времени. Но это не единственное применение производной в физике. Например, cила тока — это производная заряда по времени, то есть скорость изменения заряда. Угловая скорость — производная от угла поворота по времени.
Множество процессов в природе, экономике и технике описывается дифференциальными уравнениями — то есть уравнениями, содержащими не только сами функции, но и их производные.
4. Материальная точка движется прямолинейно по закону , где — расстояние от точки отсчета в метрах, — время в секундах, измеренное с начала движения. Найдите ее скорость (в м/с) в момент времени с.
Мгновенная скорость движущегося тела является производной от его координаты по времени. Это физический смысл производной. В условии дан закон изменения координаты материальной точки, то есть расстояния от точки отсчета:
Найдем скорость материальной точки как производную от координаты по времени:
В момент времени получим:
.
Ответ: 3.
Применение производной к исследованию функций
Каждый год в вариантах ЕГЭ встречаются задачи, в которых старшеклассники делают одни и те же ошибки.
Например, на рисунке изображен график функции — а спрашивают о производной. Кто их перепутал, тот задачу не решил.
Или наоборот. Нарисован график производной — а спрашивают о поведении функции.
И значит, надо просто внимательно читать условие. И знать, как же связана производная с поведением функции.
Если , то функция возрастает.
Если , то функция убывает.
В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».
В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».
возрастает | точка максимума | убывает | точка минимума | возрастает | |
0 | 0 |
5. На рисунке изображен график функции , определенной на интервале Найдите количество точек, в которых производная функции равна 0.
Производная функции в точках максимума и минимума функции Таких точек на графике 5.
Ответ: 5.
6. На рисунке изображён график — производной функции , определённой на интервале . В какой точке отрезка функция принимает наибольшее значение?
Не спешим. Зададим себе два вопроса: что изображено на рисунке и о чем спрашивается в этой задаче?
Изображен график производной, а спрашивают о поведении функции. График функции не нарисован. Но мы знаем, как производная связана с поведением функции.
На отрезке производная функции положительна.
Значит, функция возрастает на этом отрезке. Большим значениям х соответствует большее значение Наибольшее значение функции достигается в правом конце отрезка, то есть в точке 3.
Ответ: 3.
7. На рисунке изображён график функции , определённой на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой
Прямая параллельна оси абсцисс. Найдем на графике функции точки, в которых касательная параллельна оси абсцисс, то есть горизонтальна. Таких точек на графике 7. Это точки максимума и минимума.
Ответ: 7.
8. На рисунке изображен график производной функции , определенной на интервале Найдите количество точек максимума функции на отрезке
Очень внимательно читаем условие задачи. Изображен график производной, а спрашивают о точках максимума функции. В точке максимума производная равна нулю и меняет знак с «плюса» на «минус». На отрезке такая точка всего одна! Это
Ответ: 1.
9. На рисунке изображен график производной функции , определенной на интервале Найдите точку экстремума функции на отрезке
Точками экстремума называют точки максимума и минимума функции. Если производная функции в некоторой точке равна нулю и при переходе через эту точку меняет знак, то это точка экстремума. На отрезке график производной (а именно он изображен на рисунке) пересекает ось абсцисс в точке В этой точке производная меняет знак с минуса на плюс.
Значит, является точкой экстремума.
Первообразная и формула Ньютона-Лейбница
Функция , для которой является производной, называется первообразной функции Функции вида образуют множество первообразных функции
10. На рисунке изображён график — одной из первообразных некоторой функции , определённой на интервале Пользуясь рисунком, определите количество решений уравнения на отрезке
Функция для которой является производной, называется первообразной функции
Это значит, что на графике нужно найти такие точки, принадлежащие отрезку , в которых производная функции равна нулю. Это точки максимума и минимума функции На отрезке таких точек 4.
Ответ: 4.
Больше задач на тему «Первообразная. Площадь под графиком функции» — в этой статье
Первообразная функции. Формула Ньютона-Лейбница.
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Задание №7. Производная. Поведение функции. Первообразная u0026#8212; профильный ЕГЭ по Математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
09.03.2023