Применение производной к исследованию функции решу егэ

Каталог заданий.
Применение производной к исследованию функций


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

На рисунке изображен график производной функции f левая круглая скобка x правая круглая скобка , определенной на интервале  левая круглая скобка минус 6; 6 правая круглая скобка . Найдите промежутки возрастания функции f левая круглая скобка x правая круглая скобка . В ответе укажите сумму целых точек, входящих в эти промежутки.


2

На рисунке изображен график функции y = f(x), определенной на интервале (−6; 8). Определите количество целых точек, в которых производная функции положительна.


3

На рисунке изображен график функции y  =  f(x), определенной на интервале (−2; 12). Найдите сумму точек экстремума функции f(x).

Источник: ЕГЭ по математике 29.06.2021. Резервная волна. Центр. Вариант 402


4

Источник: ЕГЭ по математике 07.06.2021. Основная волна. Подмосковье


5

На рисунке изображен график производной функции f(x), определенной на интервале (−8; 4). В какой точке отрезка [−7; −3] f(x) принимает наименьшее значение?

Источник: ЕГЭ по математике 07.06.2021. Основная волна. Санкт-Петербург

Пройти тестирование по этим заданиям

Всего: 696    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант



На рисунке изображён график функции y  =  f(x), определённой на интервале (−3; 8). Найдите количество точек, в которых касательная к графику функции параллельна прямой y  =  1.


На рисунке изображён график функции y  =  f(x), определённой на интервале (−4; 8). Найдите количество точек, в которых касательная к графику функции параллельна прямой y  =  18.




На рисунке изображен график функции y=f левая круглая скобка x правая круглая скобка . Прямая, проходящая через начало координат, касается графика этой функции в точке с абсциссой 10. Найдите f' левая круглая скобка 10 правая круглая скобка .


На рисунке изображён график дифференцируемой функции y  =  f(x). На оси абсцисс отмечены девять точек: x1, x2, x3, …, x9. Среди этих точек найдите все точки, в которых производная функции f(x) отрицательна. В ответе укажите количество найденных точек.

Источник: Демонстрационная версия ЕГЭ—2013 по математике., Проект демонстрационной версии ЕГЭ—2014 по математике.


На рисунке изображен график производной функции f(x). Найдите абсциссу точки, в которой касательная к графику y  =  f(x) параллельна прямой y  =  6x или совпадает с ней.


На рисунке изображён график y=f' левая круглая скобка x правая круглая скобка   — производной функции f(x). На оси абсцисс отмечены восемь точек: x1, x2, x3, …, x8. Сколько из этих точек лежит на промежутках убывания функции f(x)?


На рисунке изображён график y=f' левая круглая скобка x правая круглая скобка   — производной функции f(x). На оси абсцисс отмечены шесть точек: x1, x2, x3, …, x6. Сколько из этих точек лежит на промежутках убывания функции f(x)?


Источник: ЕГЭ по математике 02.06.2022. Основная волна. Восток


На рисунке изображен график функции y=f(x), определенной на интервале (−3; 9). Найдите количество точек, в которых касательная к графику функции параллельна прямой y  =  12 или совпадает с ней.

Источник: Пробный экзамен по математике Кировского района Санкт-Петербурга, 2015. Вариант 1.


На рисунке изображен график производной функции f(x), определенной на интервале (−9; 2). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = −x − 12 или совпадает с ней.



На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.


На рисунке изображен график функции y  =  f(x). Прямая, проходящая через начало координат, касается графика этой функции в точке с абсциссой 8. Найдите f' левая круглая скобка 8 правая круглая скобка .


На рисунке изображен график функции y = f(x), определенной на интервале (−6; 5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y  =  −6.

Источник: Пробный экзамен по математике Кировского района Санкт-Петербурга, 2015. Вариант 2.


На рисунке изображен график функции y = f(x), определенной на интервале (−3; 9). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 12 или совпадает с ней.

Источник: Пробный экзамен по математике Кировского района Санкт-Петербурга, 2015. Вариант 1.


На рисунке изображен график функции y = f(x), определенной на интервале (−6; 5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y  =  −6.

Источник: Пробный экзамен по математике Кировского района Санкт-Петербурга, 2015. Вариант 2.

Всего: 696    1–20 | 21–40 | 41–60 | 61–80 …

Версия для печати и копирования в MS Word

1

На рисунке изображен график производной функции f левая круглая скобка x правая круглая скобка , определенной на интервале  левая круглая скобка минус 6; 6 правая круглая скобка . Найдите промежутки возрастания функции f левая круглая скобка x правая круглая скобка . В ответе укажите сумму целых точек, входящих в эти промежутки.

Ответ:


2

На рисунке изображен график функции y = f(x), определенной на интервале (−6; 8). Определите количество целых точек, в которых производная функции положительна.

Ответ:


3

На рисунке изображен график функции y  =  f(x), определенной на интервале (−2; 12). Найдите сумму точек экстремума функции f(x).

Ответ:


4


5

На рисунке изображен график производной функции f(x), определенной на интервале (−8; 4). В какой точке отрезка [−7; −3] f(x) принимает наименьшее значение?

Ответ:


6

На рисунке изображен график производной функции f(x), определенной на интервале (−7; 14). Найдите количество точек максимума функции f(x) на отрезке [−6; 9].

Ответ:


7

На рисунке изображен график производной функции f(x), определенной на интервале (−18; 6). Найдите количество точек минимума функции f(x) на отрезке [−13;1].

Ответ:


8

На рисунке изображен график производной функции f(x), определенной на интервале (−11; 11). Найдите количество точек экстремума функции f(x) на отрезке [−10; 10].

Ответ:


9

На рисунке изображен график производной функции f(x), определенной на интервале (−5; 7). Найдите промежутки убывания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.

Ответ:


10

На рисунке изображен график производной функции f(x), определенной на интервале (−11; 3). Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.

Ответ:


11

На рисунке изображен график производной функции f(x), определенной на интервале (−2; 12). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них.

Ответ:


12

На рисунке изображен график производной функции f(x), определенной на интервале (−4; 8). Найдите точку экстремума функции f(x) на отрезке [−2; 6].

Ответ:


13

На рисунке изображен график функции y  =  f(x), определенной на интервале (−3; 9) . Найдите количество точек, в которых производная функции f(x) равна 0.

Ответ:


14

На рисунке изображён график y=f' левая круглая скобка x правая круглая скобка   — производной функции f(x). На оси абсцисс отмечены восемь точек: x1, x2, x3, …, x8. Сколько из этих точек лежит на промежутках возрастания функции f(x)?

Ответ:


15


16

На рисунке изображен график функции y=f левая круглая скобка x правая круглая скобка и отмечены точки −2, −1, 1, 4. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.

Ответ:


17

На рисунке изображён график дифференцируемой функции y  =  f(x). На оси абсцисс отмечены девять точек: x1, x2, x3, …, x9. Среди этих точек найдите все точки, в которых производная функции f(x) отрицательна. В ответе укажите количество найденных точек.

Ответ:


18

На рисунке изображён график функции у = f' левая круглая скобка x правая круглая скобка   — производной функции f(x) определённой на интервале (1; 10). Найдите точку минимума функции f(x).

Ответ:


19

На рисунке изображён график функции y  =  f(x) и отмечены семь точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7. В скольких из этих точек производная функции f(x) отрицательна?

Ответ:


20

Функция y  =  f (x) определена и непрерывна на отрезке [−5; 5]. На рисунке изображён график её производной. Найдите точку x0, в которой функция принимает наименьшее значение, если f (−5) ≥ f (5).

Ответ:


21


22


23


24

На рисунке изображен график функции y=f левая круглая скобка x правая круглая скобка и отмечены точки −2, −1, 1, 2. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.

Ответ:


25


26


27


28


29


30


31


32


33


34

На рисунке изображён график функции y=f левая круглая скобка x правая круглая скобка , определённой на интервале (−9; 4). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них.

Ответ:

Завершить тестирование, свериться с ответами, увидеть решения.

09
Авг 2013

Категория: 07 Производная, ПО

07. Применение производной к исследованию функции

2013-08-09
2023-02-25


 Cледующая таблица  будет весьма полезна при работе с данной темой.

вниманиеПожалуйста, будьте предельно внимательны в следующем. Смотрите, график ЧЕГО вам дан! Функции f(x) или ее производной f'(x)!

Если дан график производной, то интересовать нас будут только знаки функции f'(x) и нули. Никакие «холмики» и «впадины», как в случае f(x) не интересуют нас в принципе!


Задача 1. На рисунке изображен график функции y=f(x), определенной на интервале (-4;10). Определите количество целых точек, в которых производная функции f(x)  отрицательна.

76т

Решение: + показать


Задача 2. На рисунке изображен график функции y=f(x), определенной на интервале (-5;5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y=6 или совпадает с ней.

pic

Решение:+ показать


Задача 3. На рисунке изображен график производной функции f(x), определенной на интервале (-6;6). Найдите количество точек, в которых касательная к графику функции f(x)  параллельна прямой y=-3x-11  или совпадает с ней.

pic-1

Решение: + показать


Задача 4. На рисунке изображен график функции  y=f(x), определенной на интервале (-4;9). Найдите количество точек, в которых производная функции f(x)  равна 0.

ув

Решение: + показать


Задача 5. На рисунке изображён график функции f(x)  и одиннадцать точек на оси абсцисс:x_1,;x_2,;x_3,;...x_{11}. В скольких из этих точек производная функции f(x) отрицательна?

76е

Решение: + показать


Задача 6. На рисунке изображен график функции y=f(x), определенной на интервале (-6;5). Найдите сумму точек экстремума функции f(x).

ы

Решение: + показать


Задача 7На рисунке изображен график производной функции f(x), определенной на интервале (-6;6). Найдите промежутки возрастания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.

pic-1

Решение: + показать


Задача 8. На рисунке изображен график производной функции f(x), определенной на интервале (-11; 3). Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.

неп

Решение: + показать


Задача 9. На рисунке изображен график производной функции f(x) , определенной на интервале (-6;6). В какой точке отрезка [-5;-1]  f(x) принимает наибольшее значение.

pic

Решение: + показать


Задача 10. На рисунке изображен график y=f'(x)  — производной функции f(x), определенной на интервале (-10;14). Найдите количество точек максимума функции f(x), принадлежащих отрезку [-8;13].

6

 Решение: + показать


Задача 11. На рисунке изображен график функции y=f(x)  и отмечены точки -3, 1, 6, 8. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.

e3w

Решение: + показать


Задача 12. Функция y=f(x)  определена на промежутке (- 4; 5). На рисунке изображен график её производной. Найдите точку x_0, в которой функция y=f(x)  принимает наименьшее значение, если f(-1)<f(3).

Решение: + показать


Задача 13. Функция f(x) определена и непрерывна на полуинтервале [-4;5) На рисунке изображен график её производной. Найдите промежутки убывания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.

Решение: + показать


тест

Вы можете пройти тест «Применение производной к исследованию функции»

Автор: egeMax |

комментариев 29

Печать страницы

Задание 8 (№ 317545)

b8_1_plus_1.0.epsНа рисунке
изображён график функции y=f(x)и семь точек на оси абсцисс: x_1, x_2, x_3, dots, x_7. В скольких из этих точек производная
функции f(x)положительна?

b8_1_plus_3.0.epsЗадание 8 (№
317547)

На рисунке изображён график функции y=f(x)и
десять точек на оси абсцисс: x_1, x_2, x_3, dots, x_{10}. В скольких из этих точек
производная функции f(x)положительна?

Задание 8 (№ 317549)

b8_1_plus_5.0.epsНа рисунке
изображён график функции y=f(x)и шесть точек на оси абсцисс: x_1, x_2, x_3, dots, x_6. В
скольких из этих точек производная функции f(x)положительна?

b8_1_plus_1.0.epsЗадание 8 (№
317545)

На рисунке изображён график функции y=f(x)и
семь точек на оси абсцисс: x_1, x_2, x_3, dots, x_7. В
скольких из этих точек производная функции f(x)положительна?

b8_1_plus_15.0.epsЗадание 8 (№
317559)

На рисунке изображён график функции y=f(x)и восемь точек на
оси абсцисс: x_1, x_2, x_3, dots, x_8. В
скольких из этих точек производная функции f(x)положительна?

b8_1_minus_1.0.epsЗадание 8 (№
317645)

На рисунке изображён график функции y=f(x)и семь точек на
оси абсцисс: x_1, x_2, x_3, dots, x_7. В скольких из этих
точек производная функции f(x)отрицательна?

b8_1_minus_3.0.eps

Задание 8 (№ 317647)

На рисунке изображён график функции y=f(x)и девять точек на
оси абсцисс: x_1, x_2, x_3, dots, x_9. В скольких из этих точек производная
функции f(x)отрицательна?

Задание 8 (№ 317651)

b8_1_minus_7.0.epsНа рисунке
изображён график функции y=f(x)и шесть точек на оси абсцисс: x_1, x_2, x_3, dots, x_6. В
скольких из этих точек производная функции f(x)отрицательна?

b8_1_minus_21.0.epsЗадание 8 (№
317665)

На рисунке изображён график функции y=f(x)и
одиннадцать точек на оси абсцисс: x_1, x_2, x_3, dots, x_{11}.
В скольких из этих точек производная функции f(x)отрицательна?

Задание 8 (№ 317667)

b8_1_minus_23.0.epsНа рисунке
изображён график функции y=f(x)и шесть точек на оси абсцисс: x_1, x_2, x_3, dots, x_6. В
скольких из этих точек производная функции f(x)отрицательна?

Задание 8 (№ 317745)

b8_2_plus_1.0.epsНа рисунке
изображён график y=f'(x) — производной функции f(x). На
оси абсцисс отмечено шесть точек: x_1, x_2, x_3, dots, x_6. Сколько из этих точек
лежит на промежутках возрастания функции f(x)?

Задание 8 (№ 317749)

b8_2_plus_5.0.epsНа рисунке
изображён график y=f'(x) — производной функции f(x).
На оси абсцисс отмечено девять точек: x_1, x_2, x_3, dots, x_9.
Сколько из этих точек лежит на промежутках возрастания функции f(x)?

b8_2_plus_7.0.epsЗадание 8 (№
317751)

На рисунке изображён график y=f'(x) —
производной функции f(x). На оси абсцисс отмечено одиннадцать
точек: x_1, x_2, x_3, dots, x_{11}.
Сколько из этих точек лежит на промежутках возрастания функции f(x)?

Задание 8 (№ 317753)

b8_2_plus_9.0.epsНа рисунке
изображён график y=f'(x) — производной функции f(x).
На оси абсцисс отмечено девять точек: x_1, x_2, x_3, dots, x_9.
Сколько из этих точек лежит на промежутках возрастания функции f(x)?

b8_2_minus_1.0.epsЗадание 8 (№
317845)

На рисунке изображён график y=f'(x) —
производной функции f(x). На оси абсцисс отмечено восемь
точек: x_1, x_2, x_3, dots, x_8.
Сколько из этих точек лежит на промежутках убывания функции f(x)?

b8_2_minus_3.0.epsЗадание 8 (№
317847)

На рисунке изображён график y=f'(x) —
производной функции f(x). На оси абсцисс отмечено шесть точек:
x_1,
x_2,
x_3,
dots,
x_6.
Сколько из этих точек лежит на промежутках убывания функции f(x)?

Задание 8 (№ 317855)

На рисунке изображён график y=f'(x) —
производной функции f(x). На оси абсцисс отмечено одиннадцать
точек: x_1, x_2, x_3, dots, x_{11}.
Сколько из этих точек лежит на промежутках убывания функции f(x)?

b8_2_minus_11.0.eps

Задание 8 (№ 317881)

На рисунке изображён график y=f'(x) —
производной функции f(x). На оси абсцисс отмечено одиннадцать
точек: x_1, x_2, x_3, dots, x_{11}.
Сколько из этих точек лежит на промежутках убывания функции f(x)?

b8_2_minus_37.0.eps

Skip to content

ЕГЭ Профиль №7. Применение производной к исследованию функций

ЕГЭ Профиль №7. Применение производной к исследованию функцийadmin2018-11-29T18:58:03+03:00

Необходимая теория:

Производная функции

Таблица производных

Первообразная функции

Задание 7 Профильного ЕГЭ по математике — это задачи на геометрический и физический смысл производной. Это задачи о том, как производная связана с поведением функции. И еще (правда, очень редко) в этих задачах встречаются вопросы о первообразной.

Геометрический смысл производной 

Вспомним, что производная — это скорость изменения функции.

Производная функции fleft ( x right ) в точке x_0 равна угловому коэффициенту касательной, проведенной к графику функции в этой точке. Производная также равна тангенсу угла наклона касательной.

boldsymbol{f

1. На рисунке изображён график функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .

Производная функции f(x) в точке x_0 равна тангенсу угла наклона касательной, проведенной в точке x_0.

Достроив до прямоугольного треугольника АВС, получим:

f

Ответ: 0,25.

2. На рисунке изображён график функции y = f(x) и касательная к нему в точке с абсциссой x_0.
Найдите значение производной функции y = f(x) в точке x_0.

Начнём с определения знака производной. Мы видим, что в точке x_0 функция убывает, следовательно, её производная отрицательна. Касательная в точке x_0 образует тупой угол alpha с положительным направлением оси X. Поэтому из прямоугольного треугольника мы найдём тангенс угла varphi , смежного с углом alpha.

Мы помним, что тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему: tg varphi = 0, 25. Поскольку alpha + varphi = 180^{circ}, имеем:

tg alpha = tg(180^{circ} -varphi ) = - tg varphi = -0, 25.

Ответ: −0, 25.

Касательная к графику функции

3. Прямая y = - 4x - 11 является касательной к графику функции y = x^3 + 7x^2 + 7x - 6.

Найдите абсциссу точки касания.

Запишем условие касания функции y=fleft(xright) и прямой y=kx+b в точке x_0 .

При x= x_0 значения выражений fleft(xright) и kx+b равны.

При этом производная функции fleft(xright) равна угловому коэффициенту касательной, то есть k.

left{ begin{array}{c}fleft(xright)=kx+b \f^{

left{ begin{array}{c}x^3+{7x}^2+7x-6=-4x-11 \{3x}^2+14x+7=-4 end{array}right..

Из второго уравнения находим x = -1 или x=-frac{11}{3}. Первому уравнению удовлетворяет только x = -1.

Физический смысл производной

Мы помним, что производная — это скорость изменения функции.

Мгновенная скорость — это производная от координаты по времени. Но это не единственное применение производной в физике. Например, cила тока — это производная заряда по времени, то есть скорость изменения заряда. Угловая скорость — производная от угла поворота по времени.

Множество процессов в природе, экономике и технике описывается дифференциальными уравнениями — то есть уравнениями, содержащими не только сами функции, но и их производные.

4. Материальная точка движется прямолинейно по закону x(t) = t^2 - 3t - 29, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в м/с) в момент времени t = 3 с.

Мгновенная скорость движущегося тела является производной от его координаты по времени. Это физический смысл производной. В условии дан закон изменения координаты материальной точки, то есть расстояния от точки отсчета: xleft(tright)=t^2-3t-29.

Найдем скорость материальной точки как производную от координаты по времени:

vleft(tright)=x В момент времени t=3 получим:

vleft(3right)=2cdot 3-3=3.

Ответ: 3.

Применение производной к исследованию функций

Каждый год в вариантах ЕГЭ встречаются задачи, в которых старшеклассники делают одни и те же ошибки.

Например, на рисунке изображен график функции — а спрашивают о производной. Кто их перепутал, тот задачу не решил.

Или наоборот. Нарисован график производной — а спрашивают о поведении функции.

И значит, надо просто внимательно читать условие. И знать, как же связана производная с поведением функции.

Если f, то функция f (x) возрастает.

Если f, то функция f (x) убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

f(x) возрастает точка максимума убывает точка минимума возрастает
f + 0 - 0 +

5. На рисунке изображен график функции y=f(x), определенной на интервале (-3; 9). Найдите количество точек, в которых производная функции f(x) равна 0.

Производная функции f { в точках максимума и минимума функции f(x). Таких точек на графике 5.

Ответ: 5.

6. На рисунке изображён график y = f — производной функции f(x), определённой на интервале (-6; 5). В какой точке отрезка [-1; 3] функция f(x) принимает наибольшее значение?

Не спешим. Зададим себе два вопроса: что изображено на рисунке и о чем спрашивается в этой задаче?

Изображен график производной, а спрашивают о поведении функции. График функции не нарисован. Но мы знаем, как производная связана с поведением функции.

На отрезке [-1;3] производная функции f(x) положительна.

Значит, функция f(x) возрастает на этом отрезке. Большим значениям х соответствует большее значение f(x). Наибольшее значение функции достигается в правом конце отрезка, то есть в точке 3.

Ответ: 3.

7. На рисунке изображён график функции y= f(x), определённой на интервале (-3; 8). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 1.

Прямая y=1 параллельна оси абсцисс. Найдем на графике функции y = f(x) точки, в которых касательная параллельна оси абсцисс, то есть горизонтальна. Таких точек на графике 7. Это точки максимума и минимума.

Ответ: 7.

8. На рисунке изображен график производной функции f(x), определенной на интервале (-7; 14). Найдите количество точек максимума функции f(x) на отрезке [-6; 9].

Очень внимательно читаем условие задачи. Изображен график производной, а спрашивают о точках максимума функции. В точке максимума производная равна нулю и меняет знак с «плюса» на «минус». На отрезке [-6; 9] такая точка всего одна! Это x=7.

Ответ: 1.

9. На рисунке изображен график производной функции f(x), определенной на интервале (-6; 5). Найдите точку экстремума функции f(x) на отрезке [-5; 4].

Точками экстремума называют точки максимума и минимума функции. Если производная функции в некоторой точке равна нулю и при переходе через эту точку меняет знак, то это точка экстремума. На отрезке [- 5; 4] график производной (а именно он изображен на рисунке) пересекает ось абсцисс в точке x = -2. В этой точке производная меняет знак с минуса на плюс.

Значит, x= -2 является точкой экстремума.

Первообразная и формула Ньютона-Лейбница

Функция F(x), для которой f(x) является производной, называется первообразной функции y = f(x). Функции вида y = F(x) + C образуют множество первообразных функции y = f(x).

10. На рисунке изображён график y = F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-6; 6). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-4; 4] .

Функция F(x), для которой f(x) является производной, называется первообразной функции y = f(x).

Это значит, что на графике нужно найти такие точки, принадлежащие отрезку [-4; 4] , в которых производная функции F(x) равна нулю. Это точки максимума и минимума функции F(x). На отрезке [-4; 4] таких точек 4.

Ответ: 4.

Больше задач на тему «Первообразная. Площадь под графиком функции» — в этой статье

Первообразная функции. Формула Ньютона-Лейбница.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Задание №7. Производная. Поведение функции. Первообразная u0026#8212; профильный ЕГЭ по Математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

Понравилась статья? Поделить с друзьями:
  • Применение металлов химия егэ
  • Пример деловой активности в коммерции егэ
  • Применение относительно определенных норм права ответ на экзамен на судью
  • Применение к лицу принудительных мер воспитательного воздействия суд или прокурор егэ
  • Пример декабрьского сочинения егэ по русскому