Пробный егэ по математике профиль 2022 онлайн

Демонстрационная версия ЕГЭ—2022 по математике. Профильный уровень.

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

Версия для печати и копирования в MS Word

1

Найдите корень уравнения: 3 в степени левая круглая скобка x минус 5 правая круглая скобка =81.

ИЛИ

Найдите корень уравнения  корень из 3x плюс 49=10.

ИЛИ

Найдите корень уравнения  логарифм по основанию левая круглая скобка 8 правая круглая скобка левая круглая скобка 5x плюс 47 правая круглая скобка =3.

ИЛИ

Решите уравнение  корень из 3 плюс 2x=x. Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

Ответ:


2

В сборнике билетов по биологии всего 25 билетов. Только в двух билетах встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете будет вопрос о грибах.

ИЛИ

Вероятность того, что мотор холодильника прослужит более 1 года, равна 0,8, а вероятность того, что он прослужит более 2 лет, равна 0,6. Какова вероятность того, что мотор прослужит более 1 года, но не более 2 лет?

Ответ:


3

Треугольник ABC вписан в окружность с центром O. Найдите угол BOC, если угол BAC равен 32°.

ИЛИ

Площадь треугольника ABC равна 24, DE  — средняя линия, параллельная стороне AB. Найдите площадь треугольника CDE.

ИЛИ

В ромбе ABCD угол DBA равен 13°. Найдите угол BCD. Ответ дайте в градусах.

ИЛИ

Стороны параллелограмма равны 24 и 27. Высота, опущенная на меньшую из этих сторон, равна 18. Найдите высоту, опущенную на бо́льшую сторону параллелограмма.

Ответ:


4

Найдите  синус 2 альфа , если  косинус альфа = 0,6 и  Пи меньше альфа меньше 2 Пи .

ИЛИ

Найдите значение выражения: 16 логарифм по основанию 7 корень 4 степени из левая круглая скобка 7 правая круглая скобка .

ИЛИ

Найдите значение выражения: 4 в степени левая круглая скобка tfrac1 правая круглая скобка 5 умножить на 16 в степени левая круглая скобка tfrac9 правая круглая скобка 10.

Ответ:


5

В цилиндрическом сосуде уровень жидкости достигает 16 см. На какой высоте будет находиться уровень жидкости, если ее перелить во второй сосуд, диаметр которого в 2 раза больше первого? Ответ дайте в сантиметрах.

ИЛИ

Площадь боковой поверхности треугольной призмы равна 24. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.

ИЛИ

Через точку, лежащую на высоте прямого кругового конуса и делящую её в отношении 1 : 2, считая от вершины конуса, проведена плоскость, параллельная его основанию и делящая конус на две части. Каков объём той части конуса, которая примыкает к его основанию, если объём всего конуса равен 54?

Ответ:


6

На рисунке изображён график дифференцируемой функции y  =  f(x). На оси абсцисс отмечены девять точек: x1, x2, …, x9. Среди этих точек найдите все точки, в которых производная функции y  =  f(x) отрицательна. В ответе укажите количество найденных точек.

ИЛИ

На рисунке изображены график функции y  =  f(x) и касательная к нему в точке с абсциссой x0 . Найдите значение производной функции f(x) в точке x0.

Ответ:


7


8

Весной катер идёт против течения реки в  целая часть: 1, дробная часть: числитель: 2, знаменатель: 3 раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в  целая часть: 1, дробная часть: числитель: 1, знаменатель: 2 раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).

ИЛИ

Смешав 45-процентный и 97-процентный растворы кислоты и добавив 10 кг чистой воды, получили 62-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 72-процентный раствор кислоты. Сколько килограммов 45-процентного раствора использовали для получения смеси?

ИЛИ

Автомобиль, движущийся с постоянной скоростью 70 км/ч по прямому шоссе, обгоняет другой автомобиль, движущийся в ту же сторону с постоянной скоростью 40 км/ч. Каким будет расстояние (в километрах) между этими

автомобилями через 15 минут после обгона?

Ответ:


9


10

Симметричную игральную кость бросили 3 раза. Известно, что в сумме выпало 6 очков. Какова вероятность события «хотя бы раз выпало 3 очка»?

ИЛИ

В городе 48 % взрослого населения  — мужчины. Пенсионеры составляют 12,6 % взрослого населения, причём доля пенсионеров среди женщин равна 15 %. Для социологического опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».

Ответ:


11

Найдите наименьшее значение функции y=9x минус 9 натуральный логарифм левая круглая скобка x плюс 11 правая круглая скобка плюс 7 на отрезке  левая квадратная скобка минус 10,5; 0 правая квадратная скобка .

ИЛИ

Найдите точку максимума функции y= левая круглая скобка x плюс 8 правая круглая скобка в квадрате e в степени левая круглая скобка 3 минус x правая круглая скобка .

ИЛИ

Найдите точку минимума функции y= минус дробь: числитель: x, знаменатель: x в квадрате плюс 256 конец дроби .

Ответ:


12

а)  Решите уравнение: 2 синус левая круглая скобка x плюс дробь: числитель: Пи , знаменатель: 3 конец дроби правая круглая скобка плюс косинус 2x = корень из 3 косинус x плюс 1.

б)  Определите, какие из его корней принадлежат отрезку  левая квадратная скобка минус 3 Пи }; минус дробь: числитель: 3 Пи , знаменатель: 2 конец дроби правая квадратная скобка .

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.


13

Все рёбра правильной треугольной призмы ABCA1B1C1 имеют длину 6. Точки M и N— середины рёбер AA1 и A1C1 соответственно.

а)  Докажите, что прямые BM и MN перпендикулярны.

б)  Найдите угол между плоскостями BMN и ABB1.

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.


14

Решите неравенство  логарифм по основанию левая круглая скобка 11 правая круглая скобка левая круглая скобка 8x в квадрате плюс 7 правая круглая скобка минус логарифм по основанию левая круглая скобка 11 правая круглая скобка левая круглая скобка x в квадрате плюс x плюс 1 правая круглая скобка больше или равно логарифм по основанию левая круглая скобка 11 правая круглая скобка левая круглая скобка дробь: числитель: x, знаменатель: x плюс 5 конец дроби плюс 7 правая круглая скобка .

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.


15

15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн рублей. Условия его возврата таковы:

— 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r  — целое число;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.

Дата 15.01 15.02 15.03 15.04 15.05 15.06 15.07
Долг
(в млн рублей)
1 0,6 0,4 0,3 0,2 0,1 0

Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.


16

Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй  — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.

а)  Докажите, что прямые AD и BC параллельны.

б)  Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.


17

Найдите все положительные значения a , при каждом из которых система

 система выражений левая круглая скобка |x| минус 5 правая круглая скобка в квадрате плюс левая круглая скобка y минус 4 правая круглая скобка в квадрате =9, левая круглая скобка x плюс 2 правая круглая скобка в квадрате плюс y в квадрате =a в квадрате конец системы .

имеет единственное решение.

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.


18

В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали по крайней мере два учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл был целым числом. После этого, один из учащихся, писавших тест, перешел из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.

а)  Мог ли средний балл в школе № 1 уменьшиться в 10 раз?

б)  Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе № 2 равняться 7?

в)  Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

Завершить тестирование, свериться с ответами, увидеть решения.

Пробные и тренировочные варианты по математике профильного уровня в формате ЕГЭ 2022 из различных источников.

 Тренировочные варианты ЕГЭ 2022 по математике (профиль)

egemath.ru
Вариант 1 скачать
Вариант 2 скачать
Вариант 3 скачать
Вариант 4 скачать
Вариант 5 скачать
Вариант 6 скачать
Вариант 7 скачать
variant 8 скачать
variant 9 скачать
variant 10 скачать
variant 11 скачать
variant 12 скачать
variant 13 скачать
variant 14 скачать
variant 15 скачать
variant 16 скачать
variant 17 скачать
variant 18 скачать
variant 19 скачать
variant 20 скачать
yagubov.ru
вариант 21 ege2022-yagubov-prof-var21
вариант 22 ege2022-yagubov-prof-var22
вариант 23 ege2022-yagubov-prof-var23
вариант 24 ege2022-yagubov-prof-var24
вариант 25 ege2022-yagubov-prof-var25
вариант 26 ege2022-yagubov-prof-var26
вариант 27 ege2022-yagubov-prof-var27
вариант 28 ege2022-yagubov-prof-var28
Досрочный Москва 28.03.2022 скачать
egemathschool.ru
вариант 1 ответ
вариант 2 ответ
вариант 3 ответ
вариант 4 ответ
ЕГЭ 100 баллов (с решениями) 
Вариант 1 скачать
Вариант 2 скачать
Вариант 3 скачать
Вариант 4 скачать
Вариант 5 скачать
Вариант 6 скачать
Вариант 7 скачать
Вариант 8 скачать
Вариант 9 скачать
Вариант 10 скачать
variant 11 скачать
variant 12 скачать
variant 13 скачать
variant 14 скачать
variant 15 скачать
variant 16 скачать
variant 17 скачать
variant 18 скачать
variant 20 скачать
variant 21 скачать
variant 23 скачать
variant 24 скачать
variant 25 скачать
variant 26 скачать
variant 29 скачать
variant 30 скачать
math100.ru (с ответами) 
Вариант 140 скачать
Вариант 141 скачать
Вариант 142 скачать
Вариант 143 math100-ege22-v143
Вариант 144 math100-ege22-v144
Вариант 145 math100-ege22-v145
Вариант 146 math100-ege22-v146
variant 147 math100-ege22-v147
variant 148 math100-ege22-v148
variant 149 math100-ege22-v149
variant 150 math100-ege22-v150
variant 151 math100-ege22-v151
variant 152 math100-ege22-v152
variant 153 math100-ege22-v153
variant 154 math100-ege22-v154
variant 155 math100-ege22-v155
variant 156 math100-ege22-v156
variant 157 math100-ege22-v157
variant 158 math100-ege22-v158
variant 159 math100-ege22-v159
variant 160 math100-ege22-v160
variant 161 math100-ege22-v161
variant 162 math100-ege22-v162
variant 163 math100-ege22-v163
variant 164 math100-ege22-v164
variant 165 math100-ege22-v165
variant 166 math100-ege22-v166
variant 167 math100-ege22-v167
variant 168 math100-ege22-v168
variant 169 math100-ege22-v169
variant 170 math100-ege22-v170
variant 171 math100-ege22-v171
variant 172 math100-ege22-v172
variant 173 math100-ege22-v173
variant 174 math100-ege22-v174
alexlarin.net 
Вариант 358
скачать
Вариант 359 скачать
Вариант 360 скачать
Вариант 361 скачать
Вариант 362 проверить ответы
Вариант 363 проверить ответы
Вариант 364 проверить ответы
Вариант 365 проверить ответы
Вариант 366 проверить ответы
Вариант 367 проверить ответы
Вариант 368 проверить ответы
Вариант 369 проверить ответы
Вариант 370 проверить ответы
Вариант 371 проверить ответы
Вариант 372 проверить ответы
Вариант 373 проверить ответы
Вариант 374 проверить ответы
Вариант 375 проверить ответы
Вариант 376 проверить ответы
Вариант 377 проверить ответы
Вариант 378 проверить ответы
Вариант 379 проверить ответы
Вариант 380 проверить ответы
Вариант 381 проверить ответы
Вариант 382 проверить ответы
Вариант 383 проверить ответы
Вариант 384 проверить ответы
Вариант 385 проверить ответы
Вариант 386 проверить ответы
Вариант 387 проверить ответы
Вариант 388 проверить ответы
vk.com/ekaterina_chekmareva (задания 1-12)
Вариант 1 ответы
Вариант 2
Вариант 3
Вариант 4
Вариант 5
Вариант 6
Вариант 7 ответы
Вариант 8
Вариант 9
Вариант 10
vk.com/matematicalate
Вариант 1 matematikaLite-prof-ege22-var1
Вариант 2 matematikaLite-prof-ege22-var2
Вариант 3 matematikaLite-prof-ege22-var3
Вариант 4 matematikaLite-prof-ege22-var4
Вариант 5 matematikaLite-prof-ege22-var5
Вариант 6 matematikaLite-prof-ege22-var6
Вариант 7 matematikaLite-prof-ege22-var7
Вариант 8 matematikaLite-prof-ege22-var8
vk.com/pro_matem
variant 1 pro_matem-prof-ege22-var1
variant 2 pro_matem-prof-ege22-var2
variant 3 pro_matem-prof-ege22-var3
variant 4 разбор
variant 5 разбор
vk.com/murmurmash
variant 1 otvet
variant 2 otvet
→  Купить сборники тренировочных вариантов ЕГЭ 2022 по математике

Структура варианта КИМ ЕГЭ

Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и количеству заданий:

– часть 1 содержит 11 заданий (задания 1–11) с кратким ответом в виде целого числа или конечной десятичной дроби;

– часть 2 содержит 7 заданий (задания 12–18) с развёрнутым ответом (полная запись решения с обоснованием выполненных действий).

Задания части 1 направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.

Посредством заданий части 2 осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.

Связанные страницы:

Средний балл ЕГЭ 2021 по математике

Решение задач с параметром при подготовке к ЕГЭ

Изменения в КИМ ЕГЭ 2022 года по математике

Купить сборники типовых вариантов ЕГЭ по математике

Как решать экономические задачи ЕГЭ по математике профильного уровня?

Skip to content

ЕГЭ по математике — Профиль 2022. Открытый банк заданий с ответами.

ЕГЭ по математике — Профиль 2022. Открытый банк заданий с ответами.admin2022-08-27T23:17:48+03:00

ЕГЭ по математике базового уровня относится к списку обязательных, а профильная математика считается одним из наиболее сложных госэкзаменов. Поэтому важно правильно организовать подготовку к этим испытаниям и учесть при этом все актуальные изменения.

Ознакомиться с самыми последними данными можно в этом разделе. Здесь представлены официальные документы ФИПИ — проект демоверсии КИМ-2022, в котором вы найдете примеры всех заданий и проект спецификации, в котором определены требования к сдаче экзаменов.

С 2022 года планируются некоторые изменения в структуре госэкзаменов по математике: несмотря на то, что количество заданий останется прежним, их сложность и содержание могут поменяться.

Пока не понятно, вступят ли все изменения в силу. Но, изучив документы, представленные в данном разделе, вы сможете эффективно подготовиться к любым вопросам ЕГЭ.

Варианты, ответы и решения пробного ЕГЭ 2022 по математике базовый и профильный уровень для 11 класса, официальная дата проведения пробного ЕГЭ 2022 19 марта.

Пробный ЕГЭ по математике 2022 базовый уровень:

  • 1 вариант
  • 2 вариант
  • 3 вариант
  • Ответы

Пробный ЕГЭ по профильной математике 2022:

  • 1 вариант
  • 2 вариант
  • 3 вариант
  • Ответы и решения

Решать варианты ЕГЭ 2022 профильного уровня:

Решать варианты ЕГЭ 2022 базового уровня:

Задания с ответами:

1)На рок-фестивале выступают группы — по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Дании будет выступать после группы из Швеции и после группы из Норвегии? Результат округлите до сотых.

Правильный ответ: 0,33

2)Сторона AB треугольника ABC равна 1. Противолежащий ей угол C равен 150°. Найдите радиус окружности, описанной около этого треугольника.

Правильный ответ: 1

3)В правильной треугольной пирамиде SABC медианы основания ABC пересекаются в точке O. Площадь треугольника ABC равна 4; объем пирамиды равен 6. Найдите длину отрезка OS.

Правильный ответ: 4,5

4)Один мастер может выполнить заказ за 12 часов, а другой — за 6 часов. За сколько часов выполнят заказ оба мастера, работая вместе?

Правильный ответ: 4

5)Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 3. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых.

Правильный ответ: 0,42

6)За прохождение каждого уровня платной сетевой игры можно получить от одной до трех звезд. При этом со счета участника игры списывается 75 рублей при получении одной звезды, 60 рублей  — при получении двух звезд и 45 рублей при получении трех звезд. Миша прошел несколько уровней игры подряд. а) Могла ли сумма на его счете уменьшиться при этом на 330 рублей? б) Сколько уровней игры прошел Миша, если сумма на его счете уменьшилась на 435 рублей, а число полученных им звезд равно 13? в) За пройденный уровень начисляется 5000 очков при получении трех звезд, 3000  — при получении двух звезд и 2000 — при получении одной звезды. Какую наименьшую сумму (в рублях) мог потратить на игру Миша, если он набрал 50 000 очков, получив при этом 32 звезды?

Правильный ответ: а-да, б-7, в-780 рублей

2)В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.

Правильный ответ: 0,14

5)В правильной треугольной пирамиде SABC точка M – середина ребра AB, S – вершина. Известно, что BC = 3, а площадь боковой поверхности пирамиды равна 45. Найдите длину отрезка SM.

Правильный ответ: 10

6)На рисунке изображён график функции y = f(x), определённой на интервале (−4; 4). Найдите корень уравнения f '(x) = 0.

Правильный ответ: 2

8)Имеются два сосуда. Первый содержит 30 кг, а второй – 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 70% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

Правильный ответ: 18

10)Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,2 при каждом отдельном выстреле. Какое наименьшее количество патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,6?

Правильный ответ: 5

15)В июле планируется взять кредит в банке на сумму 5 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы: — каждый январь долг возрастает на 20% по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить часть долга; — в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. На сколько лет планируется взять кредит, если известно, что общая сумма выплат после его полного погашения составит 7,5 млн рублей?

Правильный ответ: 4 года

16)В полуокружности с диаметром MN расположены две окружности с центрами O1 и O2, касающиеся друг друга, полуокружности и прямой MN (при этом точки касания c полуокружностью — это соответственно A и B). а) Докажите, что прямые O1A, O2B и MN пересекаются в одной точке. б) Радиусы окружностей равны 2 и 5. Найдите радиус полуокружности.

18)На доске написано более 27, но менее 45 целых чисел. Среднее арифметическое этих чисел равно −5, среднее арифметическое всех положительных из них равно 9, а среднее арифметическое всех отрицательных из них равно − 18. а) Сколько чисел написано на доске? б) Каких чисел написано больше: положительных или отрицательных? в) Какое наибольшее количество положительных чисел может быть среди них?

2)В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.

Правильный ответ: 0,375

3)Через концы А и В дуги окружности с центром О проведены касательные АС и ВС. Угол СAB равен 32°. Найдите угол AОB. Ответ дайте в градусах.

Правильный ответ: 64

5)Объем параллелепипеда ABCDA B C D 1 1 1 1 равен 9. Найдите объем треугольной пирамиды ABCA1 .

Правильный ответ: 1,5

8)Расстояние между пристанями A и B равно 120 км. Из A в B по течению реки отправился плот, а через час вслед за ним отправилась яхта, которая, прибыв в пункт B, тотчас повернула обратно и возвратилась в A. К этому времени плот прошел 24 км. Найдите скорость яхты в неподвижной воде, если скорость течения реки равна 2 км/ч. Ответ дайте в км/ч.

Правильный ответ: 22

10)Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная изготовленная батарейка будет забракована системой контроля.

Правильный ответ: 0,0296

15)Планируется открыть вклад на 4 года, положив на счет целое число миллионов рублей. В конце каждого года сумма, лежащая на вкладе, увеличивается на 10%, а в начале третьего и четвертого года вклад пополняется на 3 миллиона рублей. Найдите наименьший первоначальный вклад, при котором начисленные проценты за весь срок будут более 5 миллионов рублей.

Правильный ответ: 9 млн. руб

16)Дан треугольник ABC со сторонами AB = 4, BC = 5 и AC = 6. а) Докажите, что прямая, проходящая через точку пересечения медиан и центр вписанной окружности, параллельна стороне BC. б) Найдите длину биссектрисы треугольника ABC, проведенной из вершины A.

Правильный ответ: 3 корень из 2

18)В каждой из девяти ячеек строки слева направо в некотором (возможно, ином) порядке расставлены по одному 9 чисел: 1, 2, 3, 4, 5, 6, 7, 8 и 9. а) Могло ли оказаться так, что среди любых четырёх подряд (идущих слева направо) из этих чисел есть ровно одно, делящееся на 3, и ровно одно, делящееся на 4? б) Могло ли оказаться так, что среди любых четырёх подряд (идущих слева направо) из этих чисел есть ровно одно, делящееся на 3, а среди любых двух подряд (идущих слева направо) из этих чисел есть ровно одно простое число? в) Какое наибольшее значение может принимать произведение суммы всех чисел, стоящих на нечётных местах, и суммы всех чисел, стоящих на чётных местах этой строки?

2)Шоколадка стоит 35 рублей. В воскресенье в супермаркете действует специальное предложение: заплатив за две шоколадки, покупатель получает три (одну в подарок). Какое наибольшее количество шоколадок можно получить, потратив не более 200 рублей в воскресенье?

Правильный ответ: 7

4)На диаграмме показана среднемесячная температура воздуха в Симферополе за каждый месяц 1988 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. Определите по диаграмме, сколько было осенью месяцев, когда среднемесячная температура превышала 12 градусов Цельсия.

Правильный ответ: 1

5)На рисунке изображён план местности (шаг сетки плана соответствует расстоянию 1 км на местности). Оцените, скольким квадратным километрам равна площадь озера Щало, изображённого на плане. Ответ округлите до целого числа.

Правильный ответ: 4

6)Магазин закупает цветочные горшки по оптовой цене 120 рублей за штуку и продает с наценкой 20%. Какое наибольшее число таких горшков можно купить в этом магазине на 1000 рублей?

Правильный ответ: 6

10)Дачный участок имеет форму квадрата, стороны которого равны 30 м. Размеры дома, расположенного на участке и имеющего форму прямоугольника, — 8 м × 5 м. Найдите площадь оставшейся части участка. Ответ дайте в квадратных метрах.

Правильный ответ: 860

11)Игральную кость с 6 гранями бросают дважды. Найдите вероятность того, что хотя бы раз выпало число, большее 3.

Правильный ответ: 0,75

12)В городском парке имеется пять аттракционов: карусель, колесо обозрения, автодром, «Ромашка» и «Весёлый тир». В кассах продаётся шесть видов билетов, каждый из которых позволяет посетить один или два аттракциона. Сведения о стоимости билетов представлены в таблице. Андрей хочет посетить все пять аттракционов, но имеет в наличии только 900 рублей. Какие виды билетов он должен купить? В ответе укажите номера (в порядке возрастания номеров), соответствующие видам билетов, без пробелов, запятых и других дополнительных символов.

Правильный ответ: 234

13)Плоскость, проходящая через точки A, B и C (см. рис.), разбивает тетраэдр на два многогранника. Сколько рёбер у получившегося многогранника с большим числом вершин?

Правильный ответ: 9

14)На рисунке изображён график функции y = f(x). Числа a, b, c, d и e задают на оси x четыре интервала. Пользуясь графиком, поставьте в соответствие каждому интервалу характеристику функции или её производной.

Правильный ответ: 2143

15)В окружности с центром O AC и BD – диаметры. Центральный угол AOD равен . Найдите вписанный угол ACB. Ответ дайте в градусах.

Правильный ответ: 35

16)Даны два конуса. Радиус основания и образующая первого конуса равны, соответственно, 2 и 4, а второго — 6 и 8. Во сколько раз площадь боковой поверхности второго конуса больше площади боковой поверхности первого?

Правильный ответ: 6

18)Пять жильцов многоквартирного дома — Андрей, Борис, Виктор, Денис и Егор  — имеют различный возраст. При этом известно, что возраст Андрея больше, чем сумма возрастов Бориса и Виктора, Виктор старше Дениса, но младше Егора. Выберите утверждения, которые следуют из приведённых данных. 1) Андрей самый старший из жильцов 2) Егор старше Бориса 3) Андрей старше Дениса 4) Борис старше Егора.

Правильный ответ: 3

19)Приведите пример четырёхзначного натурального числа, кратного 4, сумма цифр которого равна их произведению. В ответе укажите ровно одно такое число.

Правильный ответ: 1124

20)На изготовление 475 деталей первый рабочий тратит на 6 часов меньше, чем второй рабочий на изготовление 550 таких же деталей. Известно, что первый рабочий за час делает на 3 детали больше, чем второй. Сколько деталей в час делает первый рабочий?

Правильный ответ: 25

21)Три луча, выходящие из одной точки, разбивают плоскость на 3 разных угла, измеряемых целым числом градусов. Наибольший угол в 2 раза больше наименьшего. Сколько значений может принимать величина среднего угла?

Правильный ответ: 17

Готовитесь к ЕГЭ 2022? Прорешайте типовые варианты статграда:

  • Тренировочная работа статград №4 ЕГЭ 2022 по математике 11 класс
  • Тренировочная работа статград №3 ЕГЭ 2022 по математике 11 класс

ПОДЕЛИТЬСЯ МАТЕРИАЛОМ

Математика Профильный уровень

Об экзамене

Профильная математика – довольно коварная, обманчивая вещь. Вроде бы смотришь на задания первой части, думаешь, лол, что это за детский сад? А потом открываешь вторую часть, и в голове начинают крутиться совершенно другие мысли… И ведь подсознательно понимаешь, что это далеко не самые сложные вещи, но сколько всевозможных тонких моментов, о которые начинаешь сходу спотыкаться. Так что не впадайте в крайности, готовьтесь планомерно, по чуть-чуть повышайте сложность заданий и стремитесь к большему! Ведь профильная математика – это круто!

Структура

Часть 1 содержит 8 заданий (задания 1–8) с кратким ответом; часть 2 содержит 4 задания (задания 9–12) с кратким ответом заданий (задания 13–19) с развернутым ответом. По уровню сложности задания распределяются следующим образом: задания 1–8 имеют базовый уровень; задания 9–17 – повышенный уровень; задания 18 и 19 относятся к высокому уровню сложности.

На выполнение экзаменационной работы отводится 3 часа 55 минут (235 минут).

Пояснения к оцениванию заданий

Правильное решение каждого из заданий 1–12 оценивается 1 баллом. Задание считается выполненным верно, если экзаменуемый дал правильный ответ в виде целого числа или конечной десятичной дроби. Решения заданий с развернутым ответом оцениваются от 0 до 4 баллов. Полное правильное решение каждого из заданий 13–15 оценивается 2 баллами; каждого из заданий 16 и 17 – 3 баллами; каждого из заданий 18 и 19 – 4 баллами. Проверка выполнения заданий 13–19 проводится разработанной системы критериев оценивания.

Тема Результат Задания
1. Про­стей­шие тек­сто­вые задачи

Вычисления

Округление с недостатком

Округление с избытком

Проценты

Проценты и округление

Не изучена Отработать PDF
2. Чтение графиков и диаграмм

Определение величины по графику

Определение величины по диаграмме

Вычисление величин по графику или диаграмме

Не изучена Отработать PDF
3. Планиметрия: вы­чис­ле­ние длин и площадей

Многоугольники: вычисление длин и углов

Многоугольники: вычисление площадей

Круг и его элементы

Координатная плоскость

Не изучена Отработать PDF
4. На­ча­ла теории вероятностей

Классическое определение вероятности

Теоремы о вероятностях событий

Не изучена Отработать PDF
5. Про­стей­шие уравнения

Линейные, квадратные, кубические уравнения

Рациональные уравнения

Иррациональные уравнения

Показательные уравнения

Логарифмические уравнения

Тригонометрические уравнения

Не изучена Отработать PDF
6. Планиметрия

Прямоугольные треугольники

Равнобедренные треугольники

Треугольники общего вида

Параллелограмм

Трапеция

Центральные и вписанные углы

Касательная, хорда, секущая

Вписанные окружности

Описанные окружности

Не изучена Отработать PDF
7. Про­из­вод­ная и первообразная

Физический смысл производной

Производная и касательная

Применение производной к исследованию функций

Определение свойств производной по заданной функции

Определение свойств функции по заданной производной

Первообразная

Не изучена Отработать PDF
8. Стереометрия

Куб

Прямоугольный параллелепипед

Элементы составных многогранников

Площадь поверхности составного многогранника

Объем составного многогранника

Призма

Пирамида

Комбинации тел

Цилиндр

Конус

Сфера, шар

Не изучена Отработать PDF
9. Вы­чис­ле­ния и преобразования

Алгебраические выражения

Рациональные выражения

Иррациональные выражения

Степенные выражения

Логарифмические выражения

Тригонометрические выражения

Не изучена Отработать PDF
10. За­да­чи с при­клад­ным содержанием

Разные задачи

Линейные уравнения и неравенства

Квадратные и степенные уравнения и неравенства

Иррациональные уравнения и неравенства

Рациональные уравнения и неравенства

Логарифмические уравнения и неравенства

Тригонометрические уравнения и неравенства

Показательные уравнения и неравенства

Не изучена Отработать PDF
11. Тек­сто­вые задачи

Задачи на сплавы и смеси

Задачи на движение по прямой

Задачи на движение по окружности

Задачи на движение по воде

Задачи на производительность

Задачи на прогрессии

Задачи на проценты

Не изучена Отработать PDF
12. Наи­боль­шее и наи­мень­шее значение функций

Исследование степенных и иррациональных функций

Исследование частных

Исследование произведений

Исследование показательных и логарифмических функций

Исследование тригонометрических функций

Исследование функций без помощи производной

Не изучена Отработать PDF
Часть 2
13. Уравнения

Рациональные и иррациональные уравнения

Ло­га­риф­ми­че­ские и по­ка­за­тель­ные уравнения

Тригонометрические уравнения

Тригонометрические уравнения, исследование ОДЗ

Уравнения смешанного типа

Отработать PDF
14. Углы и рас­сто­я­ния в пространстве

Задача на доказательство и вычисление

Угол между скрещивающимися прямыми

Угол между прямой и плоскостью

Угол между плоскостями

Расстояние от точки до прямой и до плоскости

Расстояние между прямыми и плоскостями

Сечения многогранников

Объёмы многогранников

Тела вращения: цилиндр, конус, шар

Отработать PDF
15. Неравенства

Рациональные неравенства

Иррациональные неравенства

Показательные неравенства

Логарифмические неравенства

Неравенства с логарифмами по переменному основанию

Неравенства с модулем

Смешанные неравенства

Отработать PDF
16. Пла­ни­мет­ри­че­ская задача

Многоугольники и их свойства

Окружности и треугольники

Окружности и четырёхугольники

Окружности и системы окружностей

Задача на доказательство и вычисление

Отработать PDF
17. Практические задачи

Банки, вклады, акции

Кредиты (с установленными размерами платежей)

Кредиты (с установленной схемой уменьшения долга)

Задачи на оптимальный выбор

Разные задачи

Отработать PDF
18. Уравнения, неравенства, си­сте­мы с параметром

Комбинация «кривых»

Кусочное построение графика функции

Комбинация прямых

Координаты (x, a)

Левая и правая части в качестве отдельных графиков

Перебор случаев

Подвижная галочка

Расстояние между точками

Симметрия в решениях

Уравнение окружности

Функции, зависящие от параметра

Уравнения с параметром

Расположение корней квадратного трехчлена

Использование симметрий, оценок, монотонности

Отработать PDF
19. Числа и их свойства

Числа и их свойства

Числовые наборы на карточках и досках

Последовательности и прогрессии

Сюжетные задачи

Отработать PDF

Любой учитель или репетитор может отслеживать результаты своих учеников по всей группе или классу.
Для этого нажмите ниже на кнопку «Создать класс», а затем отправьте приглашение всем заинтересованным.

Ознакомьтесь с подробной видеоинструкцией по использованию модуля.


Понравилась статья? Поделить с друзьями:
  • Пробный егэ по математике профиль 2022 декабрь
  • Пробный егэ по математике когда будет
  • Пробный вариант егэ по биологии 2022 с ответами
  • Пробный вариант егэ по английскому языку 2023
  • Пробный вариант егэ по английскому языку 2022