Процессы происходящие в митохондриях егэ

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 336    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Все приведённые ниже признаки, кроме двух, можно использовать для описания митохондрий. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.

1)  не делятся в течение жизни клетки

2)  имеют собственный генетический материал

3)  являются одномембранными

4)  содержат ферменты окислительного фосфорилирования

5)  имеют двойную мембрану

Источник: РЕШУ ЕГЭ


Какие из перечисленных веществ можно обнаружить в митохондриях?

1)  глюкоза

2)  фосфолипиды

3)  целлюлоза

4)  ферменты гликолиза

5)  ферменты цикла Кребса

6)  кофермент А


Установите соответствие между строением органоида клетки и его видом.

СТРОЕНИЕ ОРГАНОИДА

A)  двумембранный органоид

Б)  немембранный органоид

B)  состоит из двух субъединиц

Г)  имеет кристы

Д)  имеет собственную ДНК

ВИД ОРГАНОИДА

1)  митохондрия

2)  рибосома

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А Б В Г Д

Все приведённые ниже признаки, кроме двух, можно использовать для описания общих свойств характерных для митохондрий и пластид. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.

1)  не делятся в течение жизни клетки

2)  имеют собственный генетический материал

3)  содержат ферменты окислительного фосфорилирования

4)  имеют двойную мембрану

5)  участвуют в синтезе АТФ

Источник: РЕШУ ЕГЭ


Установите соответствие между процессом и органоидом, в котором этот процесс происходит.

ПРОЦЕСС

А)  синтез АТФ

Б)  созревание белковых молекул

В)  подготовка секрета к выбросу из клетки

Г)  синтез липидов

Д)  окисление органических веществ

Е)  транспорт электронов внутри мембраны

ОРГАНОИД

1)  митохондрия

2)  комплекс Гольджи

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A Б В Г Д Е

Раздел: Основы цитологии


Установите соответствие между признаком органоида клетки и органоидом, к которому этот признак относится.

ПРИЗНАК ОРГАНОИДА

А)  имеет две мембраны, пронизанные порами

Б)  содержит множество ферментов, встроенных в мембраны

В)  содержит кольцевые молекулы ДНК

Г)  в органоиде синтезируется АТФ

Д)  содержит хроматин

Е)  формирует субъединицы рибосом

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A Б В Г Д Е

Каковы особенности строения и функций митохондрий?

1)  внутренняя мембрана образует граны

2)  входят в состав ядра

3)  синтезируют собственные белки

4)  участвуют в окислении органических веществ до СО$_2$ и Н$_2$О

5)  обеспечивают синтез глюкозы

6)  являются местом синтеза АТФ


Установите соответствие между признаками органоида клетки и органоидом, для которого эти признаки характерны.

ПРИЗНАКИ ОРГАНОИДА

А)  содержит зелёный пигмент

Б)  состоит из двойной мембраны, тилакоидов и гран

В)  преобразует энергию света в химическую энергию

Г)  состоит из двойной мембраны и крист

Д)  обеспечивает окончательное окисление питательных веществ

Е)  запасает энергию в виде 36 молей АТФ при расщеплении 1 моля глюкозы

ОРГАНОИДЫ

1)  хлоропласт

2)  митохондрия

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А Б В Г Д E

Все приведённые ниже признаки, кроме двух, можно использовать для описания строения и функций митохондрий. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.

1)  расщепляют биополимеры до мономеров

2)  содержат соединённые между собой граны

3)  имеют ферментативные комплексы, расположенные на кристах

4)  окисляют органические вещества с образованием АТФ

5)  имеют наружную и внутреннюю мембраны

Источник: РЕШУ ЕГЭ


Все приведённые ниже признаки, кроме двух, можно использовать для описания строения и функций митохондрий. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.

1)  расщеплении биополимеров до мономеров

2)  расщеплении молекул глюкозы до пировиноградной кислоты

3)  окислении пировиноградной кислоты до углекислого газа и воды

4)  запасании энергии в молекулах АТФ

5)  синтез собственных белков

Источник: РЕШУ ЕГЭ


Установите соответствие между характеристиками и органоидами клетки: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ХАРАКТЕРИСТИКИ

А)  замкнутая молекула ДНК

Б)  окислительные ферменты на кристах

B)  внутреннее содержимое — кариоплазма

Г)  линейные хромосомы

Д)  наличие хроматина в интерфазе

Е)  складчатая внутренняя мембрана

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A Б В Г Д Е

Источник: ЕГЭ по биологии 2017. Досрочная волна


Установите соответствие между признаками и этапами энергетического обмена: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ПРИЗНАКИ

А)  протекает в цитоплазме

Б)  запасается 36 молекул АТФ

В)  протекает на кристах митохондрий

Г)  образуется ПВК

Д)  протекает в матриксе митохондрий

ЭТАПЫ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A Б В Г Д

Источник: Банк заданий ФИПИ


Установите соответствие между характеристикой и органоидом клетки, к которому её относят. К каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ХАРАКТЕРИСТИКА

А)  первичный синтез углеводов

Б)  фиксация неорганического углерода

В)  окисление пировиноградной кислоты

Г)  образование кислорода при фотолизе воды

Д)  клеточное дыхание

Е)  окисление глюкозы до углекислого газа и воды

ОРГАНОИД КЛЕТКИ

1)  митохондрия

2)  хлоропласт

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A Б В Г Д Е

Источник: Банк заданий ФИПИ


Установите соответствие между характеристиками и органоидами: к каждому элементу первого столбца подберите позицию из второго столбца.

ХАРАКТЕРИСТИКА

А)  внутренняя мембрана образует складки — кристы

Б)  протекают реакции фотофосфорилирования

В)  содержат полужидкую строму

Г)  тилакоиды собраны в граны

Д)  протекают циклические реакции трикарбоновых кислот

Е)  содержат пигменты

ОРГАНОИД

1)  хлоропласты

2)  митохондрии

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А Б В Г Д E

Общая масса митохондрий по отношению к массе клеток различных органов крысы составляет: в поджелудочной железе  — 7,9%, в печени  — 18,4%, в сердце  — 35,8%. Почему в клетках этих органов различное содержание митохондрий?

Раздел: Основы цитологии


Верны ли следующие суждения о свойствах митохондрий?

А.   Дыхательные ферменты находятся на внутренней мембране митохондрий.

Б.   Митохондрии не размножаются и не содержат ДНК.


Все приведенные ниже признаки, кроме двух, можно использовать для характеристики общих свойств митохондрий и хлоропластов. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1)  формируют лизосомы

2)  являются двумембранными

3)  являются полуавтономными органоидами

4)  участвуют в синтезе АТФ

5)  образуют веретено деления


Установите соответствие между особенностями строения органоидов клетки и органоидами: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ОСОБЕННОСТИ СТРОЕНИЯ ОРГАНОИДОВ

А)  основу составляет липидный бислой

Б)  имеет двумембранную пористую оболочку

В)  содержит кариоплазму

Г)  в органоиде множество ферментов окислительного цикла

Д)  содержит кольцевую хромосому

Е)  осуществляет фаго- и пиноцитоз у животных

ОРГАНОИДЫ

1)  клеточная мембрана

2)  ядро

3)  митохондрия

Запишите в таблицу выбранные цифры под соответствующими буквами

A Б В Г Д Е

Какова роль митохондрий в обмене веществ? Какая ткань  — мышечная или соединительная  — содержит больше митохондрий? Объясните почему.

Раздел: Общая биология. Метаболизм

Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Сибирь. Вариант 2.


В каких из перечисленных органоидов клетки происходят реакции матричного синтеза?

1)  центриоли

2)  лизосомы

3)  аппарат Гольджи

4)  рибосомы

5)  митохондрии

6)  хлоропласты

Раздел: Размножение и индивидуальное развитие организмов

Всего: 336    1–20 | 21–40 | 41–60 | 61–80 …

Обмен веществ

Обмен веществ (метаболизм) складывается из процессов расщепления и синтеза — диссимиляции и ассимиляции, постоянно
протекающих в организме. Чтобы жизнь продолжалась, количество поступающей энергии должно превышать (или как минимум равняться)
количеству расходуемой энергии, поэтому диссимиляция и ассимиляция поддерживают определенный баланс друг с другом.

Энергетический и пластический обмен веществ

Энергетический обмен

Энергетический обмен (диссимиляция — от лат. dissimilis ‒ несходный) — обратная ассимиляции сторона обмена веществ, совокупность реакций, которые приводят к высвобождению энергии химических связей. Это реакции расщепления жиров,
белков, углеводов, нуклеиновых кислот до простых веществ.

Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество
этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об
организме, обитающем в бескислородной среде (к примеру, в кишечнике).

Обсудим этапы энергетического обмена более подробно:

  • Подготовительный этап
  • Подготовительный этап осуществляется ферментами в ЖКТ. В результате действия ферментов сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть
    которой рассеивается в виде тепла.

    Под действием ферментов белки расщепляются на аминокислоты, жиры — на глицерин и жирные кислоты, сложные углеводы — до простых сахаров.

    Этапы энергетического обмена веществ

  • Бескислородный этап (анаэробный) — гликолиз
  • Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза
    происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК).
    Происходит данный этап в цитоплазме клеток.

  • Кислородный этап (аэробный)
  • Этот этап доступен только для аэробов — организмов, живущих в кислородной среде. Из каждой молекулы ПВК, образовавшейся на
    этапе гликолиза, синтезируется 18 молекул АТФ — в сумме с двух ПВК выход составляет 36 молекул АТФ.

    Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).

    Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.

    Энергетический обмен

АТФ — аденозинтрифосфорная кислота

Трудно переоценить роль в клетке АТФ — универсального источника энергии. Молекула АТФ состоит из азотистого основания —
аденина, углевода — рибозы и трех остатков фосфорной кислоты.

Между остатками фосфорной кислоты находятся макроэргические связи — ковалентные связи, которые гидролизуются с выделением
большого количества энергии. Их принято обозначать типографическим знаком тильда «∽».

Строение АТФ

АТФ гидролизуется до АДФ (аденозиндифосфорная кислота), а затем и до АМФ (аденозинмонофосфорная кислота).
Гидролиз АТФ сопровождается выделением энергии (E) на каждом этапе и может быть представлен такой схемой:

  • АТФ + H2O = АДФ + H3PO4 + E
  • АДФ + H2O = АМФ + H3PO4 + E
  • АМФ + H2O = аденин + рибоза + H3PO4 + E
Пластический обмен

АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций
пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции),
удвоению ДНК (репликации) и т.д.

В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.

Пластической обмен

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

1.      Митохондрии во множестве содержатся в клетках, имеют форму шариков или эллипсов с диаметром обычно 1 мкм, хотя у одноклеточных зеленых водорослей или некоторых животных всего одна огромная митохондрия.

2.      Имеют две мембраны, причем внутренняя собрана в складки — кристы. Кристы включают ферменты синтеза АТФ из питательных веществ. Они лежат со стороны матрикса в виде очень мелких грибовидных телец, видимых только в электронный микроскоп. Более того, есть еще другие ферменты синтеза АТФ — АТФ-синтетазы.

3.      Таким образом, в митохондриях идет окислительное фосфорилирование (образование АТФ из АДФ), в них расположена цепь переноса электронов и АТФ-синтетаза.

4.      Чем больше энергозатрат требует клетка, тем больше в ней митохондрий. Много их в клетках мышц, например, в летательных мышцах насекомых, либо в молодых делящихся клетках. В сперматозоиде есть одна митохондрия — крупная, спирально свернутая вокруг центра жгутика.

5.      Матрикс — пространство внутри митохондрии, представленное гомогенным раствором. В нем в виде зерен накапливаются ионы кальция, магния, а также углеводы, к примеру, гликоген. Состав матрикса: нити ДНК, РНК, митохондриальные рибосомы.

6.      ДНК всегда кольцевая, представлена 2–6 копиями и лишена гистонов. На рибосомах идет синтез собственных митохондриальных белков. Аппарат биосинтеза белка сходен с прокариотическим.

7.      Все ли белки митохондрии сами синтезируют для себя? Напротив, митохондрии мало синтезируют белков. Большая часть белков закодированы в ДНК ядра, и синтезируются в цитоплазме, а затем поступают в митохондрии.

8.      Митохондрии способны делиться.

9.      Каково происхождение митохондрий? В связи со сходством их строения с бактериями, возникла теория симбиотического происхождения клетки эукариот — митохондрии, возможно, были самостоятельными прокариотами (бактериями). Прокариоты сами проникли в клетку (или были захвачены ею) и превратились в митохондрии.


Пластиды

1.      Являются полуавтономными органеллами высших растений, водорослей, способными к фотосинтезу. Содержат собственный геном, 2–4 мембраны и белоксинтезирующий аппарат.

2.      Три главных типа пластид: лейко-, хромо- и хлоропласты. Лейкопласты
обесцвечены, расположены в неосвещенных частях растений, например, в клетках корней, клубнях картофеля. Хромопласты содержат пигменты каротиноиды и поэтому имеют яркую окраску, желто-оранжево-красную, служа зачастую для приманки животных к плодам и листьям. Хлоропласты содержат зеленый хлорофилл, их ведущая функция — фотосинтез.

3.      Пластиды могут осуществлять переход: хлоропласты в хромопласты (при созревании плодов и осеннем изменении листьев), лейкопласты в хлоропласты (позеленение картофеля). Зеленые хлоропласты при отсутствии света могут снова превращаться в бесцветные лейкопласты.

4.      Строение хлоропластов
таково:

1)      двояковыпуклая линза с наружной и внутренней складчатой мембраной, складки которой имеют вид пузырьков и называются тилакоидами;

2)      тилакоиды, собранные в стопки в виде монет — граны (около 50 гран в каждом хлоропласте, а хлоропластов в клетках высших растений около 40);

3)      ламеллы — тонкие внутренние складки, соединяющие разные граны, а также связывающие граны с наружной мембраной хлоропласта.

5.      Синтез АТФ в хлоропласте идет за счет ферментов и пигментов, улавливающих свет в тилакоидах.

6.      Внутренняя среда хлоропластов называется стромой, содержит ферменты синтеза органики при затрате энергии АТФ.

7.      Собственный белоксинтезирующий материал — кольцевая двухцепочечная ДНК и рибосомы.

8.      Пластиды также имеют способность к делению.

9.      В связи со сходством в строении с бактериями, здесь также работает теория симбиотического происхождения клетки эукариот — возможно, хлоропласты были самостоятельными прокариотами.

Понятие метаболизма

Метаболизм — совокупность всех химических реакций, протекающих в живом организме. Значение метаболизма состоит в создании необходимых организму веществ и обеспечении его энергией.

Выделяют две составные части метаболизма — катаболизм и анаболизм.

Составные части метаболизма

Часть Характеристика Примеры Затраты энергии
Катаболизм (энергетический обмен, диссимиляция) Совокупность химических реакций, приводящих к образованию простых веществ из более сложных Гидролиз полимеров до мономеров и расщепление последних до низкомолекулярных соединений углекислого газа, воды, аммиака и других веществ Энергия выделяется
Анаболизм (пластический обмен, ассимиляция) Совокупность химических реакций синтеза сложных веществ из более простых Образование углеводов из углекислого газа и воды в процессе фотосинтеза, реакции матричного синтеза Энергия поглощается

Процессы пластического и энергетического обмена неразрывно связаны между собой. Все синтетические (анаболические) процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления (катаболизма) протекают лишь при участии ферментов, синтезируемых в процессе ассимиляции.

Роль ФТФ в метаболизме

Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам.

АТФ (аденозинтрифосфорная кислота) — мононуклеотид, состоящий из аденина, рибозы и трёх остатков фосфорной кислоты, соединяющихся между собой макроэргическими связями.

В этих связях запасена энергия, которая высвобождается при их разрыве:
АТФ + H2O → АДФ + H3PO4 + Q1
АДФ + H2O → АМФ + H3PO4 + Q2
АМФ + H2O → аденин + рибоза + H3PO4 + Q3,
где АТФ — аденозинтрифосфорная кислота; АДФ — аденозиндифосфорная кислота; АМФ — аденозинмонофосфорная кислота; Q1 = Q2 = 30,6 кДж; Q3 = 13,8 кДж.
Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования. Фосфорилирование — присоединение остатка фосфорной кислоты к АДФ (АДФ + Ф → АТФ). Он происходит с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 мин).
Энергия, накопленная в молекулах АТФ, используется организмом в анаболических реакциях (реакциях биосинтеза). Молекула АТФ является универсальным хранителем и переносчиком энергии для всех живых существ.

Энергетический обмен

Энергию, необходимую для жизнедеятельности, большинство организмов получают в результате процессов окисления органических веществ, то есть в результате катаболических реакций. Важнейшим соединением, выступающим в роли топлива, является глюкоза.
По отношению к свободному кислороду организмы делятся на три группы.

Классификация организмов по отношению к свободному кислороду

Группа Характеристика Организмы
Аэробы (облигатные аэробы) Организмы, способные жить только в кислородной среде Животные, растения, некоторые бактерии и грибы
Анаэробы (облигатные анаэробы) Организмы, неспособные жить в кислородной среде Некоторые бактерии
Факультативные формы (факультативные анаэробы) Организмы, способные жить как в присутствии кислорода, так и без него Некоторые бактерии и грибы

У облигатных аэробов и факультативных анаэробов в присутствии кислорода катаболизм протекает в три этапа: подготовительный, бес- кислородный и кислородный. В результате органические вещества распадаются до неорганических соединений. У облигатных анаэробов и факультативных анаэробов при недостатке кислорода катаболизм протекает в два первых этапа: подготовительный и бескислородный. В результате образуются промежуточные органические соединения, еще богатые энергией.

Этапы катаболизма

1. Первый этап — подготовительный — заключается в ферментативном расщеплении сложных органических соединений на более простые. Белки расщепляются до аминокислот, жиры — до глицерина и жирных кислот, полисахариды — до моносахаридов, нуклеиновые кислоты — до нуклеотидов. У многоклеточных организмов это происходит в желудочно-кишечном тракте, у одноклеточных — в лизосомах под действием гидролитических ферментов. Высвобождающаяся при этом энергия рассеивается в виде теплоты. Образовавшиеся органические соединения либо подвергаются дальнейшему окислению, либо используются клеткой для синтеза собственных органических соединений.
2. Второй этап — неполное окисление (бескислородный) — заключается в дальнейшем расщеплении органических веществ, осуществляется в цитоплазме клетки без участия кислорода. Главным источником энергии в клетке является глюкоза. Бескислородное, неполное окисление глюкозы называется гликолизом. В результате гликолиза одной молекулы глюкозы образуется по две молекулы пировиноградной кислоты (ПВК, пируват) CH3COCOOH, АТФ и воды, а также атомы водорода, которые связываются молекулой-переносчиком НАД+ и запасаются в виде НАД·Н.
Суммарная формула гликолиза имеет следующий вид:
C6H12O6 + 2H3PO4 + 2АДФ + 2НАД+ → 2C3Н4O3 + 2H2O + 2АТФ + 2НАД·Н.
Далее при отсутствии в среде кислорода продукты гликолиза (ПВК и НАД·Н) перерабатываются либо в этиловый спирт — спиртовое брожение (в клетках дрожжей и растений при недостатке кислорода)
CH3COCOOH → СО2 + СН3СОН
СН3СОН + 2НАД·Н → С2Н5ОН + 2НАД+,
либо в молочную кислоту — молочнокислое брожение (в клетках животных при недостатке кислорода)
CH3COCOOH + 2НАД·Н → C3Н6O3 + 2НАД+.
При наличии в среде кислорода продукты гликолиза претерпевают дальнейшее расщепление до конечных продуктов.
3. Третий этап — полное окисление (дыхание) — заключается в окислении ПВК до углекислого газа и воды, осуществляется в митохондриях при обязательном участии кислорода.
Он состоит из трёх стадий:
А) образование ацетилкоэнзима А;
Б) окисление ацетилкоэнзима А в цикле Кребса;
В) окислительное фосфорилирование в электронотранспортной цепи.

А. На первой стадии ПВК переносится из цитоплазмы в митохондрии, где взаимодействует с ферментами матрикса и образует 1) диоксид углерода, который выводится из клетки; 2) атомы водорода, которые молекулами-переносчиками доставляются к внутренней мембране митохондрии; 3) ацетилкофермент А (ацетил-КоА).
Б. На второй стадии происходит окисление ацетилкоэнзима А в цикле Кребса. Цикл Кребса (цикл трикарбоновых кислот, цикл лимонной кислоты) — это цепь последовательных реакций, в ходе которых из одной молекулы ацетил-КоА образуются 1) две молекулы диоксида углерода, 2) молекула АТФ и 3) четыре пары атомов водорода, передаваемые на молекулы-переносчики — НАД и ФАД. Таким образом, в результате гликолиза и цикла Кребса молекула глюкозы расщепляется до СО2, а высвободившаяся при этом энергия расходуется на синтез 4 АТФ и накапливается в 10 НАД·Н и 4 ФАД·Н2.
В. На третьей стадии атомы водорода с НАД·Н и ФАД·Н2 окисляются молекулярным кислородом О2 с образованием воды. Один НАД·Н способен образовывать 3 АТФ, а один ФАД·Н2–2 АТФ. Таким образом, выделяющаяся при этом энергия запасается в виде ещё 34 АТФ.
Этот процесс протекает следующим образом. Атомы водорода концентрируются около наружной стороны внутренней мембраны митохондрии. Они теряют электроны, которые по цепи молекул-переносчиков (цитохромов) электронотранспортной цепи (ЭТЦ) переносятся на внутреннюю сторону внутренней мембраны, где соединяются с молекулами кислорода:
О2 + е → О2.
В результате деятельности ферментов цепи переноса электронов внутренняя мембрана митохондрий изнутри заряжается отрицательно (за счёт О2), а снаружи — положительно (за счёт Н+), так что между её поверхностями создаётся разность потенциалов. Во внутреннюю мембрану митохондрий встроены молекулы фермента АТФ- синтетазы, обладающие ионным каналом. Когда разность потенциалов на мембране достигает критического уровня, положительно заряженные частицы H+ силой электрического поля начинают проталкиваться через канал АТФазы и, оказавшись на внутренней поверхности мембраны, взаимодействуют с кислородом, образуя воду:
1/2О2 +2H+ → Н2О.
Энергия ионов водорода H+, транспортирующихся через ионный канал внутренней мембраны митохондрии, используется для фосфорилирования АДФ в АТФ:
АДФ + Ф → АТФ.
Такое образование АТФ в митохондриях при участии кислорода называется окислительным фосфорилированием.
Суммарное уравнение расщепления глюкозы в процессе клеточного дыхания:
C6H12O6 + 6O2 + 38H3PO4 + 38АДФ → 6CO2 + 44H2O + 38АТФ.
Таким образом, в ходе гликолиза образуются 2 молекулы АТФ, в ходе клеточного дыхания — ещё 36 молекул АТФ, в целом при пол- ном окислении глюкозы — 38 молекул АТФ.

Пластический обмен

Пластический обмен, или ассимиляция, представляет собой совокупность реакций, обеспечивающих синтез сложных органических соединений из более простых (фотосинтез, хемосинтез, биосинтез белка и др.).

Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул:
органические вещества пищи (белки, жиры, углеводы) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).
Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе фото- и хемосинтеза происходит образование простых органических соединений, из которых в дальнейшем синтезируются макромолекулы:
неорганические вещества (СО2, Н2О) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).

Фотосинтез

Фотосинтез — синтез органических соединений из неорганических за счёт энергии света. Суммарное уравнение фотосинтеза:

Фотосинтез протекает при участии фотосинтезирующих пигментов, обладающих уникальным свойством преобразования энергии солнечного света в энергию химической связи в виде АТФ. Фотосинтезирующие пигменты представляют собой белковоподобные вещества. Наиболее важным является пигмент хлорофилл. У эукариот фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид, у прокариот — во впячивания цитоплазматической мембраны.
Строение хлоропласта очень похоже на строение митохондрии. Во внутренней мембране тилакоидов гран содержатся фотосинтетические пигменты, а также белки цепи переноса электронов и молекулы фермента АТФ-синтетазы.
Процесс фотосинтеза состоит из двух фаз: световой и темновой.
1. Световая фаза фотосинтеза протекает только на свету в мембране тилакоидов граны.
К ней относятся поглощение хлорофиллом квантов света, образование молекулы АТФ и фотолиз воды.
Под действием кванта света (hv) хлорофилл теряет электроны, переходя в возбуждённое состояние:

Эти электроны передаются переносчиками на наружную, то есть обращенную к матриксу поверхность мембраны тилакоидов, где накапливаются.
Одновременно внутри тилакоидов происходит фотолиз воды, то есть её разложение под действием света:

Образующиеся электроны передаются переносчиками к молекулам хлорофилла и восстанавливают их. Молекулы хлорофилла возвращаются в стабильное состояние.
Протоны водорода, образовавшиеся при фотолизе воды, накапливаются внутри тилакоида, создавая Н+-резервуар. В результате внутренняя поверхность мембраны тилакоида заряжается положительно (за счёт Н+), а наружная — отрицательно (за счёт е). По мере накопления по обе стороны мембраны противоположно заряженных частиц нарастает разность потенциалов. При достижении критической величины разности потенциалов сила электрического поля начинает проталкивать протоны через канал АТФ-синтетазы. Выделяющаяся при этом энергия используется для фосфорилирования молекул АДФ:
АДФ + Ф → АТФ.

Образование АТФ в процессе фотосинтеза под действием энергии света называется фотофосфорилированием.
Ионы водорода, оказавшись на наружной поверхности мембраны тилакоида, встречаются там с электронами и образуют атомарный водород, который связывается с молекулой-переносчиком водорода НАДФ (никотинамидадениндинуклеотидфосфат):
+ + 4е + НАДФ+ → НАДФ·Н2.
Таким образом, во время световой фазы фотосинтеза происходят три процесса: образование кислорода вследствие разложения воды, синтез АТФ и образование атомов водорода в форме НАДФ·Н2. Кислород диффундирует в атмосферу, а АТФ и НАДФ·Н2 участвуют в процессах темновой фазы.
2. Темновая фаза фотосинтеза протекает в матриксе хлоропласта как на свету, так и в темноте и представляет собой ряд последовательных преобразований СО2, поступающего из воздуха, в цикле Кальвина. Осуществляются реакции темновой фазы за счёт энергии АТФ. В цикле Кальвина СО2 связывается с водородом из НАДФ·Н2 с образованием глюкозы.
В процессе фотосинтеза кроме моносахаридов (глюкоза и др.) синтезируются мономеры других органических соединений — аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растения обеспечивают себя и всё живое на Земле необходимыми органическими веществами и кислородом.
Сравнительная характеристика фотосинтеза и дыхания эукариот представлена в таблице.

Сравнительная характеристика фотосинтеза и дыхания эукариот

Признак Фотосинтез Дыхание
Уравнение реакции 6СО2 + 6Н2О + энергия света → C6H12O6 + 6O2 C6H12O6 + 6O2 → 6СО2 + 6Н2О + энергия (АТФ)
Исходные вещества Углекислый газ, вода Органические вещества, кислород
Продукты реакции Органические вещества, кислород Углекислый газ, вода
Значение в круговороте веществ Синтез органических веществ из неорганических Разложение органических веществ до неорганических
Превращение энергии Превращение энергии света в энергию химических связей органических веществ Превращение энергии химических связей органических веществ в энергию макроэргических связей АТФ
Важнейшие этапы Световая и темновая фаза (включая цикл Кальвина) Неполное окисление (гликолиз) и полное окисление (включая цикл Кребса)
Место протекания процесса Хлоропласты Гиалоплазма (неполное окисление) и митохондрии (полное окисление)

Генетическая информация у всех организмов хранится в виде определённой последовательности нуклеотидов ДНК (или РНК у РНК-содержащих вирусов). Прокариоты содержат генетическую информацию в виде одной молекулы ДНК. В эукариотических клетках генетический материал распределён в нескольких молекулах ДНК, организованных в хромосомы.
ДНК состоит из кодирующих и некодирующих участков. Кодирующие участки кодируют РНК. Некодирующие области ДНК выполняют структурную функцию, позволяя участкам генетического материала упаковываться определённым образом, или регуляторную функцию, участвуя во включении генов, направляющих синтез белка.
Кодирующими участками ДНК являются гены. Ген — участок молекулы ДНК, кодирующей синтез одной мРНК (и соответственно полипептида), рРНК или тРНК.
Участок хромосомы, где расположен ген называется локусом. Совокупность генов клеточного ядра представляет собой генотип, совокупность генов гаплоидного набора хромосом — гено́м, совокупность генов внеядерных ДНК (митохондрий, пластид, цитоплазмы) — плазмон.
Реализация информации, записанной в генах, через синтез белков называется экспрессией (проявлением) генов. Генетическая информация хранится в виде определённой последовательности нуклеотидов ДНК, а реализуется в виде последовательности аминокислот в белке. Посредниками, переносчиками информации выступают РНК. То есть реализация генетической информации происходит следующим образом:
ДНК → РНК → белок.
Этот процесс осуществляется в два этапа:
1) транскрипция;
2) трансляция.

Транскрипция (от лат. transcriptio — переписывание) — синтез РНК с использованием ДНК в качестве матрицы. В результате образуются мРНК, тРНК и рРНК. Процесс транскрипции требует больших затрат энергии в виде АТФ и осуществляется ферментом РНК-полимеразой.

Одновременно транскрибируется не вся молекула ДНК, а лишь отдельные её отрезки. Такой отрезок (транскриптон) начинается промотором — участком ДНК, куда присоединяется РНК-полимераза и откуда начинается транскрипция, а заканчивается терминатором — участком ДНК, содержащим сигнал окончания транскрипции. Транскриптон — это ген с точки зрения молекулярной биологии.
Транскрипция, как и репликация, основана на способности азотистых оснований нуклеотидов к комплементарному связыванию. На время транскрипции двойная цепь ДНК разрывается, и синтез РНК осуществляется по одной цепи ДНК.

В процессе транскрипции последовательность нуклеотидов ДНК переписывается на синтезирующуюся молекулу мРНК, которая выступает в качестве матрицы в процессе биосинтеза белка.
Гены прокариот состоят только из кодирующих нуклеотидных последовательностей.

Гены эукариот состоят из чередующихся кодирующих (экзонов) и некодирующих (интронов) участков.

После транскрипции участки мРНК, соответствующие интронам, удаляются в ходе сплайсинга, являющегося составной частью процессинга.

Процессинг — процесс формирования зрелой мРНК из её предшественника пре-мРНК. Он включает два основных события. 1.Присоединение к концам мРНК коротких последовательностей нуклеотидов, обозначающих место начала и место конца трансляции. Сплайсинг — удаление неинформативных последовательностей мРНК, соответствующих интронам ДНК. В результате сплайсинга молекулярная масса мРНК уменьшается в 10 раз.
Трансляция (от лат. translatio — перевод) — синтез полипептидной цепи с использованием мРНК в роли матрицы.

В трансляции участвуют все три типа РНК: мРНК является информационной матрицей; тРНК доставляют аминокислоты и узнают кодоны; рРНК вместе с белками образуют рибосомы, которые удерживают мРНК, тРНК и белок и осуществляют синтез полипептидной цепи.

Этапы трансляции

Этап Характеристика
Инициация Сборка комплекса, участвующего в синтезе полипептидной цепи. Малая субчастица рибосомы соединяется с инициаторной мет-трнк, а затем с мрнк, после чего происходит образование целой рибосомы, состоящей из малой и большой субчастиц.
Элонгация Удлинение полипептидной цепи. Рибосома перемещается вдоль мрнк, что сопровождается многократным повторением цикла присоединения очередной аминокислоты к растущей полипептидной цепи.
Терминация Завершение синтеза полипептидной молекулы. Рибосома достигает одного из трёх стоп-кодонов мрнк, а так как не существует трнк с антикодонами, комплементарными стоп-кодонам, синтез полипептидной цепи прекращается. Она высвобождается и отделяется от рибосомы. Рибосомные субчастицы диссоциируют, отделяются от мрнк и могут принять участие в синтезе следующей полипептидной цепи.

Реакции матричного синтеза. К реакциям матричного синтеза относятся

  • самоудвоение ДНК (репликация);
  • образование мРНК, тРНК и рРНК на молекуле ДНК (транскрипция);
  • биосинтез белка на мРНК (трансляция).

Все эти реакции объединяет то, что молекула ДНК в одном случае или молекула мРНК в другом выступают в роли матрицы, на которой происходит образование одинаковых молекул. Реакции матричного синтеза являются основой способности живых организмов к воспроизведению себе подобных.
Регуляция экспрессии генов. Тело многоклеточного организма построено из разнообразных клеточных типов. Они отличаются структурой и функциями, то есть дифференцированы. Различия проявляются в том, что помимо белков, необходимых любой клетке организма, клетки каждого типа синтезируют ещё и специализированные белки: в эпидермисе образуется кератин, в эритроцитах — гемоглобин и т. д. Клеточная дифференцировка обусловлена изменением набора экспрессируемых генов и не сопровождается какими-либо необратимыми изменениями в структуре самих последовательностей ДНК.

Понравилась статья? Поделить с друзьями:
  • Процессуальные отрасли права тест в формате егэ
  • Процессуальные отрасли права егэ обществознание
  • Процессуальное право это егэ
  • Процессуальное право примеры для егэ
  • Процессуальное право план егэ по обществознанию