Поиск
в условии
в решении
в тексте к заданию
в атрибутах
Категория:
Атрибут:
Всего: 675 1–20 | 21–40 | 41–60 | 61–80 | 81–100 | 101–120 …
Добавить в вариант
Найдите точку максимума функции
Найдите точку минимума функции
Найдите точку максимума функции
Найдите точку максимума функции
Найдите точку минимума функции
Найдите наименьшее значение функции на отрезке
Найдите точку минимума функции
Найдите точку максимума функции
Найдите точку минимума функции
Найдите точку максимума функции
Найдите точку максимума функции
Найдите точку минимума функции
Найдите точку максимума функции
Найдите точку минимума функции
Найдите точку минимума функции
Найдите точку минимума функции
Найдите точку максимума функции
Найдите точку минимума функции
Найдите точку максимума функции
Найдите точку минимума функции
Всего: 675 1–20 | 21–40 | 41–60 | 61–80 | 81–100 | 101–120 …
Функции с числом е. Друзья! На сайте «Математический тандем» проходит конкурс «Лучший комментатор декабря 2012 года», так что добро пожаловать, будут призы. В данной статье мы с вами рассмотрим задачи, входящие в сотав типовых заданий экзамена по математике, связанные с исследованием функций (где присутствует число е).
Рекомендую вам ещё раз внимательно прочитать статью «Исследование функций. Это нужно знать!» и освежить в памяти изложенную информацию. Не устану повторять, что для того чтобы решать задачи на нахождение наибольшего или наименьшего значения, задачи на нахождение экстремумов, важно понимать свойства производной для исследования функций, знать таблицу производных и правила дифференцирования.
После решения каждой задачи есть разъяснения другого подхода к решению (я обещал вам «хитрости» — они здесь). Рекомендую посмотреть, выглядит график показательной функции.
Рассмотрим задачи:
Найдите наименьшее значение функции у = (х–17)ех–16
на отрезке [15;17].
Мы знаем, что для того, чтобы найти наибольшее или наименьшее значение функции на отрезке, необходимо вычислить её значение на границах заданного интервала и в точках, где производная равна нулю. Действуем по алгоритму:
1. Найдём производную заданной функции:
2. Найдем нули производной на заданном отрезке, то есть приравниваем производную к нулю и вычислим корни уравнения:
*Выражение ех-16 не равно нулю ни при каких х, так как известно, что показательная функция имеет положительные значения на всей области определения.
3. Определяем принадлежит ли найденная точка интервалу.
Точка х = 16 принадлежит интервалу [15;17]. Значит значение функции будем вычислять в точках 15, 16 и 17:
*Учтите, что число е ≈ 2,71. Это нецелое число и неконечная десятичная дробь, поэтому любое выражение с этим числом в подобных задачах на ЕГЭ не является верным ответом, но вы всё равно его проанализируйте. В данной задаче, если мы –2 разделим на число 2,71 то результат будет лежать в пределах от –1 до 0 (можно посчитать столбиком для проверки).
4. Делаем вывод.
Таким образом, наименьшее значение функции равно –1.
Ответ: –1
В этой статье я обещал вам какие-то там «хитрости», которые можно использовать при решении. Если вы поняли теорию производной и знаете, как находить максимальные и минимальные значения, то тогда читайте дальше — представленный приём будет хорошим дополнительным «инструментом» и позволит решать подобные задания мгновенно.
Итак! Мы знаем, что ответом в задачах на ЕГЭ в части В должно быть целое число, либо конечная десятичная дробь.
Посмотрите на данную функцию. Сразу можно сказать, что значение функции будет являться целым числом только при х = 16 или при х = 17, и ни при каких других значениях х. Поэтому достаточно вычислить:
и далее записать ответ.
Ещё один путь решения (без нахождения производной). Сразу подставляем в функцию все целые значения из интервала (их всего три 15, 16 и 17), вычисляем и выбираем наименьшее значение:
Решите самостоятельно:
Посмотреть решение
Найдите точку минимума функции у = (х + 18)ех-18
1. Найдём производную заданной функции:
2. Найдем нули производной:
Получаем, что х = –19.
*Выражение ех-18 не равно нулю ни при каких х, так как известно, что показательная функция имеет положительные значения на всей области определения.
3. Определим знаки производной функции на интервалах (подставляем любые произвольные значения в производную) и изобразим на рисунке поведение функции:
В точке х = –19 функция меняет знак с отрицательного на положительный, значит это искомая точка минимума.
Ответ: –19
Как решать быстрее данный тип задач?
Когда мы получили производную и приравняли её к нулю:
(х + 19)ех–18 = 0
Далее получили, что х=–19. Данное решение и будет являться ответом задачи.
*То есть, в при решении данного типа задач, можно обойтись без определения знаков производной на интервалах. Но будьте осторожны! В других заданиях на нахождение максимума (минимума), где получите несколько нулей производной, её знаки на интервалах нужно определять обязательно.
Решите самостоятельно:
Посмотреть решение
Найдите точку максимума функции у = (3х2 – 15х + 15)е7–х
Найдём производную заданной функции:
Найдем нули производной:
Число е7-х не может быть равно нулю, так как степень положительного числа всегда даст в результате число положительное.
Решаем – 3 (х–5)(х–2) = 0. Получим х1 = 5 и х2 = 2 .
Определим знаки производной функции (подставляя любые значения из интервалов в найденную производную) и изобразим на рисунке поведение функции:
В точке х = 5 функция меняет знак с положительного на отрицательный, значит это искомая точка максимума.
Ответ: 5
Решите самостоятельно:
Посмотреть решение
Найдите наибольшее значение функции у = (22 – х)ех–21
на отрезке [16;25].
Найдём производную заданной функции:
Найдем нули производной:
Число ех-21 не может быть равно нулю, так как степень положительного числа всегда даст в результате число положительное, значит х = 21.
Полученное значение принадлежит интервалу [16;25].
Вычислим значения данной в условии функции в точках 16, 21 и 25:
*То есть на границах интервала и в точке, где производная обращается в нуль.
Первый результат меньше единицы (это понятно и без вычислений).
Третий результат так же меньше единицы (отрицательное число).
Значит наибольшее значение функции на заданном интервале равно 1.
*Помните, что ответы с числом е (по требованиеям ЕГЭ) не являются верными.
Ответ: 1
Если у вас всё-таки неразрешимые проблемы с нахождением производной, то подставляйте в исходную функцию все целые значения из интервала и выбирайте наибольшее полученное значение.
*Кроме того, по данной функции сразу видно, что её значение будет целым числом только при х = 21 или при х = 22.
Можете подставить только их в функцию, далее произвести вычисления и выбрать наибольшее значение.
Решите самостоятельно:
Посмотреть решение
Найдите наибольшее значение функции у = (2х2 – 10х + 10)е х
на отрезке [–4; 3].
Необходимо определить значения на границах интервала, и в точках, где производная обращается в нуль.
Найдём производную заданной функции:
Найдем нули производной:
Произведение множителей равно нулю, когда какой либо из этих множителей равен нулю.
Число ех не может быть равно нулю, так как степень положительного числа всегда даст в результате число положительное.
Значит решением являются корни: х1=0 и х2=3
Обе точки принадлежат интервалу [–4;3], х=3 совпадает с границей интервала.
Вычисляем значения функции в точках: – 4, 0 и 3:
Значит наибольшее значение функции равно 10.
Ответ: 10
*Как вы уже поняли, можно в заданную функцию можно подставить все целые значения х из интервала, и таким образом найти наибольшее значение функции. Но в данном случае придётся перебрать 8 чисел (–4;–3;–2;–1;0;1;2;3).
Решите самостоятельно:
Посмотреть решение
Найдите наименьшее значение функции у = (х + 44)2е–44–х
на отрезке [– 46; –43]
Найдём производную заданной функции:
Обратите внимание, что результат мы представили сразу в виде множителей, это будет удобно при вычислении нулей производной.
Найдем нули производной:
Решением являются корни: х1= – 44 и х2= – 42.
Заданному интервалу [– 46;–43] принадлежит только точка х = – 44.
Вычисляем значения функции в точках – 46, – 44 и – 43, то есть на границах интервала и в точке, где производная равна нулю:
Наименьшее значение функции равно 0.
Ответ: 0
*Как это задание решить быстро?
Учитывая, что ответом должно быть целое число, видно что значение данной функции будет целым только при х= – 44 и х= 44.
указанному в условии интервалу принадлежит х= – 44, вычисляем:
Решите самостоятельно:
Посмотреть решение
В данной рубрике продолжим рассматривать задачи, не пропустите!
На этом закончим. Всем удачи!
С уважением, Александр Крутицких.
P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.
Найдем производную функции f(x)=exf(x)=e^x и приведем некоторые ее свойства и практические примеры использования.
Производная экспоненты
Как известно, производной функции f(x)f(x), определенной в точке x0x_0 и в некотором интервале, содержащем x0x_0, называют предел следующего вида:
f′(x0)=dfdx∣x=x0=limΔx→0f(x0+Δx)−f(x0)Δxf^{‘}(x_0)=dfrac{df}{dx}Bigr|_{x=x_0}=limlimits_{Delta x to 0}dfrac{ f(x_0+ Delta x)-f(x_0 )}{ Delta x},
если только такой предел существует.
Таким образом, для вычисления производной функции f(x)f(x) необходимо последовательно:
- Записать выражение для приращения функции:
Δf(x0)=f(x0+Δx)−f(x0)Delta f(x_0 )=f(x_0+Delta x)-f(x_0 )
- Упростить, по возможности, дробь
Δf(x0)Δx=f(x0+Δx)−f(x0)Δxdfrac {Delta f(x_0)}{Delta x}=dfrac {f(x_0+Delta x)-f(x_0)}{Delta x}
- Вычислить предел дроби при Δx→0Delta x to 0 и записать полученное выражение для производной.
Применим этот алгоритм к вычислению производной экспоненты:
- Записываем приращение функции:
Δf(x0)=f(x0+Δx)−f(x0)=ex0+Δx−ex0=ex0(eΔx−1)Delta f(x_0)= f(x_0+Delta x)-f(x_0)= e^{x_0+Delta x}-e^{x_0}=e^{x_0} (e^{Delta x}-1)
- Получаем дробь:
Δf(x0)Δx=ex0eΔx−1Δxdfrac {Delta f(x_0)}{Delta x}= e^{x_0} dfrac {e^{Delta x}-1}{Delta x}
- Вычисляем производную:
f′(x0)=limΔx→0ex0eΔx−1Δx=ex0limΔx→0eΔx−1Δxf'(x_0 )= limlimits_{Delta x to 0} {e^{x_0} dfrac {e^{Delta x}-1}{Delta x}}= e^{x_0}limlimits_{Delta x to 0} {dfrac {e^{Delta x}-1}{Delta x}}
Для преобразования eΔxe^{Delta x} используем представление числа e≈2,71828e approx2,71828 (числа Непера или числа Эйлера) в виде предела:
e=limn→∞(1+1n)ne=limlimits_{ntoinfty} Bigl( {1+dfrac {1}{n}} Bigr) ^n
Следовательно:
eΔx=limn→∞(1+Δxn)ne^{Delta x} =limlimits_{ntoinfty} Bigl( {1+dfrac {Delta x }{n}} Bigr) ^n
Используем для выражения под знаком предела бином Ньютона:
(1+Δxn)n=1+Cn1Δxn+Cn2(Δxn)2+…+Cnn(Δxn)nBigl( {1+dfrac {Delta x }{n}} Bigr) ^n=1+C_n^1 dfrac{Delta x }{n}+ C_n^2 Bigl( {dfrac{Delta x }{n}}Bigr)^2+ ldots + C_n^n Bigl( {dfrac{Delta x }{n}}Bigr)^n
Тогда:
f′(x0)=ex0limΔx→0limn→∞(1+Cn1Δxn+Cn2(Δxn)2+…+Cnn(Δxn)n)−1Δx=f'(x_0 )= e^{x_0}limlimits_{Delta x to 0}dfrac {limlimits_{ntoinfty} Bigl( {1+C_n^1 dfrac{Delta x }{n}+ C_n^2 Bigl( {dfrac{Delta x }{n}}Bigr)^2+ ldots + C_n^n Bigl( {dfrac{Delta x }{n}}Bigr)^n }Bigr)-1}{Delta x } =
=ex0limΔx→0(limn→∞Cn1Δxn+Cn2(Δxn)2+…+Cnn(Δxn)nΔx)==e^{x_0}limlimits_{Delta x to 0}Bigl( limlimits_{ntoinfty} dfrac {C_n^1 dfrac{Delta x }{n}+ C_n^2 Bigl( {dfrac{Delta x }{n}}Bigr)^2+ ldots + C_n^n Bigl( {dfrac{Delta x }{n}}Bigr)^n }{Delta x } Bigr)=
=ex0limΔx→0limn→∞(Cn11n+Cn2(Δx)2−1n2+…+Cnn(Δx)n−1nn)==e^{x_0}limlimits_{Delta x to 0} limlimits_{ntoinfty} Bigl( {C_n^1 dfrac{1}{n}+ C_n^2 dfrac{(Delta x)^{2-1} }{n^2}+ ldots + C_n^n dfrac{(Delta x)^{n-1} }{n^n}}Bigr)=
=ex0limn→∞limΔx→0(n1n+Cn2(Δx)2−1n2+…+Cnn(Δx)n−1nn)== e^{x_0}limlimits_{ ntoinfty } limlimits_{Delta x to 0} Bigl( {n dfrac{1}{n}+ C_n^2 dfrac{(Delta x)^{2-1} }{n^2}+ ldots + C_n^n dfrac{(Delta x)^{n-1} }{n^n}}Bigr)=
=ex0(1+limn→∞limΔx→0(Cn2(Δx)2−1n2+…+Cnn(Δx)n−1nn))= e^{x_0} Bigl( 1+ limlimits_{ ntoinfty } limlimits_{Delta x to 0} Bigl( { C_n^2 dfrac{(Delta x)^{2-1} }{n^2}+ ldots + C_n^n dfrac{(Delta x)^{n-1} }{n^n}}Bigr) Bigr)
Учитывая, что:
limΔx→0(Cn2(Δx)2−1n2+…+Cnn(Δx)n−1nn)=0limlimits_{Delta x to 0} Bigl( { C_n^2 dfrac{(Delta x)^{2-1} }{n^2}+ ldots + C_n^n dfrac{(Delta x)^{n-1} }{n^n}}Bigr)=0,
получаем:
f′(x0)=ex0(1+0)f'(x_0 )= e^{x_0}(1+0)
Таким образом:
f′(x)=(ex)′=exf'(x)= (e^{x})^{‘}=e^{x}
Как видно, производная экспоненциальной функции f(x)=exf(x)=e^x равна этой же функции.
Некоторые свойства и практические примеры
Угол наклона αalpha касательной к графику функции y=exy=e^x в точке x=x0x=x_0 определяется соотношением:
tgα=y′(x0)=ex0tg alpha =y^{‘} (x_0 )=e^{x_0}
Здесь угол αalpha это угол между касательной и осью OxOx, отсчитываемый от положительного направления OxOx против часовой стрелки.
Производная функции f(x)=exf(x)=e^x в точке x=0x=0 равна 11:
f′(0)=(ex)x=0′=e0=1f^{‘}(0)=(e^x )_{x=0}^{‘}=e^0=1
Это означает, что касательная к графику в точке M(0;1)M(0;1) с координатами: x0=0,y0=e0=1x_0=0, y_0=e^0=1 составляют с осью OxOx угол 45∘(tg45∘=1)45^{circ} (tg {45^{circ}}=1)
Производная сложной функции y=eg(x)y=e^{g(x)} согласно правил дифференцирования, равна:
y′=g′(x)eg(x)y’=g'(x) e^{g(x)}
Производная сложной функции y=u(v)y=u(v), где v=exv=e^x равна:
y′=uv′⋅v′=uv′⋅exy’=u’_v cdot v’=u’_v cdot e^x
Найти производную функции
f(x)=ex2+2xf(x)=e^{x^2+2x}
Решение
f′(x)=(ex2+2x)′=(x2+2x)′⋅ex2+2x=(2x+2)ex2+2xf'(x)= Bigl( e^{x^2+2x} Bigr)’=(x^2+2x)’ cdot e^{x^2+2x}=(2x+2) e^{x^2+2x}
Найти производную функции
f(x)=sine2xf(x)=sin{e^{2x}}
Решение
Полагаем: e2x=ve^{2x}=v
Тогда:
f′(x)=(sinv)v′⋅v′=cosv⋅(e2x)′=cos(e2x)⋅(2x)′e2x=2e2xcos(e2x)f'(x) = (sin v)_v’ cdot v’ = cos v cdot (e^{2x} )’ = cos (e^{2x}) cdot (2x)’ e^{2x}= 2e^{2x} cos(e^{2x})
Найти точку M(x0;y0)M(x_0; y_0) на графике функции y=exy=e^x в которой касательная к этому графику составляет с осью OxOx угол в 60∘60^{circ}.
Решение
Используя соотношение для угла наклона αalpha касательной:
tgα=f′(x)tg alpha =f’ (x)
для α=60∘alpha =60^{circ} получаем:
tg60∘=f′(x)=ex0tg 60^{circ}= f’ (x)=e^{x_0}
Отсюда находим координату x0x_0 точки MM:
ex0=3⇒x0=ln3e^{x_0}= sqrt 3 Rightarrow x_0=ln sqrt 3
Далее:
y0=ex0=eln3=3y_0=e^{x_0}=e^{ln sqrt 3}=sqrt 3
Искомая точка: M(ln3;3)M(ln sqrt 3; sqrt 3)
Тест по теме «Производная экспоненты»
По мнению выпускников, задание № 11 — самое сложное в первой части ЕГЭ по математике. Ведь там… производная! На деле не стоит бояться — все задания можно решить, зная только 2 алгоритма. В этой статье я о них расскажу! А еще поделюсь полезным лайфхаком, как решать некоторые задания на производную в ЕГЭ, вообще не используя алгоритм и экономя драгоценное время.
Хочешь круто подготовится к ЕГЭ по математике? Тебе поможет учебный центр MAXIMUM! Все наши преподаватели сами сдавали этот экзамен на хороший балл. Мы ежегодно изучаем изменения ФИПИ и корректируем курсы, исходя из этого. Читай подробнее про наши курсы и выбирай подходящий!
Почему задания на производную решает только 40% выпускников?
Ни для кого не секрет, что профильный ЕГЭ по математике состоит из частей с кратким и развёрнутым ответом. В первой части всего 11 заданий. В том числе и интересующее нас задание № 11.
Задание № 11 проверяет, умеют ли выпускники работать с производной. По статистике его решают около 40% всех сдающих экзамен, что для первой части ЕГЭ по математике очень мало.
Проблема этого задания в том, что производную проходят только в середине 11 класса, когда уже активно идет подготовка к ЕГЭ по другим темам. Из-за этого школьники не успевают ее отработать.
Два прототипа задания № 11 ЕГЭ по математике
В этом номере есть всего два типа заданий, которые можно решить с помощью простых алгоритмов. Ученикам нужно лишь запомнить их и выучить таблицу производных.
Сначала необходимо понять, что именно от нас хотят в задании — расскажу небольшой лайфхак. Многие ученики путают понятия «точка максимума / минимума» и «наибольшее / наименьшее значение». Дело в том, что точка экстремума – это x, а наибольшее или наименьшее значение – это у. Как не запутаться? Обрати внимание на слово-маркер «точка». Если ты видишь его, то речь идет об х, если этого слова нет, то речь об у.
Поиск точек экстремума
Теперь, когда мы разобрались, как не запутаться и понять, что необходимо найти в задаче, приступим к разбору самих заданий и алгоритмов к ним. Начнём с поиска точек экстремума. Чтобы провести анализ функции, необходимо определить основные этапы. У функции есть точки экстремума, в них производная равна нулю. Единственный способ, определить, является ли данная точка точкой максимума или минимума – это определить знаки производной до и после неё, если знак производной меняется с «–» на «+», то это будет точка минимума, а если с «+» на «–», то точка максимума. Таким образом общий порядок действий будет следующим:
Данному алгоритму подчиняются абсолютно все задания, в которых нужно найти точки экстремума.
Поиск наибольшего / наименьшего значения функции
Перейдём ко второму прототипу, в котором нужно найти наибольшее/наименьшее значение функции. Интересно, что второй прототип можно отличить даже визуально, потому что кроме самой функции вам будет дан ещё промежуток, ограничивающий функцию в двух точках [a; b]. Так как мы про эти точки ничего не знаем, их придётся дополнительно учитывать. В остальном начало этого алгоритма будет совпадать с предыдущим. Начинать всегда будем именно с точек экстремума, потом проверим, как ведёт себя функция в каждой точке экстремума, а также в начале и конце заданного промежутка, и в итоге запишем в ответ нужное значение функции.
Лайфак, чтобы решать задания на производную в ЕГЭ
Давайте посмотрим на некоторые задания, которые можно решить гораздо быстрее, не прибегая к использованию алгоритмов. Лайфхаки не работают на абсолютно всех заданиях, поэтому будьте аккуратны, применяя их!
Лайфхак, которые мы рассмотрим сегодня, будет опираться на знание формата экзамена. № 11 – задание из части с кратким ответом, ответ на который мы пишем в клеточки на бланке, а чего в этих клеточках не может быть? Очевидно, что бесконечную дробь, буквы 𝑒, ln(…), log(…), 𝜋, sin𝑥, бесконечность и прочие знаки мы не сможем записать, и это очень сильно упрощает нам задачу.
Разбираем лайфхак на примере
Чтобы выполнить данное задание, необходимо знать таблицу производных и немного порассуждать логически. Если мы пойдём по алгоритму, нам придётся брать производную от e в степени (x-9), а производная от данной функции будет равна тому же самому. И получается, что мы никак не можем избавиться от символа, которого просто не может быть в ответе.
Или можем? Есть замечательная степень, которая абсолютно любое основание может превратить в единицу — это 0. Таким образом, мы можем избавиться от е, если представим её степень (х – 9) равной нулю. Получается х – 9 = 0, тогда х = 9.
Но единственный ли это способ избавиться от «е»? На самом деле нет, так как есть ещё один множитель – скобка. Ее можно занулить, тогда занулится и всё произведение. Получим 10 – х = 0, тогда х = 10. Но не стоит забывать, что найти нас просят наименьшее значение ФУНЦИИ, поэтому теперь подставим найденные х в исходную функцию.
При х = 9 получаем 1, а при х = 10 получаем 0. Видим, что значение 0 меньше, чем 1, а значит именно его мы запишем в ответ. Обратите внимание, что оно достигается при х = 10, поэтому критично важно учитывать как степень экспоненты, так и множитель-скобку.
В этой статье мы рассмотрели два алгоритма, с помощью которых можно решить абсолютно любое задание № 11 ЕГЭ по математике. А еще вы узнали лайфхак, как можно выполнить задание на производную в ЕГЭ, не прибегая к использованию алгоритма, и сэкономить время!
- Учите производную
- Пользуйтесь алгоритмами
- Не забывайте про крутые лайфхаки, но будьте внимательны, применяя их!
Если хочешь разобраться в остальных темах по математике и не только, почитай другие статьи в блоге и обрати внимание на наши онлайн-курсы. Уже более 150 тысяч выпускников подготовились с нами к ЕГЭ. Кстати, у меня на курсах MAXIMUM тоже можно поучиться!
Определение производной
Определение. Пусть функция ( y = f(x) ) определена в некотором интервале, содержащем внутри себя точку ( x_0 ).
Дадим аргументу приращение ( Delta x ) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции
( Delta y ) (при переходе от точки ( x_0 ) к точке ( x_0 + Delta x ) ) и составим отношение
( frac{Delta y}{Delta x} ). Если существует предел этого отношения при ( Delta x rightarrow 0 ), то
указанный предел называют производной функции ( y=f(x) ) в точке ( x_0 ) и обозначают ( f'(x_0) ).
$$ lim_{Delta x to 0} frac{Delta y}{Delta x} = f'(x_0) $$
Для обозначения производной часто используют символ ( y’ ).
Отметим, что ( y’ = f(x) ) — это новая функция, но, естественно, связанная с функцией ( y = f(x) ), определенная во всех точках (x), в которых
существует указанный выше предел. Эту функцию называют так: производная функции ( y = f(x) ).
Геометрический смысл производной состоит в следующем. Если к графику функции ( y = f(x) ) в точке с абсциссой ( x=a ) можно
провести касательную, непараллельную оси (y), то ( f(a) ) выражает угловой коэффициент касательной:
( k = f'(a) )
Поскольку ( k = tg(a) ), то верно равенство ( f'(a) = tg(a) ) .
А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция ( y = f(x) ) имеет
производную в конкретной точке ( x ):
$$ lim_{Delta x to 0} frac{Delta y}{Delta x} = f'(x) $$
Это означает, что около точки (x) выполняется приближенное равенство ( frac{Delta y}{Delta x} approx f'(x) ), т.е.
( Delta y approx f'(x) cdot Delta x ).
Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально»
приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке (x).
Например, для функции ( y = x^2 ) справедливо приближенное равенство ( Delta y approx 2x cdot Delta x ).
Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.
Сформулируем его.
Как найти производную функции у = f(x) ?
1. Зафиксировать значение ( x ), найти ( f(x) )
2. Дать аргументу ( x ) приращение ( Delta x ), перейти в новую точку ( x+ Delta x ), найти ( f(x+ Delta x) )
3. Найти приращение функции: ( Delta y = f(x + Delta x) — f(x) )
4. Составить отношение ( frac{Delta y}{Delta x} )
5. Вычислить $$ lim_{Delta x to 0} frac{Delta y}{Delta x} $$
Этот предел и есть производная функции в точке (x).
Если функция (y=f(x)) имеет производную в точке (x), то ее называют дифференцируемой в точке (x). Процедуру нахождения производной
функции (y=f(x)) называют дифференцированием функции (y=f(x)).
Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.
Пусть функция (y=f(x)) дифференцируема в точке (x). Тогда к графику функции в точке ( M(x; ; f(x)) ) можно провести касательную,
причем, напомним, угловой коэффициент касательной равен ( f'(x) ). Такой график не может «разрываться» в точке (M), т. е. функция
обязана быть непрерывной в точке (x).
Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция (y=f(x)) дифференцируема в точке (x), то
выполняется приближенное равенство ( Delta y approx f'(x) cdot Delta x ). Если в этом равенстве ( Delta x ) устремить к
нулю, то и ( Delta y ) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.
Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке.
Обратное утверждение неверно. Например: функция ( y=|x|) непрерывна везде, в частности в точке (x=0), но касательная к графику
функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой
точке не существует производная.
Еще один пример. Функция ( y=sqrt[3]{x} ) непрерывна на всей числовой прямой, в том числе в точке (x=0).
И касательная к графику функции существует в любой точке, в том числе в точке (x=0). Но в этой точке касательная совпадает с осью (y),
т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид (x=0). Углового коэффициента у такой прямой нет, значит, не существует и
( f'(0) )
Итак, мы познакомились с новым свойством функции — дифференцируемостью. А как по графику функции можно сделать вывод о ее
дифференцируемости?
Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси
абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она
перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.
Правила дифференцирования
Операция нахождения производной называется дифференцированием.
При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций»,
то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу.
Если (C) — постоянное число и ( f=f(x), ; g=g(x) ) — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:
$$ C’=0 $$
$$ x’=1 $$
$$ ( f+g)’=f’+g’ $$
$$ (fg)’=f’g + fg’ $$
$$ (Cf)’=Cf’ $$
$$ left(frac{f}{g} right) ‘ = frac{f’g-fg’}{g^2} $$
$$ left(frac{C}{g} right) ‘ = -frac{Cg’}{g^2} $$
Производная сложной функции:
$$ f’_x(g(x)) = f’_g cdot g’_x $$
Таблица производных некоторых функций
$$ left( frac{1}{x} right) ‘ = -frac{1}{x^2} $$
$$ ( sqrt{x} ) ‘ = frac{1}{2sqrt{x}} $$
$$ left( x^a right) ‘ = a x^{a-1} $$
$$ left( a^x right) ‘ = a^x cdot ln a $$
$$ left( e^x right) ‘ = e^x $$
$$ ( ln x )’ = frac{1}{x} $$
$$ ( log_a x )’ = frac{1}{xln a} $$
$$ ( sin x )’ = cos x $$
$$ ( cos x )’ = -sin x $$
$$ ( text{tg} x )’ = frac{1}{cos^2 x} $$
$$ ( text{ctg} x )’ = -frac{1}{sin^2 x} $$
$$ ( arcsin x )’ = frac{1}{sqrt{1-x^2}} $$
$$ ( arccos x )’ = frac{-1}{sqrt{1-x^2}} $$
$$ ( text{arctg} x )’ = frac{1}{1+x^2} $$
$$ ( text{arcctg} x )’ = frac{-1}{1+x^2} $$
Данный онлайн калькулятор вычисляет производную функции. Программа не только вычисляет ответ, она производит пошаговое решение. Выбирается порядок дифференцирования.
Как пользоваться калькулятором для нахождения производных онлайн:
1. Введите математическое выражение с переменной x, в выражении используйте стандартные операции: + сложение, —
вычитание, / деление, * умножение, ^ — возведение в степень, а также математические функции.
2. Выберите порядок дифференцирования (решения производных от первого до пятого порядка включительно).
3. Нажмите кнопку — Вычислить производную.
4. Через несколько секунд внизу отобразится пошаговое решение производной с подробными комментариями.
При помощи нашего калькулятора вы можете найти производную онлайн как от элементарной функции, так и от сложной, не имеющей решения в аналитическом виде.
Калькулятор поможет найти производную функции онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.
: x^a
модуль x: abs(x)
Для того, чтобы найти производную функции
нужно написать в строке: f[x], x. Если Вам требуется
найти производную n-го порядка, то следует написать: f[x], {x, n}. В
том случае, если Вам требуется найти частную производную функции напишите в окне гаджета: f[x, y, z,…,t], j, где
— интересующая Вас переменная. Если нужно найти частную производную по
некоторой переменной порядка n, то следует ввести: f[x, y, z,…,t], {j,
n}, где означает тоже, что и Выше.
Важно подчеркнуть, что калькулятор выдает пошаговое нахождение
производной при нажатии на «Show Steps» в правом верхнем углу
выдаваемого ей ответа.
- Примеры
- x*E^x, x;
- x^3*E^x, {x,17};
- x^3*y^2*Sin[x+y], x;
- x^3*y^2*Sin[x+y], y,
- x/(x+y^4), {x,6}.
Таблица производных и правила дифференцирования
О том, что такое производная, мы рассказали в статье «Геометрический смысл производной». Если функция задана графиком, её производная в каждой точке равна тангенсу угла наклона касательной к графику функции. А если функция задана формулой — вам помогут таблица производных и правила дифференцирования, то есть правила нахождения производной.
Для решения задач на исследование функции в вариантах ЕГЭ необходима таблица производных и правила дифференцирования, а также знания о том, как связана производная с поведением функции.
Смотри также, как решаются задачи ЕГЭ на применение производной: задача 7 и задача 11.
Прокомментируем несколько строк из таблицы производных.
1. Производная постоянной величины, то есть константы, равна ей самой. Так и должно быть. Ведь константа не меняется. Это постоянная величина, она всегда принимает одинаковые значения.
А производная функции, как мы знаем, – это скорость изменения функции. Подробнее об этом здесь:
Производная функции.
И поэтому производная константы равна нулю.
2. Производная функции у=х равна 1. Вспомним, что производная функции в точке – это тангенс угла наклона касательной, проведенной к графику функции в этой точке. График функции у=х образует угол 45 градусов с положительным направлением оси Х. А тангенс 45 градусов равен 1.
3. Производная функции равна самой этой функции. И действительно, чем больше значение х, тем больше значение функции
… и тем круче вверх идет график по отношению к оси Х. Вот такая это функция, экспонента. Чем дальше, тем быстрее она растет.
4. Производная синуса и косинуса – тоже тригонометрические функции. Например, производная синуса – это косинус. Как это отражается в физике? Если координата тела меняется по закону синуса, то производная координаты, скорость, будет меняться по закону косинуса. Это описание гармонических колебаний: и координата, и скорость, и ускорение тела меняются по законам синуса и косинуса.
5. Производная логарифма в точке обратно пропорциональна
. Чем дальше, тем медленнее растет логарифмическая функция.
Вспомним, как связаны производная и поведение функции.
Если производная положительна, то функция
возрастает.
Если производная отрицательная, то функция убывает.
В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».
В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».
Запишем эти выводы в виде таблицы:
возрастает | точка максимума | убывает | точка минимума | возрастает | |
+ | 0 | — | 0 | + |
Разберем задачи ЕГЭ по теме «Таблица производных, нахождение наибольших и наименьших значений функции, нахождение точек максимума и минимума». Во всех этих примерах мы пользуемся формулами из таблицы производных.
Задача 1. Найдите точки максимумам функции
Решение:
Область определения функции:
Найдем производную функции, пользуясь формулой производной частного из таблицы.
если
Точки х = 5 и х = -5, а также точка ноль, разбивают числовую прямую на интервалы, на каждом из которых производная сохраняет свой знак. Это метод интервалов.
Найдем знаки производной на каждом интервале.
В точке максимума производная равна нулю и меняет знак с «плюса» на «минус». Это точка 5 на рисунке.
Ответ: 5.
Задача 2. Найдите точки минимума функции
Решение:
Применим формулу производной произведения.
Приравняем производную к нулю:
, если
Если то
функция убывает.
Если то
функция возрастает, значит,
– точка минимума функции
В этой точке производная равна нулю и меняет знак с «минуса» на «плюс».
Ответ: 0,625.
Задача 3. Найдите значение функции в точке максимума.
Решение:
Найдем производную функции:
Мы применили формулы производной степени.
Решим уравнение:
Получили критические точки, в которых производная равна нулю. Отметим их на оси Х и найдём знаки производной.
– точка максимума.
Найдём значение функции в этой точке:
Ответ: 16.
Рассмотрим задачи ЕГЭ на нахождение наибольших и наименьших значений функций.
Мы помним, что наибольшее значение функции на отрезке может достигаться либо в точке максимума, либо на конце отрезка. Эти случаи показаны на рисунке:
Это значит, что у нас есть алгоритм для нахождения наибольших и наименьших значений функции на интервале.
Пусть функция f(x) определена на некотором интервале. Чтобы найти ее наибольшее или наименьшее значение, действуем следующим образом:
- Находим производную функции.
- Приравниваем производную к нулю, находим точки, в которых она равна нулю.
- Если производная меняет знак с «плюса» на «минус» в точке
, то
– точка максимума функции.
- Если производная меняет знак с «минуса» на «плюс» в точке
, то
– точка минимума функции.
- Чтобы найти наибольшее значение функции на отрезке, сравниваем значения в точке максимума и концах отрезка.
Чтобы найти наименьшее значение функции на отрезке, сравниваем значения в точке минимума и концах отрезка.
Задача 4. Найдите наибольшее значение функции на отрезке
Решение:
Найдем производную:
Приравняем производную к нулю:
Если то
Так как
Точка – точка максимума функции
В этой точке функция принимает наибольшее значение на указанном отрезке.
Ответ: 4.
Задача 5. Найдите наименьшее значение функции на отрезке
Решение:
Найдем производную функции:
при
Найдем знаки производной слева и справа от точки
Если то
Если то
Значит, – точка минимума. Наименьшее значение функции на отрезке достигается при
Это значение равно
Ответ: -1.
Задача 6. Найдите наибольшее значение функции на отрезке
Решение:
Область определения функции:
Найдем производную функции и приравняем ее к нулю:
если
или
Второй корень не принадлежит отрезку
Найдем знаки производной на отрезке:
В точке производная равна нулю и меняет знак с «плюса» на «минус». Значит, это точка максимума, и наибольшее значение функции на отрезке
достигается при
Найдем значение функции при
Ответ: -5.
В следующих задачах наименьшее значение функции достигается на конце отрезка.
Задача 7. Найдите наименьшее значение функции на отрезке
Решение:
Найдем производную функции и приравняем ее к нулю.
У этого уравнения нет решений, так как
Это значит, что при любых
то есть
а это означает, что
– убывает, наименьшее значение функции достигается в правом конце отрезка
Ответ: -3.
Задача 8. Найдите наибольшее значение функции на отрезке
Решение:
Найдем производную функции:
Производная функции не равна нулю ни при каком
.
Мы знаем, что Тогда
Прибавим 7 ко всем частям неравенства:
для всех
Значит, производная положительна при любом значении переменной, функция монотонно возрастает. Наибольшее значение функции будет достигаться в правом конце отрезка, то есть при
Ответ: 8.
Задача 9. Найдите наименьшее значение функции на отрезке
Решение:
Найдем производную функции и приравняем ее к нулю:
тогда
На указанном отрезке это уравнение имеет единственное решение
Слева от этой точки Если производная отрицательна.
Справа от этой точки производная положительна.
Значит, – точка минимума функции, и наименьшее значение функции на отрезке достигается в этой точке.
Найдем значения функции в этой точке:
Ответ: 7.
В задачах ЕГЭ встречаются сложные функции. И найти нужно их точки максимума или минимума, наибольшие или наименьшие значения. Но производную сложной функции в школьной программе по-настоящему не проходят. Как же быть? Покажем полезные приемы, помогающие решить такие задания ЕГЭ.
Задача 10. Найдите наименьшее значение функции
Решение:
Рассмотрим функцию
Так как функция монотонно возрастает, точка минимума функции
будет при том же значении
, что и точка минимума функции
А ее найти легко:
при
В точке производная
меняет знак с «минуса» на «плюс». Значит,
– единственная точка минимума функции
и функции
Ответ: -2.
Задача 11. Найдите наибольшее значение функции на отрезке
Решение:
Так как функция монотонно возрастает при
точка минимума функции
соответствует точке минимума подкоренного выражения
Заметим, что подкоренное выражение всегда положительно.
Функция задает квадратичную параболу с ветвями вверх и точкой минимума в вершине параболы, то есть при
Если – монотонно убывает.
Если – монотонно возрастает.
Значит, наибольшее значение функции на отрезке
достигается в одном из концов этого отрезка.
Сравним и
Ответ: 6.
Задача 12. Найдите точку максимума функции
Решение:
Рассмотрим функцию
Ее график – парабола с ветвями вниз, и точка максимума будет в вершине параболы, при Функция
монотонно возрастает, и значит, большему значению
будет соответствовать большее значение
Точка максимума функции будет такой же, как у функции
то есть
Ответ: 1.
Читайте также: Задание 11 на ЕГЭ по математике.
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Таблица производных и правила дифференцирования» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
09.03.2023